xref: /openbmc/linux/mm/compaction.c (revision a01822e94ee53e8ebc9632fe2764048b81921254)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 	count_vm_event(item);
32 }
33 
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 	count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42 
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47 
48 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
52 
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55 	struct page *page, *next;
56 	unsigned long high_pfn = 0;
57 
58 	list_for_each_entry_safe(page, next, freelist, lru) {
59 		unsigned long pfn = page_to_pfn(page);
60 		list_del(&page->lru);
61 		__free_page(page);
62 		if (pfn > high_pfn)
63 			high_pfn = pfn;
64 	}
65 
66 	return high_pfn;
67 }
68 
69 static void split_map_pages(struct list_head *list)
70 {
71 	unsigned int i, order, nr_pages;
72 	struct page *page, *next;
73 	LIST_HEAD(tmp_list);
74 
75 	list_for_each_entry_safe(page, next, list, lru) {
76 		list_del(&page->lru);
77 
78 		order = page_private(page);
79 		nr_pages = 1 << order;
80 
81 		post_alloc_hook(page, order, __GFP_MOVABLE);
82 		if (order)
83 			split_page(page, order);
84 
85 		for (i = 0; i < nr_pages; i++) {
86 			list_add(&page->lru, &tmp_list);
87 			page++;
88 		}
89 	}
90 
91 	list_splice(&tmp_list, list);
92 }
93 
94 #ifdef CONFIG_COMPACTION
95 
96 int PageMovable(struct page *page)
97 {
98 	struct address_space *mapping;
99 
100 	VM_BUG_ON_PAGE(!PageLocked(page), page);
101 	if (!__PageMovable(page))
102 		return 0;
103 
104 	mapping = page_mapping(page);
105 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
106 		return 1;
107 
108 	return 0;
109 }
110 EXPORT_SYMBOL(PageMovable);
111 
112 void __SetPageMovable(struct page *page, struct address_space *mapping)
113 {
114 	VM_BUG_ON_PAGE(!PageLocked(page), page);
115 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
116 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
117 }
118 EXPORT_SYMBOL(__SetPageMovable);
119 
120 void __ClearPageMovable(struct page *page)
121 {
122 	VM_BUG_ON_PAGE(!PageLocked(page), page);
123 	VM_BUG_ON_PAGE(!PageMovable(page), page);
124 	/*
125 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126 	 * flag so that VM can catch up released page by driver after isolation.
127 	 * With it, VM migration doesn't try to put it back.
128 	 */
129 	page->mapping = (void *)((unsigned long)page->mapping &
130 				PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__ClearPageMovable);
133 
134 /* Do not skip compaction more than 64 times */
135 #define COMPACT_MAX_DEFER_SHIFT 6
136 
137 /*
138  * Compaction is deferred when compaction fails to result in a page
139  * allocation success. 1 << compact_defer_limit compactions are skipped up
140  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141  */
142 void defer_compaction(struct zone *zone, int order)
143 {
144 	zone->compact_considered = 0;
145 	zone->compact_defer_shift++;
146 
147 	if (order < zone->compact_order_failed)
148 		zone->compact_order_failed = order;
149 
150 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
151 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
152 
153 	trace_mm_compaction_defer_compaction(zone, order);
154 }
155 
156 /* Returns true if compaction should be skipped this time */
157 bool compaction_deferred(struct zone *zone, int order)
158 {
159 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
160 
161 	if (order < zone->compact_order_failed)
162 		return false;
163 
164 	/* Avoid possible overflow */
165 	if (++zone->compact_considered > defer_limit)
166 		zone->compact_considered = defer_limit;
167 
168 	if (zone->compact_considered >= defer_limit)
169 		return false;
170 
171 	trace_mm_compaction_deferred(zone, order);
172 
173 	return true;
174 }
175 
176 /*
177  * Update defer tracking counters after successful compaction of given order,
178  * which means an allocation either succeeded (alloc_success == true) or is
179  * expected to succeed.
180  */
181 void compaction_defer_reset(struct zone *zone, int order,
182 		bool alloc_success)
183 {
184 	if (alloc_success) {
185 		zone->compact_considered = 0;
186 		zone->compact_defer_shift = 0;
187 	}
188 	if (order >= zone->compact_order_failed)
189 		zone->compact_order_failed = order + 1;
190 
191 	trace_mm_compaction_defer_reset(zone, order);
192 }
193 
194 /* Returns true if restarting compaction after many failures */
195 bool compaction_restarting(struct zone *zone, int order)
196 {
197 	if (order < zone->compact_order_failed)
198 		return false;
199 
200 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
201 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
202 }
203 
204 /* Returns true if the pageblock should be scanned for pages to isolate. */
205 static inline bool isolation_suitable(struct compact_control *cc,
206 					struct page *page)
207 {
208 	if (cc->ignore_skip_hint)
209 		return true;
210 
211 	return !get_pageblock_skip(page);
212 }
213 
214 static void reset_cached_positions(struct zone *zone)
215 {
216 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
217 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218 	zone->compact_cached_free_pfn =
219 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 }
221 
222 /*
223  * Compound pages of >= pageblock_order should consistenly be skipped until
224  * released. It is always pointless to compact pages of such order (if they are
225  * migratable), and the pageblocks they occupy cannot contain any free pages.
226  */
227 static bool pageblock_skip_persistent(struct page *page)
228 {
229 	if (!PageCompound(page))
230 		return false;
231 
232 	page = compound_head(page);
233 
234 	if (compound_order(page) >= pageblock_order)
235 		return true;
236 
237 	return false;
238 }
239 
240 static bool
241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
242 							bool check_target)
243 {
244 	struct page *page = pfn_to_online_page(pfn);
245 	struct page *block_page;
246 	struct page *end_page;
247 	unsigned long block_pfn;
248 
249 	if (!page)
250 		return false;
251 	if (zone != page_zone(page))
252 		return false;
253 	if (pageblock_skip_persistent(page))
254 		return false;
255 
256 	/*
257 	 * If skip is already cleared do no further checking once the
258 	 * restart points have been set.
259 	 */
260 	if (check_source && check_target && !get_pageblock_skip(page))
261 		return true;
262 
263 	/*
264 	 * If clearing skip for the target scanner, do not select a
265 	 * non-movable pageblock as the starting point.
266 	 */
267 	if (!check_source && check_target &&
268 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
269 		return false;
270 
271 	/* Ensure the start of the pageblock or zone is online and valid */
272 	block_pfn = pageblock_start_pfn(pfn);
273 	block_pfn = max(block_pfn, zone->zone_start_pfn);
274 	block_page = pfn_to_online_page(block_pfn);
275 	if (block_page) {
276 		page = block_page;
277 		pfn = block_pfn;
278 	}
279 
280 	/* Ensure the end of the pageblock or zone is online and valid */
281 	block_pfn = pageblock_end_pfn(pfn) - 1;
282 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
283 	end_page = pfn_to_online_page(block_pfn);
284 	if (!end_page)
285 		return false;
286 
287 	/*
288 	 * Only clear the hint if a sample indicates there is either a
289 	 * free page or an LRU page in the block. One or other condition
290 	 * is necessary for the block to be a migration source/target.
291 	 */
292 	do {
293 		if (pfn_valid_within(pfn)) {
294 			if (check_source && PageLRU(page)) {
295 				clear_pageblock_skip(page);
296 				return true;
297 			}
298 
299 			if (check_target && PageBuddy(page)) {
300 				clear_pageblock_skip(page);
301 				return true;
302 			}
303 		}
304 
305 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
306 		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
307 	} while (page <= end_page);
308 
309 	return false;
310 }
311 
312 /*
313  * This function is called to clear all cached information on pageblocks that
314  * should be skipped for page isolation when the migrate and free page scanner
315  * meet.
316  */
317 static void __reset_isolation_suitable(struct zone *zone)
318 {
319 	unsigned long migrate_pfn = zone->zone_start_pfn;
320 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
321 	unsigned long reset_migrate = free_pfn;
322 	unsigned long reset_free = migrate_pfn;
323 	bool source_set = false;
324 	bool free_set = false;
325 
326 	if (!zone->compact_blockskip_flush)
327 		return;
328 
329 	zone->compact_blockskip_flush = false;
330 
331 	/*
332 	 * Walk the zone and update pageblock skip information. Source looks
333 	 * for PageLRU while target looks for PageBuddy. When the scanner
334 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
335 	 * is suitable as both source and target.
336 	 */
337 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
338 					free_pfn -= pageblock_nr_pages) {
339 		cond_resched();
340 
341 		/* Update the migrate PFN */
342 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
343 		    migrate_pfn < reset_migrate) {
344 			source_set = true;
345 			reset_migrate = migrate_pfn;
346 			zone->compact_init_migrate_pfn = reset_migrate;
347 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
348 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
349 		}
350 
351 		/* Update the free PFN */
352 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
353 		    free_pfn > reset_free) {
354 			free_set = true;
355 			reset_free = free_pfn;
356 			zone->compact_init_free_pfn = reset_free;
357 			zone->compact_cached_free_pfn = reset_free;
358 		}
359 	}
360 
361 	/* Leave no distance if no suitable block was reset */
362 	if (reset_migrate >= reset_free) {
363 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
364 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
365 		zone->compact_cached_free_pfn = free_pfn;
366 	}
367 }
368 
369 void reset_isolation_suitable(pg_data_t *pgdat)
370 {
371 	int zoneid;
372 
373 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
374 		struct zone *zone = &pgdat->node_zones[zoneid];
375 		if (!populated_zone(zone))
376 			continue;
377 
378 		/* Only flush if a full compaction finished recently */
379 		if (zone->compact_blockskip_flush)
380 			__reset_isolation_suitable(zone);
381 	}
382 }
383 
384 /*
385  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
386  * locks are not required for read/writers. Returns true if it was already set.
387  */
388 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
389 							unsigned long pfn)
390 {
391 	bool skip;
392 
393 	/* Do no update if skip hint is being ignored */
394 	if (cc->ignore_skip_hint)
395 		return false;
396 
397 	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
398 		return false;
399 
400 	skip = get_pageblock_skip(page);
401 	if (!skip && !cc->no_set_skip_hint)
402 		set_pageblock_skip(page);
403 
404 	return skip;
405 }
406 
407 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
408 {
409 	struct zone *zone = cc->zone;
410 
411 	pfn = pageblock_end_pfn(pfn);
412 
413 	/* Set for isolation rather than compaction */
414 	if (cc->no_set_skip_hint)
415 		return;
416 
417 	if (pfn > zone->compact_cached_migrate_pfn[0])
418 		zone->compact_cached_migrate_pfn[0] = pfn;
419 	if (cc->mode != MIGRATE_ASYNC &&
420 	    pfn > zone->compact_cached_migrate_pfn[1])
421 		zone->compact_cached_migrate_pfn[1] = pfn;
422 }
423 
424 /*
425  * If no pages were isolated then mark this pageblock to be skipped in the
426  * future. The information is later cleared by __reset_isolation_suitable().
427  */
428 static void update_pageblock_skip(struct compact_control *cc,
429 			struct page *page, unsigned long pfn)
430 {
431 	struct zone *zone = cc->zone;
432 
433 	if (cc->no_set_skip_hint)
434 		return;
435 
436 	if (!page)
437 		return;
438 
439 	set_pageblock_skip(page);
440 
441 	/* Update where async and sync compaction should restart */
442 	if (pfn < zone->compact_cached_free_pfn)
443 		zone->compact_cached_free_pfn = pfn;
444 }
445 #else
446 static inline bool isolation_suitable(struct compact_control *cc,
447 					struct page *page)
448 {
449 	return true;
450 }
451 
452 static inline bool pageblock_skip_persistent(struct page *page)
453 {
454 	return false;
455 }
456 
457 static inline void update_pageblock_skip(struct compact_control *cc,
458 			struct page *page, unsigned long pfn)
459 {
460 }
461 
462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
463 {
464 }
465 
466 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
467 							unsigned long pfn)
468 {
469 	return false;
470 }
471 #endif /* CONFIG_COMPACTION */
472 
473 /*
474  * Compaction requires the taking of some coarse locks that are potentially
475  * very heavily contended. For async compaction, trylock and record if the
476  * lock is contended. The lock will still be acquired but compaction will
477  * abort when the current block is finished regardless of success rate.
478  * Sync compaction acquires the lock.
479  *
480  * Always returns true which makes it easier to track lock state in callers.
481  */
482 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
483 						struct compact_control *cc)
484 	__acquires(lock)
485 {
486 	/* Track if the lock is contended in async mode */
487 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
488 		if (spin_trylock_irqsave(lock, *flags))
489 			return true;
490 
491 		cc->contended = true;
492 	}
493 
494 	spin_lock_irqsave(lock, *flags);
495 	return true;
496 }
497 
498 /*
499  * Compaction requires the taking of some coarse locks that are potentially
500  * very heavily contended. The lock should be periodically unlocked to avoid
501  * having disabled IRQs for a long time, even when there is nobody waiting on
502  * the lock. It might also be that allowing the IRQs will result in
503  * need_resched() becoming true. If scheduling is needed, async compaction
504  * aborts. Sync compaction schedules.
505  * Either compaction type will also abort if a fatal signal is pending.
506  * In either case if the lock was locked, it is dropped and not regained.
507  *
508  * Returns true if compaction should abort due to fatal signal pending, or
509  *		async compaction due to need_resched()
510  * Returns false when compaction can continue (sync compaction might have
511  *		scheduled)
512  */
513 static bool compact_unlock_should_abort(spinlock_t *lock,
514 		unsigned long flags, bool *locked, struct compact_control *cc)
515 {
516 	if (*locked) {
517 		spin_unlock_irqrestore(lock, flags);
518 		*locked = false;
519 	}
520 
521 	if (fatal_signal_pending(current)) {
522 		cc->contended = true;
523 		return true;
524 	}
525 
526 	cond_resched();
527 
528 	return false;
529 }
530 
531 /*
532  * Isolate free pages onto a private freelist. If @strict is true, will abort
533  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
534  * (even though it may still end up isolating some pages).
535  */
536 static unsigned long isolate_freepages_block(struct compact_control *cc,
537 				unsigned long *start_pfn,
538 				unsigned long end_pfn,
539 				struct list_head *freelist,
540 				unsigned int stride,
541 				bool strict)
542 {
543 	int nr_scanned = 0, total_isolated = 0;
544 	struct page *cursor;
545 	unsigned long flags = 0;
546 	bool locked = false;
547 	unsigned long blockpfn = *start_pfn;
548 	unsigned int order;
549 
550 	/* Strict mode is for isolation, speed is secondary */
551 	if (strict)
552 		stride = 1;
553 
554 	cursor = pfn_to_page(blockpfn);
555 
556 	/* Isolate free pages. */
557 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
558 		int isolated;
559 		struct page *page = cursor;
560 
561 		/*
562 		 * Periodically drop the lock (if held) regardless of its
563 		 * contention, to give chance to IRQs. Abort if fatal signal
564 		 * pending or async compaction detects need_resched()
565 		 */
566 		if (!(blockpfn % SWAP_CLUSTER_MAX)
567 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
568 								&locked, cc))
569 			break;
570 
571 		nr_scanned++;
572 		if (!pfn_valid_within(blockpfn))
573 			goto isolate_fail;
574 
575 		/*
576 		 * For compound pages such as THP and hugetlbfs, we can save
577 		 * potentially a lot of iterations if we skip them at once.
578 		 * The check is racy, but we can consider only valid values
579 		 * and the only danger is skipping too much.
580 		 */
581 		if (PageCompound(page)) {
582 			const unsigned int order = compound_order(page);
583 
584 			if (likely(order < MAX_ORDER)) {
585 				blockpfn += (1UL << order) - 1;
586 				cursor += (1UL << order) - 1;
587 			}
588 			goto isolate_fail;
589 		}
590 
591 		if (!PageBuddy(page))
592 			goto isolate_fail;
593 
594 		/*
595 		 * If we already hold the lock, we can skip some rechecking.
596 		 * Note that if we hold the lock now, checked_pageblock was
597 		 * already set in some previous iteration (or strict is true),
598 		 * so it is correct to skip the suitable migration target
599 		 * recheck as well.
600 		 */
601 		if (!locked) {
602 			locked = compact_lock_irqsave(&cc->zone->lock,
603 								&flags, cc);
604 
605 			/* Recheck this is a buddy page under lock */
606 			if (!PageBuddy(page))
607 				goto isolate_fail;
608 		}
609 
610 		/* Found a free page, will break it into order-0 pages */
611 		order = page_order(page);
612 		isolated = __isolate_free_page(page, order);
613 		if (!isolated)
614 			break;
615 		set_page_private(page, order);
616 
617 		total_isolated += isolated;
618 		cc->nr_freepages += isolated;
619 		list_add_tail(&page->lru, freelist);
620 
621 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
622 			blockpfn += isolated;
623 			break;
624 		}
625 		/* Advance to the end of split page */
626 		blockpfn += isolated - 1;
627 		cursor += isolated - 1;
628 		continue;
629 
630 isolate_fail:
631 		if (strict)
632 			break;
633 		else
634 			continue;
635 
636 	}
637 
638 	if (locked)
639 		spin_unlock_irqrestore(&cc->zone->lock, flags);
640 
641 	/*
642 	 * There is a tiny chance that we have read bogus compound_order(),
643 	 * so be careful to not go outside of the pageblock.
644 	 */
645 	if (unlikely(blockpfn > end_pfn))
646 		blockpfn = end_pfn;
647 
648 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
649 					nr_scanned, total_isolated);
650 
651 	/* Record how far we have got within the block */
652 	*start_pfn = blockpfn;
653 
654 	/*
655 	 * If strict isolation is requested by CMA then check that all the
656 	 * pages requested were isolated. If there were any failures, 0 is
657 	 * returned and CMA will fail.
658 	 */
659 	if (strict && blockpfn < end_pfn)
660 		total_isolated = 0;
661 
662 	cc->total_free_scanned += nr_scanned;
663 	if (total_isolated)
664 		count_compact_events(COMPACTISOLATED, total_isolated);
665 	return total_isolated;
666 }
667 
668 /**
669  * isolate_freepages_range() - isolate free pages.
670  * @cc:        Compaction control structure.
671  * @start_pfn: The first PFN to start isolating.
672  * @end_pfn:   The one-past-last PFN.
673  *
674  * Non-free pages, invalid PFNs, or zone boundaries within the
675  * [start_pfn, end_pfn) range are considered errors, cause function to
676  * undo its actions and return zero.
677  *
678  * Otherwise, function returns one-past-the-last PFN of isolated page
679  * (which may be greater then end_pfn if end fell in a middle of
680  * a free page).
681  */
682 unsigned long
683 isolate_freepages_range(struct compact_control *cc,
684 			unsigned long start_pfn, unsigned long end_pfn)
685 {
686 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
687 	LIST_HEAD(freelist);
688 
689 	pfn = start_pfn;
690 	block_start_pfn = pageblock_start_pfn(pfn);
691 	if (block_start_pfn < cc->zone->zone_start_pfn)
692 		block_start_pfn = cc->zone->zone_start_pfn;
693 	block_end_pfn = pageblock_end_pfn(pfn);
694 
695 	for (; pfn < end_pfn; pfn += isolated,
696 				block_start_pfn = block_end_pfn,
697 				block_end_pfn += pageblock_nr_pages) {
698 		/* Protect pfn from changing by isolate_freepages_block */
699 		unsigned long isolate_start_pfn = pfn;
700 
701 		block_end_pfn = min(block_end_pfn, end_pfn);
702 
703 		/*
704 		 * pfn could pass the block_end_pfn if isolated freepage
705 		 * is more than pageblock order. In this case, we adjust
706 		 * scanning range to right one.
707 		 */
708 		if (pfn >= block_end_pfn) {
709 			block_start_pfn = pageblock_start_pfn(pfn);
710 			block_end_pfn = pageblock_end_pfn(pfn);
711 			block_end_pfn = min(block_end_pfn, end_pfn);
712 		}
713 
714 		if (!pageblock_pfn_to_page(block_start_pfn,
715 					block_end_pfn, cc->zone))
716 			break;
717 
718 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
719 					block_end_pfn, &freelist, 0, true);
720 
721 		/*
722 		 * In strict mode, isolate_freepages_block() returns 0 if
723 		 * there are any holes in the block (ie. invalid PFNs or
724 		 * non-free pages).
725 		 */
726 		if (!isolated)
727 			break;
728 
729 		/*
730 		 * If we managed to isolate pages, it is always (1 << n) *
731 		 * pageblock_nr_pages for some non-negative n.  (Max order
732 		 * page may span two pageblocks).
733 		 */
734 	}
735 
736 	/* __isolate_free_page() does not map the pages */
737 	split_map_pages(&freelist);
738 
739 	if (pfn < end_pfn) {
740 		/* Loop terminated early, cleanup. */
741 		release_freepages(&freelist);
742 		return 0;
743 	}
744 
745 	/* We don't use freelists for anything. */
746 	return pfn;
747 }
748 
749 /* Similar to reclaim, but different enough that they don't share logic */
750 static bool too_many_isolated(pg_data_t *pgdat)
751 {
752 	unsigned long active, inactive, isolated;
753 
754 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
755 			node_page_state(pgdat, NR_INACTIVE_ANON);
756 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
757 			node_page_state(pgdat, NR_ACTIVE_ANON);
758 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
759 			node_page_state(pgdat, NR_ISOLATED_ANON);
760 
761 	return isolated > (inactive + active) / 2;
762 }
763 
764 /**
765  * isolate_migratepages_block() - isolate all migrate-able pages within
766  *				  a single pageblock
767  * @cc:		Compaction control structure.
768  * @low_pfn:	The first PFN to isolate
769  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
770  * @isolate_mode: Isolation mode to be used.
771  *
772  * Isolate all pages that can be migrated from the range specified by
773  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
774  * Returns zero if there is a fatal signal pending, otherwise PFN of the
775  * first page that was not scanned (which may be both less, equal to or more
776  * than end_pfn).
777  *
778  * The pages are isolated on cc->migratepages list (not required to be empty),
779  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
780  * is neither read nor updated.
781  */
782 static unsigned long
783 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
784 			unsigned long end_pfn, isolate_mode_t isolate_mode)
785 {
786 	pg_data_t *pgdat = cc->zone->zone_pgdat;
787 	unsigned long nr_scanned = 0, nr_isolated = 0;
788 	struct lruvec *lruvec;
789 	unsigned long flags = 0;
790 	bool locked = false;
791 	struct page *page = NULL, *valid_page = NULL;
792 	unsigned long start_pfn = low_pfn;
793 	bool skip_on_failure = false;
794 	unsigned long next_skip_pfn = 0;
795 	bool skip_updated = false;
796 
797 	/*
798 	 * Ensure that there are not too many pages isolated from the LRU
799 	 * list by either parallel reclaimers or compaction. If there are,
800 	 * delay for some time until fewer pages are isolated
801 	 */
802 	while (unlikely(too_many_isolated(pgdat))) {
803 		/* async migration should just abort */
804 		if (cc->mode == MIGRATE_ASYNC)
805 			return 0;
806 
807 		congestion_wait(BLK_RW_ASYNC, HZ/10);
808 
809 		if (fatal_signal_pending(current))
810 			return 0;
811 	}
812 
813 	cond_resched();
814 
815 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
816 		skip_on_failure = true;
817 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
818 	}
819 
820 	/* Time to isolate some pages for migration */
821 	for (; low_pfn < end_pfn; low_pfn++) {
822 
823 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
824 			/*
825 			 * We have isolated all migration candidates in the
826 			 * previous order-aligned block, and did not skip it due
827 			 * to failure. We should migrate the pages now and
828 			 * hopefully succeed compaction.
829 			 */
830 			if (nr_isolated)
831 				break;
832 
833 			/*
834 			 * We failed to isolate in the previous order-aligned
835 			 * block. Set the new boundary to the end of the
836 			 * current block. Note we can't simply increase
837 			 * next_skip_pfn by 1 << order, as low_pfn might have
838 			 * been incremented by a higher number due to skipping
839 			 * a compound or a high-order buddy page in the
840 			 * previous loop iteration.
841 			 */
842 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
843 		}
844 
845 		/*
846 		 * Periodically drop the lock (if held) regardless of its
847 		 * contention, to give chance to IRQs. Abort completely if
848 		 * a fatal signal is pending.
849 		 */
850 		if (!(low_pfn % SWAP_CLUSTER_MAX)
851 		    && compact_unlock_should_abort(&pgdat->lru_lock,
852 					    flags, &locked, cc)) {
853 			low_pfn = 0;
854 			goto fatal_pending;
855 		}
856 
857 		if (!pfn_valid_within(low_pfn))
858 			goto isolate_fail;
859 		nr_scanned++;
860 
861 		page = pfn_to_page(low_pfn);
862 
863 		/*
864 		 * Check if the pageblock has already been marked skipped.
865 		 * Only the aligned PFN is checked as the caller isolates
866 		 * COMPACT_CLUSTER_MAX at a time so the second call must
867 		 * not falsely conclude that the block should be skipped.
868 		 */
869 		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
870 			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
871 				low_pfn = end_pfn;
872 				goto isolate_abort;
873 			}
874 			valid_page = page;
875 		}
876 
877 		/*
878 		 * Skip if free. We read page order here without zone lock
879 		 * which is generally unsafe, but the race window is small and
880 		 * the worst thing that can happen is that we skip some
881 		 * potential isolation targets.
882 		 */
883 		if (PageBuddy(page)) {
884 			unsigned long freepage_order = page_order_unsafe(page);
885 
886 			/*
887 			 * Without lock, we cannot be sure that what we got is
888 			 * a valid page order. Consider only values in the
889 			 * valid order range to prevent low_pfn overflow.
890 			 */
891 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
892 				low_pfn += (1UL << freepage_order) - 1;
893 			continue;
894 		}
895 
896 		/*
897 		 * Regardless of being on LRU, compound pages such as THP and
898 		 * hugetlbfs are not to be compacted unless we are attempting
899 		 * an allocation much larger than the huge page size (eg CMA).
900 		 * We can potentially save a lot of iterations if we skip them
901 		 * at once. The check is racy, but we can consider only valid
902 		 * values and the only danger is skipping too much.
903 		 */
904 		if (PageCompound(page) && !cc->alloc_contig) {
905 			const unsigned int order = compound_order(page);
906 
907 			if (likely(order < MAX_ORDER))
908 				low_pfn += (1UL << order) - 1;
909 			goto isolate_fail;
910 		}
911 
912 		/*
913 		 * Check may be lockless but that's ok as we recheck later.
914 		 * It's possible to migrate LRU and non-lru movable pages.
915 		 * Skip any other type of page
916 		 */
917 		if (!PageLRU(page)) {
918 			/*
919 			 * __PageMovable can return false positive so we need
920 			 * to verify it under page_lock.
921 			 */
922 			if (unlikely(__PageMovable(page)) &&
923 					!PageIsolated(page)) {
924 				if (locked) {
925 					spin_unlock_irqrestore(&pgdat->lru_lock,
926 									flags);
927 					locked = false;
928 				}
929 
930 				if (!isolate_movable_page(page, isolate_mode))
931 					goto isolate_success;
932 			}
933 
934 			goto isolate_fail;
935 		}
936 
937 		/*
938 		 * Migration will fail if an anonymous page is pinned in memory,
939 		 * so avoid taking lru_lock and isolating it unnecessarily in an
940 		 * admittedly racy check.
941 		 */
942 		if (!page_mapping(page) &&
943 		    page_count(page) > page_mapcount(page))
944 			goto isolate_fail;
945 
946 		/*
947 		 * Only allow to migrate anonymous pages in GFP_NOFS context
948 		 * because those do not depend on fs locks.
949 		 */
950 		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
951 			goto isolate_fail;
952 
953 		/* If we already hold the lock, we can skip some rechecking */
954 		if (!locked) {
955 			locked = compact_lock_irqsave(&pgdat->lru_lock,
956 								&flags, cc);
957 
958 			/* Try get exclusive access under lock */
959 			if (!skip_updated) {
960 				skip_updated = true;
961 				if (test_and_set_skip(cc, page, low_pfn))
962 					goto isolate_abort;
963 			}
964 
965 			/* Recheck PageLRU and PageCompound under lock */
966 			if (!PageLRU(page))
967 				goto isolate_fail;
968 
969 			/*
970 			 * Page become compound since the non-locked check,
971 			 * and it's on LRU. It can only be a THP so the order
972 			 * is safe to read and it's 0 for tail pages.
973 			 */
974 			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
975 				low_pfn += compound_nr(page) - 1;
976 				goto isolate_fail;
977 			}
978 		}
979 
980 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
981 
982 		/* Try isolate the page */
983 		if (__isolate_lru_page(page, isolate_mode) != 0)
984 			goto isolate_fail;
985 
986 		/* The whole page is taken off the LRU; skip the tail pages. */
987 		if (PageCompound(page))
988 			low_pfn += compound_nr(page) - 1;
989 
990 		/* Successfully isolated */
991 		del_page_from_lru_list(page, lruvec, page_lru(page));
992 		mod_node_page_state(page_pgdat(page),
993 				NR_ISOLATED_ANON + page_is_file_lru(page),
994 				hpage_nr_pages(page));
995 
996 isolate_success:
997 		list_add(&page->lru, &cc->migratepages);
998 		cc->nr_migratepages++;
999 		nr_isolated++;
1000 
1001 		/*
1002 		 * Avoid isolating too much unless this block is being
1003 		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1004 		 * or a lock is contended. For contention, isolate quickly to
1005 		 * potentially remove one source of contention.
1006 		 */
1007 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1008 		    !cc->rescan && !cc->contended) {
1009 			++low_pfn;
1010 			break;
1011 		}
1012 
1013 		continue;
1014 isolate_fail:
1015 		if (!skip_on_failure)
1016 			continue;
1017 
1018 		/*
1019 		 * We have isolated some pages, but then failed. Release them
1020 		 * instead of migrating, as we cannot form the cc->order buddy
1021 		 * page anyway.
1022 		 */
1023 		if (nr_isolated) {
1024 			if (locked) {
1025 				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1026 				locked = false;
1027 			}
1028 			putback_movable_pages(&cc->migratepages);
1029 			cc->nr_migratepages = 0;
1030 			nr_isolated = 0;
1031 		}
1032 
1033 		if (low_pfn < next_skip_pfn) {
1034 			low_pfn = next_skip_pfn - 1;
1035 			/*
1036 			 * The check near the loop beginning would have updated
1037 			 * next_skip_pfn too, but this is a bit simpler.
1038 			 */
1039 			next_skip_pfn += 1UL << cc->order;
1040 		}
1041 	}
1042 
1043 	/*
1044 	 * The PageBuddy() check could have potentially brought us outside
1045 	 * the range to be scanned.
1046 	 */
1047 	if (unlikely(low_pfn > end_pfn))
1048 		low_pfn = end_pfn;
1049 
1050 isolate_abort:
1051 	if (locked)
1052 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1053 
1054 	/*
1055 	 * Updated the cached scanner pfn once the pageblock has been scanned
1056 	 * Pages will either be migrated in which case there is no point
1057 	 * scanning in the near future or migration failed in which case the
1058 	 * failure reason may persist. The block is marked for skipping if
1059 	 * there were no pages isolated in the block or if the block is
1060 	 * rescanned twice in a row.
1061 	 */
1062 	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1063 		if (valid_page && !skip_updated)
1064 			set_pageblock_skip(valid_page);
1065 		update_cached_migrate(cc, low_pfn);
1066 	}
1067 
1068 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1069 						nr_scanned, nr_isolated);
1070 
1071 fatal_pending:
1072 	cc->total_migrate_scanned += nr_scanned;
1073 	if (nr_isolated)
1074 		count_compact_events(COMPACTISOLATED, nr_isolated);
1075 
1076 	return low_pfn;
1077 }
1078 
1079 /**
1080  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1081  * @cc:        Compaction control structure.
1082  * @start_pfn: The first PFN to start isolating.
1083  * @end_pfn:   The one-past-last PFN.
1084  *
1085  * Returns zero if isolation fails fatally due to e.g. pending signal.
1086  * Otherwise, function returns one-past-the-last PFN of isolated page
1087  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1088  */
1089 unsigned long
1090 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1091 							unsigned long end_pfn)
1092 {
1093 	unsigned long pfn, block_start_pfn, block_end_pfn;
1094 
1095 	/* Scan block by block. First and last block may be incomplete */
1096 	pfn = start_pfn;
1097 	block_start_pfn = pageblock_start_pfn(pfn);
1098 	if (block_start_pfn < cc->zone->zone_start_pfn)
1099 		block_start_pfn = cc->zone->zone_start_pfn;
1100 	block_end_pfn = pageblock_end_pfn(pfn);
1101 
1102 	for (; pfn < end_pfn; pfn = block_end_pfn,
1103 				block_start_pfn = block_end_pfn,
1104 				block_end_pfn += pageblock_nr_pages) {
1105 
1106 		block_end_pfn = min(block_end_pfn, end_pfn);
1107 
1108 		if (!pageblock_pfn_to_page(block_start_pfn,
1109 					block_end_pfn, cc->zone))
1110 			continue;
1111 
1112 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1113 							ISOLATE_UNEVICTABLE);
1114 
1115 		if (!pfn)
1116 			break;
1117 
1118 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1119 			break;
1120 	}
1121 
1122 	return pfn;
1123 }
1124 
1125 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1126 #ifdef CONFIG_COMPACTION
1127 
1128 static bool suitable_migration_source(struct compact_control *cc,
1129 							struct page *page)
1130 {
1131 	int block_mt;
1132 
1133 	if (pageblock_skip_persistent(page))
1134 		return false;
1135 
1136 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1137 		return true;
1138 
1139 	block_mt = get_pageblock_migratetype(page);
1140 
1141 	if (cc->migratetype == MIGRATE_MOVABLE)
1142 		return is_migrate_movable(block_mt);
1143 	else
1144 		return block_mt == cc->migratetype;
1145 }
1146 
1147 /* Returns true if the page is within a block suitable for migration to */
1148 static bool suitable_migration_target(struct compact_control *cc,
1149 							struct page *page)
1150 {
1151 	/* If the page is a large free page, then disallow migration */
1152 	if (PageBuddy(page)) {
1153 		/*
1154 		 * We are checking page_order without zone->lock taken. But
1155 		 * the only small danger is that we skip a potentially suitable
1156 		 * pageblock, so it's not worth to check order for valid range.
1157 		 */
1158 		if (page_order_unsafe(page) >= pageblock_order)
1159 			return false;
1160 	}
1161 
1162 	if (cc->ignore_block_suitable)
1163 		return true;
1164 
1165 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1166 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1167 		return true;
1168 
1169 	/* Otherwise skip the block */
1170 	return false;
1171 }
1172 
1173 static inline unsigned int
1174 freelist_scan_limit(struct compact_control *cc)
1175 {
1176 	unsigned short shift = BITS_PER_LONG - 1;
1177 
1178 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1179 }
1180 
1181 /*
1182  * Test whether the free scanner has reached the same or lower pageblock than
1183  * the migration scanner, and compaction should thus terminate.
1184  */
1185 static inline bool compact_scanners_met(struct compact_control *cc)
1186 {
1187 	return (cc->free_pfn >> pageblock_order)
1188 		<= (cc->migrate_pfn >> pageblock_order);
1189 }
1190 
1191 /*
1192  * Used when scanning for a suitable migration target which scans freelists
1193  * in reverse. Reorders the list such as the unscanned pages are scanned
1194  * first on the next iteration of the free scanner
1195  */
1196 static void
1197 move_freelist_head(struct list_head *freelist, struct page *freepage)
1198 {
1199 	LIST_HEAD(sublist);
1200 
1201 	if (!list_is_last(freelist, &freepage->lru)) {
1202 		list_cut_before(&sublist, freelist, &freepage->lru);
1203 		if (!list_empty(&sublist))
1204 			list_splice_tail(&sublist, freelist);
1205 	}
1206 }
1207 
1208 /*
1209  * Similar to move_freelist_head except used by the migration scanner
1210  * when scanning forward. It's possible for these list operations to
1211  * move against each other if they search the free list exactly in
1212  * lockstep.
1213  */
1214 static void
1215 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1216 {
1217 	LIST_HEAD(sublist);
1218 
1219 	if (!list_is_first(freelist, &freepage->lru)) {
1220 		list_cut_position(&sublist, freelist, &freepage->lru);
1221 		if (!list_empty(&sublist))
1222 			list_splice_tail(&sublist, freelist);
1223 	}
1224 }
1225 
1226 static void
1227 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1228 {
1229 	unsigned long start_pfn, end_pfn;
1230 	struct page *page = pfn_to_page(pfn);
1231 
1232 	/* Do not search around if there are enough pages already */
1233 	if (cc->nr_freepages >= cc->nr_migratepages)
1234 		return;
1235 
1236 	/* Minimise scanning during async compaction */
1237 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1238 		return;
1239 
1240 	/* Pageblock boundaries */
1241 	start_pfn = pageblock_start_pfn(pfn);
1242 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1243 
1244 	/* Scan before */
1245 	if (start_pfn != pfn) {
1246 		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1247 		if (cc->nr_freepages >= cc->nr_migratepages)
1248 			return;
1249 	}
1250 
1251 	/* Scan after */
1252 	start_pfn = pfn + nr_isolated;
1253 	if (start_pfn < end_pfn)
1254 		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1255 
1256 	/* Skip this pageblock in the future as it's full or nearly full */
1257 	if (cc->nr_freepages < cc->nr_migratepages)
1258 		set_pageblock_skip(page);
1259 }
1260 
1261 /* Search orders in round-robin fashion */
1262 static int next_search_order(struct compact_control *cc, int order)
1263 {
1264 	order--;
1265 	if (order < 0)
1266 		order = cc->order - 1;
1267 
1268 	/* Search wrapped around? */
1269 	if (order == cc->search_order) {
1270 		cc->search_order--;
1271 		if (cc->search_order < 0)
1272 			cc->search_order = cc->order - 1;
1273 		return -1;
1274 	}
1275 
1276 	return order;
1277 }
1278 
1279 static unsigned long
1280 fast_isolate_freepages(struct compact_control *cc)
1281 {
1282 	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1283 	unsigned int nr_scanned = 0;
1284 	unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1285 	unsigned long nr_isolated = 0;
1286 	unsigned long distance;
1287 	struct page *page = NULL;
1288 	bool scan_start = false;
1289 	int order;
1290 
1291 	/* Full compaction passes in a negative order */
1292 	if (cc->order <= 0)
1293 		return cc->free_pfn;
1294 
1295 	/*
1296 	 * If starting the scan, use a deeper search and use the highest
1297 	 * PFN found if a suitable one is not found.
1298 	 */
1299 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1300 		limit = pageblock_nr_pages >> 1;
1301 		scan_start = true;
1302 	}
1303 
1304 	/*
1305 	 * Preferred point is in the top quarter of the scan space but take
1306 	 * a pfn from the top half if the search is problematic.
1307 	 */
1308 	distance = (cc->free_pfn - cc->migrate_pfn);
1309 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1310 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1311 
1312 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1313 		low_pfn = min_pfn;
1314 
1315 	/*
1316 	 * Search starts from the last successful isolation order or the next
1317 	 * order to search after a previous failure
1318 	 */
1319 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1320 
1321 	for (order = cc->search_order;
1322 	     !page && order >= 0;
1323 	     order = next_search_order(cc, order)) {
1324 		struct free_area *area = &cc->zone->free_area[order];
1325 		struct list_head *freelist;
1326 		struct page *freepage;
1327 		unsigned long flags;
1328 		unsigned int order_scanned = 0;
1329 
1330 		if (!area->nr_free)
1331 			continue;
1332 
1333 		spin_lock_irqsave(&cc->zone->lock, flags);
1334 		freelist = &area->free_list[MIGRATE_MOVABLE];
1335 		list_for_each_entry_reverse(freepage, freelist, lru) {
1336 			unsigned long pfn;
1337 
1338 			order_scanned++;
1339 			nr_scanned++;
1340 			pfn = page_to_pfn(freepage);
1341 
1342 			if (pfn >= highest)
1343 				highest = pageblock_start_pfn(pfn);
1344 
1345 			if (pfn >= low_pfn) {
1346 				cc->fast_search_fail = 0;
1347 				cc->search_order = order;
1348 				page = freepage;
1349 				break;
1350 			}
1351 
1352 			if (pfn >= min_pfn && pfn > high_pfn) {
1353 				high_pfn = pfn;
1354 
1355 				/* Shorten the scan if a candidate is found */
1356 				limit >>= 1;
1357 			}
1358 
1359 			if (order_scanned >= limit)
1360 				break;
1361 		}
1362 
1363 		/* Use a minimum pfn if a preferred one was not found */
1364 		if (!page && high_pfn) {
1365 			page = pfn_to_page(high_pfn);
1366 
1367 			/* Update freepage for the list reorder below */
1368 			freepage = page;
1369 		}
1370 
1371 		/* Reorder to so a future search skips recent pages */
1372 		move_freelist_head(freelist, freepage);
1373 
1374 		/* Isolate the page if available */
1375 		if (page) {
1376 			if (__isolate_free_page(page, order)) {
1377 				set_page_private(page, order);
1378 				nr_isolated = 1 << order;
1379 				cc->nr_freepages += nr_isolated;
1380 				list_add_tail(&page->lru, &cc->freepages);
1381 				count_compact_events(COMPACTISOLATED, nr_isolated);
1382 			} else {
1383 				/* If isolation fails, abort the search */
1384 				order = cc->search_order + 1;
1385 				page = NULL;
1386 			}
1387 		}
1388 
1389 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1390 
1391 		/*
1392 		 * Smaller scan on next order so the total scan ig related
1393 		 * to freelist_scan_limit.
1394 		 */
1395 		if (order_scanned >= limit)
1396 			limit = min(1U, limit >> 1);
1397 	}
1398 
1399 	if (!page) {
1400 		cc->fast_search_fail++;
1401 		if (scan_start) {
1402 			/*
1403 			 * Use the highest PFN found above min. If one was
1404 			 * not found, be pessemistic for direct compaction
1405 			 * and use the min mark.
1406 			 */
1407 			if (highest) {
1408 				page = pfn_to_page(highest);
1409 				cc->free_pfn = highest;
1410 			} else {
1411 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1412 					page = pfn_to_page(min_pfn);
1413 					cc->free_pfn = min_pfn;
1414 				}
1415 			}
1416 		}
1417 	}
1418 
1419 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1420 		highest -= pageblock_nr_pages;
1421 		cc->zone->compact_cached_free_pfn = highest;
1422 	}
1423 
1424 	cc->total_free_scanned += nr_scanned;
1425 	if (!page)
1426 		return cc->free_pfn;
1427 
1428 	low_pfn = page_to_pfn(page);
1429 	fast_isolate_around(cc, low_pfn, nr_isolated);
1430 	return low_pfn;
1431 }
1432 
1433 /*
1434  * Based on information in the current compact_control, find blocks
1435  * suitable for isolating free pages from and then isolate them.
1436  */
1437 static void isolate_freepages(struct compact_control *cc)
1438 {
1439 	struct zone *zone = cc->zone;
1440 	struct page *page;
1441 	unsigned long block_start_pfn;	/* start of current pageblock */
1442 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1443 	unsigned long block_end_pfn;	/* end of current pageblock */
1444 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1445 	struct list_head *freelist = &cc->freepages;
1446 	unsigned int stride;
1447 
1448 	/* Try a small search of the free lists for a candidate */
1449 	isolate_start_pfn = fast_isolate_freepages(cc);
1450 	if (cc->nr_freepages)
1451 		goto splitmap;
1452 
1453 	/*
1454 	 * Initialise the free scanner. The starting point is where we last
1455 	 * successfully isolated from, zone-cached value, or the end of the
1456 	 * zone when isolating for the first time. For looping we also need
1457 	 * this pfn aligned down to the pageblock boundary, because we do
1458 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1459 	 * For ending point, take care when isolating in last pageblock of a
1460 	 * a zone which ends in the middle of a pageblock.
1461 	 * The low boundary is the end of the pageblock the migration scanner
1462 	 * is using.
1463 	 */
1464 	isolate_start_pfn = cc->free_pfn;
1465 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1466 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1467 						zone_end_pfn(zone));
1468 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1469 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1470 
1471 	/*
1472 	 * Isolate free pages until enough are available to migrate the
1473 	 * pages on cc->migratepages. We stop searching if the migrate
1474 	 * and free page scanners meet or enough free pages are isolated.
1475 	 */
1476 	for (; block_start_pfn >= low_pfn;
1477 				block_end_pfn = block_start_pfn,
1478 				block_start_pfn -= pageblock_nr_pages,
1479 				isolate_start_pfn = block_start_pfn) {
1480 		unsigned long nr_isolated;
1481 
1482 		/*
1483 		 * This can iterate a massively long zone without finding any
1484 		 * suitable migration targets, so periodically check resched.
1485 		 */
1486 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1487 			cond_resched();
1488 
1489 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1490 									zone);
1491 		if (!page)
1492 			continue;
1493 
1494 		/* Check the block is suitable for migration */
1495 		if (!suitable_migration_target(cc, page))
1496 			continue;
1497 
1498 		/* If isolation recently failed, do not retry */
1499 		if (!isolation_suitable(cc, page))
1500 			continue;
1501 
1502 		/* Found a block suitable for isolating free pages from. */
1503 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1504 					block_end_pfn, freelist, stride, false);
1505 
1506 		/* Update the skip hint if the full pageblock was scanned */
1507 		if (isolate_start_pfn == block_end_pfn)
1508 			update_pageblock_skip(cc, page, block_start_pfn);
1509 
1510 		/* Are enough freepages isolated? */
1511 		if (cc->nr_freepages >= cc->nr_migratepages) {
1512 			if (isolate_start_pfn >= block_end_pfn) {
1513 				/*
1514 				 * Restart at previous pageblock if more
1515 				 * freepages can be isolated next time.
1516 				 */
1517 				isolate_start_pfn =
1518 					block_start_pfn - pageblock_nr_pages;
1519 			}
1520 			break;
1521 		} else if (isolate_start_pfn < block_end_pfn) {
1522 			/*
1523 			 * If isolation failed early, do not continue
1524 			 * needlessly.
1525 			 */
1526 			break;
1527 		}
1528 
1529 		/* Adjust stride depending on isolation */
1530 		if (nr_isolated) {
1531 			stride = 1;
1532 			continue;
1533 		}
1534 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1535 	}
1536 
1537 	/*
1538 	 * Record where the free scanner will restart next time. Either we
1539 	 * broke from the loop and set isolate_start_pfn based on the last
1540 	 * call to isolate_freepages_block(), or we met the migration scanner
1541 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1542 	 */
1543 	cc->free_pfn = isolate_start_pfn;
1544 
1545 splitmap:
1546 	/* __isolate_free_page() does not map the pages */
1547 	split_map_pages(freelist);
1548 }
1549 
1550 /*
1551  * This is a migrate-callback that "allocates" freepages by taking pages
1552  * from the isolated freelists in the block we are migrating to.
1553  */
1554 static struct page *compaction_alloc(struct page *migratepage,
1555 					unsigned long data)
1556 {
1557 	struct compact_control *cc = (struct compact_control *)data;
1558 	struct page *freepage;
1559 
1560 	if (list_empty(&cc->freepages)) {
1561 		isolate_freepages(cc);
1562 
1563 		if (list_empty(&cc->freepages))
1564 			return NULL;
1565 	}
1566 
1567 	freepage = list_entry(cc->freepages.next, struct page, lru);
1568 	list_del(&freepage->lru);
1569 	cc->nr_freepages--;
1570 
1571 	return freepage;
1572 }
1573 
1574 /*
1575  * This is a migrate-callback that "frees" freepages back to the isolated
1576  * freelist.  All pages on the freelist are from the same zone, so there is no
1577  * special handling needed for NUMA.
1578  */
1579 static void compaction_free(struct page *page, unsigned long data)
1580 {
1581 	struct compact_control *cc = (struct compact_control *)data;
1582 
1583 	list_add(&page->lru, &cc->freepages);
1584 	cc->nr_freepages++;
1585 }
1586 
1587 /* possible outcome of isolate_migratepages */
1588 typedef enum {
1589 	ISOLATE_ABORT,		/* Abort compaction now */
1590 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1591 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1592 } isolate_migrate_t;
1593 
1594 /*
1595  * Allow userspace to control policy on scanning the unevictable LRU for
1596  * compactable pages.
1597  */
1598 #ifdef CONFIG_PREEMPT_RT
1599 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1600 #else
1601 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1602 #endif
1603 
1604 static inline void
1605 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1606 {
1607 	if (cc->fast_start_pfn == ULONG_MAX)
1608 		return;
1609 
1610 	if (!cc->fast_start_pfn)
1611 		cc->fast_start_pfn = pfn;
1612 
1613 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1614 }
1615 
1616 static inline unsigned long
1617 reinit_migrate_pfn(struct compact_control *cc)
1618 {
1619 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1620 		return cc->migrate_pfn;
1621 
1622 	cc->migrate_pfn = cc->fast_start_pfn;
1623 	cc->fast_start_pfn = ULONG_MAX;
1624 
1625 	return cc->migrate_pfn;
1626 }
1627 
1628 /*
1629  * Briefly search the free lists for a migration source that already has
1630  * some free pages to reduce the number of pages that need migration
1631  * before a pageblock is free.
1632  */
1633 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1634 {
1635 	unsigned int limit = freelist_scan_limit(cc);
1636 	unsigned int nr_scanned = 0;
1637 	unsigned long distance;
1638 	unsigned long pfn = cc->migrate_pfn;
1639 	unsigned long high_pfn;
1640 	int order;
1641 
1642 	/* Skip hints are relied on to avoid repeats on the fast search */
1643 	if (cc->ignore_skip_hint)
1644 		return pfn;
1645 
1646 	/*
1647 	 * If the migrate_pfn is not at the start of a zone or the start
1648 	 * of a pageblock then assume this is a continuation of a previous
1649 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1650 	 */
1651 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1652 		return pfn;
1653 
1654 	/*
1655 	 * For smaller orders, just linearly scan as the number of pages
1656 	 * to migrate should be relatively small and does not necessarily
1657 	 * justify freeing up a large block for a small allocation.
1658 	 */
1659 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1660 		return pfn;
1661 
1662 	/*
1663 	 * Only allow kcompactd and direct requests for movable pages to
1664 	 * quickly clear out a MOVABLE pageblock for allocation. This
1665 	 * reduces the risk that a large movable pageblock is freed for
1666 	 * an unmovable/reclaimable small allocation.
1667 	 */
1668 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1669 		return pfn;
1670 
1671 	/*
1672 	 * When starting the migration scanner, pick any pageblock within the
1673 	 * first half of the search space. Otherwise try and pick a pageblock
1674 	 * within the first eighth to reduce the chances that a migration
1675 	 * target later becomes a source.
1676 	 */
1677 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1678 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1679 		distance >>= 2;
1680 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1681 
1682 	for (order = cc->order - 1;
1683 	     order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1684 	     order--) {
1685 		struct free_area *area = &cc->zone->free_area[order];
1686 		struct list_head *freelist;
1687 		unsigned long flags;
1688 		struct page *freepage;
1689 
1690 		if (!area->nr_free)
1691 			continue;
1692 
1693 		spin_lock_irqsave(&cc->zone->lock, flags);
1694 		freelist = &area->free_list[MIGRATE_MOVABLE];
1695 		list_for_each_entry(freepage, freelist, lru) {
1696 			unsigned long free_pfn;
1697 
1698 			nr_scanned++;
1699 			free_pfn = page_to_pfn(freepage);
1700 			if (free_pfn < high_pfn) {
1701 				/*
1702 				 * Avoid if skipped recently. Ideally it would
1703 				 * move to the tail but even safe iteration of
1704 				 * the list assumes an entry is deleted, not
1705 				 * reordered.
1706 				 */
1707 				if (get_pageblock_skip(freepage)) {
1708 					if (list_is_last(freelist, &freepage->lru))
1709 						break;
1710 
1711 					continue;
1712 				}
1713 
1714 				/* Reorder to so a future search skips recent pages */
1715 				move_freelist_tail(freelist, freepage);
1716 
1717 				update_fast_start_pfn(cc, free_pfn);
1718 				pfn = pageblock_start_pfn(free_pfn);
1719 				cc->fast_search_fail = 0;
1720 				set_pageblock_skip(freepage);
1721 				break;
1722 			}
1723 
1724 			if (nr_scanned >= limit) {
1725 				cc->fast_search_fail++;
1726 				move_freelist_tail(freelist, freepage);
1727 				break;
1728 			}
1729 		}
1730 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1731 	}
1732 
1733 	cc->total_migrate_scanned += nr_scanned;
1734 
1735 	/*
1736 	 * If fast scanning failed then use a cached entry for a page block
1737 	 * that had free pages as the basis for starting a linear scan.
1738 	 */
1739 	if (pfn == cc->migrate_pfn)
1740 		pfn = reinit_migrate_pfn(cc);
1741 
1742 	return pfn;
1743 }
1744 
1745 /*
1746  * Isolate all pages that can be migrated from the first suitable block,
1747  * starting at the block pointed to by the migrate scanner pfn within
1748  * compact_control.
1749  */
1750 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1751 {
1752 	unsigned long block_start_pfn;
1753 	unsigned long block_end_pfn;
1754 	unsigned long low_pfn;
1755 	struct page *page;
1756 	const isolate_mode_t isolate_mode =
1757 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1758 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1759 	bool fast_find_block;
1760 
1761 	/*
1762 	 * Start at where we last stopped, or beginning of the zone as
1763 	 * initialized by compact_zone(). The first failure will use
1764 	 * the lowest PFN as the starting point for linear scanning.
1765 	 */
1766 	low_pfn = fast_find_migrateblock(cc);
1767 	block_start_pfn = pageblock_start_pfn(low_pfn);
1768 	if (block_start_pfn < cc->zone->zone_start_pfn)
1769 		block_start_pfn = cc->zone->zone_start_pfn;
1770 
1771 	/*
1772 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1773 	 * the isolation_suitable check below, check whether the fast
1774 	 * search was successful.
1775 	 */
1776 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1777 
1778 	/* Only scan within a pageblock boundary */
1779 	block_end_pfn = pageblock_end_pfn(low_pfn);
1780 
1781 	/*
1782 	 * Iterate over whole pageblocks until we find the first suitable.
1783 	 * Do not cross the free scanner.
1784 	 */
1785 	for (; block_end_pfn <= cc->free_pfn;
1786 			fast_find_block = false,
1787 			low_pfn = block_end_pfn,
1788 			block_start_pfn = block_end_pfn,
1789 			block_end_pfn += pageblock_nr_pages) {
1790 
1791 		/*
1792 		 * This can potentially iterate a massively long zone with
1793 		 * many pageblocks unsuitable, so periodically check if we
1794 		 * need to schedule.
1795 		 */
1796 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1797 			cond_resched();
1798 
1799 		page = pageblock_pfn_to_page(block_start_pfn,
1800 						block_end_pfn, cc->zone);
1801 		if (!page)
1802 			continue;
1803 
1804 		/*
1805 		 * If isolation recently failed, do not retry. Only check the
1806 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1807 		 * to be visited multiple times. Assume skip was checked
1808 		 * before making it "skip" so other compaction instances do
1809 		 * not scan the same block.
1810 		 */
1811 		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1812 		    !fast_find_block && !isolation_suitable(cc, page))
1813 			continue;
1814 
1815 		/*
1816 		 * For async compaction, also only scan in MOVABLE blocks
1817 		 * without huge pages. Async compaction is optimistic to see
1818 		 * if the minimum amount of work satisfies the allocation.
1819 		 * The cached PFN is updated as it's possible that all
1820 		 * remaining blocks between source and target are unsuitable
1821 		 * and the compaction scanners fail to meet.
1822 		 */
1823 		if (!suitable_migration_source(cc, page)) {
1824 			update_cached_migrate(cc, block_end_pfn);
1825 			continue;
1826 		}
1827 
1828 		/* Perform the isolation */
1829 		low_pfn = isolate_migratepages_block(cc, low_pfn,
1830 						block_end_pfn, isolate_mode);
1831 
1832 		if (!low_pfn)
1833 			return ISOLATE_ABORT;
1834 
1835 		/*
1836 		 * Either we isolated something and proceed with migration. Or
1837 		 * we failed and compact_zone should decide if we should
1838 		 * continue or not.
1839 		 */
1840 		break;
1841 	}
1842 
1843 	/* Record where migration scanner will be restarted. */
1844 	cc->migrate_pfn = low_pfn;
1845 
1846 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1847 }
1848 
1849 /*
1850  * order == -1 is expected when compacting via
1851  * /proc/sys/vm/compact_memory
1852  */
1853 static inline bool is_via_compact_memory(int order)
1854 {
1855 	return order == -1;
1856 }
1857 
1858 static enum compact_result __compact_finished(struct compact_control *cc)
1859 {
1860 	unsigned int order;
1861 	const int migratetype = cc->migratetype;
1862 	int ret;
1863 
1864 	/* Compaction run completes if the migrate and free scanner meet */
1865 	if (compact_scanners_met(cc)) {
1866 		/* Let the next compaction start anew. */
1867 		reset_cached_positions(cc->zone);
1868 
1869 		/*
1870 		 * Mark that the PG_migrate_skip information should be cleared
1871 		 * by kswapd when it goes to sleep. kcompactd does not set the
1872 		 * flag itself as the decision to be clear should be directly
1873 		 * based on an allocation request.
1874 		 */
1875 		if (cc->direct_compaction)
1876 			cc->zone->compact_blockskip_flush = true;
1877 
1878 		if (cc->whole_zone)
1879 			return COMPACT_COMPLETE;
1880 		else
1881 			return COMPACT_PARTIAL_SKIPPED;
1882 	}
1883 
1884 	if (is_via_compact_memory(cc->order))
1885 		return COMPACT_CONTINUE;
1886 
1887 	/*
1888 	 * Always finish scanning a pageblock to reduce the possibility of
1889 	 * fallbacks in the future. This is particularly important when
1890 	 * migration source is unmovable/reclaimable but it's not worth
1891 	 * special casing.
1892 	 */
1893 	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1894 		return COMPACT_CONTINUE;
1895 
1896 	/* Direct compactor: Is a suitable page free? */
1897 	ret = COMPACT_NO_SUITABLE_PAGE;
1898 	for (order = cc->order; order < MAX_ORDER; order++) {
1899 		struct free_area *area = &cc->zone->free_area[order];
1900 		bool can_steal;
1901 
1902 		/* Job done if page is free of the right migratetype */
1903 		if (!free_area_empty(area, migratetype))
1904 			return COMPACT_SUCCESS;
1905 
1906 #ifdef CONFIG_CMA
1907 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1908 		if (migratetype == MIGRATE_MOVABLE &&
1909 			!free_area_empty(area, MIGRATE_CMA))
1910 			return COMPACT_SUCCESS;
1911 #endif
1912 		/*
1913 		 * Job done if allocation would steal freepages from
1914 		 * other migratetype buddy lists.
1915 		 */
1916 		if (find_suitable_fallback(area, order, migratetype,
1917 						true, &can_steal) != -1) {
1918 
1919 			/* movable pages are OK in any pageblock */
1920 			if (migratetype == MIGRATE_MOVABLE)
1921 				return COMPACT_SUCCESS;
1922 
1923 			/*
1924 			 * We are stealing for a non-movable allocation. Make
1925 			 * sure we finish compacting the current pageblock
1926 			 * first so it is as free as possible and we won't
1927 			 * have to steal another one soon. This only applies
1928 			 * to sync compaction, as async compaction operates
1929 			 * on pageblocks of the same migratetype.
1930 			 */
1931 			if (cc->mode == MIGRATE_ASYNC ||
1932 					IS_ALIGNED(cc->migrate_pfn,
1933 							pageblock_nr_pages)) {
1934 				return COMPACT_SUCCESS;
1935 			}
1936 
1937 			ret = COMPACT_CONTINUE;
1938 			break;
1939 		}
1940 	}
1941 
1942 	if (cc->contended || fatal_signal_pending(current))
1943 		ret = COMPACT_CONTENDED;
1944 
1945 	return ret;
1946 }
1947 
1948 static enum compact_result compact_finished(struct compact_control *cc)
1949 {
1950 	int ret;
1951 
1952 	ret = __compact_finished(cc);
1953 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
1954 	if (ret == COMPACT_NO_SUITABLE_PAGE)
1955 		ret = COMPACT_CONTINUE;
1956 
1957 	return ret;
1958 }
1959 
1960 /*
1961  * compaction_suitable: Is this suitable to run compaction on this zone now?
1962  * Returns
1963  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1964  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1965  *   COMPACT_CONTINUE - If compaction should run now
1966  */
1967 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1968 					unsigned int alloc_flags,
1969 					int classzone_idx,
1970 					unsigned long wmark_target)
1971 {
1972 	unsigned long watermark;
1973 
1974 	if (is_via_compact_memory(order))
1975 		return COMPACT_CONTINUE;
1976 
1977 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1978 	/*
1979 	 * If watermarks for high-order allocation are already met, there
1980 	 * should be no need for compaction at all.
1981 	 */
1982 	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1983 								alloc_flags))
1984 		return COMPACT_SUCCESS;
1985 
1986 	/*
1987 	 * Watermarks for order-0 must be met for compaction to be able to
1988 	 * isolate free pages for migration targets. This means that the
1989 	 * watermark and alloc_flags have to match, or be more pessimistic than
1990 	 * the check in __isolate_free_page(). We don't use the direct
1991 	 * compactor's alloc_flags, as they are not relevant for freepage
1992 	 * isolation. We however do use the direct compactor's classzone_idx to
1993 	 * skip over zones where lowmem reserves would prevent allocation even
1994 	 * if compaction succeeds.
1995 	 * For costly orders, we require low watermark instead of min for
1996 	 * compaction to proceed to increase its chances.
1997 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1998 	 * suitable migration targets
1999 	 */
2000 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2001 				low_wmark_pages(zone) : min_wmark_pages(zone);
2002 	watermark += compact_gap(order);
2003 	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
2004 						ALLOC_CMA, wmark_target))
2005 		return COMPACT_SKIPPED;
2006 
2007 	return COMPACT_CONTINUE;
2008 }
2009 
2010 enum compact_result compaction_suitable(struct zone *zone, int order,
2011 					unsigned int alloc_flags,
2012 					int classzone_idx)
2013 {
2014 	enum compact_result ret;
2015 	int fragindex;
2016 
2017 	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
2018 				    zone_page_state(zone, NR_FREE_PAGES));
2019 	/*
2020 	 * fragmentation index determines if allocation failures are due to
2021 	 * low memory or external fragmentation
2022 	 *
2023 	 * index of -1000 would imply allocations might succeed depending on
2024 	 * watermarks, but we already failed the high-order watermark check
2025 	 * index towards 0 implies failure is due to lack of memory
2026 	 * index towards 1000 implies failure is due to fragmentation
2027 	 *
2028 	 * Only compact if a failure would be due to fragmentation. Also
2029 	 * ignore fragindex for non-costly orders where the alternative to
2030 	 * a successful reclaim/compaction is OOM. Fragindex and the
2031 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2032 	 * excessive compaction for costly orders, but it should not be at the
2033 	 * expense of system stability.
2034 	 */
2035 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2036 		fragindex = fragmentation_index(zone, order);
2037 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2038 			ret = COMPACT_NOT_SUITABLE_ZONE;
2039 	}
2040 
2041 	trace_mm_compaction_suitable(zone, order, ret);
2042 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2043 		ret = COMPACT_SKIPPED;
2044 
2045 	return ret;
2046 }
2047 
2048 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2049 		int alloc_flags)
2050 {
2051 	struct zone *zone;
2052 	struct zoneref *z;
2053 
2054 	/*
2055 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2056 	 * retrying the reclaim.
2057 	 */
2058 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2059 					ac->nodemask) {
2060 		unsigned long available;
2061 		enum compact_result compact_result;
2062 
2063 		/*
2064 		 * Do not consider all the reclaimable memory because we do not
2065 		 * want to trash just for a single high order allocation which
2066 		 * is even not guaranteed to appear even if __compaction_suitable
2067 		 * is happy about the watermark check.
2068 		 */
2069 		available = zone_reclaimable_pages(zone) / order;
2070 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2071 		compact_result = __compaction_suitable(zone, order, alloc_flags,
2072 				ac_classzone_idx(ac), available);
2073 		if (compact_result != COMPACT_SKIPPED)
2074 			return true;
2075 	}
2076 
2077 	return false;
2078 }
2079 
2080 static enum compact_result
2081 compact_zone(struct compact_control *cc, struct capture_control *capc)
2082 {
2083 	enum compact_result ret;
2084 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2085 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2086 	unsigned long last_migrated_pfn;
2087 	const bool sync = cc->mode != MIGRATE_ASYNC;
2088 	bool update_cached;
2089 
2090 	/*
2091 	 * These counters track activities during zone compaction.  Initialize
2092 	 * them before compacting a new zone.
2093 	 */
2094 	cc->total_migrate_scanned = 0;
2095 	cc->total_free_scanned = 0;
2096 	cc->nr_migratepages = 0;
2097 	cc->nr_freepages = 0;
2098 	INIT_LIST_HEAD(&cc->freepages);
2099 	INIT_LIST_HEAD(&cc->migratepages);
2100 
2101 	cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
2102 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2103 							cc->classzone_idx);
2104 	/* Compaction is likely to fail */
2105 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2106 		return ret;
2107 
2108 	/* huh, compaction_suitable is returning something unexpected */
2109 	VM_BUG_ON(ret != COMPACT_CONTINUE);
2110 
2111 	/*
2112 	 * Clear pageblock skip if there were failures recently and compaction
2113 	 * is about to be retried after being deferred.
2114 	 */
2115 	if (compaction_restarting(cc->zone, cc->order))
2116 		__reset_isolation_suitable(cc->zone);
2117 
2118 	/*
2119 	 * Setup to move all movable pages to the end of the zone. Used cached
2120 	 * information on where the scanners should start (unless we explicitly
2121 	 * want to compact the whole zone), but check that it is initialised
2122 	 * by ensuring the values are within zone boundaries.
2123 	 */
2124 	cc->fast_start_pfn = 0;
2125 	if (cc->whole_zone) {
2126 		cc->migrate_pfn = start_pfn;
2127 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2128 	} else {
2129 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2130 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2131 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2132 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2133 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2134 		}
2135 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2136 			cc->migrate_pfn = start_pfn;
2137 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2138 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2139 		}
2140 
2141 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2142 			cc->whole_zone = true;
2143 	}
2144 
2145 	last_migrated_pfn = 0;
2146 
2147 	/*
2148 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2149 	 * the basis that some migrations will fail in ASYNC mode. However,
2150 	 * if the cached PFNs match and pageblocks are skipped due to having
2151 	 * no isolation candidates, then the sync state does not matter.
2152 	 * Until a pageblock with isolation candidates is found, keep the
2153 	 * cached PFNs in sync to avoid revisiting the same blocks.
2154 	 */
2155 	update_cached = !sync &&
2156 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2157 
2158 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2159 				cc->free_pfn, end_pfn, sync);
2160 
2161 	migrate_prep_local();
2162 
2163 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2164 		int err;
2165 		unsigned long start_pfn = cc->migrate_pfn;
2166 
2167 		/*
2168 		 * Avoid multiple rescans which can happen if a page cannot be
2169 		 * isolated (dirty/writeback in async mode) or if the migrated
2170 		 * pages are being allocated before the pageblock is cleared.
2171 		 * The first rescan will capture the entire pageblock for
2172 		 * migration. If it fails, it'll be marked skip and scanning
2173 		 * will proceed as normal.
2174 		 */
2175 		cc->rescan = false;
2176 		if (pageblock_start_pfn(last_migrated_pfn) ==
2177 		    pageblock_start_pfn(start_pfn)) {
2178 			cc->rescan = true;
2179 		}
2180 
2181 		switch (isolate_migratepages(cc)) {
2182 		case ISOLATE_ABORT:
2183 			ret = COMPACT_CONTENDED;
2184 			putback_movable_pages(&cc->migratepages);
2185 			cc->nr_migratepages = 0;
2186 			goto out;
2187 		case ISOLATE_NONE:
2188 			if (update_cached) {
2189 				cc->zone->compact_cached_migrate_pfn[1] =
2190 					cc->zone->compact_cached_migrate_pfn[0];
2191 			}
2192 
2193 			/*
2194 			 * We haven't isolated and migrated anything, but
2195 			 * there might still be unflushed migrations from
2196 			 * previous cc->order aligned block.
2197 			 */
2198 			goto check_drain;
2199 		case ISOLATE_SUCCESS:
2200 			update_cached = false;
2201 			last_migrated_pfn = start_pfn;
2202 			;
2203 		}
2204 
2205 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2206 				compaction_free, (unsigned long)cc, cc->mode,
2207 				MR_COMPACTION);
2208 
2209 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2210 							&cc->migratepages);
2211 
2212 		/* All pages were either migrated or will be released */
2213 		cc->nr_migratepages = 0;
2214 		if (err) {
2215 			putback_movable_pages(&cc->migratepages);
2216 			/*
2217 			 * migrate_pages() may return -ENOMEM when scanners meet
2218 			 * and we want compact_finished() to detect it
2219 			 */
2220 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2221 				ret = COMPACT_CONTENDED;
2222 				goto out;
2223 			}
2224 			/*
2225 			 * We failed to migrate at least one page in the current
2226 			 * order-aligned block, so skip the rest of it.
2227 			 */
2228 			if (cc->direct_compaction &&
2229 						(cc->mode == MIGRATE_ASYNC)) {
2230 				cc->migrate_pfn = block_end_pfn(
2231 						cc->migrate_pfn - 1, cc->order);
2232 				/* Draining pcplists is useless in this case */
2233 				last_migrated_pfn = 0;
2234 			}
2235 		}
2236 
2237 check_drain:
2238 		/*
2239 		 * Has the migration scanner moved away from the previous
2240 		 * cc->order aligned block where we migrated from? If yes,
2241 		 * flush the pages that were freed, so that they can merge and
2242 		 * compact_finished() can detect immediately if allocation
2243 		 * would succeed.
2244 		 */
2245 		if (cc->order > 0 && last_migrated_pfn) {
2246 			int cpu;
2247 			unsigned long current_block_start =
2248 				block_start_pfn(cc->migrate_pfn, cc->order);
2249 
2250 			if (last_migrated_pfn < current_block_start) {
2251 				cpu = get_cpu();
2252 				lru_add_drain_cpu(cpu);
2253 				drain_local_pages(cc->zone);
2254 				put_cpu();
2255 				/* No more flushing until we migrate again */
2256 				last_migrated_pfn = 0;
2257 			}
2258 		}
2259 
2260 		/* Stop if a page has been captured */
2261 		if (capc && capc->page) {
2262 			ret = COMPACT_SUCCESS;
2263 			break;
2264 		}
2265 	}
2266 
2267 out:
2268 	/*
2269 	 * Release free pages and update where the free scanner should restart,
2270 	 * so we don't leave any returned pages behind in the next attempt.
2271 	 */
2272 	if (cc->nr_freepages > 0) {
2273 		unsigned long free_pfn = release_freepages(&cc->freepages);
2274 
2275 		cc->nr_freepages = 0;
2276 		VM_BUG_ON(free_pfn == 0);
2277 		/* The cached pfn is always the first in a pageblock */
2278 		free_pfn = pageblock_start_pfn(free_pfn);
2279 		/*
2280 		 * Only go back, not forward. The cached pfn might have been
2281 		 * already reset to zone end in compact_finished()
2282 		 */
2283 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2284 			cc->zone->compact_cached_free_pfn = free_pfn;
2285 	}
2286 
2287 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2288 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2289 
2290 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2291 				cc->free_pfn, end_pfn, sync, ret);
2292 
2293 	return ret;
2294 }
2295 
2296 static enum compact_result compact_zone_order(struct zone *zone, int order,
2297 		gfp_t gfp_mask, enum compact_priority prio,
2298 		unsigned int alloc_flags, int classzone_idx,
2299 		struct page **capture)
2300 {
2301 	enum compact_result ret;
2302 	struct compact_control cc = {
2303 		.order = order,
2304 		.search_order = order,
2305 		.gfp_mask = gfp_mask,
2306 		.zone = zone,
2307 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2308 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2309 		.alloc_flags = alloc_flags,
2310 		.classzone_idx = classzone_idx,
2311 		.direct_compaction = true,
2312 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2313 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2314 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2315 	};
2316 	struct capture_control capc = {
2317 		.cc = &cc,
2318 		.page = NULL,
2319 	};
2320 
2321 	current->capture_control = &capc;
2322 
2323 	ret = compact_zone(&cc, &capc);
2324 
2325 	VM_BUG_ON(!list_empty(&cc.freepages));
2326 	VM_BUG_ON(!list_empty(&cc.migratepages));
2327 
2328 	*capture = capc.page;
2329 	current->capture_control = NULL;
2330 
2331 	return ret;
2332 }
2333 
2334 int sysctl_extfrag_threshold = 500;
2335 
2336 /**
2337  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2338  * @gfp_mask: The GFP mask of the current allocation
2339  * @order: The order of the current allocation
2340  * @alloc_flags: The allocation flags of the current allocation
2341  * @ac: The context of current allocation
2342  * @prio: Determines how hard direct compaction should try to succeed
2343  * @capture: Pointer to free page created by compaction will be stored here
2344  *
2345  * This is the main entry point for direct page compaction.
2346  */
2347 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2348 		unsigned int alloc_flags, const struct alloc_context *ac,
2349 		enum compact_priority prio, struct page **capture)
2350 {
2351 	int may_perform_io = gfp_mask & __GFP_IO;
2352 	struct zoneref *z;
2353 	struct zone *zone;
2354 	enum compact_result rc = COMPACT_SKIPPED;
2355 
2356 	/*
2357 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2358 	 * tricky context because the migration might require IO
2359 	 */
2360 	if (!may_perform_io)
2361 		return COMPACT_SKIPPED;
2362 
2363 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2364 
2365 	/* Compact each zone in the list */
2366 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2367 								ac->nodemask) {
2368 		enum compact_result status;
2369 
2370 		if (prio > MIN_COMPACT_PRIORITY
2371 					&& compaction_deferred(zone, order)) {
2372 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2373 			continue;
2374 		}
2375 
2376 		status = compact_zone_order(zone, order, gfp_mask, prio,
2377 				alloc_flags, ac_classzone_idx(ac), capture);
2378 		rc = max(status, rc);
2379 
2380 		/* The allocation should succeed, stop compacting */
2381 		if (status == COMPACT_SUCCESS) {
2382 			/*
2383 			 * We think the allocation will succeed in this zone,
2384 			 * but it is not certain, hence the false. The caller
2385 			 * will repeat this with true if allocation indeed
2386 			 * succeeds in this zone.
2387 			 */
2388 			compaction_defer_reset(zone, order, false);
2389 
2390 			break;
2391 		}
2392 
2393 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2394 					status == COMPACT_PARTIAL_SKIPPED))
2395 			/*
2396 			 * We think that allocation won't succeed in this zone
2397 			 * so we defer compaction there. If it ends up
2398 			 * succeeding after all, it will be reset.
2399 			 */
2400 			defer_compaction(zone, order);
2401 
2402 		/*
2403 		 * We might have stopped compacting due to need_resched() in
2404 		 * async compaction, or due to a fatal signal detected. In that
2405 		 * case do not try further zones
2406 		 */
2407 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2408 					|| fatal_signal_pending(current))
2409 			break;
2410 	}
2411 
2412 	return rc;
2413 }
2414 
2415 
2416 /* Compact all zones within a node */
2417 static void compact_node(int nid)
2418 {
2419 	pg_data_t *pgdat = NODE_DATA(nid);
2420 	int zoneid;
2421 	struct zone *zone;
2422 	struct compact_control cc = {
2423 		.order = -1,
2424 		.mode = MIGRATE_SYNC,
2425 		.ignore_skip_hint = true,
2426 		.whole_zone = true,
2427 		.gfp_mask = GFP_KERNEL,
2428 	};
2429 
2430 
2431 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2432 
2433 		zone = &pgdat->node_zones[zoneid];
2434 		if (!populated_zone(zone))
2435 			continue;
2436 
2437 		cc.zone = zone;
2438 
2439 		compact_zone(&cc, NULL);
2440 
2441 		VM_BUG_ON(!list_empty(&cc.freepages));
2442 		VM_BUG_ON(!list_empty(&cc.migratepages));
2443 	}
2444 }
2445 
2446 /* Compact all nodes in the system */
2447 static void compact_nodes(void)
2448 {
2449 	int nid;
2450 
2451 	/* Flush pending updates to the LRU lists */
2452 	lru_add_drain_all();
2453 
2454 	for_each_online_node(nid)
2455 		compact_node(nid);
2456 }
2457 
2458 /* The written value is actually unused, all memory is compacted */
2459 int sysctl_compact_memory;
2460 
2461 /*
2462  * This is the entry point for compacting all nodes via
2463  * /proc/sys/vm/compact_memory
2464  */
2465 int sysctl_compaction_handler(struct ctl_table *table, int write,
2466 			void __user *buffer, size_t *length, loff_t *ppos)
2467 {
2468 	if (write)
2469 		compact_nodes();
2470 
2471 	return 0;
2472 }
2473 
2474 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2475 static ssize_t sysfs_compact_node(struct device *dev,
2476 			struct device_attribute *attr,
2477 			const char *buf, size_t count)
2478 {
2479 	int nid = dev->id;
2480 
2481 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2482 		/* Flush pending updates to the LRU lists */
2483 		lru_add_drain_all();
2484 
2485 		compact_node(nid);
2486 	}
2487 
2488 	return count;
2489 }
2490 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2491 
2492 int compaction_register_node(struct node *node)
2493 {
2494 	return device_create_file(&node->dev, &dev_attr_compact);
2495 }
2496 
2497 void compaction_unregister_node(struct node *node)
2498 {
2499 	return device_remove_file(&node->dev, &dev_attr_compact);
2500 }
2501 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2502 
2503 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2504 {
2505 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2506 }
2507 
2508 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2509 {
2510 	int zoneid;
2511 	struct zone *zone;
2512 	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
2513 
2514 	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
2515 		zone = &pgdat->node_zones[zoneid];
2516 
2517 		if (!populated_zone(zone))
2518 			continue;
2519 
2520 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2521 					classzone_idx) == COMPACT_CONTINUE)
2522 			return true;
2523 	}
2524 
2525 	return false;
2526 }
2527 
2528 static void kcompactd_do_work(pg_data_t *pgdat)
2529 {
2530 	/*
2531 	 * With no special task, compact all zones so that a page of requested
2532 	 * order is allocatable.
2533 	 */
2534 	int zoneid;
2535 	struct zone *zone;
2536 	struct compact_control cc = {
2537 		.order = pgdat->kcompactd_max_order,
2538 		.search_order = pgdat->kcompactd_max_order,
2539 		.classzone_idx = pgdat->kcompactd_classzone_idx,
2540 		.mode = MIGRATE_SYNC_LIGHT,
2541 		.ignore_skip_hint = false,
2542 		.gfp_mask = GFP_KERNEL,
2543 	};
2544 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2545 							cc.classzone_idx);
2546 	count_compact_event(KCOMPACTD_WAKE);
2547 
2548 	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
2549 		int status;
2550 
2551 		zone = &pgdat->node_zones[zoneid];
2552 		if (!populated_zone(zone))
2553 			continue;
2554 
2555 		if (compaction_deferred(zone, cc.order))
2556 			continue;
2557 
2558 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2559 							COMPACT_CONTINUE)
2560 			continue;
2561 
2562 		if (kthread_should_stop())
2563 			return;
2564 
2565 		cc.zone = zone;
2566 		status = compact_zone(&cc, NULL);
2567 
2568 		if (status == COMPACT_SUCCESS) {
2569 			compaction_defer_reset(zone, cc.order, false);
2570 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2571 			/*
2572 			 * Buddy pages may become stranded on pcps that could
2573 			 * otherwise coalesce on the zone's free area for
2574 			 * order >= cc.order.  This is ratelimited by the
2575 			 * upcoming deferral.
2576 			 */
2577 			drain_all_pages(zone);
2578 
2579 			/*
2580 			 * We use sync migration mode here, so we defer like
2581 			 * sync direct compaction does.
2582 			 */
2583 			defer_compaction(zone, cc.order);
2584 		}
2585 
2586 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2587 				     cc.total_migrate_scanned);
2588 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2589 				     cc.total_free_scanned);
2590 
2591 		VM_BUG_ON(!list_empty(&cc.freepages));
2592 		VM_BUG_ON(!list_empty(&cc.migratepages));
2593 	}
2594 
2595 	/*
2596 	 * Regardless of success, we are done until woken up next. But remember
2597 	 * the requested order/classzone_idx in case it was higher/tighter than
2598 	 * our current ones
2599 	 */
2600 	if (pgdat->kcompactd_max_order <= cc.order)
2601 		pgdat->kcompactd_max_order = 0;
2602 	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2603 		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2604 }
2605 
2606 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2607 {
2608 	if (!order)
2609 		return;
2610 
2611 	if (pgdat->kcompactd_max_order < order)
2612 		pgdat->kcompactd_max_order = order;
2613 
2614 	if (pgdat->kcompactd_classzone_idx > classzone_idx)
2615 		pgdat->kcompactd_classzone_idx = classzone_idx;
2616 
2617 	/*
2618 	 * Pairs with implicit barrier in wait_event_freezable()
2619 	 * such that wakeups are not missed.
2620 	 */
2621 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2622 		return;
2623 
2624 	if (!kcompactd_node_suitable(pgdat))
2625 		return;
2626 
2627 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2628 							classzone_idx);
2629 	wake_up_interruptible(&pgdat->kcompactd_wait);
2630 }
2631 
2632 /*
2633  * The background compaction daemon, started as a kernel thread
2634  * from the init process.
2635  */
2636 static int kcompactd(void *p)
2637 {
2638 	pg_data_t *pgdat = (pg_data_t*)p;
2639 	struct task_struct *tsk = current;
2640 
2641 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2642 
2643 	if (!cpumask_empty(cpumask))
2644 		set_cpus_allowed_ptr(tsk, cpumask);
2645 
2646 	set_freezable();
2647 
2648 	pgdat->kcompactd_max_order = 0;
2649 	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2650 
2651 	while (!kthread_should_stop()) {
2652 		unsigned long pflags;
2653 
2654 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2655 		wait_event_freezable(pgdat->kcompactd_wait,
2656 				kcompactd_work_requested(pgdat));
2657 
2658 		psi_memstall_enter(&pflags);
2659 		kcompactd_do_work(pgdat);
2660 		psi_memstall_leave(&pflags);
2661 	}
2662 
2663 	return 0;
2664 }
2665 
2666 /*
2667  * This kcompactd start function will be called by init and node-hot-add.
2668  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2669  */
2670 int kcompactd_run(int nid)
2671 {
2672 	pg_data_t *pgdat = NODE_DATA(nid);
2673 	int ret = 0;
2674 
2675 	if (pgdat->kcompactd)
2676 		return 0;
2677 
2678 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2679 	if (IS_ERR(pgdat->kcompactd)) {
2680 		pr_err("Failed to start kcompactd on node %d\n", nid);
2681 		ret = PTR_ERR(pgdat->kcompactd);
2682 		pgdat->kcompactd = NULL;
2683 	}
2684 	return ret;
2685 }
2686 
2687 /*
2688  * Called by memory hotplug when all memory in a node is offlined. Caller must
2689  * hold mem_hotplug_begin/end().
2690  */
2691 void kcompactd_stop(int nid)
2692 {
2693 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2694 
2695 	if (kcompactd) {
2696 		kthread_stop(kcompactd);
2697 		NODE_DATA(nid)->kcompactd = NULL;
2698 	}
2699 }
2700 
2701 /*
2702  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2703  * not required for correctness. So if the last cpu in a node goes
2704  * away, we get changed to run anywhere: as the first one comes back,
2705  * restore their cpu bindings.
2706  */
2707 static int kcompactd_cpu_online(unsigned int cpu)
2708 {
2709 	int nid;
2710 
2711 	for_each_node_state(nid, N_MEMORY) {
2712 		pg_data_t *pgdat = NODE_DATA(nid);
2713 		const struct cpumask *mask;
2714 
2715 		mask = cpumask_of_node(pgdat->node_id);
2716 
2717 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2718 			/* One of our CPUs online: restore mask */
2719 			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2720 	}
2721 	return 0;
2722 }
2723 
2724 static int __init kcompactd_init(void)
2725 {
2726 	int nid;
2727 	int ret;
2728 
2729 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2730 					"mm/compaction:online",
2731 					kcompactd_cpu_online, NULL);
2732 	if (ret < 0) {
2733 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
2734 		return ret;
2735 	}
2736 
2737 	for_each_node_state(nid, N_MEMORY)
2738 		kcompactd_run(nid);
2739 	return 0;
2740 }
2741 subsys_initcall(kcompactd_init)
2742 
2743 #endif /* CONFIG_COMPACTION */
2744