1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 static inline void count_compact_event(enum vm_event_item item) 30 { 31 count_vm_event(item); 32 } 33 34 static inline void count_compact_events(enum vm_event_item item, long delta) 35 { 36 count_vm_events(item, delta); 37 } 38 #else 39 #define count_compact_event(item) do { } while (0) 40 #define count_compact_events(item, delta) do { } while (0) 41 #endif 42 43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/compaction.h> 47 48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 52 53 /* 54 * Fragmentation score check interval for proactive compaction purposes. 55 */ 56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500; 57 58 /* 59 * Page order with-respect-to which proactive compaction 60 * calculates external fragmentation, which is used as 61 * the "fragmentation score" of a node/zone. 62 */ 63 #if defined CONFIG_TRANSPARENT_HUGEPAGE 64 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 65 #elif defined CONFIG_HUGETLBFS 66 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 67 #else 68 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 69 #endif 70 71 static unsigned long release_freepages(struct list_head *freelist) 72 { 73 struct page *page, *next; 74 unsigned long high_pfn = 0; 75 76 list_for_each_entry_safe(page, next, freelist, lru) { 77 unsigned long pfn = page_to_pfn(page); 78 list_del(&page->lru); 79 __free_page(page); 80 if (pfn > high_pfn) 81 high_pfn = pfn; 82 } 83 84 return high_pfn; 85 } 86 87 static void split_map_pages(struct list_head *list) 88 { 89 unsigned int i, order, nr_pages; 90 struct page *page, *next; 91 LIST_HEAD(tmp_list); 92 93 list_for_each_entry_safe(page, next, list, lru) { 94 list_del(&page->lru); 95 96 order = page_private(page); 97 nr_pages = 1 << order; 98 99 post_alloc_hook(page, order, __GFP_MOVABLE); 100 if (order) 101 split_page(page, order); 102 103 for (i = 0; i < nr_pages; i++) { 104 list_add(&page->lru, &tmp_list); 105 page++; 106 } 107 } 108 109 list_splice(&tmp_list, list); 110 } 111 112 #ifdef CONFIG_COMPACTION 113 114 int PageMovable(struct page *page) 115 { 116 struct address_space *mapping; 117 118 VM_BUG_ON_PAGE(!PageLocked(page), page); 119 if (!__PageMovable(page)) 120 return 0; 121 122 mapping = page_mapping(page); 123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 124 return 1; 125 126 return 0; 127 } 128 EXPORT_SYMBOL(PageMovable); 129 130 void __SetPageMovable(struct page *page, struct address_space *mapping) 131 { 132 VM_BUG_ON_PAGE(!PageLocked(page), page); 133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 135 } 136 EXPORT_SYMBOL(__SetPageMovable); 137 138 void __ClearPageMovable(struct page *page) 139 { 140 VM_BUG_ON_PAGE(!PageLocked(page), page); 141 VM_BUG_ON_PAGE(!PageMovable(page), page); 142 /* 143 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 144 * flag so that VM can catch up released page by driver after isolation. 145 * With it, VM migration doesn't try to put it back. 146 */ 147 page->mapping = (void *)((unsigned long)page->mapping & 148 PAGE_MAPPING_MOVABLE); 149 } 150 EXPORT_SYMBOL(__ClearPageMovable); 151 152 /* Do not skip compaction more than 64 times */ 153 #define COMPACT_MAX_DEFER_SHIFT 6 154 155 /* 156 * Compaction is deferred when compaction fails to result in a page 157 * allocation success. 1 << compact_defer_shift, compactions are skipped up 158 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 159 */ 160 void defer_compaction(struct zone *zone, int order) 161 { 162 zone->compact_considered = 0; 163 zone->compact_defer_shift++; 164 165 if (order < zone->compact_order_failed) 166 zone->compact_order_failed = order; 167 168 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 169 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 170 171 trace_mm_compaction_defer_compaction(zone, order); 172 } 173 174 /* Returns true if compaction should be skipped this time */ 175 bool compaction_deferred(struct zone *zone, int order) 176 { 177 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 178 179 if (order < zone->compact_order_failed) 180 return false; 181 182 /* Avoid possible overflow */ 183 if (++zone->compact_considered >= defer_limit) { 184 zone->compact_considered = defer_limit; 185 return false; 186 } 187 188 trace_mm_compaction_deferred(zone, order); 189 190 return true; 191 } 192 193 /* 194 * Update defer tracking counters after successful compaction of given order, 195 * which means an allocation either succeeded (alloc_success == true) or is 196 * expected to succeed. 197 */ 198 void compaction_defer_reset(struct zone *zone, int order, 199 bool alloc_success) 200 { 201 if (alloc_success) { 202 zone->compact_considered = 0; 203 zone->compact_defer_shift = 0; 204 } 205 if (order >= zone->compact_order_failed) 206 zone->compact_order_failed = order + 1; 207 208 trace_mm_compaction_defer_reset(zone, order); 209 } 210 211 /* Returns true if restarting compaction after many failures */ 212 bool compaction_restarting(struct zone *zone, int order) 213 { 214 if (order < zone->compact_order_failed) 215 return false; 216 217 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 218 zone->compact_considered >= 1UL << zone->compact_defer_shift; 219 } 220 221 /* Returns true if the pageblock should be scanned for pages to isolate. */ 222 static inline bool isolation_suitable(struct compact_control *cc, 223 struct page *page) 224 { 225 if (cc->ignore_skip_hint) 226 return true; 227 228 return !get_pageblock_skip(page); 229 } 230 231 static void reset_cached_positions(struct zone *zone) 232 { 233 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 234 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 235 zone->compact_cached_free_pfn = 236 pageblock_start_pfn(zone_end_pfn(zone) - 1); 237 } 238 239 /* 240 * Compound pages of >= pageblock_order should consistenly be skipped until 241 * released. It is always pointless to compact pages of such order (if they are 242 * migratable), and the pageblocks they occupy cannot contain any free pages. 243 */ 244 static bool pageblock_skip_persistent(struct page *page) 245 { 246 if (!PageCompound(page)) 247 return false; 248 249 page = compound_head(page); 250 251 if (compound_order(page) >= pageblock_order) 252 return true; 253 254 return false; 255 } 256 257 static bool 258 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 259 bool check_target) 260 { 261 struct page *page = pfn_to_online_page(pfn); 262 struct page *block_page; 263 struct page *end_page; 264 unsigned long block_pfn; 265 266 if (!page) 267 return false; 268 if (zone != page_zone(page)) 269 return false; 270 if (pageblock_skip_persistent(page)) 271 return false; 272 273 /* 274 * If skip is already cleared do no further checking once the 275 * restart points have been set. 276 */ 277 if (check_source && check_target && !get_pageblock_skip(page)) 278 return true; 279 280 /* 281 * If clearing skip for the target scanner, do not select a 282 * non-movable pageblock as the starting point. 283 */ 284 if (!check_source && check_target && 285 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 286 return false; 287 288 /* Ensure the start of the pageblock or zone is online and valid */ 289 block_pfn = pageblock_start_pfn(pfn); 290 block_pfn = max(block_pfn, zone->zone_start_pfn); 291 block_page = pfn_to_online_page(block_pfn); 292 if (block_page) { 293 page = block_page; 294 pfn = block_pfn; 295 } 296 297 /* Ensure the end of the pageblock or zone is online and valid */ 298 block_pfn = pageblock_end_pfn(pfn) - 1; 299 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 300 end_page = pfn_to_online_page(block_pfn); 301 if (!end_page) 302 return false; 303 304 /* 305 * Only clear the hint if a sample indicates there is either a 306 * free page or an LRU page in the block. One or other condition 307 * is necessary for the block to be a migration source/target. 308 */ 309 do { 310 if (pfn_valid_within(pfn)) { 311 if (check_source && PageLRU(page)) { 312 clear_pageblock_skip(page); 313 return true; 314 } 315 316 if (check_target && PageBuddy(page)) { 317 clear_pageblock_skip(page); 318 return true; 319 } 320 } 321 322 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 323 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER); 324 } while (page <= end_page); 325 326 return false; 327 } 328 329 /* 330 * This function is called to clear all cached information on pageblocks that 331 * should be skipped for page isolation when the migrate and free page scanner 332 * meet. 333 */ 334 static void __reset_isolation_suitable(struct zone *zone) 335 { 336 unsigned long migrate_pfn = zone->zone_start_pfn; 337 unsigned long free_pfn = zone_end_pfn(zone) - 1; 338 unsigned long reset_migrate = free_pfn; 339 unsigned long reset_free = migrate_pfn; 340 bool source_set = false; 341 bool free_set = false; 342 343 if (!zone->compact_blockskip_flush) 344 return; 345 346 zone->compact_blockskip_flush = false; 347 348 /* 349 * Walk the zone and update pageblock skip information. Source looks 350 * for PageLRU while target looks for PageBuddy. When the scanner 351 * is found, both PageBuddy and PageLRU are checked as the pageblock 352 * is suitable as both source and target. 353 */ 354 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 355 free_pfn -= pageblock_nr_pages) { 356 cond_resched(); 357 358 /* Update the migrate PFN */ 359 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 360 migrate_pfn < reset_migrate) { 361 source_set = true; 362 reset_migrate = migrate_pfn; 363 zone->compact_init_migrate_pfn = reset_migrate; 364 zone->compact_cached_migrate_pfn[0] = reset_migrate; 365 zone->compact_cached_migrate_pfn[1] = reset_migrate; 366 } 367 368 /* Update the free PFN */ 369 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 370 free_pfn > reset_free) { 371 free_set = true; 372 reset_free = free_pfn; 373 zone->compact_init_free_pfn = reset_free; 374 zone->compact_cached_free_pfn = reset_free; 375 } 376 } 377 378 /* Leave no distance if no suitable block was reset */ 379 if (reset_migrate >= reset_free) { 380 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 381 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 382 zone->compact_cached_free_pfn = free_pfn; 383 } 384 } 385 386 void reset_isolation_suitable(pg_data_t *pgdat) 387 { 388 int zoneid; 389 390 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 391 struct zone *zone = &pgdat->node_zones[zoneid]; 392 if (!populated_zone(zone)) 393 continue; 394 395 /* Only flush if a full compaction finished recently */ 396 if (zone->compact_blockskip_flush) 397 __reset_isolation_suitable(zone); 398 } 399 } 400 401 /* 402 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 403 * locks are not required for read/writers. Returns true if it was already set. 404 */ 405 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 406 unsigned long pfn) 407 { 408 bool skip; 409 410 /* Do no update if skip hint is being ignored */ 411 if (cc->ignore_skip_hint) 412 return false; 413 414 if (!IS_ALIGNED(pfn, pageblock_nr_pages)) 415 return false; 416 417 skip = get_pageblock_skip(page); 418 if (!skip && !cc->no_set_skip_hint) 419 set_pageblock_skip(page); 420 421 return skip; 422 } 423 424 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 425 { 426 struct zone *zone = cc->zone; 427 428 pfn = pageblock_end_pfn(pfn); 429 430 /* Set for isolation rather than compaction */ 431 if (cc->no_set_skip_hint) 432 return; 433 434 if (pfn > zone->compact_cached_migrate_pfn[0]) 435 zone->compact_cached_migrate_pfn[0] = pfn; 436 if (cc->mode != MIGRATE_ASYNC && 437 pfn > zone->compact_cached_migrate_pfn[1]) 438 zone->compact_cached_migrate_pfn[1] = pfn; 439 } 440 441 /* 442 * If no pages were isolated then mark this pageblock to be skipped in the 443 * future. The information is later cleared by __reset_isolation_suitable(). 444 */ 445 static void update_pageblock_skip(struct compact_control *cc, 446 struct page *page, unsigned long pfn) 447 { 448 struct zone *zone = cc->zone; 449 450 if (cc->no_set_skip_hint) 451 return; 452 453 if (!page) 454 return; 455 456 set_pageblock_skip(page); 457 458 /* Update where async and sync compaction should restart */ 459 if (pfn < zone->compact_cached_free_pfn) 460 zone->compact_cached_free_pfn = pfn; 461 } 462 #else 463 static inline bool isolation_suitable(struct compact_control *cc, 464 struct page *page) 465 { 466 return true; 467 } 468 469 static inline bool pageblock_skip_persistent(struct page *page) 470 { 471 return false; 472 } 473 474 static inline void update_pageblock_skip(struct compact_control *cc, 475 struct page *page, unsigned long pfn) 476 { 477 } 478 479 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 480 { 481 } 482 483 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 484 unsigned long pfn) 485 { 486 return false; 487 } 488 #endif /* CONFIG_COMPACTION */ 489 490 /* 491 * Compaction requires the taking of some coarse locks that are potentially 492 * very heavily contended. For async compaction, trylock and record if the 493 * lock is contended. The lock will still be acquired but compaction will 494 * abort when the current block is finished regardless of success rate. 495 * Sync compaction acquires the lock. 496 * 497 * Always returns true which makes it easier to track lock state in callers. 498 */ 499 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 500 struct compact_control *cc) 501 __acquires(lock) 502 { 503 /* Track if the lock is contended in async mode */ 504 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 505 if (spin_trylock_irqsave(lock, *flags)) 506 return true; 507 508 cc->contended = true; 509 } 510 511 spin_lock_irqsave(lock, *flags); 512 return true; 513 } 514 515 /* 516 * Compaction requires the taking of some coarse locks that are potentially 517 * very heavily contended. The lock should be periodically unlocked to avoid 518 * having disabled IRQs for a long time, even when there is nobody waiting on 519 * the lock. It might also be that allowing the IRQs will result in 520 * need_resched() becoming true. If scheduling is needed, async compaction 521 * aborts. Sync compaction schedules. 522 * Either compaction type will also abort if a fatal signal is pending. 523 * In either case if the lock was locked, it is dropped and not regained. 524 * 525 * Returns true if compaction should abort due to fatal signal pending, or 526 * async compaction due to need_resched() 527 * Returns false when compaction can continue (sync compaction might have 528 * scheduled) 529 */ 530 static bool compact_unlock_should_abort(spinlock_t *lock, 531 unsigned long flags, bool *locked, struct compact_control *cc) 532 { 533 if (*locked) { 534 spin_unlock_irqrestore(lock, flags); 535 *locked = false; 536 } 537 538 if (fatal_signal_pending(current)) { 539 cc->contended = true; 540 return true; 541 } 542 543 cond_resched(); 544 545 return false; 546 } 547 548 /* 549 * Isolate free pages onto a private freelist. If @strict is true, will abort 550 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 551 * (even though it may still end up isolating some pages). 552 */ 553 static unsigned long isolate_freepages_block(struct compact_control *cc, 554 unsigned long *start_pfn, 555 unsigned long end_pfn, 556 struct list_head *freelist, 557 unsigned int stride, 558 bool strict) 559 { 560 int nr_scanned = 0, total_isolated = 0; 561 struct page *cursor; 562 unsigned long flags = 0; 563 bool locked = false; 564 unsigned long blockpfn = *start_pfn; 565 unsigned int order; 566 567 /* Strict mode is for isolation, speed is secondary */ 568 if (strict) 569 stride = 1; 570 571 cursor = pfn_to_page(blockpfn); 572 573 /* Isolate free pages. */ 574 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 575 int isolated; 576 struct page *page = cursor; 577 578 /* 579 * Periodically drop the lock (if held) regardless of its 580 * contention, to give chance to IRQs. Abort if fatal signal 581 * pending or async compaction detects need_resched() 582 */ 583 if (!(blockpfn % SWAP_CLUSTER_MAX) 584 && compact_unlock_should_abort(&cc->zone->lock, flags, 585 &locked, cc)) 586 break; 587 588 nr_scanned++; 589 if (!pfn_valid_within(blockpfn)) 590 goto isolate_fail; 591 592 /* 593 * For compound pages such as THP and hugetlbfs, we can save 594 * potentially a lot of iterations if we skip them at once. 595 * The check is racy, but we can consider only valid values 596 * and the only danger is skipping too much. 597 */ 598 if (PageCompound(page)) { 599 const unsigned int order = compound_order(page); 600 601 if (likely(order < MAX_ORDER)) { 602 blockpfn += (1UL << order) - 1; 603 cursor += (1UL << order) - 1; 604 } 605 goto isolate_fail; 606 } 607 608 if (!PageBuddy(page)) 609 goto isolate_fail; 610 611 /* 612 * If we already hold the lock, we can skip some rechecking. 613 * Note that if we hold the lock now, checked_pageblock was 614 * already set in some previous iteration (or strict is true), 615 * so it is correct to skip the suitable migration target 616 * recheck as well. 617 */ 618 if (!locked) { 619 locked = compact_lock_irqsave(&cc->zone->lock, 620 &flags, cc); 621 622 /* Recheck this is a buddy page under lock */ 623 if (!PageBuddy(page)) 624 goto isolate_fail; 625 } 626 627 /* Found a free page, will break it into order-0 pages */ 628 order = buddy_order(page); 629 isolated = __isolate_free_page(page, order); 630 if (!isolated) 631 break; 632 set_page_private(page, order); 633 634 total_isolated += isolated; 635 cc->nr_freepages += isolated; 636 list_add_tail(&page->lru, freelist); 637 638 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 639 blockpfn += isolated; 640 break; 641 } 642 /* Advance to the end of split page */ 643 blockpfn += isolated - 1; 644 cursor += isolated - 1; 645 continue; 646 647 isolate_fail: 648 if (strict) 649 break; 650 else 651 continue; 652 653 } 654 655 if (locked) 656 spin_unlock_irqrestore(&cc->zone->lock, flags); 657 658 /* 659 * There is a tiny chance that we have read bogus compound_order(), 660 * so be careful to not go outside of the pageblock. 661 */ 662 if (unlikely(blockpfn > end_pfn)) 663 blockpfn = end_pfn; 664 665 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 666 nr_scanned, total_isolated); 667 668 /* Record how far we have got within the block */ 669 *start_pfn = blockpfn; 670 671 /* 672 * If strict isolation is requested by CMA then check that all the 673 * pages requested were isolated. If there were any failures, 0 is 674 * returned and CMA will fail. 675 */ 676 if (strict && blockpfn < end_pfn) 677 total_isolated = 0; 678 679 cc->total_free_scanned += nr_scanned; 680 if (total_isolated) 681 count_compact_events(COMPACTISOLATED, total_isolated); 682 return total_isolated; 683 } 684 685 /** 686 * isolate_freepages_range() - isolate free pages. 687 * @cc: Compaction control structure. 688 * @start_pfn: The first PFN to start isolating. 689 * @end_pfn: The one-past-last PFN. 690 * 691 * Non-free pages, invalid PFNs, or zone boundaries within the 692 * [start_pfn, end_pfn) range are considered errors, cause function to 693 * undo its actions and return zero. 694 * 695 * Otherwise, function returns one-past-the-last PFN of isolated page 696 * (which may be greater then end_pfn if end fell in a middle of 697 * a free page). 698 */ 699 unsigned long 700 isolate_freepages_range(struct compact_control *cc, 701 unsigned long start_pfn, unsigned long end_pfn) 702 { 703 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 704 LIST_HEAD(freelist); 705 706 pfn = start_pfn; 707 block_start_pfn = pageblock_start_pfn(pfn); 708 if (block_start_pfn < cc->zone->zone_start_pfn) 709 block_start_pfn = cc->zone->zone_start_pfn; 710 block_end_pfn = pageblock_end_pfn(pfn); 711 712 for (; pfn < end_pfn; pfn += isolated, 713 block_start_pfn = block_end_pfn, 714 block_end_pfn += pageblock_nr_pages) { 715 /* Protect pfn from changing by isolate_freepages_block */ 716 unsigned long isolate_start_pfn = pfn; 717 718 block_end_pfn = min(block_end_pfn, end_pfn); 719 720 /* 721 * pfn could pass the block_end_pfn if isolated freepage 722 * is more than pageblock order. In this case, we adjust 723 * scanning range to right one. 724 */ 725 if (pfn >= block_end_pfn) { 726 block_start_pfn = pageblock_start_pfn(pfn); 727 block_end_pfn = pageblock_end_pfn(pfn); 728 block_end_pfn = min(block_end_pfn, end_pfn); 729 } 730 731 if (!pageblock_pfn_to_page(block_start_pfn, 732 block_end_pfn, cc->zone)) 733 break; 734 735 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 736 block_end_pfn, &freelist, 0, true); 737 738 /* 739 * In strict mode, isolate_freepages_block() returns 0 if 740 * there are any holes in the block (ie. invalid PFNs or 741 * non-free pages). 742 */ 743 if (!isolated) 744 break; 745 746 /* 747 * If we managed to isolate pages, it is always (1 << n) * 748 * pageblock_nr_pages for some non-negative n. (Max order 749 * page may span two pageblocks). 750 */ 751 } 752 753 /* __isolate_free_page() does not map the pages */ 754 split_map_pages(&freelist); 755 756 if (pfn < end_pfn) { 757 /* Loop terminated early, cleanup. */ 758 release_freepages(&freelist); 759 return 0; 760 } 761 762 /* We don't use freelists for anything. */ 763 return pfn; 764 } 765 766 /* Similar to reclaim, but different enough that they don't share logic */ 767 static bool too_many_isolated(pg_data_t *pgdat) 768 { 769 unsigned long active, inactive, isolated; 770 771 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 772 node_page_state(pgdat, NR_INACTIVE_ANON); 773 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 774 node_page_state(pgdat, NR_ACTIVE_ANON); 775 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 776 node_page_state(pgdat, NR_ISOLATED_ANON); 777 778 return isolated > (inactive + active) / 2; 779 } 780 781 /** 782 * isolate_migratepages_block() - isolate all migrate-able pages within 783 * a single pageblock 784 * @cc: Compaction control structure. 785 * @low_pfn: The first PFN to isolate 786 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 787 * @isolate_mode: Isolation mode to be used. 788 * 789 * Isolate all pages that can be migrated from the range specified by 790 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 791 * Returns zero if there is a fatal signal pending, otherwise PFN of the 792 * first page that was not scanned (which may be both less, equal to or more 793 * than end_pfn). 794 * 795 * The pages are isolated on cc->migratepages list (not required to be empty), 796 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 797 * is neither read nor updated. 798 */ 799 static unsigned long 800 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 801 unsigned long end_pfn, isolate_mode_t isolate_mode) 802 { 803 pg_data_t *pgdat = cc->zone->zone_pgdat; 804 unsigned long nr_scanned = 0, nr_isolated = 0; 805 struct lruvec *lruvec; 806 unsigned long flags = 0; 807 bool locked = false; 808 struct page *page = NULL, *valid_page = NULL; 809 unsigned long start_pfn = low_pfn; 810 bool skip_on_failure = false; 811 unsigned long next_skip_pfn = 0; 812 bool skip_updated = false; 813 814 /* 815 * Ensure that there are not too many pages isolated from the LRU 816 * list by either parallel reclaimers or compaction. If there are, 817 * delay for some time until fewer pages are isolated 818 */ 819 while (unlikely(too_many_isolated(pgdat))) { 820 /* async migration should just abort */ 821 if (cc->mode == MIGRATE_ASYNC) 822 return 0; 823 824 congestion_wait(BLK_RW_ASYNC, HZ/10); 825 826 if (fatal_signal_pending(current)) 827 return 0; 828 } 829 830 cond_resched(); 831 832 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 833 skip_on_failure = true; 834 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 835 } 836 837 /* Time to isolate some pages for migration */ 838 for (; low_pfn < end_pfn; low_pfn++) { 839 840 if (skip_on_failure && low_pfn >= next_skip_pfn) { 841 /* 842 * We have isolated all migration candidates in the 843 * previous order-aligned block, and did not skip it due 844 * to failure. We should migrate the pages now and 845 * hopefully succeed compaction. 846 */ 847 if (nr_isolated) 848 break; 849 850 /* 851 * We failed to isolate in the previous order-aligned 852 * block. Set the new boundary to the end of the 853 * current block. Note we can't simply increase 854 * next_skip_pfn by 1 << order, as low_pfn might have 855 * been incremented by a higher number due to skipping 856 * a compound or a high-order buddy page in the 857 * previous loop iteration. 858 */ 859 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 860 } 861 862 /* 863 * Periodically drop the lock (if held) regardless of its 864 * contention, to give chance to IRQs. Abort completely if 865 * a fatal signal is pending. 866 */ 867 if (!(low_pfn % SWAP_CLUSTER_MAX) 868 && compact_unlock_should_abort(&pgdat->lru_lock, 869 flags, &locked, cc)) { 870 low_pfn = 0; 871 goto fatal_pending; 872 } 873 874 if (!pfn_valid_within(low_pfn)) 875 goto isolate_fail; 876 nr_scanned++; 877 878 page = pfn_to_page(low_pfn); 879 880 /* 881 * Check if the pageblock has already been marked skipped. 882 * Only the aligned PFN is checked as the caller isolates 883 * COMPACT_CLUSTER_MAX at a time so the second call must 884 * not falsely conclude that the block should be skipped. 885 */ 886 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) { 887 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) { 888 low_pfn = end_pfn; 889 goto isolate_abort; 890 } 891 valid_page = page; 892 } 893 894 /* 895 * Skip if free. We read page order here without zone lock 896 * which is generally unsafe, but the race window is small and 897 * the worst thing that can happen is that we skip some 898 * potential isolation targets. 899 */ 900 if (PageBuddy(page)) { 901 unsigned long freepage_order = buddy_order_unsafe(page); 902 903 /* 904 * Without lock, we cannot be sure that what we got is 905 * a valid page order. Consider only values in the 906 * valid order range to prevent low_pfn overflow. 907 */ 908 if (freepage_order > 0 && freepage_order < MAX_ORDER) 909 low_pfn += (1UL << freepage_order) - 1; 910 continue; 911 } 912 913 /* 914 * Regardless of being on LRU, compound pages such as THP and 915 * hugetlbfs are not to be compacted unless we are attempting 916 * an allocation much larger than the huge page size (eg CMA). 917 * We can potentially save a lot of iterations if we skip them 918 * at once. The check is racy, but we can consider only valid 919 * values and the only danger is skipping too much. 920 */ 921 if (PageCompound(page) && !cc->alloc_contig) { 922 const unsigned int order = compound_order(page); 923 924 if (likely(order < MAX_ORDER)) 925 low_pfn += (1UL << order) - 1; 926 goto isolate_fail; 927 } 928 929 /* 930 * Check may be lockless but that's ok as we recheck later. 931 * It's possible to migrate LRU and non-lru movable pages. 932 * Skip any other type of page 933 */ 934 if (!PageLRU(page)) { 935 /* 936 * __PageMovable can return false positive so we need 937 * to verify it under page_lock. 938 */ 939 if (unlikely(__PageMovable(page)) && 940 !PageIsolated(page)) { 941 if (locked) { 942 spin_unlock_irqrestore(&pgdat->lru_lock, 943 flags); 944 locked = false; 945 } 946 947 if (!isolate_movable_page(page, isolate_mode)) 948 goto isolate_success; 949 } 950 951 goto isolate_fail; 952 } 953 954 /* 955 * Migration will fail if an anonymous page is pinned in memory, 956 * so avoid taking lru_lock and isolating it unnecessarily in an 957 * admittedly racy check. 958 */ 959 if (!page_mapping(page) && 960 page_count(page) > page_mapcount(page)) 961 goto isolate_fail; 962 963 /* 964 * Only allow to migrate anonymous pages in GFP_NOFS context 965 * because those do not depend on fs locks. 966 */ 967 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page)) 968 goto isolate_fail; 969 970 /* If we already hold the lock, we can skip some rechecking */ 971 if (!locked) { 972 locked = compact_lock_irqsave(&pgdat->lru_lock, 973 &flags, cc); 974 975 /* Try get exclusive access under lock */ 976 if (!skip_updated) { 977 skip_updated = true; 978 if (test_and_set_skip(cc, page, low_pfn)) 979 goto isolate_abort; 980 } 981 982 /* Recheck PageLRU and PageCompound under lock */ 983 if (!PageLRU(page)) 984 goto isolate_fail; 985 986 /* 987 * Page become compound since the non-locked check, 988 * and it's on LRU. It can only be a THP so the order 989 * is safe to read and it's 0 for tail pages. 990 */ 991 if (unlikely(PageCompound(page) && !cc->alloc_contig)) { 992 low_pfn += compound_nr(page) - 1; 993 goto isolate_fail; 994 } 995 } 996 997 lruvec = mem_cgroup_page_lruvec(page, pgdat); 998 999 /* Try isolate the page */ 1000 if (__isolate_lru_page(page, isolate_mode) != 0) 1001 goto isolate_fail; 1002 1003 /* The whole page is taken off the LRU; skip the tail pages. */ 1004 if (PageCompound(page)) 1005 low_pfn += compound_nr(page) - 1; 1006 1007 /* Successfully isolated */ 1008 del_page_from_lru_list(page, lruvec, page_lru(page)); 1009 mod_node_page_state(page_pgdat(page), 1010 NR_ISOLATED_ANON + page_is_file_lru(page), 1011 thp_nr_pages(page)); 1012 1013 isolate_success: 1014 list_add(&page->lru, &cc->migratepages); 1015 cc->nr_migratepages++; 1016 nr_isolated++; 1017 1018 /* 1019 * Avoid isolating too much unless this block is being 1020 * rescanned (e.g. dirty/writeback pages, parallel allocation) 1021 * or a lock is contended. For contention, isolate quickly to 1022 * potentially remove one source of contention. 1023 */ 1024 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX && 1025 !cc->rescan && !cc->contended) { 1026 ++low_pfn; 1027 break; 1028 } 1029 1030 continue; 1031 isolate_fail: 1032 if (!skip_on_failure) 1033 continue; 1034 1035 /* 1036 * We have isolated some pages, but then failed. Release them 1037 * instead of migrating, as we cannot form the cc->order buddy 1038 * page anyway. 1039 */ 1040 if (nr_isolated) { 1041 if (locked) { 1042 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1043 locked = false; 1044 } 1045 putback_movable_pages(&cc->migratepages); 1046 cc->nr_migratepages = 0; 1047 nr_isolated = 0; 1048 } 1049 1050 if (low_pfn < next_skip_pfn) { 1051 low_pfn = next_skip_pfn - 1; 1052 /* 1053 * The check near the loop beginning would have updated 1054 * next_skip_pfn too, but this is a bit simpler. 1055 */ 1056 next_skip_pfn += 1UL << cc->order; 1057 } 1058 } 1059 1060 /* 1061 * The PageBuddy() check could have potentially brought us outside 1062 * the range to be scanned. 1063 */ 1064 if (unlikely(low_pfn > end_pfn)) 1065 low_pfn = end_pfn; 1066 1067 isolate_abort: 1068 if (locked) 1069 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1070 1071 /* 1072 * Updated the cached scanner pfn once the pageblock has been scanned 1073 * Pages will either be migrated in which case there is no point 1074 * scanning in the near future or migration failed in which case the 1075 * failure reason may persist. The block is marked for skipping if 1076 * there were no pages isolated in the block or if the block is 1077 * rescanned twice in a row. 1078 */ 1079 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) { 1080 if (valid_page && !skip_updated) 1081 set_pageblock_skip(valid_page); 1082 update_cached_migrate(cc, low_pfn); 1083 } 1084 1085 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1086 nr_scanned, nr_isolated); 1087 1088 fatal_pending: 1089 cc->total_migrate_scanned += nr_scanned; 1090 if (nr_isolated) 1091 count_compact_events(COMPACTISOLATED, nr_isolated); 1092 1093 return low_pfn; 1094 } 1095 1096 /** 1097 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1098 * @cc: Compaction control structure. 1099 * @start_pfn: The first PFN to start isolating. 1100 * @end_pfn: The one-past-last PFN. 1101 * 1102 * Returns zero if isolation fails fatally due to e.g. pending signal. 1103 * Otherwise, function returns one-past-the-last PFN of isolated page 1104 * (which may be greater than end_pfn if end fell in a middle of a THP page). 1105 */ 1106 unsigned long 1107 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1108 unsigned long end_pfn) 1109 { 1110 unsigned long pfn, block_start_pfn, block_end_pfn; 1111 1112 /* Scan block by block. First and last block may be incomplete */ 1113 pfn = start_pfn; 1114 block_start_pfn = pageblock_start_pfn(pfn); 1115 if (block_start_pfn < cc->zone->zone_start_pfn) 1116 block_start_pfn = cc->zone->zone_start_pfn; 1117 block_end_pfn = pageblock_end_pfn(pfn); 1118 1119 for (; pfn < end_pfn; pfn = block_end_pfn, 1120 block_start_pfn = block_end_pfn, 1121 block_end_pfn += pageblock_nr_pages) { 1122 1123 block_end_pfn = min(block_end_pfn, end_pfn); 1124 1125 if (!pageblock_pfn_to_page(block_start_pfn, 1126 block_end_pfn, cc->zone)) 1127 continue; 1128 1129 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 1130 ISOLATE_UNEVICTABLE); 1131 1132 if (!pfn) 1133 break; 1134 1135 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 1136 break; 1137 } 1138 1139 return pfn; 1140 } 1141 1142 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1143 #ifdef CONFIG_COMPACTION 1144 1145 static bool suitable_migration_source(struct compact_control *cc, 1146 struct page *page) 1147 { 1148 int block_mt; 1149 1150 if (pageblock_skip_persistent(page)) 1151 return false; 1152 1153 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1154 return true; 1155 1156 block_mt = get_pageblock_migratetype(page); 1157 1158 if (cc->migratetype == MIGRATE_MOVABLE) 1159 return is_migrate_movable(block_mt); 1160 else 1161 return block_mt == cc->migratetype; 1162 } 1163 1164 /* Returns true if the page is within a block suitable for migration to */ 1165 static bool suitable_migration_target(struct compact_control *cc, 1166 struct page *page) 1167 { 1168 /* If the page is a large free page, then disallow migration */ 1169 if (PageBuddy(page)) { 1170 /* 1171 * We are checking page_order without zone->lock taken. But 1172 * the only small danger is that we skip a potentially suitable 1173 * pageblock, so it's not worth to check order for valid range. 1174 */ 1175 if (buddy_order_unsafe(page) >= pageblock_order) 1176 return false; 1177 } 1178 1179 if (cc->ignore_block_suitable) 1180 return true; 1181 1182 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1183 if (is_migrate_movable(get_pageblock_migratetype(page))) 1184 return true; 1185 1186 /* Otherwise skip the block */ 1187 return false; 1188 } 1189 1190 static inline unsigned int 1191 freelist_scan_limit(struct compact_control *cc) 1192 { 1193 unsigned short shift = BITS_PER_LONG - 1; 1194 1195 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1196 } 1197 1198 /* 1199 * Test whether the free scanner has reached the same or lower pageblock than 1200 * the migration scanner, and compaction should thus terminate. 1201 */ 1202 static inline bool compact_scanners_met(struct compact_control *cc) 1203 { 1204 return (cc->free_pfn >> pageblock_order) 1205 <= (cc->migrate_pfn >> pageblock_order); 1206 } 1207 1208 /* 1209 * Used when scanning for a suitable migration target which scans freelists 1210 * in reverse. Reorders the list such as the unscanned pages are scanned 1211 * first on the next iteration of the free scanner 1212 */ 1213 static void 1214 move_freelist_head(struct list_head *freelist, struct page *freepage) 1215 { 1216 LIST_HEAD(sublist); 1217 1218 if (!list_is_last(freelist, &freepage->lru)) { 1219 list_cut_before(&sublist, freelist, &freepage->lru); 1220 if (!list_empty(&sublist)) 1221 list_splice_tail(&sublist, freelist); 1222 } 1223 } 1224 1225 /* 1226 * Similar to move_freelist_head except used by the migration scanner 1227 * when scanning forward. It's possible for these list operations to 1228 * move against each other if they search the free list exactly in 1229 * lockstep. 1230 */ 1231 static void 1232 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1233 { 1234 LIST_HEAD(sublist); 1235 1236 if (!list_is_first(freelist, &freepage->lru)) { 1237 list_cut_position(&sublist, freelist, &freepage->lru); 1238 if (!list_empty(&sublist)) 1239 list_splice_tail(&sublist, freelist); 1240 } 1241 } 1242 1243 static void 1244 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated) 1245 { 1246 unsigned long start_pfn, end_pfn; 1247 struct page *page = pfn_to_page(pfn); 1248 1249 /* Do not search around if there are enough pages already */ 1250 if (cc->nr_freepages >= cc->nr_migratepages) 1251 return; 1252 1253 /* Minimise scanning during async compaction */ 1254 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1255 return; 1256 1257 /* Pageblock boundaries */ 1258 start_pfn = pageblock_start_pfn(pfn); 1259 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1; 1260 1261 /* Scan before */ 1262 if (start_pfn != pfn) { 1263 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false); 1264 if (cc->nr_freepages >= cc->nr_migratepages) 1265 return; 1266 } 1267 1268 /* Scan after */ 1269 start_pfn = pfn + nr_isolated; 1270 if (start_pfn < end_pfn) 1271 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1272 1273 /* Skip this pageblock in the future as it's full or nearly full */ 1274 if (cc->nr_freepages < cc->nr_migratepages) 1275 set_pageblock_skip(page); 1276 } 1277 1278 /* Search orders in round-robin fashion */ 1279 static int next_search_order(struct compact_control *cc, int order) 1280 { 1281 order--; 1282 if (order < 0) 1283 order = cc->order - 1; 1284 1285 /* Search wrapped around? */ 1286 if (order == cc->search_order) { 1287 cc->search_order--; 1288 if (cc->search_order < 0) 1289 cc->search_order = cc->order - 1; 1290 return -1; 1291 } 1292 1293 return order; 1294 } 1295 1296 static unsigned long 1297 fast_isolate_freepages(struct compact_control *cc) 1298 { 1299 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1); 1300 unsigned int nr_scanned = 0; 1301 unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0; 1302 unsigned long nr_isolated = 0; 1303 unsigned long distance; 1304 struct page *page = NULL; 1305 bool scan_start = false; 1306 int order; 1307 1308 /* Full compaction passes in a negative order */ 1309 if (cc->order <= 0) 1310 return cc->free_pfn; 1311 1312 /* 1313 * If starting the scan, use a deeper search and use the highest 1314 * PFN found if a suitable one is not found. 1315 */ 1316 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1317 limit = pageblock_nr_pages >> 1; 1318 scan_start = true; 1319 } 1320 1321 /* 1322 * Preferred point is in the top quarter of the scan space but take 1323 * a pfn from the top half if the search is problematic. 1324 */ 1325 distance = (cc->free_pfn - cc->migrate_pfn); 1326 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1327 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1328 1329 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1330 low_pfn = min_pfn; 1331 1332 /* 1333 * Search starts from the last successful isolation order or the next 1334 * order to search after a previous failure 1335 */ 1336 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1337 1338 for (order = cc->search_order; 1339 !page && order >= 0; 1340 order = next_search_order(cc, order)) { 1341 struct free_area *area = &cc->zone->free_area[order]; 1342 struct list_head *freelist; 1343 struct page *freepage; 1344 unsigned long flags; 1345 unsigned int order_scanned = 0; 1346 1347 if (!area->nr_free) 1348 continue; 1349 1350 spin_lock_irqsave(&cc->zone->lock, flags); 1351 freelist = &area->free_list[MIGRATE_MOVABLE]; 1352 list_for_each_entry_reverse(freepage, freelist, lru) { 1353 unsigned long pfn; 1354 1355 order_scanned++; 1356 nr_scanned++; 1357 pfn = page_to_pfn(freepage); 1358 1359 if (pfn >= highest) 1360 highest = pageblock_start_pfn(pfn); 1361 1362 if (pfn >= low_pfn) { 1363 cc->fast_search_fail = 0; 1364 cc->search_order = order; 1365 page = freepage; 1366 break; 1367 } 1368 1369 if (pfn >= min_pfn && pfn > high_pfn) { 1370 high_pfn = pfn; 1371 1372 /* Shorten the scan if a candidate is found */ 1373 limit >>= 1; 1374 } 1375 1376 if (order_scanned >= limit) 1377 break; 1378 } 1379 1380 /* Use a minimum pfn if a preferred one was not found */ 1381 if (!page && high_pfn) { 1382 page = pfn_to_page(high_pfn); 1383 1384 /* Update freepage for the list reorder below */ 1385 freepage = page; 1386 } 1387 1388 /* Reorder to so a future search skips recent pages */ 1389 move_freelist_head(freelist, freepage); 1390 1391 /* Isolate the page if available */ 1392 if (page) { 1393 if (__isolate_free_page(page, order)) { 1394 set_page_private(page, order); 1395 nr_isolated = 1 << order; 1396 cc->nr_freepages += nr_isolated; 1397 list_add_tail(&page->lru, &cc->freepages); 1398 count_compact_events(COMPACTISOLATED, nr_isolated); 1399 } else { 1400 /* If isolation fails, abort the search */ 1401 order = cc->search_order + 1; 1402 page = NULL; 1403 } 1404 } 1405 1406 spin_unlock_irqrestore(&cc->zone->lock, flags); 1407 1408 /* 1409 * Smaller scan on next order so the total scan ig related 1410 * to freelist_scan_limit. 1411 */ 1412 if (order_scanned >= limit) 1413 limit = min(1U, limit >> 1); 1414 } 1415 1416 if (!page) { 1417 cc->fast_search_fail++; 1418 if (scan_start) { 1419 /* 1420 * Use the highest PFN found above min. If one was 1421 * not found, be pessimistic for direct compaction 1422 * and use the min mark. 1423 */ 1424 if (highest) { 1425 page = pfn_to_page(highest); 1426 cc->free_pfn = highest; 1427 } else { 1428 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1429 page = pageblock_pfn_to_page(min_pfn, 1430 pageblock_end_pfn(min_pfn), 1431 cc->zone); 1432 cc->free_pfn = min_pfn; 1433 } 1434 } 1435 } 1436 } 1437 1438 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1439 highest -= pageblock_nr_pages; 1440 cc->zone->compact_cached_free_pfn = highest; 1441 } 1442 1443 cc->total_free_scanned += nr_scanned; 1444 if (!page) 1445 return cc->free_pfn; 1446 1447 low_pfn = page_to_pfn(page); 1448 fast_isolate_around(cc, low_pfn, nr_isolated); 1449 return low_pfn; 1450 } 1451 1452 /* 1453 * Based on information in the current compact_control, find blocks 1454 * suitable for isolating free pages from and then isolate them. 1455 */ 1456 static void isolate_freepages(struct compact_control *cc) 1457 { 1458 struct zone *zone = cc->zone; 1459 struct page *page; 1460 unsigned long block_start_pfn; /* start of current pageblock */ 1461 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1462 unsigned long block_end_pfn; /* end of current pageblock */ 1463 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1464 struct list_head *freelist = &cc->freepages; 1465 unsigned int stride; 1466 1467 /* Try a small search of the free lists for a candidate */ 1468 isolate_start_pfn = fast_isolate_freepages(cc); 1469 if (cc->nr_freepages) 1470 goto splitmap; 1471 1472 /* 1473 * Initialise the free scanner. The starting point is where we last 1474 * successfully isolated from, zone-cached value, or the end of the 1475 * zone when isolating for the first time. For looping we also need 1476 * this pfn aligned down to the pageblock boundary, because we do 1477 * block_start_pfn -= pageblock_nr_pages in the for loop. 1478 * For ending point, take care when isolating in last pageblock of a 1479 * zone which ends in the middle of a pageblock. 1480 * The low boundary is the end of the pageblock the migration scanner 1481 * is using. 1482 */ 1483 isolate_start_pfn = cc->free_pfn; 1484 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1485 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1486 zone_end_pfn(zone)); 1487 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1488 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1489 1490 /* 1491 * Isolate free pages until enough are available to migrate the 1492 * pages on cc->migratepages. We stop searching if the migrate 1493 * and free page scanners meet or enough free pages are isolated. 1494 */ 1495 for (; block_start_pfn >= low_pfn; 1496 block_end_pfn = block_start_pfn, 1497 block_start_pfn -= pageblock_nr_pages, 1498 isolate_start_pfn = block_start_pfn) { 1499 unsigned long nr_isolated; 1500 1501 /* 1502 * This can iterate a massively long zone without finding any 1503 * suitable migration targets, so periodically check resched. 1504 */ 1505 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1506 cond_resched(); 1507 1508 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1509 zone); 1510 if (!page) 1511 continue; 1512 1513 /* Check the block is suitable for migration */ 1514 if (!suitable_migration_target(cc, page)) 1515 continue; 1516 1517 /* If isolation recently failed, do not retry */ 1518 if (!isolation_suitable(cc, page)) 1519 continue; 1520 1521 /* Found a block suitable for isolating free pages from. */ 1522 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1523 block_end_pfn, freelist, stride, false); 1524 1525 /* Update the skip hint if the full pageblock was scanned */ 1526 if (isolate_start_pfn == block_end_pfn) 1527 update_pageblock_skip(cc, page, block_start_pfn); 1528 1529 /* Are enough freepages isolated? */ 1530 if (cc->nr_freepages >= cc->nr_migratepages) { 1531 if (isolate_start_pfn >= block_end_pfn) { 1532 /* 1533 * Restart at previous pageblock if more 1534 * freepages can be isolated next time. 1535 */ 1536 isolate_start_pfn = 1537 block_start_pfn - pageblock_nr_pages; 1538 } 1539 break; 1540 } else if (isolate_start_pfn < block_end_pfn) { 1541 /* 1542 * If isolation failed early, do not continue 1543 * needlessly. 1544 */ 1545 break; 1546 } 1547 1548 /* Adjust stride depending on isolation */ 1549 if (nr_isolated) { 1550 stride = 1; 1551 continue; 1552 } 1553 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1554 } 1555 1556 /* 1557 * Record where the free scanner will restart next time. Either we 1558 * broke from the loop and set isolate_start_pfn based on the last 1559 * call to isolate_freepages_block(), or we met the migration scanner 1560 * and the loop terminated due to isolate_start_pfn < low_pfn 1561 */ 1562 cc->free_pfn = isolate_start_pfn; 1563 1564 splitmap: 1565 /* __isolate_free_page() does not map the pages */ 1566 split_map_pages(freelist); 1567 } 1568 1569 /* 1570 * This is a migrate-callback that "allocates" freepages by taking pages 1571 * from the isolated freelists in the block we are migrating to. 1572 */ 1573 static struct page *compaction_alloc(struct page *migratepage, 1574 unsigned long data) 1575 { 1576 struct compact_control *cc = (struct compact_control *)data; 1577 struct page *freepage; 1578 1579 if (list_empty(&cc->freepages)) { 1580 isolate_freepages(cc); 1581 1582 if (list_empty(&cc->freepages)) 1583 return NULL; 1584 } 1585 1586 freepage = list_entry(cc->freepages.next, struct page, lru); 1587 list_del(&freepage->lru); 1588 cc->nr_freepages--; 1589 1590 return freepage; 1591 } 1592 1593 /* 1594 * This is a migrate-callback that "frees" freepages back to the isolated 1595 * freelist. All pages on the freelist are from the same zone, so there is no 1596 * special handling needed for NUMA. 1597 */ 1598 static void compaction_free(struct page *page, unsigned long data) 1599 { 1600 struct compact_control *cc = (struct compact_control *)data; 1601 1602 list_add(&page->lru, &cc->freepages); 1603 cc->nr_freepages++; 1604 } 1605 1606 /* possible outcome of isolate_migratepages */ 1607 typedef enum { 1608 ISOLATE_ABORT, /* Abort compaction now */ 1609 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1610 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1611 } isolate_migrate_t; 1612 1613 /* 1614 * Allow userspace to control policy on scanning the unevictable LRU for 1615 * compactable pages. 1616 */ 1617 #ifdef CONFIG_PREEMPT_RT 1618 int sysctl_compact_unevictable_allowed __read_mostly = 0; 1619 #else 1620 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1621 #endif 1622 1623 static inline void 1624 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1625 { 1626 if (cc->fast_start_pfn == ULONG_MAX) 1627 return; 1628 1629 if (!cc->fast_start_pfn) 1630 cc->fast_start_pfn = pfn; 1631 1632 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1633 } 1634 1635 static inline unsigned long 1636 reinit_migrate_pfn(struct compact_control *cc) 1637 { 1638 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1639 return cc->migrate_pfn; 1640 1641 cc->migrate_pfn = cc->fast_start_pfn; 1642 cc->fast_start_pfn = ULONG_MAX; 1643 1644 return cc->migrate_pfn; 1645 } 1646 1647 /* 1648 * Briefly search the free lists for a migration source that already has 1649 * some free pages to reduce the number of pages that need migration 1650 * before a pageblock is free. 1651 */ 1652 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1653 { 1654 unsigned int limit = freelist_scan_limit(cc); 1655 unsigned int nr_scanned = 0; 1656 unsigned long distance; 1657 unsigned long pfn = cc->migrate_pfn; 1658 unsigned long high_pfn; 1659 int order; 1660 1661 /* Skip hints are relied on to avoid repeats on the fast search */ 1662 if (cc->ignore_skip_hint) 1663 return pfn; 1664 1665 /* 1666 * If the migrate_pfn is not at the start of a zone or the start 1667 * of a pageblock then assume this is a continuation of a previous 1668 * scan restarted due to COMPACT_CLUSTER_MAX. 1669 */ 1670 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1671 return pfn; 1672 1673 /* 1674 * For smaller orders, just linearly scan as the number of pages 1675 * to migrate should be relatively small and does not necessarily 1676 * justify freeing up a large block for a small allocation. 1677 */ 1678 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1679 return pfn; 1680 1681 /* 1682 * Only allow kcompactd and direct requests for movable pages to 1683 * quickly clear out a MOVABLE pageblock for allocation. This 1684 * reduces the risk that a large movable pageblock is freed for 1685 * an unmovable/reclaimable small allocation. 1686 */ 1687 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1688 return pfn; 1689 1690 /* 1691 * When starting the migration scanner, pick any pageblock within the 1692 * first half of the search space. Otherwise try and pick a pageblock 1693 * within the first eighth to reduce the chances that a migration 1694 * target later becomes a source. 1695 */ 1696 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1697 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1698 distance >>= 2; 1699 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1700 1701 for (order = cc->order - 1; 1702 order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit; 1703 order--) { 1704 struct free_area *area = &cc->zone->free_area[order]; 1705 struct list_head *freelist; 1706 unsigned long flags; 1707 struct page *freepage; 1708 1709 if (!area->nr_free) 1710 continue; 1711 1712 spin_lock_irqsave(&cc->zone->lock, flags); 1713 freelist = &area->free_list[MIGRATE_MOVABLE]; 1714 list_for_each_entry(freepage, freelist, lru) { 1715 unsigned long free_pfn; 1716 1717 nr_scanned++; 1718 free_pfn = page_to_pfn(freepage); 1719 if (free_pfn < high_pfn) { 1720 /* 1721 * Avoid if skipped recently. Ideally it would 1722 * move to the tail but even safe iteration of 1723 * the list assumes an entry is deleted, not 1724 * reordered. 1725 */ 1726 if (get_pageblock_skip(freepage)) { 1727 if (list_is_last(freelist, &freepage->lru)) 1728 break; 1729 1730 continue; 1731 } 1732 1733 /* Reorder to so a future search skips recent pages */ 1734 move_freelist_tail(freelist, freepage); 1735 1736 update_fast_start_pfn(cc, free_pfn); 1737 pfn = pageblock_start_pfn(free_pfn); 1738 cc->fast_search_fail = 0; 1739 set_pageblock_skip(freepage); 1740 break; 1741 } 1742 1743 if (nr_scanned >= limit) { 1744 cc->fast_search_fail++; 1745 move_freelist_tail(freelist, freepage); 1746 break; 1747 } 1748 } 1749 spin_unlock_irqrestore(&cc->zone->lock, flags); 1750 } 1751 1752 cc->total_migrate_scanned += nr_scanned; 1753 1754 /* 1755 * If fast scanning failed then use a cached entry for a page block 1756 * that had free pages as the basis for starting a linear scan. 1757 */ 1758 if (pfn == cc->migrate_pfn) 1759 pfn = reinit_migrate_pfn(cc); 1760 1761 return pfn; 1762 } 1763 1764 /* 1765 * Isolate all pages that can be migrated from the first suitable block, 1766 * starting at the block pointed to by the migrate scanner pfn within 1767 * compact_control. 1768 */ 1769 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1770 { 1771 unsigned long block_start_pfn; 1772 unsigned long block_end_pfn; 1773 unsigned long low_pfn; 1774 struct page *page; 1775 const isolate_mode_t isolate_mode = 1776 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1777 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1778 bool fast_find_block; 1779 1780 /* 1781 * Start at where we last stopped, or beginning of the zone as 1782 * initialized by compact_zone(). The first failure will use 1783 * the lowest PFN as the starting point for linear scanning. 1784 */ 1785 low_pfn = fast_find_migrateblock(cc); 1786 block_start_pfn = pageblock_start_pfn(low_pfn); 1787 if (block_start_pfn < cc->zone->zone_start_pfn) 1788 block_start_pfn = cc->zone->zone_start_pfn; 1789 1790 /* 1791 * fast_find_migrateblock marks a pageblock skipped so to avoid 1792 * the isolation_suitable check below, check whether the fast 1793 * search was successful. 1794 */ 1795 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1796 1797 /* Only scan within a pageblock boundary */ 1798 block_end_pfn = pageblock_end_pfn(low_pfn); 1799 1800 /* 1801 * Iterate over whole pageblocks until we find the first suitable. 1802 * Do not cross the free scanner. 1803 */ 1804 for (; block_end_pfn <= cc->free_pfn; 1805 fast_find_block = false, 1806 low_pfn = block_end_pfn, 1807 block_start_pfn = block_end_pfn, 1808 block_end_pfn += pageblock_nr_pages) { 1809 1810 /* 1811 * This can potentially iterate a massively long zone with 1812 * many pageblocks unsuitable, so periodically check if we 1813 * need to schedule. 1814 */ 1815 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1816 cond_resched(); 1817 1818 page = pageblock_pfn_to_page(block_start_pfn, 1819 block_end_pfn, cc->zone); 1820 if (!page) 1821 continue; 1822 1823 /* 1824 * If isolation recently failed, do not retry. Only check the 1825 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1826 * to be visited multiple times. Assume skip was checked 1827 * before making it "skip" so other compaction instances do 1828 * not scan the same block. 1829 */ 1830 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) && 1831 !fast_find_block && !isolation_suitable(cc, page)) 1832 continue; 1833 1834 /* 1835 * For async compaction, also only scan in MOVABLE blocks 1836 * without huge pages. Async compaction is optimistic to see 1837 * if the minimum amount of work satisfies the allocation. 1838 * The cached PFN is updated as it's possible that all 1839 * remaining blocks between source and target are unsuitable 1840 * and the compaction scanners fail to meet. 1841 */ 1842 if (!suitable_migration_source(cc, page)) { 1843 update_cached_migrate(cc, block_end_pfn); 1844 continue; 1845 } 1846 1847 /* Perform the isolation */ 1848 low_pfn = isolate_migratepages_block(cc, low_pfn, 1849 block_end_pfn, isolate_mode); 1850 1851 if (!low_pfn) 1852 return ISOLATE_ABORT; 1853 1854 /* 1855 * Either we isolated something and proceed with migration. Or 1856 * we failed and compact_zone should decide if we should 1857 * continue or not. 1858 */ 1859 break; 1860 } 1861 1862 /* Record where migration scanner will be restarted. */ 1863 cc->migrate_pfn = low_pfn; 1864 1865 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1866 } 1867 1868 /* 1869 * order == -1 is expected when compacting via 1870 * /proc/sys/vm/compact_memory 1871 */ 1872 static inline bool is_via_compact_memory(int order) 1873 { 1874 return order == -1; 1875 } 1876 1877 static bool kswapd_is_running(pg_data_t *pgdat) 1878 { 1879 return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING); 1880 } 1881 1882 /* 1883 * A zone's fragmentation score is the external fragmentation wrt to the 1884 * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value 1885 * in the range [0, 100]. 1886 * 1887 * The scaling factor ensures that proactive compaction focuses on larger 1888 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 1889 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 1890 * and thus never exceeds the high threshold for proactive compaction. 1891 */ 1892 static unsigned int fragmentation_score_zone(struct zone *zone) 1893 { 1894 unsigned long score; 1895 1896 score = zone->present_pages * 1897 extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 1898 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 1899 } 1900 1901 /* 1902 * The per-node proactive (background) compaction process is started by its 1903 * corresponding kcompactd thread when the node's fragmentation score 1904 * exceeds the high threshold. The compaction process remains active till 1905 * the node's score falls below the low threshold, or one of the back-off 1906 * conditions is met. 1907 */ 1908 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 1909 { 1910 unsigned int score = 0; 1911 int zoneid; 1912 1913 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1914 struct zone *zone; 1915 1916 zone = &pgdat->node_zones[zoneid]; 1917 score += fragmentation_score_zone(zone); 1918 } 1919 1920 return score; 1921 } 1922 1923 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low) 1924 { 1925 unsigned int wmark_low; 1926 1927 /* 1928 * Cap the low watermak to avoid excessive compaction 1929 * activity in case a user sets the proactivess tunable 1930 * close to 100 (maximum). 1931 */ 1932 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 1933 return low ? wmark_low : min(wmark_low + 10, 100U); 1934 } 1935 1936 static bool should_proactive_compact_node(pg_data_t *pgdat) 1937 { 1938 int wmark_high; 1939 1940 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 1941 return false; 1942 1943 wmark_high = fragmentation_score_wmark(pgdat, false); 1944 return fragmentation_score_node(pgdat) > wmark_high; 1945 } 1946 1947 static enum compact_result __compact_finished(struct compact_control *cc) 1948 { 1949 unsigned int order; 1950 const int migratetype = cc->migratetype; 1951 int ret; 1952 1953 /* Compaction run completes if the migrate and free scanner meet */ 1954 if (compact_scanners_met(cc)) { 1955 /* Let the next compaction start anew. */ 1956 reset_cached_positions(cc->zone); 1957 1958 /* 1959 * Mark that the PG_migrate_skip information should be cleared 1960 * by kswapd when it goes to sleep. kcompactd does not set the 1961 * flag itself as the decision to be clear should be directly 1962 * based on an allocation request. 1963 */ 1964 if (cc->direct_compaction) 1965 cc->zone->compact_blockskip_flush = true; 1966 1967 if (cc->whole_zone) 1968 return COMPACT_COMPLETE; 1969 else 1970 return COMPACT_PARTIAL_SKIPPED; 1971 } 1972 1973 if (cc->proactive_compaction) { 1974 int score, wmark_low; 1975 pg_data_t *pgdat; 1976 1977 pgdat = cc->zone->zone_pgdat; 1978 if (kswapd_is_running(pgdat)) 1979 return COMPACT_PARTIAL_SKIPPED; 1980 1981 score = fragmentation_score_zone(cc->zone); 1982 wmark_low = fragmentation_score_wmark(pgdat, true); 1983 1984 if (score > wmark_low) 1985 ret = COMPACT_CONTINUE; 1986 else 1987 ret = COMPACT_SUCCESS; 1988 1989 goto out; 1990 } 1991 1992 if (is_via_compact_memory(cc->order)) 1993 return COMPACT_CONTINUE; 1994 1995 /* 1996 * Always finish scanning a pageblock to reduce the possibility of 1997 * fallbacks in the future. This is particularly important when 1998 * migration source is unmovable/reclaimable but it's not worth 1999 * special casing. 2000 */ 2001 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages)) 2002 return COMPACT_CONTINUE; 2003 2004 /* Direct compactor: Is a suitable page free? */ 2005 ret = COMPACT_NO_SUITABLE_PAGE; 2006 for (order = cc->order; order < MAX_ORDER; order++) { 2007 struct free_area *area = &cc->zone->free_area[order]; 2008 bool can_steal; 2009 2010 /* Job done if page is free of the right migratetype */ 2011 if (!free_area_empty(area, migratetype)) 2012 return COMPACT_SUCCESS; 2013 2014 #ifdef CONFIG_CMA 2015 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2016 if (migratetype == MIGRATE_MOVABLE && 2017 !free_area_empty(area, MIGRATE_CMA)) 2018 return COMPACT_SUCCESS; 2019 #endif 2020 /* 2021 * Job done if allocation would steal freepages from 2022 * other migratetype buddy lists. 2023 */ 2024 if (find_suitable_fallback(area, order, migratetype, 2025 true, &can_steal) != -1) { 2026 2027 /* movable pages are OK in any pageblock */ 2028 if (migratetype == MIGRATE_MOVABLE) 2029 return COMPACT_SUCCESS; 2030 2031 /* 2032 * We are stealing for a non-movable allocation. Make 2033 * sure we finish compacting the current pageblock 2034 * first so it is as free as possible and we won't 2035 * have to steal another one soon. This only applies 2036 * to sync compaction, as async compaction operates 2037 * on pageblocks of the same migratetype. 2038 */ 2039 if (cc->mode == MIGRATE_ASYNC || 2040 IS_ALIGNED(cc->migrate_pfn, 2041 pageblock_nr_pages)) { 2042 return COMPACT_SUCCESS; 2043 } 2044 2045 ret = COMPACT_CONTINUE; 2046 break; 2047 } 2048 } 2049 2050 out: 2051 if (cc->contended || fatal_signal_pending(current)) 2052 ret = COMPACT_CONTENDED; 2053 2054 return ret; 2055 } 2056 2057 static enum compact_result compact_finished(struct compact_control *cc) 2058 { 2059 int ret; 2060 2061 ret = __compact_finished(cc); 2062 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2063 if (ret == COMPACT_NO_SUITABLE_PAGE) 2064 ret = COMPACT_CONTINUE; 2065 2066 return ret; 2067 } 2068 2069 /* 2070 * compaction_suitable: Is this suitable to run compaction on this zone now? 2071 * Returns 2072 * COMPACT_SKIPPED - If there are too few free pages for compaction 2073 * COMPACT_SUCCESS - If the allocation would succeed without compaction 2074 * COMPACT_CONTINUE - If compaction should run now 2075 */ 2076 static enum compact_result __compaction_suitable(struct zone *zone, int order, 2077 unsigned int alloc_flags, 2078 int highest_zoneidx, 2079 unsigned long wmark_target) 2080 { 2081 unsigned long watermark; 2082 2083 if (is_via_compact_memory(order)) 2084 return COMPACT_CONTINUE; 2085 2086 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 2087 /* 2088 * If watermarks for high-order allocation are already met, there 2089 * should be no need for compaction at all. 2090 */ 2091 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, 2092 alloc_flags)) 2093 return COMPACT_SUCCESS; 2094 2095 /* 2096 * Watermarks for order-0 must be met for compaction to be able to 2097 * isolate free pages for migration targets. This means that the 2098 * watermark and alloc_flags have to match, or be more pessimistic than 2099 * the check in __isolate_free_page(). We don't use the direct 2100 * compactor's alloc_flags, as they are not relevant for freepage 2101 * isolation. We however do use the direct compactor's highest_zoneidx 2102 * to skip over zones where lowmem reserves would prevent allocation 2103 * even if compaction succeeds. 2104 * For costly orders, we require low watermark instead of min for 2105 * compaction to proceed to increase its chances. 2106 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2107 * suitable migration targets 2108 */ 2109 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2110 low_wmark_pages(zone) : min_wmark_pages(zone); 2111 watermark += compact_gap(order); 2112 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2113 ALLOC_CMA, wmark_target)) 2114 return COMPACT_SKIPPED; 2115 2116 return COMPACT_CONTINUE; 2117 } 2118 2119 enum compact_result compaction_suitable(struct zone *zone, int order, 2120 unsigned int alloc_flags, 2121 int highest_zoneidx) 2122 { 2123 enum compact_result ret; 2124 int fragindex; 2125 2126 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx, 2127 zone_page_state(zone, NR_FREE_PAGES)); 2128 /* 2129 * fragmentation index determines if allocation failures are due to 2130 * low memory or external fragmentation 2131 * 2132 * index of -1000 would imply allocations might succeed depending on 2133 * watermarks, but we already failed the high-order watermark check 2134 * index towards 0 implies failure is due to lack of memory 2135 * index towards 1000 implies failure is due to fragmentation 2136 * 2137 * Only compact if a failure would be due to fragmentation. Also 2138 * ignore fragindex for non-costly orders where the alternative to 2139 * a successful reclaim/compaction is OOM. Fragindex and the 2140 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2141 * excessive compaction for costly orders, but it should not be at the 2142 * expense of system stability. 2143 */ 2144 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2145 fragindex = fragmentation_index(zone, order); 2146 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2147 ret = COMPACT_NOT_SUITABLE_ZONE; 2148 } 2149 2150 trace_mm_compaction_suitable(zone, order, ret); 2151 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2152 ret = COMPACT_SKIPPED; 2153 2154 return ret; 2155 } 2156 2157 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2158 int alloc_flags) 2159 { 2160 struct zone *zone; 2161 struct zoneref *z; 2162 2163 /* 2164 * Make sure at least one zone would pass __compaction_suitable if we continue 2165 * retrying the reclaim. 2166 */ 2167 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2168 ac->highest_zoneidx, ac->nodemask) { 2169 unsigned long available; 2170 enum compact_result compact_result; 2171 2172 /* 2173 * Do not consider all the reclaimable memory because we do not 2174 * want to trash just for a single high order allocation which 2175 * is even not guaranteed to appear even if __compaction_suitable 2176 * is happy about the watermark check. 2177 */ 2178 available = zone_reclaimable_pages(zone) / order; 2179 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2180 compact_result = __compaction_suitable(zone, order, alloc_flags, 2181 ac->highest_zoneidx, available); 2182 if (compact_result != COMPACT_SKIPPED) 2183 return true; 2184 } 2185 2186 return false; 2187 } 2188 2189 static enum compact_result 2190 compact_zone(struct compact_control *cc, struct capture_control *capc) 2191 { 2192 enum compact_result ret; 2193 unsigned long start_pfn = cc->zone->zone_start_pfn; 2194 unsigned long end_pfn = zone_end_pfn(cc->zone); 2195 unsigned long last_migrated_pfn; 2196 const bool sync = cc->mode != MIGRATE_ASYNC; 2197 bool update_cached; 2198 2199 /* 2200 * These counters track activities during zone compaction. Initialize 2201 * them before compacting a new zone. 2202 */ 2203 cc->total_migrate_scanned = 0; 2204 cc->total_free_scanned = 0; 2205 cc->nr_migratepages = 0; 2206 cc->nr_freepages = 0; 2207 INIT_LIST_HEAD(&cc->freepages); 2208 INIT_LIST_HEAD(&cc->migratepages); 2209 2210 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2211 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2212 cc->highest_zoneidx); 2213 /* Compaction is likely to fail */ 2214 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2215 return ret; 2216 2217 /* huh, compaction_suitable is returning something unexpected */ 2218 VM_BUG_ON(ret != COMPACT_CONTINUE); 2219 2220 /* 2221 * Clear pageblock skip if there were failures recently and compaction 2222 * is about to be retried after being deferred. 2223 */ 2224 if (compaction_restarting(cc->zone, cc->order)) 2225 __reset_isolation_suitable(cc->zone); 2226 2227 /* 2228 * Setup to move all movable pages to the end of the zone. Used cached 2229 * information on where the scanners should start (unless we explicitly 2230 * want to compact the whole zone), but check that it is initialised 2231 * by ensuring the values are within zone boundaries. 2232 */ 2233 cc->fast_start_pfn = 0; 2234 if (cc->whole_zone) { 2235 cc->migrate_pfn = start_pfn; 2236 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2237 } else { 2238 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2239 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2240 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2241 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2242 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2243 } 2244 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2245 cc->migrate_pfn = start_pfn; 2246 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2247 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2248 } 2249 2250 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2251 cc->whole_zone = true; 2252 } 2253 2254 last_migrated_pfn = 0; 2255 2256 /* 2257 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2258 * the basis that some migrations will fail in ASYNC mode. However, 2259 * if the cached PFNs match and pageblocks are skipped due to having 2260 * no isolation candidates, then the sync state does not matter. 2261 * Until a pageblock with isolation candidates is found, keep the 2262 * cached PFNs in sync to avoid revisiting the same blocks. 2263 */ 2264 update_cached = !sync && 2265 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2266 2267 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 2268 cc->free_pfn, end_pfn, sync); 2269 2270 migrate_prep_local(); 2271 2272 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2273 int err; 2274 unsigned long start_pfn = cc->migrate_pfn; 2275 2276 /* 2277 * Avoid multiple rescans which can happen if a page cannot be 2278 * isolated (dirty/writeback in async mode) or if the migrated 2279 * pages are being allocated before the pageblock is cleared. 2280 * The first rescan will capture the entire pageblock for 2281 * migration. If it fails, it'll be marked skip and scanning 2282 * will proceed as normal. 2283 */ 2284 cc->rescan = false; 2285 if (pageblock_start_pfn(last_migrated_pfn) == 2286 pageblock_start_pfn(start_pfn)) { 2287 cc->rescan = true; 2288 } 2289 2290 switch (isolate_migratepages(cc)) { 2291 case ISOLATE_ABORT: 2292 ret = COMPACT_CONTENDED; 2293 putback_movable_pages(&cc->migratepages); 2294 cc->nr_migratepages = 0; 2295 goto out; 2296 case ISOLATE_NONE: 2297 if (update_cached) { 2298 cc->zone->compact_cached_migrate_pfn[1] = 2299 cc->zone->compact_cached_migrate_pfn[0]; 2300 } 2301 2302 /* 2303 * We haven't isolated and migrated anything, but 2304 * there might still be unflushed migrations from 2305 * previous cc->order aligned block. 2306 */ 2307 goto check_drain; 2308 case ISOLATE_SUCCESS: 2309 update_cached = false; 2310 last_migrated_pfn = start_pfn; 2311 ; 2312 } 2313 2314 err = migrate_pages(&cc->migratepages, compaction_alloc, 2315 compaction_free, (unsigned long)cc, cc->mode, 2316 MR_COMPACTION); 2317 2318 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 2319 &cc->migratepages); 2320 2321 /* All pages were either migrated or will be released */ 2322 cc->nr_migratepages = 0; 2323 if (err) { 2324 putback_movable_pages(&cc->migratepages); 2325 /* 2326 * migrate_pages() may return -ENOMEM when scanners meet 2327 * and we want compact_finished() to detect it 2328 */ 2329 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2330 ret = COMPACT_CONTENDED; 2331 goto out; 2332 } 2333 /* 2334 * We failed to migrate at least one page in the current 2335 * order-aligned block, so skip the rest of it. 2336 */ 2337 if (cc->direct_compaction && 2338 (cc->mode == MIGRATE_ASYNC)) { 2339 cc->migrate_pfn = block_end_pfn( 2340 cc->migrate_pfn - 1, cc->order); 2341 /* Draining pcplists is useless in this case */ 2342 last_migrated_pfn = 0; 2343 } 2344 } 2345 2346 check_drain: 2347 /* 2348 * Has the migration scanner moved away from the previous 2349 * cc->order aligned block where we migrated from? If yes, 2350 * flush the pages that were freed, so that they can merge and 2351 * compact_finished() can detect immediately if allocation 2352 * would succeed. 2353 */ 2354 if (cc->order > 0 && last_migrated_pfn) { 2355 unsigned long current_block_start = 2356 block_start_pfn(cc->migrate_pfn, cc->order); 2357 2358 if (last_migrated_pfn < current_block_start) { 2359 lru_add_drain_cpu_zone(cc->zone); 2360 /* No more flushing until we migrate again */ 2361 last_migrated_pfn = 0; 2362 } 2363 } 2364 2365 /* Stop if a page has been captured */ 2366 if (capc && capc->page) { 2367 ret = COMPACT_SUCCESS; 2368 break; 2369 } 2370 } 2371 2372 out: 2373 /* 2374 * Release free pages and update where the free scanner should restart, 2375 * so we don't leave any returned pages behind in the next attempt. 2376 */ 2377 if (cc->nr_freepages > 0) { 2378 unsigned long free_pfn = release_freepages(&cc->freepages); 2379 2380 cc->nr_freepages = 0; 2381 VM_BUG_ON(free_pfn == 0); 2382 /* The cached pfn is always the first in a pageblock */ 2383 free_pfn = pageblock_start_pfn(free_pfn); 2384 /* 2385 * Only go back, not forward. The cached pfn might have been 2386 * already reset to zone end in compact_finished() 2387 */ 2388 if (free_pfn > cc->zone->compact_cached_free_pfn) 2389 cc->zone->compact_cached_free_pfn = free_pfn; 2390 } 2391 2392 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2393 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2394 2395 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 2396 cc->free_pfn, end_pfn, sync, ret); 2397 2398 return ret; 2399 } 2400 2401 static enum compact_result compact_zone_order(struct zone *zone, int order, 2402 gfp_t gfp_mask, enum compact_priority prio, 2403 unsigned int alloc_flags, int highest_zoneidx, 2404 struct page **capture) 2405 { 2406 enum compact_result ret; 2407 struct compact_control cc = { 2408 .order = order, 2409 .search_order = order, 2410 .gfp_mask = gfp_mask, 2411 .zone = zone, 2412 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2413 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2414 .alloc_flags = alloc_flags, 2415 .highest_zoneidx = highest_zoneidx, 2416 .direct_compaction = true, 2417 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2418 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2419 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2420 }; 2421 struct capture_control capc = { 2422 .cc = &cc, 2423 .page = NULL, 2424 }; 2425 2426 /* 2427 * Make sure the structs are really initialized before we expose the 2428 * capture control, in case we are interrupted and the interrupt handler 2429 * frees a page. 2430 */ 2431 barrier(); 2432 WRITE_ONCE(current->capture_control, &capc); 2433 2434 ret = compact_zone(&cc, &capc); 2435 2436 VM_BUG_ON(!list_empty(&cc.freepages)); 2437 VM_BUG_ON(!list_empty(&cc.migratepages)); 2438 2439 /* 2440 * Make sure we hide capture control first before we read the captured 2441 * page pointer, otherwise an interrupt could free and capture a page 2442 * and we would leak it. 2443 */ 2444 WRITE_ONCE(current->capture_control, NULL); 2445 *capture = READ_ONCE(capc.page); 2446 2447 return ret; 2448 } 2449 2450 int sysctl_extfrag_threshold = 500; 2451 2452 /** 2453 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2454 * @gfp_mask: The GFP mask of the current allocation 2455 * @order: The order of the current allocation 2456 * @alloc_flags: The allocation flags of the current allocation 2457 * @ac: The context of current allocation 2458 * @prio: Determines how hard direct compaction should try to succeed 2459 * @capture: Pointer to free page created by compaction will be stored here 2460 * 2461 * This is the main entry point for direct page compaction. 2462 */ 2463 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2464 unsigned int alloc_flags, const struct alloc_context *ac, 2465 enum compact_priority prio, struct page **capture) 2466 { 2467 int may_perform_io = gfp_mask & __GFP_IO; 2468 struct zoneref *z; 2469 struct zone *zone; 2470 enum compact_result rc = COMPACT_SKIPPED; 2471 2472 /* 2473 * Check if the GFP flags allow compaction - GFP_NOIO is really 2474 * tricky context because the migration might require IO 2475 */ 2476 if (!may_perform_io) 2477 return COMPACT_SKIPPED; 2478 2479 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2480 2481 /* Compact each zone in the list */ 2482 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2483 ac->highest_zoneidx, ac->nodemask) { 2484 enum compact_result status; 2485 2486 if (prio > MIN_COMPACT_PRIORITY 2487 && compaction_deferred(zone, order)) { 2488 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2489 continue; 2490 } 2491 2492 status = compact_zone_order(zone, order, gfp_mask, prio, 2493 alloc_flags, ac->highest_zoneidx, capture); 2494 rc = max(status, rc); 2495 2496 /* The allocation should succeed, stop compacting */ 2497 if (status == COMPACT_SUCCESS) { 2498 /* 2499 * We think the allocation will succeed in this zone, 2500 * but it is not certain, hence the false. The caller 2501 * will repeat this with true if allocation indeed 2502 * succeeds in this zone. 2503 */ 2504 compaction_defer_reset(zone, order, false); 2505 2506 break; 2507 } 2508 2509 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2510 status == COMPACT_PARTIAL_SKIPPED)) 2511 /* 2512 * We think that allocation won't succeed in this zone 2513 * so we defer compaction there. If it ends up 2514 * succeeding after all, it will be reset. 2515 */ 2516 defer_compaction(zone, order); 2517 2518 /* 2519 * We might have stopped compacting due to need_resched() in 2520 * async compaction, or due to a fatal signal detected. In that 2521 * case do not try further zones 2522 */ 2523 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2524 || fatal_signal_pending(current)) 2525 break; 2526 } 2527 2528 return rc; 2529 } 2530 2531 /* 2532 * Compact all zones within a node till each zone's fragmentation score 2533 * reaches within proactive compaction thresholds (as determined by the 2534 * proactiveness tunable). 2535 * 2536 * It is possible that the function returns before reaching score targets 2537 * due to various back-off conditions, such as, contention on per-node or 2538 * per-zone locks. 2539 */ 2540 static void proactive_compact_node(pg_data_t *pgdat) 2541 { 2542 int zoneid; 2543 struct zone *zone; 2544 struct compact_control cc = { 2545 .order = -1, 2546 .mode = MIGRATE_SYNC_LIGHT, 2547 .ignore_skip_hint = true, 2548 .whole_zone = true, 2549 .gfp_mask = GFP_KERNEL, 2550 .proactive_compaction = true, 2551 }; 2552 2553 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2554 zone = &pgdat->node_zones[zoneid]; 2555 if (!populated_zone(zone)) 2556 continue; 2557 2558 cc.zone = zone; 2559 2560 compact_zone(&cc, NULL); 2561 2562 VM_BUG_ON(!list_empty(&cc.freepages)); 2563 VM_BUG_ON(!list_empty(&cc.migratepages)); 2564 } 2565 } 2566 2567 /* Compact all zones within a node */ 2568 static void compact_node(int nid) 2569 { 2570 pg_data_t *pgdat = NODE_DATA(nid); 2571 int zoneid; 2572 struct zone *zone; 2573 struct compact_control cc = { 2574 .order = -1, 2575 .mode = MIGRATE_SYNC, 2576 .ignore_skip_hint = true, 2577 .whole_zone = true, 2578 .gfp_mask = GFP_KERNEL, 2579 }; 2580 2581 2582 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2583 2584 zone = &pgdat->node_zones[zoneid]; 2585 if (!populated_zone(zone)) 2586 continue; 2587 2588 cc.zone = zone; 2589 2590 compact_zone(&cc, NULL); 2591 2592 VM_BUG_ON(!list_empty(&cc.freepages)); 2593 VM_BUG_ON(!list_empty(&cc.migratepages)); 2594 } 2595 } 2596 2597 /* Compact all nodes in the system */ 2598 static void compact_nodes(void) 2599 { 2600 int nid; 2601 2602 /* Flush pending updates to the LRU lists */ 2603 lru_add_drain_all(); 2604 2605 for_each_online_node(nid) 2606 compact_node(nid); 2607 } 2608 2609 /* The written value is actually unused, all memory is compacted */ 2610 int sysctl_compact_memory; 2611 2612 /* 2613 * Tunable for proactive compaction. It determines how 2614 * aggressively the kernel should compact memory in the 2615 * background. It takes values in the range [0, 100]. 2616 */ 2617 unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 2618 2619 /* 2620 * This is the entry point for compacting all nodes via 2621 * /proc/sys/vm/compact_memory 2622 */ 2623 int sysctl_compaction_handler(struct ctl_table *table, int write, 2624 void *buffer, size_t *length, loff_t *ppos) 2625 { 2626 if (write) 2627 compact_nodes(); 2628 2629 return 0; 2630 } 2631 2632 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2633 static ssize_t sysfs_compact_node(struct device *dev, 2634 struct device_attribute *attr, 2635 const char *buf, size_t count) 2636 { 2637 int nid = dev->id; 2638 2639 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2640 /* Flush pending updates to the LRU lists */ 2641 lru_add_drain_all(); 2642 2643 compact_node(nid); 2644 } 2645 2646 return count; 2647 } 2648 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node); 2649 2650 int compaction_register_node(struct node *node) 2651 { 2652 return device_create_file(&node->dev, &dev_attr_compact); 2653 } 2654 2655 void compaction_unregister_node(struct node *node) 2656 { 2657 return device_remove_file(&node->dev, &dev_attr_compact); 2658 } 2659 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2660 2661 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2662 { 2663 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 2664 } 2665 2666 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2667 { 2668 int zoneid; 2669 struct zone *zone; 2670 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 2671 2672 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 2673 zone = &pgdat->node_zones[zoneid]; 2674 2675 if (!populated_zone(zone)) 2676 continue; 2677 2678 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2679 highest_zoneidx) == COMPACT_CONTINUE) 2680 return true; 2681 } 2682 2683 return false; 2684 } 2685 2686 static void kcompactd_do_work(pg_data_t *pgdat) 2687 { 2688 /* 2689 * With no special task, compact all zones so that a page of requested 2690 * order is allocatable. 2691 */ 2692 int zoneid; 2693 struct zone *zone; 2694 struct compact_control cc = { 2695 .order = pgdat->kcompactd_max_order, 2696 .search_order = pgdat->kcompactd_max_order, 2697 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 2698 .mode = MIGRATE_SYNC_LIGHT, 2699 .ignore_skip_hint = false, 2700 .gfp_mask = GFP_KERNEL, 2701 }; 2702 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2703 cc.highest_zoneidx); 2704 count_compact_event(KCOMPACTD_WAKE); 2705 2706 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 2707 int status; 2708 2709 zone = &pgdat->node_zones[zoneid]; 2710 if (!populated_zone(zone)) 2711 continue; 2712 2713 if (compaction_deferred(zone, cc.order)) 2714 continue; 2715 2716 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2717 COMPACT_CONTINUE) 2718 continue; 2719 2720 if (kthread_should_stop()) 2721 return; 2722 2723 cc.zone = zone; 2724 status = compact_zone(&cc, NULL); 2725 2726 if (status == COMPACT_SUCCESS) { 2727 compaction_defer_reset(zone, cc.order, false); 2728 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2729 /* 2730 * Buddy pages may become stranded on pcps that could 2731 * otherwise coalesce on the zone's free area for 2732 * order >= cc.order. This is ratelimited by the 2733 * upcoming deferral. 2734 */ 2735 drain_all_pages(zone); 2736 2737 /* 2738 * We use sync migration mode here, so we defer like 2739 * sync direct compaction does. 2740 */ 2741 defer_compaction(zone, cc.order); 2742 } 2743 2744 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2745 cc.total_migrate_scanned); 2746 count_compact_events(KCOMPACTD_FREE_SCANNED, 2747 cc.total_free_scanned); 2748 2749 VM_BUG_ON(!list_empty(&cc.freepages)); 2750 VM_BUG_ON(!list_empty(&cc.migratepages)); 2751 } 2752 2753 /* 2754 * Regardless of success, we are done until woken up next. But remember 2755 * the requested order/highest_zoneidx in case it was higher/tighter 2756 * than our current ones 2757 */ 2758 if (pgdat->kcompactd_max_order <= cc.order) 2759 pgdat->kcompactd_max_order = 0; 2760 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 2761 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2762 } 2763 2764 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 2765 { 2766 if (!order) 2767 return; 2768 2769 if (pgdat->kcompactd_max_order < order) 2770 pgdat->kcompactd_max_order = order; 2771 2772 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 2773 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 2774 2775 /* 2776 * Pairs with implicit barrier in wait_event_freezable() 2777 * such that wakeups are not missed. 2778 */ 2779 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2780 return; 2781 2782 if (!kcompactd_node_suitable(pgdat)) 2783 return; 2784 2785 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2786 highest_zoneidx); 2787 wake_up_interruptible(&pgdat->kcompactd_wait); 2788 } 2789 2790 /* 2791 * The background compaction daemon, started as a kernel thread 2792 * from the init process. 2793 */ 2794 static int kcompactd(void *p) 2795 { 2796 pg_data_t *pgdat = (pg_data_t*)p; 2797 struct task_struct *tsk = current; 2798 unsigned int proactive_defer = 0; 2799 2800 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2801 2802 if (!cpumask_empty(cpumask)) 2803 set_cpus_allowed_ptr(tsk, cpumask); 2804 2805 set_freezable(); 2806 2807 pgdat->kcompactd_max_order = 0; 2808 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2809 2810 while (!kthread_should_stop()) { 2811 unsigned long pflags; 2812 2813 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2814 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 2815 kcompactd_work_requested(pgdat), 2816 msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) { 2817 2818 psi_memstall_enter(&pflags); 2819 kcompactd_do_work(pgdat); 2820 psi_memstall_leave(&pflags); 2821 continue; 2822 } 2823 2824 /* kcompactd wait timeout */ 2825 if (should_proactive_compact_node(pgdat)) { 2826 unsigned int prev_score, score; 2827 2828 if (proactive_defer) { 2829 proactive_defer--; 2830 continue; 2831 } 2832 prev_score = fragmentation_score_node(pgdat); 2833 proactive_compact_node(pgdat); 2834 score = fragmentation_score_node(pgdat); 2835 /* 2836 * Defer proactive compaction if the fragmentation 2837 * score did not go down i.e. no progress made. 2838 */ 2839 proactive_defer = score < prev_score ? 2840 0 : 1 << COMPACT_MAX_DEFER_SHIFT; 2841 } 2842 } 2843 2844 return 0; 2845 } 2846 2847 /* 2848 * This kcompactd start function will be called by init and node-hot-add. 2849 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2850 */ 2851 int kcompactd_run(int nid) 2852 { 2853 pg_data_t *pgdat = NODE_DATA(nid); 2854 int ret = 0; 2855 2856 if (pgdat->kcompactd) 2857 return 0; 2858 2859 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2860 if (IS_ERR(pgdat->kcompactd)) { 2861 pr_err("Failed to start kcompactd on node %d\n", nid); 2862 ret = PTR_ERR(pgdat->kcompactd); 2863 pgdat->kcompactd = NULL; 2864 } 2865 return ret; 2866 } 2867 2868 /* 2869 * Called by memory hotplug when all memory in a node is offlined. Caller must 2870 * hold mem_hotplug_begin/end(). 2871 */ 2872 void kcompactd_stop(int nid) 2873 { 2874 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2875 2876 if (kcompactd) { 2877 kthread_stop(kcompactd); 2878 NODE_DATA(nid)->kcompactd = NULL; 2879 } 2880 } 2881 2882 /* 2883 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2884 * not required for correctness. So if the last cpu in a node goes 2885 * away, we get changed to run anywhere: as the first one comes back, 2886 * restore their cpu bindings. 2887 */ 2888 static int kcompactd_cpu_online(unsigned int cpu) 2889 { 2890 int nid; 2891 2892 for_each_node_state(nid, N_MEMORY) { 2893 pg_data_t *pgdat = NODE_DATA(nid); 2894 const struct cpumask *mask; 2895 2896 mask = cpumask_of_node(pgdat->node_id); 2897 2898 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2899 /* One of our CPUs online: restore mask */ 2900 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2901 } 2902 return 0; 2903 } 2904 2905 static int __init kcompactd_init(void) 2906 { 2907 int nid; 2908 int ret; 2909 2910 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 2911 "mm/compaction:online", 2912 kcompactd_cpu_online, NULL); 2913 if (ret < 0) { 2914 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 2915 return ret; 2916 } 2917 2918 for_each_node_state(nid, N_MEMORY) 2919 kcompactd_run(nid); 2920 return 0; 2921 } 2922 subsys_initcall(kcompactd_init) 2923 2924 #endif /* CONFIG_COMPACTION */ 2925