1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/swap.h> 11 #include <linux/migrate.h> 12 #include <linux/compaction.h> 13 #include <linux/mm_inline.h> 14 #include <linux/backing-dev.h> 15 #include <linux/sysctl.h> 16 #include <linux/sysfs.h> 17 #include <linux/balloon_compaction.h> 18 #include <linux/page-isolation.h> 19 #include "internal.h" 20 21 #ifdef CONFIG_COMPACTION 22 static inline void count_compact_event(enum vm_event_item item) 23 { 24 count_vm_event(item); 25 } 26 27 static inline void count_compact_events(enum vm_event_item item, long delta) 28 { 29 count_vm_events(item, delta); 30 } 31 #else 32 #define count_compact_event(item) do { } while (0) 33 #define count_compact_events(item, delta) do { } while (0) 34 #endif 35 36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/compaction.h> 40 41 static unsigned long release_freepages(struct list_head *freelist) 42 { 43 struct page *page, *next; 44 unsigned long count = 0; 45 46 list_for_each_entry_safe(page, next, freelist, lru) { 47 list_del(&page->lru); 48 __free_page(page); 49 count++; 50 } 51 52 return count; 53 } 54 55 static void map_pages(struct list_head *list) 56 { 57 struct page *page; 58 59 list_for_each_entry(page, list, lru) { 60 arch_alloc_page(page, 0); 61 kernel_map_pages(page, 1, 1); 62 } 63 } 64 65 static inline bool migrate_async_suitable(int migratetype) 66 { 67 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; 68 } 69 70 #ifdef CONFIG_COMPACTION 71 /* Returns true if the pageblock should be scanned for pages to isolate. */ 72 static inline bool isolation_suitable(struct compact_control *cc, 73 struct page *page) 74 { 75 if (cc->ignore_skip_hint) 76 return true; 77 78 return !get_pageblock_skip(page); 79 } 80 81 /* 82 * This function is called to clear all cached information on pageblocks that 83 * should be skipped for page isolation when the migrate and free page scanner 84 * meet. 85 */ 86 static void __reset_isolation_suitable(struct zone *zone) 87 { 88 unsigned long start_pfn = zone->zone_start_pfn; 89 unsigned long end_pfn = zone_end_pfn(zone); 90 unsigned long pfn; 91 92 zone->compact_cached_migrate_pfn = start_pfn; 93 zone->compact_cached_free_pfn = end_pfn; 94 zone->compact_blockskip_flush = false; 95 96 /* Walk the zone and mark every pageblock as suitable for isolation */ 97 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 98 struct page *page; 99 100 cond_resched(); 101 102 if (!pfn_valid(pfn)) 103 continue; 104 105 page = pfn_to_page(pfn); 106 if (zone != page_zone(page)) 107 continue; 108 109 clear_pageblock_skip(page); 110 } 111 } 112 113 void reset_isolation_suitable(pg_data_t *pgdat) 114 { 115 int zoneid; 116 117 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 118 struct zone *zone = &pgdat->node_zones[zoneid]; 119 if (!populated_zone(zone)) 120 continue; 121 122 /* Only flush if a full compaction finished recently */ 123 if (zone->compact_blockskip_flush) 124 __reset_isolation_suitable(zone); 125 } 126 } 127 128 /* 129 * If no pages were isolated then mark this pageblock to be skipped in the 130 * future. The information is later cleared by __reset_isolation_suitable(). 131 */ 132 static void update_pageblock_skip(struct compact_control *cc, 133 struct page *page, unsigned long nr_isolated, 134 bool migrate_scanner) 135 { 136 struct zone *zone = cc->zone; 137 138 if (cc->ignore_skip_hint) 139 return; 140 141 if (!page) 142 return; 143 144 if (!nr_isolated) { 145 unsigned long pfn = page_to_pfn(page); 146 set_pageblock_skip(page); 147 148 /* Update where compaction should restart */ 149 if (migrate_scanner) { 150 if (!cc->finished_update_migrate && 151 pfn > zone->compact_cached_migrate_pfn) 152 zone->compact_cached_migrate_pfn = pfn; 153 } else { 154 if (!cc->finished_update_free && 155 pfn < zone->compact_cached_free_pfn) 156 zone->compact_cached_free_pfn = pfn; 157 } 158 } 159 } 160 #else 161 static inline bool isolation_suitable(struct compact_control *cc, 162 struct page *page) 163 { 164 return true; 165 } 166 167 static void update_pageblock_skip(struct compact_control *cc, 168 struct page *page, unsigned long nr_isolated, 169 bool migrate_scanner) 170 { 171 } 172 #endif /* CONFIG_COMPACTION */ 173 174 static inline bool should_release_lock(spinlock_t *lock) 175 { 176 return need_resched() || spin_is_contended(lock); 177 } 178 179 /* 180 * Compaction requires the taking of some coarse locks that are potentially 181 * very heavily contended. Check if the process needs to be scheduled or 182 * if the lock is contended. For async compaction, back out in the event 183 * if contention is severe. For sync compaction, schedule. 184 * 185 * Returns true if the lock is held. 186 * Returns false if the lock is released and compaction should abort 187 */ 188 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags, 189 bool locked, struct compact_control *cc) 190 { 191 if (should_release_lock(lock)) { 192 if (locked) { 193 spin_unlock_irqrestore(lock, *flags); 194 locked = false; 195 } 196 197 /* async aborts if taking too long or contended */ 198 if (!cc->sync) { 199 cc->contended = true; 200 return false; 201 } 202 203 cond_resched(); 204 } 205 206 if (!locked) 207 spin_lock_irqsave(lock, *flags); 208 return true; 209 } 210 211 static inline bool compact_trylock_irqsave(spinlock_t *lock, 212 unsigned long *flags, struct compact_control *cc) 213 { 214 return compact_checklock_irqsave(lock, flags, false, cc); 215 } 216 217 /* Returns true if the page is within a block suitable for migration to */ 218 static bool suitable_migration_target(struct page *page) 219 { 220 int migratetype = get_pageblock_migratetype(page); 221 222 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */ 223 if (migratetype == MIGRATE_RESERVE) 224 return false; 225 226 if (is_migrate_isolate(migratetype)) 227 return false; 228 229 /* If the page is a large free page, then allow migration */ 230 if (PageBuddy(page) && page_order(page) >= pageblock_order) 231 return true; 232 233 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 234 if (migrate_async_suitable(migratetype)) 235 return true; 236 237 /* Otherwise skip the block */ 238 return false; 239 } 240 241 /* 242 * Isolate free pages onto a private freelist. If @strict is true, will abort 243 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 244 * (even though it may still end up isolating some pages). 245 */ 246 static unsigned long isolate_freepages_block(struct compact_control *cc, 247 unsigned long blockpfn, 248 unsigned long end_pfn, 249 struct list_head *freelist, 250 bool strict) 251 { 252 int nr_scanned = 0, total_isolated = 0; 253 struct page *cursor, *valid_page = NULL; 254 unsigned long flags; 255 bool locked = false; 256 257 cursor = pfn_to_page(blockpfn); 258 259 /* Isolate free pages. */ 260 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 261 int isolated, i; 262 struct page *page = cursor; 263 264 nr_scanned++; 265 if (!pfn_valid_within(blockpfn)) 266 goto isolate_fail; 267 268 if (!valid_page) 269 valid_page = page; 270 if (!PageBuddy(page)) 271 goto isolate_fail; 272 273 /* 274 * The zone lock must be held to isolate freepages. 275 * Unfortunately this is a very coarse lock and can be 276 * heavily contended if there are parallel allocations 277 * or parallel compactions. For async compaction do not 278 * spin on the lock and we acquire the lock as late as 279 * possible. 280 */ 281 locked = compact_checklock_irqsave(&cc->zone->lock, &flags, 282 locked, cc); 283 if (!locked) 284 break; 285 286 /* Recheck this is a suitable migration target under lock */ 287 if (!strict && !suitable_migration_target(page)) 288 break; 289 290 /* Recheck this is a buddy page under lock */ 291 if (!PageBuddy(page)) 292 goto isolate_fail; 293 294 /* Found a free page, break it into order-0 pages */ 295 isolated = split_free_page(page); 296 total_isolated += isolated; 297 for (i = 0; i < isolated; i++) { 298 list_add(&page->lru, freelist); 299 page++; 300 } 301 302 /* If a page was split, advance to the end of it */ 303 if (isolated) { 304 blockpfn += isolated - 1; 305 cursor += isolated - 1; 306 continue; 307 } 308 309 isolate_fail: 310 if (strict) 311 break; 312 else 313 continue; 314 315 } 316 317 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated); 318 319 /* 320 * If strict isolation is requested by CMA then check that all the 321 * pages requested were isolated. If there were any failures, 0 is 322 * returned and CMA will fail. 323 */ 324 if (strict && blockpfn < end_pfn) 325 total_isolated = 0; 326 327 if (locked) 328 spin_unlock_irqrestore(&cc->zone->lock, flags); 329 330 /* Update the pageblock-skip if the whole pageblock was scanned */ 331 if (blockpfn == end_pfn) 332 update_pageblock_skip(cc, valid_page, total_isolated, false); 333 334 count_compact_events(COMPACTFREE_SCANNED, nr_scanned); 335 if (total_isolated) 336 count_compact_events(COMPACTISOLATED, total_isolated); 337 return total_isolated; 338 } 339 340 /** 341 * isolate_freepages_range() - isolate free pages. 342 * @start_pfn: The first PFN to start isolating. 343 * @end_pfn: The one-past-last PFN. 344 * 345 * Non-free pages, invalid PFNs, or zone boundaries within the 346 * [start_pfn, end_pfn) range are considered errors, cause function to 347 * undo its actions and return zero. 348 * 349 * Otherwise, function returns one-past-the-last PFN of isolated page 350 * (which may be greater then end_pfn if end fell in a middle of 351 * a free page). 352 */ 353 unsigned long 354 isolate_freepages_range(struct compact_control *cc, 355 unsigned long start_pfn, unsigned long end_pfn) 356 { 357 unsigned long isolated, pfn, block_end_pfn; 358 LIST_HEAD(freelist); 359 360 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) { 361 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn))) 362 break; 363 364 /* 365 * On subsequent iterations ALIGN() is actually not needed, 366 * but we keep it that we not to complicate the code. 367 */ 368 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 369 block_end_pfn = min(block_end_pfn, end_pfn); 370 371 isolated = isolate_freepages_block(cc, pfn, block_end_pfn, 372 &freelist, true); 373 374 /* 375 * In strict mode, isolate_freepages_block() returns 0 if 376 * there are any holes in the block (ie. invalid PFNs or 377 * non-free pages). 378 */ 379 if (!isolated) 380 break; 381 382 /* 383 * If we managed to isolate pages, it is always (1 << n) * 384 * pageblock_nr_pages for some non-negative n. (Max order 385 * page may span two pageblocks). 386 */ 387 } 388 389 /* split_free_page does not map the pages */ 390 map_pages(&freelist); 391 392 if (pfn < end_pfn) { 393 /* Loop terminated early, cleanup. */ 394 release_freepages(&freelist); 395 return 0; 396 } 397 398 /* We don't use freelists for anything. */ 399 return pfn; 400 } 401 402 /* Update the number of anon and file isolated pages in the zone */ 403 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc) 404 { 405 struct page *page; 406 unsigned int count[2] = { 0, }; 407 408 list_for_each_entry(page, &cc->migratepages, lru) 409 count[!!page_is_file_cache(page)]++; 410 411 /* If locked we can use the interrupt unsafe versions */ 412 if (locked) { 413 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 414 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 415 } else { 416 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 417 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 418 } 419 } 420 421 /* Similar to reclaim, but different enough that they don't share logic */ 422 static bool too_many_isolated(struct zone *zone) 423 { 424 unsigned long active, inactive, isolated; 425 426 inactive = zone_page_state(zone, NR_INACTIVE_FILE) + 427 zone_page_state(zone, NR_INACTIVE_ANON); 428 active = zone_page_state(zone, NR_ACTIVE_FILE) + 429 zone_page_state(zone, NR_ACTIVE_ANON); 430 isolated = zone_page_state(zone, NR_ISOLATED_FILE) + 431 zone_page_state(zone, NR_ISOLATED_ANON); 432 433 return isolated > (inactive + active) / 2; 434 } 435 436 /** 437 * isolate_migratepages_range() - isolate all migrate-able pages in range. 438 * @zone: Zone pages are in. 439 * @cc: Compaction control structure. 440 * @low_pfn: The first PFN of the range. 441 * @end_pfn: The one-past-the-last PFN of the range. 442 * @unevictable: true if it allows to isolate unevictable pages 443 * 444 * Isolate all pages that can be migrated from the range specified by 445 * [low_pfn, end_pfn). Returns zero if there is a fatal signal 446 * pending), otherwise PFN of the first page that was not scanned 447 * (which may be both less, equal to or more then end_pfn). 448 * 449 * Assumes that cc->migratepages is empty and cc->nr_migratepages is 450 * zero. 451 * 452 * Apart from cc->migratepages and cc->nr_migratetypes this function 453 * does not modify any cc's fields, in particular it does not modify 454 * (or read for that matter) cc->migrate_pfn. 455 */ 456 unsigned long 457 isolate_migratepages_range(struct zone *zone, struct compact_control *cc, 458 unsigned long low_pfn, unsigned long end_pfn, bool unevictable) 459 { 460 unsigned long last_pageblock_nr = 0, pageblock_nr; 461 unsigned long nr_scanned = 0, nr_isolated = 0; 462 struct list_head *migratelist = &cc->migratepages; 463 isolate_mode_t mode = 0; 464 struct lruvec *lruvec; 465 unsigned long flags; 466 bool locked = false; 467 struct page *page = NULL, *valid_page = NULL; 468 bool skipped_async_unsuitable = false; 469 470 /* 471 * Ensure that there are not too many pages isolated from the LRU 472 * list by either parallel reclaimers or compaction. If there are, 473 * delay for some time until fewer pages are isolated 474 */ 475 while (unlikely(too_many_isolated(zone))) { 476 /* async migration should just abort */ 477 if (!cc->sync) 478 return 0; 479 480 congestion_wait(BLK_RW_ASYNC, HZ/10); 481 482 if (fatal_signal_pending(current)) 483 return 0; 484 } 485 486 /* Time to isolate some pages for migration */ 487 cond_resched(); 488 for (; low_pfn < end_pfn; low_pfn++) { 489 /* give a chance to irqs before checking need_resched() */ 490 if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) { 491 if (should_release_lock(&zone->lru_lock)) { 492 spin_unlock_irqrestore(&zone->lru_lock, flags); 493 locked = false; 494 } 495 } 496 497 /* 498 * migrate_pfn does not necessarily start aligned to a 499 * pageblock. Ensure that pfn_valid is called when moving 500 * into a new MAX_ORDER_NR_PAGES range in case of large 501 * memory holes within the zone 502 */ 503 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { 504 if (!pfn_valid(low_pfn)) { 505 low_pfn += MAX_ORDER_NR_PAGES - 1; 506 continue; 507 } 508 } 509 510 if (!pfn_valid_within(low_pfn)) 511 continue; 512 nr_scanned++; 513 514 /* 515 * Get the page and ensure the page is within the same zone. 516 * See the comment in isolate_freepages about overlapping 517 * nodes. It is deliberate that the new zone lock is not taken 518 * as memory compaction should not move pages between nodes. 519 */ 520 page = pfn_to_page(low_pfn); 521 if (page_zone(page) != zone) 522 continue; 523 524 if (!valid_page) 525 valid_page = page; 526 527 /* If isolation recently failed, do not retry */ 528 pageblock_nr = low_pfn >> pageblock_order; 529 if (!isolation_suitable(cc, page)) 530 goto next_pageblock; 531 532 /* 533 * Skip if free. page_order cannot be used without zone->lock 534 * as nothing prevents parallel allocations or buddy merging. 535 */ 536 if (PageBuddy(page)) 537 continue; 538 539 /* 540 * For async migration, also only scan in MOVABLE blocks. Async 541 * migration is optimistic to see if the minimum amount of work 542 * satisfies the allocation 543 */ 544 if (!cc->sync && last_pageblock_nr != pageblock_nr && 545 !migrate_async_suitable(get_pageblock_migratetype(page))) { 546 cc->finished_update_migrate = true; 547 skipped_async_unsuitable = true; 548 goto next_pageblock; 549 } 550 551 /* 552 * Check may be lockless but that's ok as we recheck later. 553 * It's possible to migrate LRU pages and balloon pages 554 * Skip any other type of page 555 */ 556 if (!PageLRU(page)) { 557 if (unlikely(balloon_page_movable(page))) { 558 if (locked && balloon_page_isolate(page)) { 559 /* Successfully isolated */ 560 cc->finished_update_migrate = true; 561 list_add(&page->lru, migratelist); 562 cc->nr_migratepages++; 563 nr_isolated++; 564 goto check_compact_cluster; 565 } 566 } 567 continue; 568 } 569 570 /* 571 * PageLRU is set. lru_lock normally excludes isolation 572 * splitting and collapsing (collapsing has already happened 573 * if PageLRU is set) but the lock is not necessarily taken 574 * here and it is wasteful to take it just to check transhuge. 575 * Check TransHuge without lock and skip the whole pageblock if 576 * it's either a transhuge or hugetlbfs page, as calling 577 * compound_order() without preventing THP from splitting the 578 * page underneath us may return surprising results. 579 */ 580 if (PageTransHuge(page)) { 581 if (!locked) 582 goto next_pageblock; 583 low_pfn += (1 << compound_order(page)) - 1; 584 continue; 585 } 586 587 /* Check if it is ok to still hold the lock */ 588 locked = compact_checklock_irqsave(&zone->lru_lock, &flags, 589 locked, cc); 590 if (!locked || fatal_signal_pending(current)) 591 break; 592 593 /* Recheck PageLRU and PageTransHuge under lock */ 594 if (!PageLRU(page)) 595 continue; 596 if (PageTransHuge(page)) { 597 low_pfn += (1 << compound_order(page)) - 1; 598 continue; 599 } 600 601 if (!cc->sync) 602 mode |= ISOLATE_ASYNC_MIGRATE; 603 604 if (unevictable) 605 mode |= ISOLATE_UNEVICTABLE; 606 607 lruvec = mem_cgroup_page_lruvec(page, zone); 608 609 /* Try isolate the page */ 610 if (__isolate_lru_page(page, mode) != 0) 611 continue; 612 613 VM_BUG_ON_PAGE(PageTransCompound(page), page); 614 615 /* Successfully isolated */ 616 cc->finished_update_migrate = true; 617 del_page_from_lru_list(page, lruvec, page_lru(page)); 618 list_add(&page->lru, migratelist); 619 cc->nr_migratepages++; 620 nr_isolated++; 621 622 check_compact_cluster: 623 /* Avoid isolating too much */ 624 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 625 ++low_pfn; 626 break; 627 } 628 629 continue; 630 631 next_pageblock: 632 low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1; 633 last_pageblock_nr = pageblock_nr; 634 } 635 636 acct_isolated(zone, locked, cc); 637 638 if (locked) 639 spin_unlock_irqrestore(&zone->lru_lock, flags); 640 641 /* 642 * Update the pageblock-skip information and cached scanner pfn, 643 * if the whole pageblock was scanned without isolating any page. 644 * This is not done when pageblock was skipped due to being unsuitable 645 * for async compaction, so that eventual sync compaction can try. 646 */ 647 if (low_pfn == end_pfn && !skipped_async_unsuitable) 648 update_pageblock_skip(cc, valid_page, nr_isolated, true); 649 650 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated); 651 652 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned); 653 if (nr_isolated) 654 count_compact_events(COMPACTISOLATED, nr_isolated); 655 656 return low_pfn; 657 } 658 659 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 660 #ifdef CONFIG_COMPACTION 661 /* 662 * Based on information in the current compact_control, find blocks 663 * suitable for isolating free pages from and then isolate them. 664 */ 665 static void isolate_freepages(struct zone *zone, 666 struct compact_control *cc) 667 { 668 struct page *page; 669 unsigned long high_pfn, low_pfn, pfn, z_end_pfn, end_pfn; 670 int nr_freepages = cc->nr_freepages; 671 struct list_head *freelist = &cc->freepages; 672 673 /* 674 * Initialise the free scanner. The starting point is where we last 675 * scanned from (or the end of the zone if starting). The low point 676 * is the end of the pageblock the migration scanner is using. 677 */ 678 pfn = cc->free_pfn; 679 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages); 680 681 /* 682 * Take care that if the migration scanner is at the end of the zone 683 * that the free scanner does not accidentally move to the next zone 684 * in the next isolation cycle. 685 */ 686 high_pfn = min(low_pfn, pfn); 687 688 z_end_pfn = zone_end_pfn(zone); 689 690 /* 691 * Isolate free pages until enough are available to migrate the 692 * pages on cc->migratepages. We stop searching if the migrate 693 * and free page scanners meet or enough free pages are isolated. 694 */ 695 for (; pfn >= low_pfn && cc->nr_migratepages > nr_freepages; 696 pfn -= pageblock_nr_pages) { 697 unsigned long isolated; 698 699 /* 700 * This can iterate a massively long zone without finding any 701 * suitable migration targets, so periodically check if we need 702 * to schedule. 703 */ 704 cond_resched(); 705 706 if (!pfn_valid(pfn)) 707 continue; 708 709 /* 710 * Check for overlapping nodes/zones. It's possible on some 711 * configurations to have a setup like 712 * node0 node1 node0 713 * i.e. it's possible that all pages within a zones range of 714 * pages do not belong to a single zone. 715 */ 716 page = pfn_to_page(pfn); 717 if (page_zone(page) != zone) 718 continue; 719 720 /* Check the block is suitable for migration */ 721 if (!suitable_migration_target(page)) 722 continue; 723 724 /* If isolation recently failed, do not retry */ 725 if (!isolation_suitable(cc, page)) 726 continue; 727 728 /* Found a block suitable for isolating free pages from */ 729 isolated = 0; 730 731 /* 732 * As pfn may not start aligned, pfn+pageblock_nr_page 733 * may cross a MAX_ORDER_NR_PAGES boundary and miss 734 * a pfn_valid check. Ensure isolate_freepages_block() 735 * only scans within a pageblock 736 */ 737 end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 738 end_pfn = min(end_pfn, z_end_pfn); 739 isolated = isolate_freepages_block(cc, pfn, end_pfn, 740 freelist, false); 741 nr_freepages += isolated; 742 743 /* 744 * Record the highest PFN we isolated pages from. When next 745 * looking for free pages, the search will restart here as 746 * page migration may have returned some pages to the allocator 747 */ 748 if (isolated) { 749 cc->finished_update_free = true; 750 high_pfn = max(high_pfn, pfn); 751 } 752 } 753 754 /* split_free_page does not map the pages */ 755 map_pages(freelist); 756 757 /* 758 * If we crossed the migrate scanner, we want to keep it that way 759 * so that compact_finished() may detect this 760 */ 761 if (pfn < low_pfn) 762 cc->free_pfn = max(pfn, zone->zone_start_pfn); 763 else 764 cc->free_pfn = high_pfn; 765 cc->nr_freepages = nr_freepages; 766 } 767 768 /* 769 * This is a migrate-callback that "allocates" freepages by taking pages 770 * from the isolated freelists in the block we are migrating to. 771 */ 772 static struct page *compaction_alloc(struct page *migratepage, 773 unsigned long data, 774 int **result) 775 { 776 struct compact_control *cc = (struct compact_control *)data; 777 struct page *freepage; 778 779 /* Isolate free pages if necessary */ 780 if (list_empty(&cc->freepages)) { 781 isolate_freepages(cc->zone, cc); 782 783 if (list_empty(&cc->freepages)) 784 return NULL; 785 } 786 787 freepage = list_entry(cc->freepages.next, struct page, lru); 788 list_del(&freepage->lru); 789 cc->nr_freepages--; 790 791 return freepage; 792 } 793 794 /* 795 * We cannot control nr_migratepages and nr_freepages fully when migration is 796 * running as migrate_pages() has no knowledge of compact_control. When 797 * migration is complete, we count the number of pages on the lists by hand. 798 */ 799 static void update_nr_listpages(struct compact_control *cc) 800 { 801 int nr_migratepages = 0; 802 int nr_freepages = 0; 803 struct page *page; 804 805 list_for_each_entry(page, &cc->migratepages, lru) 806 nr_migratepages++; 807 list_for_each_entry(page, &cc->freepages, lru) 808 nr_freepages++; 809 810 cc->nr_migratepages = nr_migratepages; 811 cc->nr_freepages = nr_freepages; 812 } 813 814 /* possible outcome of isolate_migratepages */ 815 typedef enum { 816 ISOLATE_ABORT, /* Abort compaction now */ 817 ISOLATE_NONE, /* No pages isolated, continue scanning */ 818 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 819 } isolate_migrate_t; 820 821 /* 822 * Isolate all pages that can be migrated from the block pointed to by 823 * the migrate scanner within compact_control. 824 */ 825 static isolate_migrate_t isolate_migratepages(struct zone *zone, 826 struct compact_control *cc) 827 { 828 unsigned long low_pfn, end_pfn; 829 830 /* Do not scan outside zone boundaries */ 831 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn); 832 833 /* Only scan within a pageblock boundary */ 834 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages); 835 836 /* Do not cross the free scanner or scan within a memory hole */ 837 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) { 838 cc->migrate_pfn = end_pfn; 839 return ISOLATE_NONE; 840 } 841 842 /* Perform the isolation */ 843 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false); 844 if (!low_pfn || cc->contended) 845 return ISOLATE_ABORT; 846 847 cc->migrate_pfn = low_pfn; 848 849 return ISOLATE_SUCCESS; 850 } 851 852 static int compact_finished(struct zone *zone, 853 struct compact_control *cc) 854 { 855 unsigned int order; 856 unsigned long watermark; 857 858 if (fatal_signal_pending(current)) 859 return COMPACT_PARTIAL; 860 861 /* Compaction run completes if the migrate and free scanner meet */ 862 if (cc->free_pfn <= cc->migrate_pfn) { 863 /* Let the next compaction start anew. */ 864 zone->compact_cached_migrate_pfn = zone->zone_start_pfn; 865 zone->compact_cached_free_pfn = zone_end_pfn(zone); 866 867 /* 868 * Mark that the PG_migrate_skip information should be cleared 869 * by kswapd when it goes to sleep. kswapd does not set the 870 * flag itself as the decision to be clear should be directly 871 * based on an allocation request. 872 */ 873 if (!current_is_kswapd()) 874 zone->compact_blockskip_flush = true; 875 876 return COMPACT_COMPLETE; 877 } 878 879 /* 880 * order == -1 is expected when compacting via 881 * /proc/sys/vm/compact_memory 882 */ 883 if (cc->order == -1) 884 return COMPACT_CONTINUE; 885 886 /* Compaction run is not finished if the watermark is not met */ 887 watermark = low_wmark_pages(zone); 888 watermark += (1 << cc->order); 889 890 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0)) 891 return COMPACT_CONTINUE; 892 893 /* Direct compactor: Is a suitable page free? */ 894 for (order = cc->order; order < MAX_ORDER; order++) { 895 struct free_area *area = &zone->free_area[order]; 896 897 /* Job done if page is free of the right migratetype */ 898 if (!list_empty(&area->free_list[cc->migratetype])) 899 return COMPACT_PARTIAL; 900 901 /* Job done if allocation would set block type */ 902 if (cc->order >= pageblock_order && area->nr_free) 903 return COMPACT_PARTIAL; 904 } 905 906 return COMPACT_CONTINUE; 907 } 908 909 /* 910 * compaction_suitable: Is this suitable to run compaction on this zone now? 911 * Returns 912 * COMPACT_SKIPPED - If there are too few free pages for compaction 913 * COMPACT_PARTIAL - If the allocation would succeed without compaction 914 * COMPACT_CONTINUE - If compaction should run now 915 */ 916 unsigned long compaction_suitable(struct zone *zone, int order) 917 { 918 int fragindex; 919 unsigned long watermark; 920 921 /* 922 * order == -1 is expected when compacting via 923 * /proc/sys/vm/compact_memory 924 */ 925 if (order == -1) 926 return COMPACT_CONTINUE; 927 928 /* 929 * Watermarks for order-0 must be met for compaction. Note the 2UL. 930 * This is because during migration, copies of pages need to be 931 * allocated and for a short time, the footprint is higher 932 */ 933 watermark = low_wmark_pages(zone) + (2UL << order); 934 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 935 return COMPACT_SKIPPED; 936 937 /* 938 * fragmentation index determines if allocation failures are due to 939 * low memory or external fragmentation 940 * 941 * index of -1000 implies allocations might succeed depending on 942 * watermarks 943 * index towards 0 implies failure is due to lack of memory 944 * index towards 1000 implies failure is due to fragmentation 945 * 946 * Only compact if a failure would be due to fragmentation. 947 */ 948 fragindex = fragmentation_index(zone, order); 949 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 950 return COMPACT_SKIPPED; 951 952 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark, 953 0, 0)) 954 return COMPACT_PARTIAL; 955 956 return COMPACT_CONTINUE; 957 } 958 959 static int compact_zone(struct zone *zone, struct compact_control *cc) 960 { 961 int ret; 962 unsigned long start_pfn = zone->zone_start_pfn; 963 unsigned long end_pfn = zone_end_pfn(zone); 964 965 ret = compaction_suitable(zone, cc->order); 966 switch (ret) { 967 case COMPACT_PARTIAL: 968 case COMPACT_SKIPPED: 969 /* Compaction is likely to fail */ 970 return ret; 971 case COMPACT_CONTINUE: 972 /* Fall through to compaction */ 973 ; 974 } 975 976 /* 977 * Clear pageblock skip if there were failures recently and compaction 978 * is about to be retried after being deferred. kswapd does not do 979 * this reset as it'll reset the cached information when going to sleep. 980 */ 981 if (compaction_restarting(zone, cc->order) && !current_is_kswapd()) 982 __reset_isolation_suitable(zone); 983 984 /* 985 * Setup to move all movable pages to the end of the zone. Used cached 986 * information on where the scanners should start but check that it 987 * is initialised by ensuring the values are within zone boundaries. 988 */ 989 cc->migrate_pfn = zone->compact_cached_migrate_pfn; 990 cc->free_pfn = zone->compact_cached_free_pfn; 991 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) { 992 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1); 993 zone->compact_cached_free_pfn = cc->free_pfn; 994 } 995 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) { 996 cc->migrate_pfn = start_pfn; 997 zone->compact_cached_migrate_pfn = cc->migrate_pfn; 998 } 999 1000 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn); 1001 1002 migrate_prep_local(); 1003 1004 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { 1005 unsigned long nr_migrate, nr_remaining; 1006 int err; 1007 1008 switch (isolate_migratepages(zone, cc)) { 1009 case ISOLATE_ABORT: 1010 ret = COMPACT_PARTIAL; 1011 putback_movable_pages(&cc->migratepages); 1012 cc->nr_migratepages = 0; 1013 goto out; 1014 case ISOLATE_NONE: 1015 continue; 1016 case ISOLATE_SUCCESS: 1017 ; 1018 } 1019 1020 nr_migrate = cc->nr_migratepages; 1021 err = migrate_pages(&cc->migratepages, compaction_alloc, 1022 (unsigned long)cc, 1023 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC, 1024 MR_COMPACTION); 1025 update_nr_listpages(cc); 1026 nr_remaining = cc->nr_migratepages; 1027 1028 trace_mm_compaction_migratepages(nr_migrate - nr_remaining, 1029 nr_remaining); 1030 1031 /* Release isolated pages not migrated */ 1032 if (err) { 1033 putback_movable_pages(&cc->migratepages); 1034 cc->nr_migratepages = 0; 1035 /* 1036 * migrate_pages() may return -ENOMEM when scanners meet 1037 * and we want compact_finished() to detect it 1038 */ 1039 if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) { 1040 ret = COMPACT_PARTIAL; 1041 goto out; 1042 } 1043 } 1044 } 1045 1046 out: 1047 /* Release free pages and check accounting */ 1048 cc->nr_freepages -= release_freepages(&cc->freepages); 1049 VM_BUG_ON(cc->nr_freepages != 0); 1050 1051 trace_mm_compaction_end(ret); 1052 1053 return ret; 1054 } 1055 1056 static unsigned long compact_zone_order(struct zone *zone, 1057 int order, gfp_t gfp_mask, 1058 bool sync, bool *contended) 1059 { 1060 unsigned long ret; 1061 struct compact_control cc = { 1062 .nr_freepages = 0, 1063 .nr_migratepages = 0, 1064 .order = order, 1065 .migratetype = allocflags_to_migratetype(gfp_mask), 1066 .zone = zone, 1067 .sync = sync, 1068 }; 1069 INIT_LIST_HEAD(&cc.freepages); 1070 INIT_LIST_HEAD(&cc.migratepages); 1071 1072 ret = compact_zone(zone, &cc); 1073 1074 VM_BUG_ON(!list_empty(&cc.freepages)); 1075 VM_BUG_ON(!list_empty(&cc.migratepages)); 1076 1077 *contended = cc.contended; 1078 return ret; 1079 } 1080 1081 int sysctl_extfrag_threshold = 500; 1082 1083 /** 1084 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 1085 * @zonelist: The zonelist used for the current allocation 1086 * @order: The order of the current allocation 1087 * @gfp_mask: The GFP mask of the current allocation 1088 * @nodemask: The allowed nodes to allocate from 1089 * @sync: Whether migration is synchronous or not 1090 * @contended: Return value that is true if compaction was aborted due to lock contention 1091 * @page: Optionally capture a free page of the requested order during compaction 1092 * 1093 * This is the main entry point for direct page compaction. 1094 */ 1095 unsigned long try_to_compact_pages(struct zonelist *zonelist, 1096 int order, gfp_t gfp_mask, nodemask_t *nodemask, 1097 bool sync, bool *contended) 1098 { 1099 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1100 int may_enter_fs = gfp_mask & __GFP_FS; 1101 int may_perform_io = gfp_mask & __GFP_IO; 1102 struct zoneref *z; 1103 struct zone *zone; 1104 int rc = COMPACT_SKIPPED; 1105 int alloc_flags = 0; 1106 1107 /* Check if the GFP flags allow compaction */ 1108 if (!order || !may_enter_fs || !may_perform_io) 1109 return rc; 1110 1111 count_compact_event(COMPACTSTALL); 1112 1113 #ifdef CONFIG_CMA 1114 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 1115 alloc_flags |= ALLOC_CMA; 1116 #endif 1117 /* Compact each zone in the list */ 1118 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 1119 nodemask) { 1120 int status; 1121 1122 status = compact_zone_order(zone, order, gfp_mask, sync, 1123 contended); 1124 rc = max(status, rc); 1125 1126 /* If a normal allocation would succeed, stop compacting */ 1127 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 1128 alloc_flags)) 1129 break; 1130 } 1131 1132 return rc; 1133 } 1134 1135 1136 /* Compact all zones within a node */ 1137 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) 1138 { 1139 int zoneid; 1140 struct zone *zone; 1141 1142 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1143 1144 zone = &pgdat->node_zones[zoneid]; 1145 if (!populated_zone(zone)) 1146 continue; 1147 1148 cc->nr_freepages = 0; 1149 cc->nr_migratepages = 0; 1150 cc->zone = zone; 1151 INIT_LIST_HEAD(&cc->freepages); 1152 INIT_LIST_HEAD(&cc->migratepages); 1153 1154 if (cc->order == -1 || !compaction_deferred(zone, cc->order)) 1155 compact_zone(zone, cc); 1156 1157 if (cc->order > 0) { 1158 if (zone_watermark_ok(zone, cc->order, 1159 low_wmark_pages(zone), 0, 0)) 1160 compaction_defer_reset(zone, cc->order, false); 1161 /* Currently async compaction is never deferred. */ 1162 else if (cc->sync) 1163 defer_compaction(zone, cc->order); 1164 } 1165 1166 VM_BUG_ON(!list_empty(&cc->freepages)); 1167 VM_BUG_ON(!list_empty(&cc->migratepages)); 1168 } 1169 } 1170 1171 void compact_pgdat(pg_data_t *pgdat, int order) 1172 { 1173 struct compact_control cc = { 1174 .order = order, 1175 .sync = false, 1176 }; 1177 1178 if (!order) 1179 return; 1180 1181 __compact_pgdat(pgdat, &cc); 1182 } 1183 1184 static void compact_node(int nid) 1185 { 1186 struct compact_control cc = { 1187 .order = -1, 1188 .sync = true, 1189 }; 1190 1191 __compact_pgdat(NODE_DATA(nid), &cc); 1192 } 1193 1194 /* Compact all nodes in the system */ 1195 static void compact_nodes(void) 1196 { 1197 int nid; 1198 1199 /* Flush pending updates to the LRU lists */ 1200 lru_add_drain_all(); 1201 1202 for_each_online_node(nid) 1203 compact_node(nid); 1204 } 1205 1206 /* The written value is actually unused, all memory is compacted */ 1207 int sysctl_compact_memory; 1208 1209 /* This is the entry point for compacting all nodes via /proc/sys/vm */ 1210 int sysctl_compaction_handler(struct ctl_table *table, int write, 1211 void __user *buffer, size_t *length, loff_t *ppos) 1212 { 1213 if (write) 1214 compact_nodes(); 1215 1216 return 0; 1217 } 1218 1219 int sysctl_extfrag_handler(struct ctl_table *table, int write, 1220 void __user *buffer, size_t *length, loff_t *ppos) 1221 { 1222 proc_dointvec_minmax(table, write, buffer, length, ppos); 1223 1224 return 0; 1225 } 1226 1227 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 1228 ssize_t sysfs_compact_node(struct device *dev, 1229 struct device_attribute *attr, 1230 const char *buf, size_t count) 1231 { 1232 int nid = dev->id; 1233 1234 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 1235 /* Flush pending updates to the LRU lists */ 1236 lru_add_drain_all(); 1237 1238 compact_node(nid); 1239 } 1240 1241 return count; 1242 } 1243 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 1244 1245 int compaction_register_node(struct node *node) 1246 { 1247 return device_create_file(&node->dev, &dev_attr_compact); 1248 } 1249 1250 void compaction_unregister_node(struct node *node) 1251 { 1252 return device_remove_file(&node->dev, &dev_attr_compact); 1253 } 1254 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 1255 1256 #endif /* CONFIG_COMPACTION */ 1257