xref: /openbmc/linux/mm/compaction.c (revision a2fb4d78)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
20 
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item)
23 {
24 	count_vm_event(item);
25 }
26 
27 static inline void count_compact_events(enum vm_event_item item, long delta)
28 {
29 	count_vm_events(item, delta);
30 }
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
35 
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/compaction.h>
40 
41 static unsigned long release_freepages(struct list_head *freelist)
42 {
43 	struct page *page, *next;
44 	unsigned long count = 0;
45 
46 	list_for_each_entry_safe(page, next, freelist, lru) {
47 		list_del(&page->lru);
48 		__free_page(page);
49 		count++;
50 	}
51 
52 	return count;
53 }
54 
55 static void map_pages(struct list_head *list)
56 {
57 	struct page *page;
58 
59 	list_for_each_entry(page, list, lru) {
60 		arch_alloc_page(page, 0);
61 		kernel_map_pages(page, 1, 1);
62 	}
63 }
64 
65 static inline bool migrate_async_suitable(int migratetype)
66 {
67 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
68 }
69 
70 #ifdef CONFIG_COMPACTION
71 /* Returns true if the pageblock should be scanned for pages to isolate. */
72 static inline bool isolation_suitable(struct compact_control *cc,
73 					struct page *page)
74 {
75 	if (cc->ignore_skip_hint)
76 		return true;
77 
78 	return !get_pageblock_skip(page);
79 }
80 
81 /*
82  * This function is called to clear all cached information on pageblocks that
83  * should be skipped for page isolation when the migrate and free page scanner
84  * meet.
85  */
86 static void __reset_isolation_suitable(struct zone *zone)
87 {
88 	unsigned long start_pfn = zone->zone_start_pfn;
89 	unsigned long end_pfn = zone_end_pfn(zone);
90 	unsigned long pfn;
91 
92 	zone->compact_cached_migrate_pfn = start_pfn;
93 	zone->compact_cached_free_pfn = end_pfn;
94 	zone->compact_blockskip_flush = false;
95 
96 	/* Walk the zone and mark every pageblock as suitable for isolation */
97 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
98 		struct page *page;
99 
100 		cond_resched();
101 
102 		if (!pfn_valid(pfn))
103 			continue;
104 
105 		page = pfn_to_page(pfn);
106 		if (zone != page_zone(page))
107 			continue;
108 
109 		clear_pageblock_skip(page);
110 	}
111 }
112 
113 void reset_isolation_suitable(pg_data_t *pgdat)
114 {
115 	int zoneid;
116 
117 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
118 		struct zone *zone = &pgdat->node_zones[zoneid];
119 		if (!populated_zone(zone))
120 			continue;
121 
122 		/* Only flush if a full compaction finished recently */
123 		if (zone->compact_blockskip_flush)
124 			__reset_isolation_suitable(zone);
125 	}
126 }
127 
128 /*
129  * If no pages were isolated then mark this pageblock to be skipped in the
130  * future. The information is later cleared by __reset_isolation_suitable().
131  */
132 static void update_pageblock_skip(struct compact_control *cc,
133 			struct page *page, unsigned long nr_isolated,
134 			bool migrate_scanner)
135 {
136 	struct zone *zone = cc->zone;
137 
138 	if (cc->ignore_skip_hint)
139 		return;
140 
141 	if (!page)
142 		return;
143 
144 	if (!nr_isolated) {
145 		unsigned long pfn = page_to_pfn(page);
146 		set_pageblock_skip(page);
147 
148 		/* Update where compaction should restart */
149 		if (migrate_scanner) {
150 			if (!cc->finished_update_migrate &&
151 			    pfn > zone->compact_cached_migrate_pfn)
152 				zone->compact_cached_migrate_pfn = pfn;
153 		} else {
154 			if (!cc->finished_update_free &&
155 			    pfn < zone->compact_cached_free_pfn)
156 				zone->compact_cached_free_pfn = pfn;
157 		}
158 	}
159 }
160 #else
161 static inline bool isolation_suitable(struct compact_control *cc,
162 					struct page *page)
163 {
164 	return true;
165 }
166 
167 static void update_pageblock_skip(struct compact_control *cc,
168 			struct page *page, unsigned long nr_isolated,
169 			bool migrate_scanner)
170 {
171 }
172 #endif /* CONFIG_COMPACTION */
173 
174 static inline bool should_release_lock(spinlock_t *lock)
175 {
176 	return need_resched() || spin_is_contended(lock);
177 }
178 
179 /*
180  * Compaction requires the taking of some coarse locks that are potentially
181  * very heavily contended. Check if the process needs to be scheduled or
182  * if the lock is contended. For async compaction, back out in the event
183  * if contention is severe. For sync compaction, schedule.
184  *
185  * Returns true if the lock is held.
186  * Returns false if the lock is released and compaction should abort
187  */
188 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
189 				      bool locked, struct compact_control *cc)
190 {
191 	if (should_release_lock(lock)) {
192 		if (locked) {
193 			spin_unlock_irqrestore(lock, *flags);
194 			locked = false;
195 		}
196 
197 		/* async aborts if taking too long or contended */
198 		if (!cc->sync) {
199 			cc->contended = true;
200 			return false;
201 		}
202 
203 		cond_resched();
204 	}
205 
206 	if (!locked)
207 		spin_lock_irqsave(lock, *flags);
208 	return true;
209 }
210 
211 static inline bool compact_trylock_irqsave(spinlock_t *lock,
212 			unsigned long *flags, struct compact_control *cc)
213 {
214 	return compact_checklock_irqsave(lock, flags, false, cc);
215 }
216 
217 /* Returns true if the page is within a block suitable for migration to */
218 static bool suitable_migration_target(struct page *page)
219 {
220 	int migratetype = get_pageblock_migratetype(page);
221 
222 	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
223 	if (migratetype == MIGRATE_RESERVE)
224 		return false;
225 
226 	if (is_migrate_isolate(migratetype))
227 		return false;
228 
229 	/* If the page is a large free page, then allow migration */
230 	if (PageBuddy(page) && page_order(page) >= pageblock_order)
231 		return true;
232 
233 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
234 	if (migrate_async_suitable(migratetype))
235 		return true;
236 
237 	/* Otherwise skip the block */
238 	return false;
239 }
240 
241 /*
242  * Isolate free pages onto a private freelist. If @strict is true, will abort
243  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
244  * (even though it may still end up isolating some pages).
245  */
246 static unsigned long isolate_freepages_block(struct compact_control *cc,
247 				unsigned long blockpfn,
248 				unsigned long end_pfn,
249 				struct list_head *freelist,
250 				bool strict)
251 {
252 	int nr_scanned = 0, total_isolated = 0;
253 	struct page *cursor, *valid_page = NULL;
254 	unsigned long flags;
255 	bool locked = false;
256 
257 	cursor = pfn_to_page(blockpfn);
258 
259 	/* Isolate free pages. */
260 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
261 		int isolated, i;
262 		struct page *page = cursor;
263 
264 		nr_scanned++;
265 		if (!pfn_valid_within(blockpfn))
266 			goto isolate_fail;
267 
268 		if (!valid_page)
269 			valid_page = page;
270 		if (!PageBuddy(page))
271 			goto isolate_fail;
272 
273 		/*
274 		 * The zone lock must be held to isolate freepages.
275 		 * Unfortunately this is a very coarse lock and can be
276 		 * heavily contended if there are parallel allocations
277 		 * or parallel compactions. For async compaction do not
278 		 * spin on the lock and we acquire the lock as late as
279 		 * possible.
280 		 */
281 		locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
282 								locked, cc);
283 		if (!locked)
284 			break;
285 
286 		/* Recheck this is a suitable migration target under lock */
287 		if (!strict && !suitable_migration_target(page))
288 			break;
289 
290 		/* Recheck this is a buddy page under lock */
291 		if (!PageBuddy(page))
292 			goto isolate_fail;
293 
294 		/* Found a free page, break it into order-0 pages */
295 		isolated = split_free_page(page);
296 		total_isolated += isolated;
297 		for (i = 0; i < isolated; i++) {
298 			list_add(&page->lru, freelist);
299 			page++;
300 		}
301 
302 		/* If a page was split, advance to the end of it */
303 		if (isolated) {
304 			blockpfn += isolated - 1;
305 			cursor += isolated - 1;
306 			continue;
307 		}
308 
309 isolate_fail:
310 		if (strict)
311 			break;
312 		else
313 			continue;
314 
315 	}
316 
317 	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
318 
319 	/*
320 	 * If strict isolation is requested by CMA then check that all the
321 	 * pages requested were isolated. If there were any failures, 0 is
322 	 * returned and CMA will fail.
323 	 */
324 	if (strict && blockpfn < end_pfn)
325 		total_isolated = 0;
326 
327 	if (locked)
328 		spin_unlock_irqrestore(&cc->zone->lock, flags);
329 
330 	/* Update the pageblock-skip if the whole pageblock was scanned */
331 	if (blockpfn == end_pfn)
332 		update_pageblock_skip(cc, valid_page, total_isolated, false);
333 
334 	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
335 	if (total_isolated)
336 		count_compact_events(COMPACTISOLATED, total_isolated);
337 	return total_isolated;
338 }
339 
340 /**
341  * isolate_freepages_range() - isolate free pages.
342  * @start_pfn: The first PFN to start isolating.
343  * @end_pfn:   The one-past-last PFN.
344  *
345  * Non-free pages, invalid PFNs, or zone boundaries within the
346  * [start_pfn, end_pfn) range are considered errors, cause function to
347  * undo its actions and return zero.
348  *
349  * Otherwise, function returns one-past-the-last PFN of isolated page
350  * (which may be greater then end_pfn if end fell in a middle of
351  * a free page).
352  */
353 unsigned long
354 isolate_freepages_range(struct compact_control *cc,
355 			unsigned long start_pfn, unsigned long end_pfn)
356 {
357 	unsigned long isolated, pfn, block_end_pfn;
358 	LIST_HEAD(freelist);
359 
360 	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
361 		if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
362 			break;
363 
364 		/*
365 		 * On subsequent iterations ALIGN() is actually not needed,
366 		 * but we keep it that we not to complicate the code.
367 		 */
368 		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
369 		block_end_pfn = min(block_end_pfn, end_pfn);
370 
371 		isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
372 						   &freelist, true);
373 
374 		/*
375 		 * In strict mode, isolate_freepages_block() returns 0 if
376 		 * there are any holes in the block (ie. invalid PFNs or
377 		 * non-free pages).
378 		 */
379 		if (!isolated)
380 			break;
381 
382 		/*
383 		 * If we managed to isolate pages, it is always (1 << n) *
384 		 * pageblock_nr_pages for some non-negative n.  (Max order
385 		 * page may span two pageblocks).
386 		 */
387 	}
388 
389 	/* split_free_page does not map the pages */
390 	map_pages(&freelist);
391 
392 	if (pfn < end_pfn) {
393 		/* Loop terminated early, cleanup. */
394 		release_freepages(&freelist);
395 		return 0;
396 	}
397 
398 	/* We don't use freelists for anything. */
399 	return pfn;
400 }
401 
402 /* Update the number of anon and file isolated pages in the zone */
403 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
404 {
405 	struct page *page;
406 	unsigned int count[2] = { 0, };
407 
408 	list_for_each_entry(page, &cc->migratepages, lru)
409 		count[!!page_is_file_cache(page)]++;
410 
411 	/* If locked we can use the interrupt unsafe versions */
412 	if (locked) {
413 		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
414 		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
415 	} else {
416 		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
417 		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
418 	}
419 }
420 
421 /* Similar to reclaim, but different enough that they don't share logic */
422 static bool too_many_isolated(struct zone *zone)
423 {
424 	unsigned long active, inactive, isolated;
425 
426 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
427 					zone_page_state(zone, NR_INACTIVE_ANON);
428 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
429 					zone_page_state(zone, NR_ACTIVE_ANON);
430 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
431 					zone_page_state(zone, NR_ISOLATED_ANON);
432 
433 	return isolated > (inactive + active) / 2;
434 }
435 
436 /**
437  * isolate_migratepages_range() - isolate all migrate-able pages in range.
438  * @zone:	Zone pages are in.
439  * @cc:		Compaction control structure.
440  * @low_pfn:	The first PFN of the range.
441  * @end_pfn:	The one-past-the-last PFN of the range.
442  * @unevictable: true if it allows to isolate unevictable pages
443  *
444  * Isolate all pages that can be migrated from the range specified by
445  * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
446  * pending), otherwise PFN of the first page that was not scanned
447  * (which may be both less, equal to or more then end_pfn).
448  *
449  * Assumes that cc->migratepages is empty and cc->nr_migratepages is
450  * zero.
451  *
452  * Apart from cc->migratepages and cc->nr_migratetypes this function
453  * does not modify any cc's fields, in particular it does not modify
454  * (or read for that matter) cc->migrate_pfn.
455  */
456 unsigned long
457 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
458 		unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
459 {
460 	unsigned long last_pageblock_nr = 0, pageblock_nr;
461 	unsigned long nr_scanned = 0, nr_isolated = 0;
462 	struct list_head *migratelist = &cc->migratepages;
463 	isolate_mode_t mode = 0;
464 	struct lruvec *lruvec;
465 	unsigned long flags;
466 	bool locked = false;
467 	struct page *page = NULL, *valid_page = NULL;
468 	bool skipped_async_unsuitable = false;
469 
470 	/*
471 	 * Ensure that there are not too many pages isolated from the LRU
472 	 * list by either parallel reclaimers or compaction. If there are,
473 	 * delay for some time until fewer pages are isolated
474 	 */
475 	while (unlikely(too_many_isolated(zone))) {
476 		/* async migration should just abort */
477 		if (!cc->sync)
478 			return 0;
479 
480 		congestion_wait(BLK_RW_ASYNC, HZ/10);
481 
482 		if (fatal_signal_pending(current))
483 			return 0;
484 	}
485 
486 	/* Time to isolate some pages for migration */
487 	cond_resched();
488 	for (; low_pfn < end_pfn; low_pfn++) {
489 		/* give a chance to irqs before checking need_resched() */
490 		if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
491 			if (should_release_lock(&zone->lru_lock)) {
492 				spin_unlock_irqrestore(&zone->lru_lock, flags);
493 				locked = false;
494 			}
495 		}
496 
497 		/*
498 		 * migrate_pfn does not necessarily start aligned to a
499 		 * pageblock. Ensure that pfn_valid is called when moving
500 		 * into a new MAX_ORDER_NR_PAGES range in case of large
501 		 * memory holes within the zone
502 		 */
503 		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
504 			if (!pfn_valid(low_pfn)) {
505 				low_pfn += MAX_ORDER_NR_PAGES - 1;
506 				continue;
507 			}
508 		}
509 
510 		if (!pfn_valid_within(low_pfn))
511 			continue;
512 		nr_scanned++;
513 
514 		/*
515 		 * Get the page and ensure the page is within the same zone.
516 		 * See the comment in isolate_freepages about overlapping
517 		 * nodes. It is deliberate that the new zone lock is not taken
518 		 * as memory compaction should not move pages between nodes.
519 		 */
520 		page = pfn_to_page(low_pfn);
521 		if (page_zone(page) != zone)
522 			continue;
523 
524 		if (!valid_page)
525 			valid_page = page;
526 
527 		/* If isolation recently failed, do not retry */
528 		pageblock_nr = low_pfn >> pageblock_order;
529 		if (!isolation_suitable(cc, page))
530 			goto next_pageblock;
531 
532 		/*
533 		 * Skip if free. page_order cannot be used without zone->lock
534 		 * as nothing prevents parallel allocations or buddy merging.
535 		 */
536 		if (PageBuddy(page))
537 			continue;
538 
539 		/*
540 		 * For async migration, also only scan in MOVABLE blocks. Async
541 		 * migration is optimistic to see if the minimum amount of work
542 		 * satisfies the allocation
543 		 */
544 		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
545 		    !migrate_async_suitable(get_pageblock_migratetype(page))) {
546 			cc->finished_update_migrate = true;
547 			skipped_async_unsuitable = true;
548 			goto next_pageblock;
549 		}
550 
551 		/*
552 		 * Check may be lockless but that's ok as we recheck later.
553 		 * It's possible to migrate LRU pages and balloon pages
554 		 * Skip any other type of page
555 		 */
556 		if (!PageLRU(page)) {
557 			if (unlikely(balloon_page_movable(page))) {
558 				if (locked && balloon_page_isolate(page)) {
559 					/* Successfully isolated */
560 					cc->finished_update_migrate = true;
561 					list_add(&page->lru, migratelist);
562 					cc->nr_migratepages++;
563 					nr_isolated++;
564 					goto check_compact_cluster;
565 				}
566 			}
567 			continue;
568 		}
569 
570 		/*
571 		 * PageLRU is set. lru_lock normally excludes isolation
572 		 * splitting and collapsing (collapsing has already happened
573 		 * if PageLRU is set) but the lock is not necessarily taken
574 		 * here and it is wasteful to take it just to check transhuge.
575 		 * Check TransHuge without lock and skip the whole pageblock if
576 		 * it's either a transhuge or hugetlbfs page, as calling
577 		 * compound_order() without preventing THP from splitting the
578 		 * page underneath us may return surprising results.
579 		 */
580 		if (PageTransHuge(page)) {
581 			if (!locked)
582 				goto next_pageblock;
583 			low_pfn += (1 << compound_order(page)) - 1;
584 			continue;
585 		}
586 
587 		/* Check if it is ok to still hold the lock */
588 		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
589 								locked, cc);
590 		if (!locked || fatal_signal_pending(current))
591 			break;
592 
593 		/* Recheck PageLRU and PageTransHuge under lock */
594 		if (!PageLRU(page))
595 			continue;
596 		if (PageTransHuge(page)) {
597 			low_pfn += (1 << compound_order(page)) - 1;
598 			continue;
599 		}
600 
601 		if (!cc->sync)
602 			mode |= ISOLATE_ASYNC_MIGRATE;
603 
604 		if (unevictable)
605 			mode |= ISOLATE_UNEVICTABLE;
606 
607 		lruvec = mem_cgroup_page_lruvec(page, zone);
608 
609 		/* Try isolate the page */
610 		if (__isolate_lru_page(page, mode) != 0)
611 			continue;
612 
613 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
614 
615 		/* Successfully isolated */
616 		cc->finished_update_migrate = true;
617 		del_page_from_lru_list(page, lruvec, page_lru(page));
618 		list_add(&page->lru, migratelist);
619 		cc->nr_migratepages++;
620 		nr_isolated++;
621 
622 check_compact_cluster:
623 		/* Avoid isolating too much */
624 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
625 			++low_pfn;
626 			break;
627 		}
628 
629 		continue;
630 
631 next_pageblock:
632 		low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
633 		last_pageblock_nr = pageblock_nr;
634 	}
635 
636 	acct_isolated(zone, locked, cc);
637 
638 	if (locked)
639 		spin_unlock_irqrestore(&zone->lru_lock, flags);
640 
641 	/*
642 	 * Update the pageblock-skip information and cached scanner pfn,
643 	 * if the whole pageblock was scanned without isolating any page.
644 	 * This is not done when pageblock was skipped due to being unsuitable
645 	 * for async compaction, so that eventual sync compaction can try.
646 	 */
647 	if (low_pfn == end_pfn && !skipped_async_unsuitable)
648 		update_pageblock_skip(cc, valid_page, nr_isolated, true);
649 
650 	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
651 
652 	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
653 	if (nr_isolated)
654 		count_compact_events(COMPACTISOLATED, nr_isolated);
655 
656 	return low_pfn;
657 }
658 
659 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
660 #ifdef CONFIG_COMPACTION
661 /*
662  * Based on information in the current compact_control, find blocks
663  * suitable for isolating free pages from and then isolate them.
664  */
665 static void isolate_freepages(struct zone *zone,
666 				struct compact_control *cc)
667 {
668 	struct page *page;
669 	unsigned long high_pfn, low_pfn, pfn, z_end_pfn, end_pfn;
670 	int nr_freepages = cc->nr_freepages;
671 	struct list_head *freelist = &cc->freepages;
672 
673 	/*
674 	 * Initialise the free scanner. The starting point is where we last
675 	 * scanned from (or the end of the zone if starting). The low point
676 	 * is the end of the pageblock the migration scanner is using.
677 	 */
678 	pfn = cc->free_pfn;
679 	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
680 
681 	/*
682 	 * Take care that if the migration scanner is at the end of the zone
683 	 * that the free scanner does not accidentally move to the next zone
684 	 * in the next isolation cycle.
685 	 */
686 	high_pfn = min(low_pfn, pfn);
687 
688 	z_end_pfn = zone_end_pfn(zone);
689 
690 	/*
691 	 * Isolate free pages until enough are available to migrate the
692 	 * pages on cc->migratepages. We stop searching if the migrate
693 	 * and free page scanners meet or enough free pages are isolated.
694 	 */
695 	for (; pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
696 					pfn -= pageblock_nr_pages) {
697 		unsigned long isolated;
698 
699 		/*
700 		 * This can iterate a massively long zone without finding any
701 		 * suitable migration targets, so periodically check if we need
702 		 * to schedule.
703 		 */
704 		cond_resched();
705 
706 		if (!pfn_valid(pfn))
707 			continue;
708 
709 		/*
710 		 * Check for overlapping nodes/zones. It's possible on some
711 		 * configurations to have a setup like
712 		 * node0 node1 node0
713 		 * i.e. it's possible that all pages within a zones range of
714 		 * pages do not belong to a single zone.
715 		 */
716 		page = pfn_to_page(pfn);
717 		if (page_zone(page) != zone)
718 			continue;
719 
720 		/* Check the block is suitable for migration */
721 		if (!suitable_migration_target(page))
722 			continue;
723 
724 		/* If isolation recently failed, do not retry */
725 		if (!isolation_suitable(cc, page))
726 			continue;
727 
728 		/* Found a block suitable for isolating free pages from */
729 		isolated = 0;
730 
731 		/*
732 		 * As pfn may not start aligned, pfn+pageblock_nr_page
733 		 * may cross a MAX_ORDER_NR_PAGES boundary and miss
734 		 * a pfn_valid check. Ensure isolate_freepages_block()
735 		 * only scans within a pageblock
736 		 */
737 		end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
738 		end_pfn = min(end_pfn, z_end_pfn);
739 		isolated = isolate_freepages_block(cc, pfn, end_pfn,
740 						   freelist, false);
741 		nr_freepages += isolated;
742 
743 		/*
744 		 * Record the highest PFN we isolated pages from. When next
745 		 * looking for free pages, the search will restart here as
746 		 * page migration may have returned some pages to the allocator
747 		 */
748 		if (isolated) {
749 			cc->finished_update_free = true;
750 			high_pfn = max(high_pfn, pfn);
751 		}
752 	}
753 
754 	/* split_free_page does not map the pages */
755 	map_pages(freelist);
756 
757 	/*
758 	 * If we crossed the migrate scanner, we want to keep it that way
759 	 * so that compact_finished() may detect this
760 	 */
761 	if (pfn < low_pfn)
762 		cc->free_pfn = max(pfn, zone->zone_start_pfn);
763 	else
764 		cc->free_pfn = high_pfn;
765 	cc->nr_freepages = nr_freepages;
766 }
767 
768 /*
769  * This is a migrate-callback that "allocates" freepages by taking pages
770  * from the isolated freelists in the block we are migrating to.
771  */
772 static struct page *compaction_alloc(struct page *migratepage,
773 					unsigned long data,
774 					int **result)
775 {
776 	struct compact_control *cc = (struct compact_control *)data;
777 	struct page *freepage;
778 
779 	/* Isolate free pages if necessary */
780 	if (list_empty(&cc->freepages)) {
781 		isolate_freepages(cc->zone, cc);
782 
783 		if (list_empty(&cc->freepages))
784 			return NULL;
785 	}
786 
787 	freepage = list_entry(cc->freepages.next, struct page, lru);
788 	list_del(&freepage->lru);
789 	cc->nr_freepages--;
790 
791 	return freepage;
792 }
793 
794 /*
795  * We cannot control nr_migratepages and nr_freepages fully when migration is
796  * running as migrate_pages() has no knowledge of compact_control. When
797  * migration is complete, we count the number of pages on the lists by hand.
798  */
799 static void update_nr_listpages(struct compact_control *cc)
800 {
801 	int nr_migratepages = 0;
802 	int nr_freepages = 0;
803 	struct page *page;
804 
805 	list_for_each_entry(page, &cc->migratepages, lru)
806 		nr_migratepages++;
807 	list_for_each_entry(page, &cc->freepages, lru)
808 		nr_freepages++;
809 
810 	cc->nr_migratepages = nr_migratepages;
811 	cc->nr_freepages = nr_freepages;
812 }
813 
814 /* possible outcome of isolate_migratepages */
815 typedef enum {
816 	ISOLATE_ABORT,		/* Abort compaction now */
817 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
818 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
819 } isolate_migrate_t;
820 
821 /*
822  * Isolate all pages that can be migrated from the block pointed to by
823  * the migrate scanner within compact_control.
824  */
825 static isolate_migrate_t isolate_migratepages(struct zone *zone,
826 					struct compact_control *cc)
827 {
828 	unsigned long low_pfn, end_pfn;
829 
830 	/* Do not scan outside zone boundaries */
831 	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
832 
833 	/* Only scan within a pageblock boundary */
834 	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
835 
836 	/* Do not cross the free scanner or scan within a memory hole */
837 	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
838 		cc->migrate_pfn = end_pfn;
839 		return ISOLATE_NONE;
840 	}
841 
842 	/* Perform the isolation */
843 	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
844 	if (!low_pfn || cc->contended)
845 		return ISOLATE_ABORT;
846 
847 	cc->migrate_pfn = low_pfn;
848 
849 	return ISOLATE_SUCCESS;
850 }
851 
852 static int compact_finished(struct zone *zone,
853 			    struct compact_control *cc)
854 {
855 	unsigned int order;
856 	unsigned long watermark;
857 
858 	if (fatal_signal_pending(current))
859 		return COMPACT_PARTIAL;
860 
861 	/* Compaction run completes if the migrate and free scanner meet */
862 	if (cc->free_pfn <= cc->migrate_pfn) {
863 		/* Let the next compaction start anew. */
864 		zone->compact_cached_migrate_pfn = zone->zone_start_pfn;
865 		zone->compact_cached_free_pfn = zone_end_pfn(zone);
866 
867 		/*
868 		 * Mark that the PG_migrate_skip information should be cleared
869 		 * by kswapd when it goes to sleep. kswapd does not set the
870 		 * flag itself as the decision to be clear should be directly
871 		 * based on an allocation request.
872 		 */
873 		if (!current_is_kswapd())
874 			zone->compact_blockskip_flush = true;
875 
876 		return COMPACT_COMPLETE;
877 	}
878 
879 	/*
880 	 * order == -1 is expected when compacting via
881 	 * /proc/sys/vm/compact_memory
882 	 */
883 	if (cc->order == -1)
884 		return COMPACT_CONTINUE;
885 
886 	/* Compaction run is not finished if the watermark is not met */
887 	watermark = low_wmark_pages(zone);
888 	watermark += (1 << cc->order);
889 
890 	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
891 		return COMPACT_CONTINUE;
892 
893 	/* Direct compactor: Is a suitable page free? */
894 	for (order = cc->order; order < MAX_ORDER; order++) {
895 		struct free_area *area = &zone->free_area[order];
896 
897 		/* Job done if page is free of the right migratetype */
898 		if (!list_empty(&area->free_list[cc->migratetype]))
899 			return COMPACT_PARTIAL;
900 
901 		/* Job done if allocation would set block type */
902 		if (cc->order >= pageblock_order && area->nr_free)
903 			return COMPACT_PARTIAL;
904 	}
905 
906 	return COMPACT_CONTINUE;
907 }
908 
909 /*
910  * compaction_suitable: Is this suitable to run compaction on this zone now?
911  * Returns
912  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
913  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
914  *   COMPACT_CONTINUE - If compaction should run now
915  */
916 unsigned long compaction_suitable(struct zone *zone, int order)
917 {
918 	int fragindex;
919 	unsigned long watermark;
920 
921 	/*
922 	 * order == -1 is expected when compacting via
923 	 * /proc/sys/vm/compact_memory
924 	 */
925 	if (order == -1)
926 		return COMPACT_CONTINUE;
927 
928 	/*
929 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
930 	 * This is because during migration, copies of pages need to be
931 	 * allocated and for a short time, the footprint is higher
932 	 */
933 	watermark = low_wmark_pages(zone) + (2UL << order);
934 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
935 		return COMPACT_SKIPPED;
936 
937 	/*
938 	 * fragmentation index determines if allocation failures are due to
939 	 * low memory or external fragmentation
940 	 *
941 	 * index of -1000 implies allocations might succeed depending on
942 	 * watermarks
943 	 * index towards 0 implies failure is due to lack of memory
944 	 * index towards 1000 implies failure is due to fragmentation
945 	 *
946 	 * Only compact if a failure would be due to fragmentation.
947 	 */
948 	fragindex = fragmentation_index(zone, order);
949 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
950 		return COMPACT_SKIPPED;
951 
952 	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
953 	    0, 0))
954 		return COMPACT_PARTIAL;
955 
956 	return COMPACT_CONTINUE;
957 }
958 
959 static int compact_zone(struct zone *zone, struct compact_control *cc)
960 {
961 	int ret;
962 	unsigned long start_pfn = zone->zone_start_pfn;
963 	unsigned long end_pfn = zone_end_pfn(zone);
964 
965 	ret = compaction_suitable(zone, cc->order);
966 	switch (ret) {
967 	case COMPACT_PARTIAL:
968 	case COMPACT_SKIPPED:
969 		/* Compaction is likely to fail */
970 		return ret;
971 	case COMPACT_CONTINUE:
972 		/* Fall through to compaction */
973 		;
974 	}
975 
976 	/*
977 	 * Clear pageblock skip if there were failures recently and compaction
978 	 * is about to be retried after being deferred. kswapd does not do
979 	 * this reset as it'll reset the cached information when going to sleep.
980 	 */
981 	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
982 		__reset_isolation_suitable(zone);
983 
984 	/*
985 	 * Setup to move all movable pages to the end of the zone. Used cached
986 	 * information on where the scanners should start but check that it
987 	 * is initialised by ensuring the values are within zone boundaries.
988 	 */
989 	cc->migrate_pfn = zone->compact_cached_migrate_pfn;
990 	cc->free_pfn = zone->compact_cached_free_pfn;
991 	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
992 		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
993 		zone->compact_cached_free_pfn = cc->free_pfn;
994 	}
995 	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
996 		cc->migrate_pfn = start_pfn;
997 		zone->compact_cached_migrate_pfn = cc->migrate_pfn;
998 	}
999 
1000 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
1001 
1002 	migrate_prep_local();
1003 
1004 	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1005 		unsigned long nr_migrate, nr_remaining;
1006 		int err;
1007 
1008 		switch (isolate_migratepages(zone, cc)) {
1009 		case ISOLATE_ABORT:
1010 			ret = COMPACT_PARTIAL;
1011 			putback_movable_pages(&cc->migratepages);
1012 			cc->nr_migratepages = 0;
1013 			goto out;
1014 		case ISOLATE_NONE:
1015 			continue;
1016 		case ISOLATE_SUCCESS:
1017 			;
1018 		}
1019 
1020 		nr_migrate = cc->nr_migratepages;
1021 		err = migrate_pages(&cc->migratepages, compaction_alloc,
1022 				(unsigned long)cc,
1023 				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
1024 				MR_COMPACTION);
1025 		update_nr_listpages(cc);
1026 		nr_remaining = cc->nr_migratepages;
1027 
1028 		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
1029 						nr_remaining);
1030 
1031 		/* Release isolated pages not migrated */
1032 		if (err) {
1033 			putback_movable_pages(&cc->migratepages);
1034 			cc->nr_migratepages = 0;
1035 			/*
1036 			 * migrate_pages() may return -ENOMEM when scanners meet
1037 			 * and we want compact_finished() to detect it
1038 			 */
1039 			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1040 				ret = COMPACT_PARTIAL;
1041 				goto out;
1042 			}
1043 		}
1044 	}
1045 
1046 out:
1047 	/* Release free pages and check accounting */
1048 	cc->nr_freepages -= release_freepages(&cc->freepages);
1049 	VM_BUG_ON(cc->nr_freepages != 0);
1050 
1051 	trace_mm_compaction_end(ret);
1052 
1053 	return ret;
1054 }
1055 
1056 static unsigned long compact_zone_order(struct zone *zone,
1057 				 int order, gfp_t gfp_mask,
1058 				 bool sync, bool *contended)
1059 {
1060 	unsigned long ret;
1061 	struct compact_control cc = {
1062 		.nr_freepages = 0,
1063 		.nr_migratepages = 0,
1064 		.order = order,
1065 		.migratetype = allocflags_to_migratetype(gfp_mask),
1066 		.zone = zone,
1067 		.sync = sync,
1068 	};
1069 	INIT_LIST_HEAD(&cc.freepages);
1070 	INIT_LIST_HEAD(&cc.migratepages);
1071 
1072 	ret = compact_zone(zone, &cc);
1073 
1074 	VM_BUG_ON(!list_empty(&cc.freepages));
1075 	VM_BUG_ON(!list_empty(&cc.migratepages));
1076 
1077 	*contended = cc.contended;
1078 	return ret;
1079 }
1080 
1081 int sysctl_extfrag_threshold = 500;
1082 
1083 /**
1084  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1085  * @zonelist: The zonelist used for the current allocation
1086  * @order: The order of the current allocation
1087  * @gfp_mask: The GFP mask of the current allocation
1088  * @nodemask: The allowed nodes to allocate from
1089  * @sync: Whether migration is synchronous or not
1090  * @contended: Return value that is true if compaction was aborted due to lock contention
1091  * @page: Optionally capture a free page of the requested order during compaction
1092  *
1093  * This is the main entry point for direct page compaction.
1094  */
1095 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1096 			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1097 			bool sync, bool *contended)
1098 {
1099 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1100 	int may_enter_fs = gfp_mask & __GFP_FS;
1101 	int may_perform_io = gfp_mask & __GFP_IO;
1102 	struct zoneref *z;
1103 	struct zone *zone;
1104 	int rc = COMPACT_SKIPPED;
1105 	int alloc_flags = 0;
1106 
1107 	/* Check if the GFP flags allow compaction */
1108 	if (!order || !may_enter_fs || !may_perform_io)
1109 		return rc;
1110 
1111 	count_compact_event(COMPACTSTALL);
1112 
1113 #ifdef CONFIG_CMA
1114 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1115 		alloc_flags |= ALLOC_CMA;
1116 #endif
1117 	/* Compact each zone in the list */
1118 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1119 								nodemask) {
1120 		int status;
1121 
1122 		status = compact_zone_order(zone, order, gfp_mask, sync,
1123 						contended);
1124 		rc = max(status, rc);
1125 
1126 		/* If a normal allocation would succeed, stop compacting */
1127 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1128 				      alloc_flags))
1129 			break;
1130 	}
1131 
1132 	return rc;
1133 }
1134 
1135 
1136 /* Compact all zones within a node */
1137 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1138 {
1139 	int zoneid;
1140 	struct zone *zone;
1141 
1142 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1143 
1144 		zone = &pgdat->node_zones[zoneid];
1145 		if (!populated_zone(zone))
1146 			continue;
1147 
1148 		cc->nr_freepages = 0;
1149 		cc->nr_migratepages = 0;
1150 		cc->zone = zone;
1151 		INIT_LIST_HEAD(&cc->freepages);
1152 		INIT_LIST_HEAD(&cc->migratepages);
1153 
1154 		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1155 			compact_zone(zone, cc);
1156 
1157 		if (cc->order > 0) {
1158 			if (zone_watermark_ok(zone, cc->order,
1159 						low_wmark_pages(zone), 0, 0))
1160 				compaction_defer_reset(zone, cc->order, false);
1161 			/* Currently async compaction is never deferred. */
1162 			else if (cc->sync)
1163 				defer_compaction(zone, cc->order);
1164 		}
1165 
1166 		VM_BUG_ON(!list_empty(&cc->freepages));
1167 		VM_BUG_ON(!list_empty(&cc->migratepages));
1168 	}
1169 }
1170 
1171 void compact_pgdat(pg_data_t *pgdat, int order)
1172 {
1173 	struct compact_control cc = {
1174 		.order = order,
1175 		.sync = false,
1176 	};
1177 
1178 	if (!order)
1179 		return;
1180 
1181 	__compact_pgdat(pgdat, &cc);
1182 }
1183 
1184 static void compact_node(int nid)
1185 {
1186 	struct compact_control cc = {
1187 		.order = -1,
1188 		.sync = true,
1189 	};
1190 
1191 	__compact_pgdat(NODE_DATA(nid), &cc);
1192 }
1193 
1194 /* Compact all nodes in the system */
1195 static void compact_nodes(void)
1196 {
1197 	int nid;
1198 
1199 	/* Flush pending updates to the LRU lists */
1200 	lru_add_drain_all();
1201 
1202 	for_each_online_node(nid)
1203 		compact_node(nid);
1204 }
1205 
1206 /* The written value is actually unused, all memory is compacted */
1207 int sysctl_compact_memory;
1208 
1209 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1210 int sysctl_compaction_handler(struct ctl_table *table, int write,
1211 			void __user *buffer, size_t *length, loff_t *ppos)
1212 {
1213 	if (write)
1214 		compact_nodes();
1215 
1216 	return 0;
1217 }
1218 
1219 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1220 			void __user *buffer, size_t *length, loff_t *ppos)
1221 {
1222 	proc_dointvec_minmax(table, write, buffer, length, ppos);
1223 
1224 	return 0;
1225 }
1226 
1227 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1228 ssize_t sysfs_compact_node(struct device *dev,
1229 			struct device_attribute *attr,
1230 			const char *buf, size_t count)
1231 {
1232 	int nid = dev->id;
1233 
1234 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1235 		/* Flush pending updates to the LRU lists */
1236 		lru_add_drain_all();
1237 
1238 		compact_node(nid);
1239 	}
1240 
1241 	return count;
1242 }
1243 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1244 
1245 int compaction_register_node(struct node *node)
1246 {
1247 	return device_create_file(&node->dev, &dev_attr_compact);
1248 }
1249 
1250 void compaction_unregister_node(struct node *node)
1251 {
1252 	return device_remove_file(&node->dev, &dev_attr_compact);
1253 }
1254 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1255 
1256 #endif /* CONFIG_COMPACTION */
1257