xref: /openbmc/linux/mm/compaction.c (revision 8dd3cdea)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 	count_vm_event(item);
32 }
33 
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 	count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42 
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47 
48 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
52 
53 /*
54  * Fragmentation score check interval for proactive compaction purposes.
55  */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57 
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
69 #endif
70 
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73 	struct page *page, *next;
74 	unsigned long high_pfn = 0;
75 
76 	list_for_each_entry_safe(page, next, freelist, lru) {
77 		unsigned long pfn = page_to_pfn(page);
78 		list_del(&page->lru);
79 		__free_page(page);
80 		if (pfn > high_pfn)
81 			high_pfn = pfn;
82 	}
83 
84 	return high_pfn;
85 }
86 
87 static void split_map_pages(struct list_head *list)
88 {
89 	unsigned int i, order, nr_pages;
90 	struct page *page, *next;
91 	LIST_HEAD(tmp_list);
92 
93 	list_for_each_entry_safe(page, next, list, lru) {
94 		list_del(&page->lru);
95 
96 		order = page_private(page);
97 		nr_pages = 1 << order;
98 
99 		post_alloc_hook(page, order, __GFP_MOVABLE);
100 		if (order)
101 			split_page(page, order);
102 
103 		for (i = 0; i < nr_pages; i++) {
104 			list_add(&page->lru, &tmp_list);
105 			page++;
106 		}
107 	}
108 
109 	list_splice(&tmp_list, list);
110 }
111 
112 #ifdef CONFIG_COMPACTION
113 
114 int PageMovable(struct page *page)
115 {
116 	struct address_space *mapping;
117 
118 	VM_BUG_ON_PAGE(!PageLocked(page), page);
119 	if (!__PageMovable(page))
120 		return 0;
121 
122 	mapping = page_mapping(page);
123 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 		return 1;
125 
126 	return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129 
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132 	VM_BUG_ON_PAGE(!PageLocked(page), page);
133 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137 
138 void __ClearPageMovable(struct page *page)
139 {
140 	VM_BUG_ON_PAGE(!PageMovable(page), page);
141 	/*
142 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
143 	 * flag so that VM can catch up released page by driver after isolation.
144 	 * With it, VM migration doesn't try to put it back.
145 	 */
146 	page->mapping = (void *)((unsigned long)page->mapping &
147 				PAGE_MAPPING_MOVABLE);
148 }
149 EXPORT_SYMBOL(__ClearPageMovable);
150 
151 /* Do not skip compaction more than 64 times */
152 #define COMPACT_MAX_DEFER_SHIFT 6
153 
154 /*
155  * Compaction is deferred when compaction fails to result in a page
156  * allocation success. 1 << compact_defer_shift, compactions are skipped up
157  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158  */
159 static void defer_compaction(struct zone *zone, int order)
160 {
161 	zone->compact_considered = 0;
162 	zone->compact_defer_shift++;
163 
164 	if (order < zone->compact_order_failed)
165 		zone->compact_order_failed = order;
166 
167 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169 
170 	trace_mm_compaction_defer_compaction(zone, order);
171 }
172 
173 /* Returns true if compaction should be skipped this time */
174 static bool compaction_deferred(struct zone *zone, int order)
175 {
176 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177 
178 	if (order < zone->compact_order_failed)
179 		return false;
180 
181 	/* Avoid possible overflow */
182 	if (++zone->compact_considered >= defer_limit) {
183 		zone->compact_considered = defer_limit;
184 		return false;
185 	}
186 
187 	trace_mm_compaction_deferred(zone, order);
188 
189 	return true;
190 }
191 
192 /*
193  * Update defer tracking counters after successful compaction of given order,
194  * which means an allocation either succeeded (alloc_success == true) or is
195  * expected to succeed.
196  */
197 void compaction_defer_reset(struct zone *zone, int order,
198 		bool alloc_success)
199 {
200 	if (alloc_success) {
201 		zone->compact_considered = 0;
202 		zone->compact_defer_shift = 0;
203 	}
204 	if (order >= zone->compact_order_failed)
205 		zone->compact_order_failed = order + 1;
206 
207 	trace_mm_compaction_defer_reset(zone, order);
208 }
209 
210 /* Returns true if restarting compaction after many failures */
211 static bool compaction_restarting(struct zone *zone, int order)
212 {
213 	if (order < zone->compact_order_failed)
214 		return false;
215 
216 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
218 }
219 
220 /* Returns true if the pageblock should be scanned for pages to isolate. */
221 static inline bool isolation_suitable(struct compact_control *cc,
222 					struct page *page)
223 {
224 	if (cc->ignore_skip_hint)
225 		return true;
226 
227 	return !get_pageblock_skip(page);
228 }
229 
230 static void reset_cached_positions(struct zone *zone)
231 {
232 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
234 	zone->compact_cached_free_pfn =
235 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
236 }
237 
238 /*
239  * Compound pages of >= pageblock_order should consistently be skipped until
240  * released. It is always pointless to compact pages of such order (if they are
241  * migratable), and the pageblocks they occupy cannot contain any free pages.
242  */
243 static bool pageblock_skip_persistent(struct page *page)
244 {
245 	if (!PageCompound(page))
246 		return false;
247 
248 	page = compound_head(page);
249 
250 	if (compound_order(page) >= pageblock_order)
251 		return true;
252 
253 	return false;
254 }
255 
256 static bool
257 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
258 							bool check_target)
259 {
260 	struct page *page = pfn_to_online_page(pfn);
261 	struct page *block_page;
262 	struct page *end_page;
263 	unsigned long block_pfn;
264 
265 	if (!page)
266 		return false;
267 	if (zone != page_zone(page))
268 		return false;
269 	if (pageblock_skip_persistent(page))
270 		return false;
271 
272 	/*
273 	 * If skip is already cleared do no further checking once the
274 	 * restart points have been set.
275 	 */
276 	if (check_source && check_target && !get_pageblock_skip(page))
277 		return true;
278 
279 	/*
280 	 * If clearing skip for the target scanner, do not select a
281 	 * non-movable pageblock as the starting point.
282 	 */
283 	if (!check_source && check_target &&
284 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
285 		return false;
286 
287 	/* Ensure the start of the pageblock or zone is online and valid */
288 	block_pfn = pageblock_start_pfn(pfn);
289 	block_pfn = max(block_pfn, zone->zone_start_pfn);
290 	block_page = pfn_to_online_page(block_pfn);
291 	if (block_page) {
292 		page = block_page;
293 		pfn = block_pfn;
294 	}
295 
296 	/* Ensure the end of the pageblock or zone is online and valid */
297 	block_pfn = pageblock_end_pfn(pfn) - 1;
298 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
299 	end_page = pfn_to_online_page(block_pfn);
300 	if (!end_page)
301 		return false;
302 
303 	/*
304 	 * Only clear the hint if a sample indicates there is either a
305 	 * free page or an LRU page in the block. One or other condition
306 	 * is necessary for the block to be a migration source/target.
307 	 */
308 	do {
309 		if (check_source && PageLRU(page)) {
310 			clear_pageblock_skip(page);
311 			return true;
312 		}
313 
314 		if (check_target && PageBuddy(page)) {
315 			clear_pageblock_skip(page);
316 			return true;
317 		}
318 
319 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
320 		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
321 	} while (page <= end_page);
322 
323 	return false;
324 }
325 
326 /*
327  * This function is called to clear all cached information on pageblocks that
328  * should be skipped for page isolation when the migrate and free page scanner
329  * meet.
330  */
331 static void __reset_isolation_suitable(struct zone *zone)
332 {
333 	unsigned long migrate_pfn = zone->zone_start_pfn;
334 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
335 	unsigned long reset_migrate = free_pfn;
336 	unsigned long reset_free = migrate_pfn;
337 	bool source_set = false;
338 	bool free_set = false;
339 
340 	if (!zone->compact_blockskip_flush)
341 		return;
342 
343 	zone->compact_blockskip_flush = false;
344 
345 	/*
346 	 * Walk the zone and update pageblock skip information. Source looks
347 	 * for PageLRU while target looks for PageBuddy. When the scanner
348 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
349 	 * is suitable as both source and target.
350 	 */
351 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
352 					free_pfn -= pageblock_nr_pages) {
353 		cond_resched();
354 
355 		/* Update the migrate PFN */
356 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
357 		    migrate_pfn < reset_migrate) {
358 			source_set = true;
359 			reset_migrate = migrate_pfn;
360 			zone->compact_init_migrate_pfn = reset_migrate;
361 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
362 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
363 		}
364 
365 		/* Update the free PFN */
366 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
367 		    free_pfn > reset_free) {
368 			free_set = true;
369 			reset_free = free_pfn;
370 			zone->compact_init_free_pfn = reset_free;
371 			zone->compact_cached_free_pfn = reset_free;
372 		}
373 	}
374 
375 	/* Leave no distance if no suitable block was reset */
376 	if (reset_migrate >= reset_free) {
377 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
378 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
379 		zone->compact_cached_free_pfn = free_pfn;
380 	}
381 }
382 
383 void reset_isolation_suitable(pg_data_t *pgdat)
384 {
385 	int zoneid;
386 
387 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
388 		struct zone *zone = &pgdat->node_zones[zoneid];
389 		if (!populated_zone(zone))
390 			continue;
391 
392 		/* Only flush if a full compaction finished recently */
393 		if (zone->compact_blockskip_flush)
394 			__reset_isolation_suitable(zone);
395 	}
396 }
397 
398 /*
399  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
400  * locks are not required for read/writers. Returns true if it was already set.
401  */
402 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
403 							unsigned long pfn)
404 {
405 	bool skip;
406 
407 	/* Do no update if skip hint is being ignored */
408 	if (cc->ignore_skip_hint)
409 		return false;
410 
411 	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
412 		return false;
413 
414 	skip = get_pageblock_skip(page);
415 	if (!skip && !cc->no_set_skip_hint)
416 		set_pageblock_skip(page);
417 
418 	return skip;
419 }
420 
421 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
422 {
423 	struct zone *zone = cc->zone;
424 
425 	pfn = pageblock_end_pfn(pfn);
426 
427 	/* Set for isolation rather than compaction */
428 	if (cc->no_set_skip_hint)
429 		return;
430 
431 	if (pfn > zone->compact_cached_migrate_pfn[0])
432 		zone->compact_cached_migrate_pfn[0] = pfn;
433 	if (cc->mode != MIGRATE_ASYNC &&
434 	    pfn > zone->compact_cached_migrate_pfn[1])
435 		zone->compact_cached_migrate_pfn[1] = pfn;
436 }
437 
438 /*
439  * If no pages were isolated then mark this pageblock to be skipped in the
440  * future. The information is later cleared by __reset_isolation_suitable().
441  */
442 static void update_pageblock_skip(struct compact_control *cc,
443 			struct page *page, unsigned long pfn)
444 {
445 	struct zone *zone = cc->zone;
446 
447 	if (cc->no_set_skip_hint)
448 		return;
449 
450 	if (!page)
451 		return;
452 
453 	set_pageblock_skip(page);
454 
455 	/* Update where async and sync compaction should restart */
456 	if (pfn < zone->compact_cached_free_pfn)
457 		zone->compact_cached_free_pfn = pfn;
458 }
459 #else
460 static inline bool isolation_suitable(struct compact_control *cc,
461 					struct page *page)
462 {
463 	return true;
464 }
465 
466 static inline bool pageblock_skip_persistent(struct page *page)
467 {
468 	return false;
469 }
470 
471 static inline void update_pageblock_skip(struct compact_control *cc,
472 			struct page *page, unsigned long pfn)
473 {
474 }
475 
476 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
477 {
478 }
479 
480 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
481 							unsigned long pfn)
482 {
483 	return false;
484 }
485 #endif /* CONFIG_COMPACTION */
486 
487 /*
488  * Compaction requires the taking of some coarse locks that are potentially
489  * very heavily contended. For async compaction, trylock and record if the
490  * lock is contended. The lock will still be acquired but compaction will
491  * abort when the current block is finished regardless of success rate.
492  * Sync compaction acquires the lock.
493  *
494  * Always returns true which makes it easier to track lock state in callers.
495  */
496 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
497 						struct compact_control *cc)
498 	__acquires(lock)
499 {
500 	/* Track if the lock is contended in async mode */
501 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
502 		if (spin_trylock_irqsave(lock, *flags))
503 			return true;
504 
505 		cc->contended = true;
506 	}
507 
508 	spin_lock_irqsave(lock, *flags);
509 	return true;
510 }
511 
512 /*
513  * Compaction requires the taking of some coarse locks that are potentially
514  * very heavily contended. The lock should be periodically unlocked to avoid
515  * having disabled IRQs for a long time, even when there is nobody waiting on
516  * the lock. It might also be that allowing the IRQs will result in
517  * need_resched() becoming true. If scheduling is needed, async compaction
518  * aborts. Sync compaction schedules.
519  * Either compaction type will also abort if a fatal signal is pending.
520  * In either case if the lock was locked, it is dropped and not regained.
521  *
522  * Returns true if compaction should abort due to fatal signal pending, or
523  *		async compaction due to need_resched()
524  * Returns false when compaction can continue (sync compaction might have
525  *		scheduled)
526  */
527 static bool compact_unlock_should_abort(spinlock_t *lock,
528 		unsigned long flags, bool *locked, struct compact_control *cc)
529 {
530 	if (*locked) {
531 		spin_unlock_irqrestore(lock, flags);
532 		*locked = false;
533 	}
534 
535 	if (fatal_signal_pending(current)) {
536 		cc->contended = true;
537 		return true;
538 	}
539 
540 	cond_resched();
541 
542 	return false;
543 }
544 
545 /*
546  * Isolate free pages onto a private freelist. If @strict is true, will abort
547  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
548  * (even though it may still end up isolating some pages).
549  */
550 static unsigned long isolate_freepages_block(struct compact_control *cc,
551 				unsigned long *start_pfn,
552 				unsigned long end_pfn,
553 				struct list_head *freelist,
554 				unsigned int stride,
555 				bool strict)
556 {
557 	int nr_scanned = 0, total_isolated = 0;
558 	struct page *cursor;
559 	unsigned long flags = 0;
560 	bool locked = false;
561 	unsigned long blockpfn = *start_pfn;
562 	unsigned int order;
563 
564 	/* Strict mode is for isolation, speed is secondary */
565 	if (strict)
566 		stride = 1;
567 
568 	cursor = pfn_to_page(blockpfn);
569 
570 	/* Isolate free pages. */
571 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
572 		int isolated;
573 		struct page *page = cursor;
574 
575 		/*
576 		 * Periodically drop the lock (if held) regardless of its
577 		 * contention, to give chance to IRQs. Abort if fatal signal
578 		 * pending or async compaction detects need_resched()
579 		 */
580 		if (!(blockpfn % SWAP_CLUSTER_MAX)
581 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
582 								&locked, cc))
583 			break;
584 
585 		nr_scanned++;
586 
587 		/*
588 		 * For compound pages such as THP and hugetlbfs, we can save
589 		 * potentially a lot of iterations if we skip them at once.
590 		 * The check is racy, but we can consider only valid values
591 		 * and the only danger is skipping too much.
592 		 */
593 		if (PageCompound(page)) {
594 			const unsigned int order = compound_order(page);
595 
596 			if (likely(order < MAX_ORDER)) {
597 				blockpfn += (1UL << order) - 1;
598 				cursor += (1UL << order) - 1;
599 			}
600 			goto isolate_fail;
601 		}
602 
603 		if (!PageBuddy(page))
604 			goto isolate_fail;
605 
606 		/*
607 		 * If we already hold the lock, we can skip some rechecking.
608 		 * Note that if we hold the lock now, checked_pageblock was
609 		 * already set in some previous iteration (or strict is true),
610 		 * so it is correct to skip the suitable migration target
611 		 * recheck as well.
612 		 */
613 		if (!locked) {
614 			locked = compact_lock_irqsave(&cc->zone->lock,
615 								&flags, cc);
616 
617 			/* Recheck this is a buddy page under lock */
618 			if (!PageBuddy(page))
619 				goto isolate_fail;
620 		}
621 
622 		/* Found a free page, will break it into order-0 pages */
623 		order = buddy_order(page);
624 		isolated = __isolate_free_page(page, order);
625 		if (!isolated)
626 			break;
627 		set_page_private(page, order);
628 
629 		total_isolated += isolated;
630 		cc->nr_freepages += isolated;
631 		list_add_tail(&page->lru, freelist);
632 
633 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
634 			blockpfn += isolated;
635 			break;
636 		}
637 		/* Advance to the end of split page */
638 		blockpfn += isolated - 1;
639 		cursor += isolated - 1;
640 		continue;
641 
642 isolate_fail:
643 		if (strict)
644 			break;
645 		else
646 			continue;
647 
648 	}
649 
650 	if (locked)
651 		spin_unlock_irqrestore(&cc->zone->lock, flags);
652 
653 	/*
654 	 * There is a tiny chance that we have read bogus compound_order(),
655 	 * so be careful to not go outside of the pageblock.
656 	 */
657 	if (unlikely(blockpfn > end_pfn))
658 		blockpfn = end_pfn;
659 
660 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
661 					nr_scanned, total_isolated);
662 
663 	/* Record how far we have got within the block */
664 	*start_pfn = blockpfn;
665 
666 	/*
667 	 * If strict isolation is requested by CMA then check that all the
668 	 * pages requested were isolated. If there were any failures, 0 is
669 	 * returned and CMA will fail.
670 	 */
671 	if (strict && blockpfn < end_pfn)
672 		total_isolated = 0;
673 
674 	cc->total_free_scanned += nr_scanned;
675 	if (total_isolated)
676 		count_compact_events(COMPACTISOLATED, total_isolated);
677 	return total_isolated;
678 }
679 
680 /**
681  * isolate_freepages_range() - isolate free pages.
682  * @cc:        Compaction control structure.
683  * @start_pfn: The first PFN to start isolating.
684  * @end_pfn:   The one-past-last PFN.
685  *
686  * Non-free pages, invalid PFNs, or zone boundaries within the
687  * [start_pfn, end_pfn) range are considered errors, cause function to
688  * undo its actions and return zero.
689  *
690  * Otherwise, function returns one-past-the-last PFN of isolated page
691  * (which may be greater then end_pfn if end fell in a middle of
692  * a free page).
693  */
694 unsigned long
695 isolate_freepages_range(struct compact_control *cc,
696 			unsigned long start_pfn, unsigned long end_pfn)
697 {
698 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
699 	LIST_HEAD(freelist);
700 
701 	pfn = start_pfn;
702 	block_start_pfn = pageblock_start_pfn(pfn);
703 	if (block_start_pfn < cc->zone->zone_start_pfn)
704 		block_start_pfn = cc->zone->zone_start_pfn;
705 	block_end_pfn = pageblock_end_pfn(pfn);
706 
707 	for (; pfn < end_pfn; pfn += isolated,
708 				block_start_pfn = block_end_pfn,
709 				block_end_pfn += pageblock_nr_pages) {
710 		/* Protect pfn from changing by isolate_freepages_block */
711 		unsigned long isolate_start_pfn = pfn;
712 
713 		block_end_pfn = min(block_end_pfn, end_pfn);
714 
715 		/*
716 		 * pfn could pass the block_end_pfn if isolated freepage
717 		 * is more than pageblock order. In this case, we adjust
718 		 * scanning range to right one.
719 		 */
720 		if (pfn >= block_end_pfn) {
721 			block_start_pfn = pageblock_start_pfn(pfn);
722 			block_end_pfn = pageblock_end_pfn(pfn);
723 			block_end_pfn = min(block_end_pfn, end_pfn);
724 		}
725 
726 		if (!pageblock_pfn_to_page(block_start_pfn,
727 					block_end_pfn, cc->zone))
728 			break;
729 
730 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
731 					block_end_pfn, &freelist, 0, true);
732 
733 		/*
734 		 * In strict mode, isolate_freepages_block() returns 0 if
735 		 * there are any holes in the block (ie. invalid PFNs or
736 		 * non-free pages).
737 		 */
738 		if (!isolated)
739 			break;
740 
741 		/*
742 		 * If we managed to isolate pages, it is always (1 << n) *
743 		 * pageblock_nr_pages for some non-negative n.  (Max order
744 		 * page may span two pageblocks).
745 		 */
746 	}
747 
748 	/* __isolate_free_page() does not map the pages */
749 	split_map_pages(&freelist);
750 
751 	if (pfn < end_pfn) {
752 		/* Loop terminated early, cleanup. */
753 		release_freepages(&freelist);
754 		return 0;
755 	}
756 
757 	/* We don't use freelists for anything. */
758 	return pfn;
759 }
760 
761 /* Similar to reclaim, but different enough that they don't share logic */
762 static bool too_many_isolated(pg_data_t *pgdat)
763 {
764 	bool too_many;
765 
766 	unsigned long active, inactive, isolated;
767 
768 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
769 			node_page_state(pgdat, NR_INACTIVE_ANON);
770 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
771 			node_page_state(pgdat, NR_ACTIVE_ANON);
772 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
773 			node_page_state(pgdat, NR_ISOLATED_ANON);
774 
775 	too_many = isolated > (inactive + active) / 2;
776 	if (!too_many)
777 		wake_throttle_isolated(pgdat);
778 
779 	return too_many;
780 }
781 
782 /**
783  * isolate_migratepages_block() - isolate all migrate-able pages within
784  *				  a single pageblock
785  * @cc:		Compaction control structure.
786  * @low_pfn:	The first PFN to isolate
787  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
788  * @mode:	Isolation mode to be used.
789  *
790  * Isolate all pages that can be migrated from the range specified by
791  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
792  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
793  * -ENOMEM in case we could not allocate a page, or 0.
794  * cc->migrate_pfn will contain the next pfn to scan.
795  *
796  * The pages are isolated on cc->migratepages list (not required to be empty),
797  * and cc->nr_migratepages is updated accordingly.
798  */
799 static int
800 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
801 			unsigned long end_pfn, isolate_mode_t mode)
802 {
803 	pg_data_t *pgdat = cc->zone->zone_pgdat;
804 	unsigned long nr_scanned = 0, nr_isolated = 0;
805 	struct lruvec *lruvec;
806 	unsigned long flags = 0;
807 	struct lruvec *locked = NULL;
808 	struct page *page = NULL, *valid_page = NULL;
809 	struct address_space *mapping;
810 	unsigned long start_pfn = low_pfn;
811 	bool skip_on_failure = false;
812 	unsigned long next_skip_pfn = 0;
813 	bool skip_updated = false;
814 	int ret = 0;
815 
816 	cc->migrate_pfn = low_pfn;
817 
818 	/*
819 	 * Ensure that there are not too many pages isolated from the LRU
820 	 * list by either parallel reclaimers or compaction. If there are,
821 	 * delay for some time until fewer pages are isolated
822 	 */
823 	while (unlikely(too_many_isolated(pgdat))) {
824 		/* stop isolation if there are still pages not migrated */
825 		if (cc->nr_migratepages)
826 			return -EAGAIN;
827 
828 		/* async migration should just abort */
829 		if (cc->mode == MIGRATE_ASYNC)
830 			return -EAGAIN;
831 
832 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
833 
834 		if (fatal_signal_pending(current))
835 			return -EINTR;
836 	}
837 
838 	cond_resched();
839 
840 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
841 		skip_on_failure = true;
842 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
843 	}
844 
845 	/* Time to isolate some pages for migration */
846 	for (; low_pfn < end_pfn; low_pfn++) {
847 
848 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
849 			/*
850 			 * We have isolated all migration candidates in the
851 			 * previous order-aligned block, and did not skip it due
852 			 * to failure. We should migrate the pages now and
853 			 * hopefully succeed compaction.
854 			 */
855 			if (nr_isolated)
856 				break;
857 
858 			/*
859 			 * We failed to isolate in the previous order-aligned
860 			 * block. Set the new boundary to the end of the
861 			 * current block. Note we can't simply increase
862 			 * next_skip_pfn by 1 << order, as low_pfn might have
863 			 * been incremented by a higher number due to skipping
864 			 * a compound or a high-order buddy page in the
865 			 * previous loop iteration.
866 			 */
867 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
868 		}
869 
870 		/*
871 		 * Periodically drop the lock (if held) regardless of its
872 		 * contention, to give chance to IRQs. Abort completely if
873 		 * a fatal signal is pending.
874 		 */
875 		if (!(low_pfn % SWAP_CLUSTER_MAX)) {
876 			if (locked) {
877 				unlock_page_lruvec_irqrestore(locked, flags);
878 				locked = NULL;
879 			}
880 
881 			if (fatal_signal_pending(current)) {
882 				cc->contended = true;
883 				ret = -EINTR;
884 
885 				goto fatal_pending;
886 			}
887 
888 			cond_resched();
889 		}
890 
891 		nr_scanned++;
892 
893 		page = pfn_to_page(low_pfn);
894 
895 		/*
896 		 * Check if the pageblock has already been marked skipped.
897 		 * Only the aligned PFN is checked as the caller isolates
898 		 * COMPACT_CLUSTER_MAX at a time so the second call must
899 		 * not falsely conclude that the block should be skipped.
900 		 */
901 		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
902 			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
903 				low_pfn = end_pfn;
904 				page = NULL;
905 				goto isolate_abort;
906 			}
907 			valid_page = page;
908 		}
909 
910 		if (PageHuge(page) && cc->alloc_contig) {
911 			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
912 
913 			/*
914 			 * Fail isolation in case isolate_or_dissolve_huge_page()
915 			 * reports an error. In case of -ENOMEM, abort right away.
916 			 */
917 			if (ret < 0) {
918 				 /* Do not report -EBUSY down the chain */
919 				if (ret == -EBUSY)
920 					ret = 0;
921 				low_pfn += (1UL << compound_order(page)) - 1;
922 				goto isolate_fail;
923 			}
924 
925 			if (PageHuge(page)) {
926 				/*
927 				 * Hugepage was successfully isolated and placed
928 				 * on the cc->migratepages list.
929 				 */
930 				low_pfn += compound_nr(page) - 1;
931 				goto isolate_success_no_list;
932 			}
933 
934 			/*
935 			 * Ok, the hugepage was dissolved. Now these pages are
936 			 * Buddy and cannot be re-allocated because they are
937 			 * isolated. Fall-through as the check below handles
938 			 * Buddy pages.
939 			 */
940 		}
941 
942 		/*
943 		 * Skip if free. We read page order here without zone lock
944 		 * which is generally unsafe, but the race window is small and
945 		 * the worst thing that can happen is that we skip some
946 		 * potential isolation targets.
947 		 */
948 		if (PageBuddy(page)) {
949 			unsigned long freepage_order = buddy_order_unsafe(page);
950 
951 			/*
952 			 * Without lock, we cannot be sure that what we got is
953 			 * a valid page order. Consider only values in the
954 			 * valid order range to prevent low_pfn overflow.
955 			 */
956 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
957 				low_pfn += (1UL << freepage_order) - 1;
958 			continue;
959 		}
960 
961 		/*
962 		 * Regardless of being on LRU, compound pages such as THP and
963 		 * hugetlbfs are not to be compacted unless we are attempting
964 		 * an allocation much larger than the huge page size (eg CMA).
965 		 * We can potentially save a lot of iterations if we skip them
966 		 * at once. The check is racy, but we can consider only valid
967 		 * values and the only danger is skipping too much.
968 		 */
969 		if (PageCompound(page) && !cc->alloc_contig) {
970 			const unsigned int order = compound_order(page);
971 
972 			if (likely(order < MAX_ORDER))
973 				low_pfn += (1UL << order) - 1;
974 			goto isolate_fail;
975 		}
976 
977 		/*
978 		 * Check may be lockless but that's ok as we recheck later.
979 		 * It's possible to migrate LRU and non-lru movable pages.
980 		 * Skip any other type of page
981 		 */
982 		if (!PageLRU(page)) {
983 			/*
984 			 * __PageMovable can return false positive so we need
985 			 * to verify it under page_lock.
986 			 */
987 			if (unlikely(__PageMovable(page)) &&
988 					!PageIsolated(page)) {
989 				if (locked) {
990 					unlock_page_lruvec_irqrestore(locked, flags);
991 					locked = NULL;
992 				}
993 
994 				if (!isolate_movable_page(page, mode))
995 					goto isolate_success;
996 			}
997 
998 			goto isolate_fail;
999 		}
1000 
1001 		/*
1002 		 * Migration will fail if an anonymous page is pinned in memory,
1003 		 * so avoid taking lru_lock and isolating it unnecessarily in an
1004 		 * admittedly racy check.
1005 		 */
1006 		mapping = page_mapping(page);
1007 		if (!mapping && page_count(page) > page_mapcount(page))
1008 			goto isolate_fail;
1009 
1010 		/*
1011 		 * Only allow to migrate anonymous pages in GFP_NOFS context
1012 		 * because those do not depend on fs locks.
1013 		 */
1014 		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1015 			goto isolate_fail;
1016 
1017 		/*
1018 		 * Be careful not to clear PageLRU until after we're
1019 		 * sure the page is not being freed elsewhere -- the
1020 		 * page release code relies on it.
1021 		 */
1022 		if (unlikely(!get_page_unless_zero(page)))
1023 			goto isolate_fail;
1024 
1025 		/* Only take pages on LRU: a check now makes later tests safe */
1026 		if (!PageLRU(page))
1027 			goto isolate_fail_put;
1028 
1029 		/* Compaction might skip unevictable pages but CMA takes them */
1030 		if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1031 			goto isolate_fail_put;
1032 
1033 		/*
1034 		 * To minimise LRU disruption, the caller can indicate with
1035 		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1036 		 * it will be able to migrate without blocking - clean pages
1037 		 * for the most part.  PageWriteback would require blocking.
1038 		 */
1039 		if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1040 			goto isolate_fail_put;
1041 
1042 		if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1043 			bool migrate_dirty;
1044 
1045 			/*
1046 			 * Only pages without mappings or that have a
1047 			 * ->migratepage callback are possible to migrate
1048 			 * without blocking. However, we can be racing with
1049 			 * truncation so it's necessary to lock the page
1050 			 * to stabilise the mapping as truncation holds
1051 			 * the page lock until after the page is removed
1052 			 * from the page cache.
1053 			 */
1054 			if (!trylock_page(page))
1055 				goto isolate_fail_put;
1056 
1057 			mapping = page_mapping(page);
1058 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1059 			unlock_page(page);
1060 			if (!migrate_dirty)
1061 				goto isolate_fail_put;
1062 		}
1063 
1064 		/* Try isolate the page */
1065 		if (!TestClearPageLRU(page))
1066 			goto isolate_fail_put;
1067 
1068 		lruvec = folio_lruvec(page_folio(page));
1069 
1070 		/* If we already hold the lock, we can skip some rechecking */
1071 		if (lruvec != locked) {
1072 			if (locked)
1073 				unlock_page_lruvec_irqrestore(locked, flags);
1074 
1075 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1076 			locked = lruvec;
1077 
1078 			lruvec_memcg_debug(lruvec, page_folio(page));
1079 
1080 			/* Try get exclusive access under lock */
1081 			if (!skip_updated) {
1082 				skip_updated = true;
1083 				if (test_and_set_skip(cc, page, low_pfn))
1084 					goto isolate_abort;
1085 			}
1086 
1087 			/*
1088 			 * Page become compound since the non-locked check,
1089 			 * and it's on LRU. It can only be a THP so the order
1090 			 * is safe to read and it's 0 for tail pages.
1091 			 */
1092 			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1093 				low_pfn += compound_nr(page) - 1;
1094 				SetPageLRU(page);
1095 				goto isolate_fail_put;
1096 			}
1097 		}
1098 
1099 		/* The whole page is taken off the LRU; skip the tail pages. */
1100 		if (PageCompound(page))
1101 			low_pfn += compound_nr(page) - 1;
1102 
1103 		/* Successfully isolated */
1104 		del_page_from_lru_list(page, lruvec);
1105 		mod_node_page_state(page_pgdat(page),
1106 				NR_ISOLATED_ANON + page_is_file_lru(page),
1107 				thp_nr_pages(page));
1108 
1109 isolate_success:
1110 		list_add(&page->lru, &cc->migratepages);
1111 isolate_success_no_list:
1112 		cc->nr_migratepages += compound_nr(page);
1113 		nr_isolated += compound_nr(page);
1114 
1115 		/*
1116 		 * Avoid isolating too much unless this block is being
1117 		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1118 		 * or a lock is contended. For contention, isolate quickly to
1119 		 * potentially remove one source of contention.
1120 		 */
1121 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1122 		    !cc->rescan && !cc->contended) {
1123 			++low_pfn;
1124 			break;
1125 		}
1126 
1127 		continue;
1128 
1129 isolate_fail_put:
1130 		/* Avoid potential deadlock in freeing page under lru_lock */
1131 		if (locked) {
1132 			unlock_page_lruvec_irqrestore(locked, flags);
1133 			locked = NULL;
1134 		}
1135 		put_page(page);
1136 
1137 isolate_fail:
1138 		if (!skip_on_failure && ret != -ENOMEM)
1139 			continue;
1140 
1141 		/*
1142 		 * We have isolated some pages, but then failed. Release them
1143 		 * instead of migrating, as we cannot form the cc->order buddy
1144 		 * page anyway.
1145 		 */
1146 		if (nr_isolated) {
1147 			if (locked) {
1148 				unlock_page_lruvec_irqrestore(locked, flags);
1149 				locked = NULL;
1150 			}
1151 			putback_movable_pages(&cc->migratepages);
1152 			cc->nr_migratepages = 0;
1153 			nr_isolated = 0;
1154 		}
1155 
1156 		if (low_pfn < next_skip_pfn) {
1157 			low_pfn = next_skip_pfn - 1;
1158 			/*
1159 			 * The check near the loop beginning would have updated
1160 			 * next_skip_pfn too, but this is a bit simpler.
1161 			 */
1162 			next_skip_pfn += 1UL << cc->order;
1163 		}
1164 
1165 		if (ret == -ENOMEM)
1166 			break;
1167 	}
1168 
1169 	/*
1170 	 * The PageBuddy() check could have potentially brought us outside
1171 	 * the range to be scanned.
1172 	 */
1173 	if (unlikely(low_pfn > end_pfn))
1174 		low_pfn = end_pfn;
1175 
1176 	page = NULL;
1177 
1178 isolate_abort:
1179 	if (locked)
1180 		unlock_page_lruvec_irqrestore(locked, flags);
1181 	if (page) {
1182 		SetPageLRU(page);
1183 		put_page(page);
1184 	}
1185 
1186 	/*
1187 	 * Updated the cached scanner pfn once the pageblock has been scanned
1188 	 * Pages will either be migrated in which case there is no point
1189 	 * scanning in the near future or migration failed in which case the
1190 	 * failure reason may persist. The block is marked for skipping if
1191 	 * there were no pages isolated in the block or if the block is
1192 	 * rescanned twice in a row.
1193 	 */
1194 	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1195 		if (valid_page && !skip_updated)
1196 			set_pageblock_skip(valid_page);
1197 		update_cached_migrate(cc, low_pfn);
1198 	}
1199 
1200 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1201 						nr_scanned, nr_isolated);
1202 
1203 fatal_pending:
1204 	cc->total_migrate_scanned += nr_scanned;
1205 	if (nr_isolated)
1206 		count_compact_events(COMPACTISOLATED, nr_isolated);
1207 
1208 	cc->migrate_pfn = low_pfn;
1209 
1210 	return ret;
1211 }
1212 
1213 /**
1214  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1215  * @cc:        Compaction control structure.
1216  * @start_pfn: The first PFN to start isolating.
1217  * @end_pfn:   The one-past-last PFN.
1218  *
1219  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1220  * in case we could not allocate a page, or 0.
1221  */
1222 int
1223 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1224 							unsigned long end_pfn)
1225 {
1226 	unsigned long pfn, block_start_pfn, block_end_pfn;
1227 	int ret = 0;
1228 
1229 	/* Scan block by block. First and last block may be incomplete */
1230 	pfn = start_pfn;
1231 	block_start_pfn = pageblock_start_pfn(pfn);
1232 	if (block_start_pfn < cc->zone->zone_start_pfn)
1233 		block_start_pfn = cc->zone->zone_start_pfn;
1234 	block_end_pfn = pageblock_end_pfn(pfn);
1235 
1236 	for (; pfn < end_pfn; pfn = block_end_pfn,
1237 				block_start_pfn = block_end_pfn,
1238 				block_end_pfn += pageblock_nr_pages) {
1239 
1240 		block_end_pfn = min(block_end_pfn, end_pfn);
1241 
1242 		if (!pageblock_pfn_to_page(block_start_pfn,
1243 					block_end_pfn, cc->zone))
1244 			continue;
1245 
1246 		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1247 						 ISOLATE_UNEVICTABLE);
1248 
1249 		if (ret)
1250 			break;
1251 
1252 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1253 			break;
1254 	}
1255 
1256 	return ret;
1257 }
1258 
1259 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1260 #ifdef CONFIG_COMPACTION
1261 
1262 static bool suitable_migration_source(struct compact_control *cc,
1263 							struct page *page)
1264 {
1265 	int block_mt;
1266 
1267 	if (pageblock_skip_persistent(page))
1268 		return false;
1269 
1270 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1271 		return true;
1272 
1273 	block_mt = get_pageblock_migratetype(page);
1274 
1275 	if (cc->migratetype == MIGRATE_MOVABLE)
1276 		return is_migrate_movable(block_mt);
1277 	else
1278 		return block_mt == cc->migratetype;
1279 }
1280 
1281 /* Returns true if the page is within a block suitable for migration to */
1282 static bool suitable_migration_target(struct compact_control *cc,
1283 							struct page *page)
1284 {
1285 	/* If the page is a large free page, then disallow migration */
1286 	if (PageBuddy(page)) {
1287 		/*
1288 		 * We are checking page_order without zone->lock taken. But
1289 		 * the only small danger is that we skip a potentially suitable
1290 		 * pageblock, so it's not worth to check order for valid range.
1291 		 */
1292 		if (buddy_order_unsafe(page) >= pageblock_order)
1293 			return false;
1294 	}
1295 
1296 	if (cc->ignore_block_suitable)
1297 		return true;
1298 
1299 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1300 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1301 		return true;
1302 
1303 	/* Otherwise skip the block */
1304 	return false;
1305 }
1306 
1307 static inline unsigned int
1308 freelist_scan_limit(struct compact_control *cc)
1309 {
1310 	unsigned short shift = BITS_PER_LONG - 1;
1311 
1312 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1313 }
1314 
1315 /*
1316  * Test whether the free scanner has reached the same or lower pageblock than
1317  * the migration scanner, and compaction should thus terminate.
1318  */
1319 static inline bool compact_scanners_met(struct compact_control *cc)
1320 {
1321 	return (cc->free_pfn >> pageblock_order)
1322 		<= (cc->migrate_pfn >> pageblock_order);
1323 }
1324 
1325 /*
1326  * Used when scanning for a suitable migration target which scans freelists
1327  * in reverse. Reorders the list such as the unscanned pages are scanned
1328  * first on the next iteration of the free scanner
1329  */
1330 static void
1331 move_freelist_head(struct list_head *freelist, struct page *freepage)
1332 {
1333 	LIST_HEAD(sublist);
1334 
1335 	if (!list_is_last(freelist, &freepage->lru)) {
1336 		list_cut_before(&sublist, freelist, &freepage->lru);
1337 		list_splice_tail(&sublist, freelist);
1338 	}
1339 }
1340 
1341 /*
1342  * Similar to move_freelist_head except used by the migration scanner
1343  * when scanning forward. It's possible for these list operations to
1344  * move against each other if they search the free list exactly in
1345  * lockstep.
1346  */
1347 static void
1348 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1349 {
1350 	LIST_HEAD(sublist);
1351 
1352 	if (!list_is_first(freelist, &freepage->lru)) {
1353 		list_cut_position(&sublist, freelist, &freepage->lru);
1354 		list_splice_tail(&sublist, freelist);
1355 	}
1356 }
1357 
1358 static void
1359 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1360 {
1361 	unsigned long start_pfn, end_pfn;
1362 	struct page *page;
1363 
1364 	/* Do not search around if there are enough pages already */
1365 	if (cc->nr_freepages >= cc->nr_migratepages)
1366 		return;
1367 
1368 	/* Minimise scanning during async compaction */
1369 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1370 		return;
1371 
1372 	/* Pageblock boundaries */
1373 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1374 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1375 
1376 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1377 	if (!page)
1378 		return;
1379 
1380 	/* Scan before */
1381 	if (start_pfn != pfn) {
1382 		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1383 		if (cc->nr_freepages >= cc->nr_migratepages)
1384 			return;
1385 	}
1386 
1387 	/* Scan after */
1388 	start_pfn = pfn + nr_isolated;
1389 	if (start_pfn < end_pfn)
1390 		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1391 
1392 	/* Skip this pageblock in the future as it's full or nearly full */
1393 	if (cc->nr_freepages < cc->nr_migratepages)
1394 		set_pageblock_skip(page);
1395 }
1396 
1397 /* Search orders in round-robin fashion */
1398 static int next_search_order(struct compact_control *cc, int order)
1399 {
1400 	order--;
1401 	if (order < 0)
1402 		order = cc->order - 1;
1403 
1404 	/* Search wrapped around? */
1405 	if (order == cc->search_order) {
1406 		cc->search_order--;
1407 		if (cc->search_order < 0)
1408 			cc->search_order = cc->order - 1;
1409 		return -1;
1410 	}
1411 
1412 	return order;
1413 }
1414 
1415 static unsigned long
1416 fast_isolate_freepages(struct compact_control *cc)
1417 {
1418 	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1419 	unsigned int nr_scanned = 0;
1420 	unsigned long low_pfn, min_pfn, highest = 0;
1421 	unsigned long nr_isolated = 0;
1422 	unsigned long distance;
1423 	struct page *page = NULL;
1424 	bool scan_start = false;
1425 	int order;
1426 
1427 	/* Full compaction passes in a negative order */
1428 	if (cc->order <= 0)
1429 		return cc->free_pfn;
1430 
1431 	/*
1432 	 * If starting the scan, use a deeper search and use the highest
1433 	 * PFN found if a suitable one is not found.
1434 	 */
1435 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1436 		limit = pageblock_nr_pages >> 1;
1437 		scan_start = true;
1438 	}
1439 
1440 	/*
1441 	 * Preferred point is in the top quarter of the scan space but take
1442 	 * a pfn from the top half if the search is problematic.
1443 	 */
1444 	distance = (cc->free_pfn - cc->migrate_pfn);
1445 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1446 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1447 
1448 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1449 		low_pfn = min_pfn;
1450 
1451 	/*
1452 	 * Search starts from the last successful isolation order or the next
1453 	 * order to search after a previous failure
1454 	 */
1455 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1456 
1457 	for (order = cc->search_order;
1458 	     !page && order >= 0;
1459 	     order = next_search_order(cc, order)) {
1460 		struct free_area *area = &cc->zone->free_area[order];
1461 		struct list_head *freelist;
1462 		struct page *freepage;
1463 		unsigned long flags;
1464 		unsigned int order_scanned = 0;
1465 		unsigned long high_pfn = 0;
1466 
1467 		if (!area->nr_free)
1468 			continue;
1469 
1470 		spin_lock_irqsave(&cc->zone->lock, flags);
1471 		freelist = &area->free_list[MIGRATE_MOVABLE];
1472 		list_for_each_entry_reverse(freepage, freelist, lru) {
1473 			unsigned long pfn;
1474 
1475 			order_scanned++;
1476 			nr_scanned++;
1477 			pfn = page_to_pfn(freepage);
1478 
1479 			if (pfn >= highest)
1480 				highest = max(pageblock_start_pfn(pfn),
1481 					      cc->zone->zone_start_pfn);
1482 
1483 			if (pfn >= low_pfn) {
1484 				cc->fast_search_fail = 0;
1485 				cc->search_order = order;
1486 				page = freepage;
1487 				break;
1488 			}
1489 
1490 			if (pfn >= min_pfn && pfn > high_pfn) {
1491 				high_pfn = pfn;
1492 
1493 				/* Shorten the scan if a candidate is found */
1494 				limit >>= 1;
1495 			}
1496 
1497 			if (order_scanned >= limit)
1498 				break;
1499 		}
1500 
1501 		/* Use a minimum pfn if a preferred one was not found */
1502 		if (!page && high_pfn) {
1503 			page = pfn_to_page(high_pfn);
1504 
1505 			/* Update freepage for the list reorder below */
1506 			freepage = page;
1507 		}
1508 
1509 		/* Reorder to so a future search skips recent pages */
1510 		move_freelist_head(freelist, freepage);
1511 
1512 		/* Isolate the page if available */
1513 		if (page) {
1514 			if (__isolate_free_page(page, order)) {
1515 				set_page_private(page, order);
1516 				nr_isolated = 1 << order;
1517 				cc->nr_freepages += nr_isolated;
1518 				list_add_tail(&page->lru, &cc->freepages);
1519 				count_compact_events(COMPACTISOLATED, nr_isolated);
1520 			} else {
1521 				/* If isolation fails, abort the search */
1522 				order = cc->search_order + 1;
1523 				page = NULL;
1524 			}
1525 		}
1526 
1527 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1528 
1529 		/*
1530 		 * Smaller scan on next order so the total scan is related
1531 		 * to freelist_scan_limit.
1532 		 */
1533 		if (order_scanned >= limit)
1534 			limit = max(1U, limit >> 1);
1535 	}
1536 
1537 	if (!page) {
1538 		cc->fast_search_fail++;
1539 		if (scan_start) {
1540 			/*
1541 			 * Use the highest PFN found above min. If one was
1542 			 * not found, be pessimistic for direct compaction
1543 			 * and use the min mark.
1544 			 */
1545 			if (highest) {
1546 				page = pfn_to_page(highest);
1547 				cc->free_pfn = highest;
1548 			} else {
1549 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1550 					page = pageblock_pfn_to_page(min_pfn,
1551 						min(pageblock_end_pfn(min_pfn),
1552 						    zone_end_pfn(cc->zone)),
1553 						cc->zone);
1554 					cc->free_pfn = min_pfn;
1555 				}
1556 			}
1557 		}
1558 	}
1559 
1560 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1561 		highest -= pageblock_nr_pages;
1562 		cc->zone->compact_cached_free_pfn = highest;
1563 	}
1564 
1565 	cc->total_free_scanned += nr_scanned;
1566 	if (!page)
1567 		return cc->free_pfn;
1568 
1569 	low_pfn = page_to_pfn(page);
1570 	fast_isolate_around(cc, low_pfn, nr_isolated);
1571 	return low_pfn;
1572 }
1573 
1574 /*
1575  * Based on information in the current compact_control, find blocks
1576  * suitable for isolating free pages from and then isolate them.
1577  */
1578 static void isolate_freepages(struct compact_control *cc)
1579 {
1580 	struct zone *zone = cc->zone;
1581 	struct page *page;
1582 	unsigned long block_start_pfn;	/* start of current pageblock */
1583 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1584 	unsigned long block_end_pfn;	/* end of current pageblock */
1585 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1586 	struct list_head *freelist = &cc->freepages;
1587 	unsigned int stride;
1588 
1589 	/* Try a small search of the free lists for a candidate */
1590 	isolate_start_pfn = fast_isolate_freepages(cc);
1591 	if (cc->nr_freepages)
1592 		goto splitmap;
1593 
1594 	/*
1595 	 * Initialise the free scanner. The starting point is where we last
1596 	 * successfully isolated from, zone-cached value, or the end of the
1597 	 * zone when isolating for the first time. For looping we also need
1598 	 * this pfn aligned down to the pageblock boundary, because we do
1599 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1600 	 * For ending point, take care when isolating in last pageblock of a
1601 	 * zone which ends in the middle of a pageblock.
1602 	 * The low boundary is the end of the pageblock the migration scanner
1603 	 * is using.
1604 	 */
1605 	isolate_start_pfn = cc->free_pfn;
1606 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1607 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1608 						zone_end_pfn(zone));
1609 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1610 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1611 
1612 	/*
1613 	 * Isolate free pages until enough are available to migrate the
1614 	 * pages on cc->migratepages. We stop searching if the migrate
1615 	 * and free page scanners meet or enough free pages are isolated.
1616 	 */
1617 	for (; block_start_pfn >= low_pfn;
1618 				block_end_pfn = block_start_pfn,
1619 				block_start_pfn -= pageblock_nr_pages,
1620 				isolate_start_pfn = block_start_pfn) {
1621 		unsigned long nr_isolated;
1622 
1623 		/*
1624 		 * This can iterate a massively long zone without finding any
1625 		 * suitable migration targets, so periodically check resched.
1626 		 */
1627 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1628 			cond_resched();
1629 
1630 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1631 									zone);
1632 		if (!page)
1633 			continue;
1634 
1635 		/* Check the block is suitable for migration */
1636 		if (!suitable_migration_target(cc, page))
1637 			continue;
1638 
1639 		/* If isolation recently failed, do not retry */
1640 		if (!isolation_suitable(cc, page))
1641 			continue;
1642 
1643 		/* Found a block suitable for isolating free pages from. */
1644 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1645 					block_end_pfn, freelist, stride, false);
1646 
1647 		/* Update the skip hint if the full pageblock was scanned */
1648 		if (isolate_start_pfn == block_end_pfn)
1649 			update_pageblock_skip(cc, page, block_start_pfn);
1650 
1651 		/* Are enough freepages isolated? */
1652 		if (cc->nr_freepages >= cc->nr_migratepages) {
1653 			if (isolate_start_pfn >= block_end_pfn) {
1654 				/*
1655 				 * Restart at previous pageblock if more
1656 				 * freepages can be isolated next time.
1657 				 */
1658 				isolate_start_pfn =
1659 					block_start_pfn - pageblock_nr_pages;
1660 			}
1661 			break;
1662 		} else if (isolate_start_pfn < block_end_pfn) {
1663 			/*
1664 			 * If isolation failed early, do not continue
1665 			 * needlessly.
1666 			 */
1667 			break;
1668 		}
1669 
1670 		/* Adjust stride depending on isolation */
1671 		if (nr_isolated) {
1672 			stride = 1;
1673 			continue;
1674 		}
1675 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1676 	}
1677 
1678 	/*
1679 	 * Record where the free scanner will restart next time. Either we
1680 	 * broke from the loop and set isolate_start_pfn based on the last
1681 	 * call to isolate_freepages_block(), or we met the migration scanner
1682 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1683 	 */
1684 	cc->free_pfn = isolate_start_pfn;
1685 
1686 splitmap:
1687 	/* __isolate_free_page() does not map the pages */
1688 	split_map_pages(freelist);
1689 }
1690 
1691 /*
1692  * This is a migrate-callback that "allocates" freepages by taking pages
1693  * from the isolated freelists in the block we are migrating to.
1694  */
1695 static struct page *compaction_alloc(struct page *migratepage,
1696 					unsigned long data)
1697 {
1698 	struct compact_control *cc = (struct compact_control *)data;
1699 	struct page *freepage;
1700 
1701 	if (list_empty(&cc->freepages)) {
1702 		isolate_freepages(cc);
1703 
1704 		if (list_empty(&cc->freepages))
1705 			return NULL;
1706 	}
1707 
1708 	freepage = list_entry(cc->freepages.next, struct page, lru);
1709 	list_del(&freepage->lru);
1710 	cc->nr_freepages--;
1711 
1712 	return freepage;
1713 }
1714 
1715 /*
1716  * This is a migrate-callback that "frees" freepages back to the isolated
1717  * freelist.  All pages on the freelist are from the same zone, so there is no
1718  * special handling needed for NUMA.
1719  */
1720 static void compaction_free(struct page *page, unsigned long data)
1721 {
1722 	struct compact_control *cc = (struct compact_control *)data;
1723 
1724 	list_add(&page->lru, &cc->freepages);
1725 	cc->nr_freepages++;
1726 }
1727 
1728 /* possible outcome of isolate_migratepages */
1729 typedef enum {
1730 	ISOLATE_ABORT,		/* Abort compaction now */
1731 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1732 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1733 } isolate_migrate_t;
1734 
1735 /*
1736  * Allow userspace to control policy on scanning the unevictable LRU for
1737  * compactable pages.
1738  */
1739 #ifdef CONFIG_PREEMPT_RT
1740 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1741 #else
1742 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1743 #endif
1744 
1745 static inline void
1746 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1747 {
1748 	if (cc->fast_start_pfn == ULONG_MAX)
1749 		return;
1750 
1751 	if (!cc->fast_start_pfn)
1752 		cc->fast_start_pfn = pfn;
1753 
1754 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1755 }
1756 
1757 static inline unsigned long
1758 reinit_migrate_pfn(struct compact_control *cc)
1759 {
1760 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1761 		return cc->migrate_pfn;
1762 
1763 	cc->migrate_pfn = cc->fast_start_pfn;
1764 	cc->fast_start_pfn = ULONG_MAX;
1765 
1766 	return cc->migrate_pfn;
1767 }
1768 
1769 /*
1770  * Briefly search the free lists for a migration source that already has
1771  * some free pages to reduce the number of pages that need migration
1772  * before a pageblock is free.
1773  */
1774 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1775 {
1776 	unsigned int limit = freelist_scan_limit(cc);
1777 	unsigned int nr_scanned = 0;
1778 	unsigned long distance;
1779 	unsigned long pfn = cc->migrate_pfn;
1780 	unsigned long high_pfn;
1781 	int order;
1782 	bool found_block = false;
1783 
1784 	/* Skip hints are relied on to avoid repeats on the fast search */
1785 	if (cc->ignore_skip_hint)
1786 		return pfn;
1787 
1788 	/*
1789 	 * If the migrate_pfn is not at the start of a zone or the start
1790 	 * of a pageblock then assume this is a continuation of a previous
1791 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1792 	 */
1793 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1794 		return pfn;
1795 
1796 	/*
1797 	 * For smaller orders, just linearly scan as the number of pages
1798 	 * to migrate should be relatively small and does not necessarily
1799 	 * justify freeing up a large block for a small allocation.
1800 	 */
1801 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1802 		return pfn;
1803 
1804 	/*
1805 	 * Only allow kcompactd and direct requests for movable pages to
1806 	 * quickly clear out a MOVABLE pageblock for allocation. This
1807 	 * reduces the risk that a large movable pageblock is freed for
1808 	 * an unmovable/reclaimable small allocation.
1809 	 */
1810 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1811 		return pfn;
1812 
1813 	/*
1814 	 * When starting the migration scanner, pick any pageblock within the
1815 	 * first half of the search space. Otherwise try and pick a pageblock
1816 	 * within the first eighth to reduce the chances that a migration
1817 	 * target later becomes a source.
1818 	 */
1819 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1820 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1821 		distance >>= 2;
1822 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1823 
1824 	for (order = cc->order - 1;
1825 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1826 	     order--) {
1827 		struct free_area *area = &cc->zone->free_area[order];
1828 		struct list_head *freelist;
1829 		unsigned long flags;
1830 		struct page *freepage;
1831 
1832 		if (!area->nr_free)
1833 			continue;
1834 
1835 		spin_lock_irqsave(&cc->zone->lock, flags);
1836 		freelist = &area->free_list[MIGRATE_MOVABLE];
1837 		list_for_each_entry(freepage, freelist, lru) {
1838 			unsigned long free_pfn;
1839 
1840 			if (nr_scanned++ >= limit) {
1841 				move_freelist_tail(freelist, freepage);
1842 				break;
1843 			}
1844 
1845 			free_pfn = page_to_pfn(freepage);
1846 			if (free_pfn < high_pfn) {
1847 				/*
1848 				 * Avoid if skipped recently. Ideally it would
1849 				 * move to the tail but even safe iteration of
1850 				 * the list assumes an entry is deleted, not
1851 				 * reordered.
1852 				 */
1853 				if (get_pageblock_skip(freepage))
1854 					continue;
1855 
1856 				/* Reorder to so a future search skips recent pages */
1857 				move_freelist_tail(freelist, freepage);
1858 
1859 				update_fast_start_pfn(cc, free_pfn);
1860 				pfn = pageblock_start_pfn(free_pfn);
1861 				cc->fast_search_fail = 0;
1862 				found_block = true;
1863 				set_pageblock_skip(freepage);
1864 				break;
1865 			}
1866 		}
1867 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1868 	}
1869 
1870 	cc->total_migrate_scanned += nr_scanned;
1871 
1872 	/*
1873 	 * If fast scanning failed then use a cached entry for a page block
1874 	 * that had free pages as the basis for starting a linear scan.
1875 	 */
1876 	if (!found_block) {
1877 		cc->fast_search_fail++;
1878 		pfn = reinit_migrate_pfn(cc);
1879 	}
1880 	return pfn;
1881 }
1882 
1883 /*
1884  * Isolate all pages that can be migrated from the first suitable block,
1885  * starting at the block pointed to by the migrate scanner pfn within
1886  * compact_control.
1887  */
1888 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1889 {
1890 	unsigned long block_start_pfn;
1891 	unsigned long block_end_pfn;
1892 	unsigned long low_pfn;
1893 	struct page *page;
1894 	const isolate_mode_t isolate_mode =
1895 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1896 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1897 	bool fast_find_block;
1898 
1899 	/*
1900 	 * Start at where we last stopped, or beginning of the zone as
1901 	 * initialized by compact_zone(). The first failure will use
1902 	 * the lowest PFN as the starting point for linear scanning.
1903 	 */
1904 	low_pfn = fast_find_migrateblock(cc);
1905 	block_start_pfn = pageblock_start_pfn(low_pfn);
1906 	if (block_start_pfn < cc->zone->zone_start_pfn)
1907 		block_start_pfn = cc->zone->zone_start_pfn;
1908 
1909 	/*
1910 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1911 	 * the isolation_suitable check below, check whether the fast
1912 	 * search was successful.
1913 	 */
1914 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1915 
1916 	/* Only scan within a pageblock boundary */
1917 	block_end_pfn = pageblock_end_pfn(low_pfn);
1918 
1919 	/*
1920 	 * Iterate over whole pageblocks until we find the first suitable.
1921 	 * Do not cross the free scanner.
1922 	 */
1923 	for (; block_end_pfn <= cc->free_pfn;
1924 			fast_find_block = false,
1925 			cc->migrate_pfn = low_pfn = block_end_pfn,
1926 			block_start_pfn = block_end_pfn,
1927 			block_end_pfn += pageblock_nr_pages) {
1928 
1929 		/*
1930 		 * This can potentially iterate a massively long zone with
1931 		 * many pageblocks unsuitable, so periodically check if we
1932 		 * need to schedule.
1933 		 */
1934 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1935 			cond_resched();
1936 
1937 		page = pageblock_pfn_to_page(block_start_pfn,
1938 						block_end_pfn, cc->zone);
1939 		if (!page)
1940 			continue;
1941 
1942 		/*
1943 		 * If isolation recently failed, do not retry. Only check the
1944 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1945 		 * to be visited multiple times. Assume skip was checked
1946 		 * before making it "skip" so other compaction instances do
1947 		 * not scan the same block.
1948 		 */
1949 		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1950 		    !fast_find_block && !isolation_suitable(cc, page))
1951 			continue;
1952 
1953 		/*
1954 		 * For async compaction, also only scan in MOVABLE blocks
1955 		 * without huge pages. Async compaction is optimistic to see
1956 		 * if the minimum amount of work satisfies the allocation.
1957 		 * The cached PFN is updated as it's possible that all
1958 		 * remaining blocks between source and target are unsuitable
1959 		 * and the compaction scanners fail to meet.
1960 		 */
1961 		if (!suitable_migration_source(cc, page)) {
1962 			update_cached_migrate(cc, block_end_pfn);
1963 			continue;
1964 		}
1965 
1966 		/* Perform the isolation */
1967 		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1968 						isolate_mode))
1969 			return ISOLATE_ABORT;
1970 
1971 		/*
1972 		 * Either we isolated something and proceed with migration. Or
1973 		 * we failed and compact_zone should decide if we should
1974 		 * continue or not.
1975 		 */
1976 		break;
1977 	}
1978 
1979 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1980 }
1981 
1982 /*
1983  * order == -1 is expected when compacting via
1984  * /proc/sys/vm/compact_memory
1985  */
1986 static inline bool is_via_compact_memory(int order)
1987 {
1988 	return order == -1;
1989 }
1990 
1991 static bool kswapd_is_running(pg_data_t *pgdat)
1992 {
1993 	return pgdat->kswapd && task_is_running(pgdat->kswapd);
1994 }
1995 
1996 /*
1997  * A zone's fragmentation score is the external fragmentation wrt to the
1998  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1999  */
2000 static unsigned int fragmentation_score_zone(struct zone *zone)
2001 {
2002 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2003 }
2004 
2005 /*
2006  * A weighted zone's fragmentation score is the external fragmentation
2007  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2008  * returns a value in the range [0, 100].
2009  *
2010  * The scaling factor ensures that proactive compaction focuses on larger
2011  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2012  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2013  * and thus never exceeds the high threshold for proactive compaction.
2014  */
2015 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2016 {
2017 	unsigned long score;
2018 
2019 	score = zone->present_pages * fragmentation_score_zone(zone);
2020 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2021 }
2022 
2023 /*
2024  * The per-node proactive (background) compaction process is started by its
2025  * corresponding kcompactd thread when the node's fragmentation score
2026  * exceeds the high threshold. The compaction process remains active till
2027  * the node's score falls below the low threshold, or one of the back-off
2028  * conditions is met.
2029  */
2030 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2031 {
2032 	unsigned int score = 0;
2033 	int zoneid;
2034 
2035 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2036 		struct zone *zone;
2037 
2038 		zone = &pgdat->node_zones[zoneid];
2039 		score += fragmentation_score_zone_weighted(zone);
2040 	}
2041 
2042 	return score;
2043 }
2044 
2045 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2046 {
2047 	unsigned int wmark_low;
2048 
2049 	/*
2050 	 * Cap the low watermark to avoid excessive compaction
2051 	 * activity in case a user sets the proactiveness tunable
2052 	 * close to 100 (maximum).
2053 	 */
2054 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2055 	return low ? wmark_low : min(wmark_low + 10, 100U);
2056 }
2057 
2058 static bool should_proactive_compact_node(pg_data_t *pgdat)
2059 {
2060 	int wmark_high;
2061 
2062 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2063 		return false;
2064 
2065 	wmark_high = fragmentation_score_wmark(pgdat, false);
2066 	return fragmentation_score_node(pgdat) > wmark_high;
2067 }
2068 
2069 static enum compact_result __compact_finished(struct compact_control *cc)
2070 {
2071 	unsigned int order;
2072 	const int migratetype = cc->migratetype;
2073 	int ret;
2074 
2075 	/* Compaction run completes if the migrate and free scanner meet */
2076 	if (compact_scanners_met(cc)) {
2077 		/* Let the next compaction start anew. */
2078 		reset_cached_positions(cc->zone);
2079 
2080 		/*
2081 		 * Mark that the PG_migrate_skip information should be cleared
2082 		 * by kswapd when it goes to sleep. kcompactd does not set the
2083 		 * flag itself as the decision to be clear should be directly
2084 		 * based on an allocation request.
2085 		 */
2086 		if (cc->direct_compaction)
2087 			cc->zone->compact_blockskip_flush = true;
2088 
2089 		if (cc->whole_zone)
2090 			return COMPACT_COMPLETE;
2091 		else
2092 			return COMPACT_PARTIAL_SKIPPED;
2093 	}
2094 
2095 	if (cc->proactive_compaction) {
2096 		int score, wmark_low;
2097 		pg_data_t *pgdat;
2098 
2099 		pgdat = cc->zone->zone_pgdat;
2100 		if (kswapd_is_running(pgdat))
2101 			return COMPACT_PARTIAL_SKIPPED;
2102 
2103 		score = fragmentation_score_zone(cc->zone);
2104 		wmark_low = fragmentation_score_wmark(pgdat, true);
2105 
2106 		if (score > wmark_low)
2107 			ret = COMPACT_CONTINUE;
2108 		else
2109 			ret = COMPACT_SUCCESS;
2110 
2111 		goto out;
2112 	}
2113 
2114 	if (is_via_compact_memory(cc->order))
2115 		return COMPACT_CONTINUE;
2116 
2117 	/*
2118 	 * Always finish scanning a pageblock to reduce the possibility of
2119 	 * fallbacks in the future. This is particularly important when
2120 	 * migration source is unmovable/reclaimable but it's not worth
2121 	 * special casing.
2122 	 */
2123 	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2124 		return COMPACT_CONTINUE;
2125 
2126 	/* Direct compactor: Is a suitable page free? */
2127 	ret = COMPACT_NO_SUITABLE_PAGE;
2128 	for (order = cc->order; order < MAX_ORDER; order++) {
2129 		struct free_area *area = &cc->zone->free_area[order];
2130 		bool can_steal;
2131 
2132 		/* Job done if page is free of the right migratetype */
2133 		if (!free_area_empty(area, migratetype))
2134 			return COMPACT_SUCCESS;
2135 
2136 #ifdef CONFIG_CMA
2137 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2138 		if (migratetype == MIGRATE_MOVABLE &&
2139 			!free_area_empty(area, MIGRATE_CMA))
2140 			return COMPACT_SUCCESS;
2141 #endif
2142 		/*
2143 		 * Job done if allocation would steal freepages from
2144 		 * other migratetype buddy lists.
2145 		 */
2146 		if (find_suitable_fallback(area, order, migratetype,
2147 						true, &can_steal) != -1) {
2148 
2149 			/* movable pages are OK in any pageblock */
2150 			if (migratetype == MIGRATE_MOVABLE)
2151 				return COMPACT_SUCCESS;
2152 
2153 			/*
2154 			 * We are stealing for a non-movable allocation. Make
2155 			 * sure we finish compacting the current pageblock
2156 			 * first so it is as free as possible and we won't
2157 			 * have to steal another one soon. This only applies
2158 			 * to sync compaction, as async compaction operates
2159 			 * on pageblocks of the same migratetype.
2160 			 */
2161 			if (cc->mode == MIGRATE_ASYNC ||
2162 					IS_ALIGNED(cc->migrate_pfn,
2163 							pageblock_nr_pages)) {
2164 				return COMPACT_SUCCESS;
2165 			}
2166 
2167 			ret = COMPACT_CONTINUE;
2168 			break;
2169 		}
2170 	}
2171 
2172 out:
2173 	if (cc->contended || fatal_signal_pending(current))
2174 		ret = COMPACT_CONTENDED;
2175 
2176 	return ret;
2177 }
2178 
2179 static enum compact_result compact_finished(struct compact_control *cc)
2180 {
2181 	int ret;
2182 
2183 	ret = __compact_finished(cc);
2184 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2185 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2186 		ret = COMPACT_CONTINUE;
2187 
2188 	return ret;
2189 }
2190 
2191 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2192 					unsigned int alloc_flags,
2193 					int highest_zoneidx,
2194 					unsigned long wmark_target)
2195 {
2196 	unsigned long watermark;
2197 
2198 	if (is_via_compact_memory(order))
2199 		return COMPACT_CONTINUE;
2200 
2201 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2202 	/*
2203 	 * If watermarks for high-order allocation are already met, there
2204 	 * should be no need for compaction at all.
2205 	 */
2206 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2207 								alloc_flags))
2208 		return COMPACT_SUCCESS;
2209 
2210 	/*
2211 	 * Watermarks for order-0 must be met for compaction to be able to
2212 	 * isolate free pages for migration targets. This means that the
2213 	 * watermark and alloc_flags have to match, or be more pessimistic than
2214 	 * the check in __isolate_free_page(). We don't use the direct
2215 	 * compactor's alloc_flags, as they are not relevant for freepage
2216 	 * isolation. We however do use the direct compactor's highest_zoneidx
2217 	 * to skip over zones where lowmem reserves would prevent allocation
2218 	 * even if compaction succeeds.
2219 	 * For costly orders, we require low watermark instead of min for
2220 	 * compaction to proceed to increase its chances.
2221 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2222 	 * suitable migration targets
2223 	 */
2224 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2225 				low_wmark_pages(zone) : min_wmark_pages(zone);
2226 	watermark += compact_gap(order);
2227 	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2228 						ALLOC_CMA, wmark_target))
2229 		return COMPACT_SKIPPED;
2230 
2231 	return COMPACT_CONTINUE;
2232 }
2233 
2234 /*
2235  * compaction_suitable: Is this suitable to run compaction on this zone now?
2236  * Returns
2237  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2238  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2239  *   COMPACT_CONTINUE - If compaction should run now
2240  */
2241 enum compact_result compaction_suitable(struct zone *zone, int order,
2242 					unsigned int alloc_flags,
2243 					int highest_zoneidx)
2244 {
2245 	enum compact_result ret;
2246 	int fragindex;
2247 
2248 	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2249 				    zone_page_state(zone, NR_FREE_PAGES));
2250 	/*
2251 	 * fragmentation index determines if allocation failures are due to
2252 	 * low memory or external fragmentation
2253 	 *
2254 	 * index of -1000 would imply allocations might succeed depending on
2255 	 * watermarks, but we already failed the high-order watermark check
2256 	 * index towards 0 implies failure is due to lack of memory
2257 	 * index towards 1000 implies failure is due to fragmentation
2258 	 *
2259 	 * Only compact if a failure would be due to fragmentation. Also
2260 	 * ignore fragindex for non-costly orders where the alternative to
2261 	 * a successful reclaim/compaction is OOM. Fragindex and the
2262 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2263 	 * excessive compaction for costly orders, but it should not be at the
2264 	 * expense of system stability.
2265 	 */
2266 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2267 		fragindex = fragmentation_index(zone, order);
2268 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2269 			ret = COMPACT_NOT_SUITABLE_ZONE;
2270 	}
2271 
2272 	trace_mm_compaction_suitable(zone, order, ret);
2273 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2274 		ret = COMPACT_SKIPPED;
2275 
2276 	return ret;
2277 }
2278 
2279 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2280 		int alloc_flags)
2281 {
2282 	struct zone *zone;
2283 	struct zoneref *z;
2284 
2285 	/*
2286 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2287 	 * retrying the reclaim.
2288 	 */
2289 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2290 				ac->highest_zoneidx, ac->nodemask) {
2291 		unsigned long available;
2292 		enum compact_result compact_result;
2293 
2294 		/*
2295 		 * Do not consider all the reclaimable memory because we do not
2296 		 * want to trash just for a single high order allocation which
2297 		 * is even not guaranteed to appear even if __compaction_suitable
2298 		 * is happy about the watermark check.
2299 		 */
2300 		available = zone_reclaimable_pages(zone) / order;
2301 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2302 		compact_result = __compaction_suitable(zone, order, alloc_flags,
2303 				ac->highest_zoneidx, available);
2304 		if (compact_result != COMPACT_SKIPPED)
2305 			return true;
2306 	}
2307 
2308 	return false;
2309 }
2310 
2311 static enum compact_result
2312 compact_zone(struct compact_control *cc, struct capture_control *capc)
2313 {
2314 	enum compact_result ret;
2315 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2316 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2317 	unsigned long last_migrated_pfn;
2318 	const bool sync = cc->mode != MIGRATE_ASYNC;
2319 	bool update_cached;
2320 	unsigned int nr_succeeded = 0;
2321 
2322 	/*
2323 	 * These counters track activities during zone compaction.  Initialize
2324 	 * them before compacting a new zone.
2325 	 */
2326 	cc->total_migrate_scanned = 0;
2327 	cc->total_free_scanned = 0;
2328 	cc->nr_migratepages = 0;
2329 	cc->nr_freepages = 0;
2330 	INIT_LIST_HEAD(&cc->freepages);
2331 	INIT_LIST_HEAD(&cc->migratepages);
2332 
2333 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2334 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2335 							cc->highest_zoneidx);
2336 	/* Compaction is likely to fail */
2337 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2338 		return ret;
2339 
2340 	/* huh, compaction_suitable is returning something unexpected */
2341 	VM_BUG_ON(ret != COMPACT_CONTINUE);
2342 
2343 	/*
2344 	 * Clear pageblock skip if there were failures recently and compaction
2345 	 * is about to be retried after being deferred.
2346 	 */
2347 	if (compaction_restarting(cc->zone, cc->order))
2348 		__reset_isolation_suitable(cc->zone);
2349 
2350 	/*
2351 	 * Setup to move all movable pages to the end of the zone. Used cached
2352 	 * information on where the scanners should start (unless we explicitly
2353 	 * want to compact the whole zone), but check that it is initialised
2354 	 * by ensuring the values are within zone boundaries.
2355 	 */
2356 	cc->fast_start_pfn = 0;
2357 	if (cc->whole_zone) {
2358 		cc->migrate_pfn = start_pfn;
2359 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2360 	} else {
2361 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2362 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2363 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2364 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2365 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2366 		}
2367 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2368 			cc->migrate_pfn = start_pfn;
2369 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2370 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2371 		}
2372 
2373 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2374 			cc->whole_zone = true;
2375 	}
2376 
2377 	last_migrated_pfn = 0;
2378 
2379 	/*
2380 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2381 	 * the basis that some migrations will fail in ASYNC mode. However,
2382 	 * if the cached PFNs match and pageblocks are skipped due to having
2383 	 * no isolation candidates, then the sync state does not matter.
2384 	 * Until a pageblock with isolation candidates is found, keep the
2385 	 * cached PFNs in sync to avoid revisiting the same blocks.
2386 	 */
2387 	update_cached = !sync &&
2388 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2389 
2390 	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2391 
2392 	/* lru_add_drain_all could be expensive with involving other CPUs */
2393 	lru_add_drain();
2394 
2395 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2396 		int err;
2397 		unsigned long iteration_start_pfn = cc->migrate_pfn;
2398 
2399 		/*
2400 		 * Avoid multiple rescans which can happen if a page cannot be
2401 		 * isolated (dirty/writeback in async mode) or if the migrated
2402 		 * pages are being allocated before the pageblock is cleared.
2403 		 * The first rescan will capture the entire pageblock for
2404 		 * migration. If it fails, it'll be marked skip and scanning
2405 		 * will proceed as normal.
2406 		 */
2407 		cc->rescan = false;
2408 		if (pageblock_start_pfn(last_migrated_pfn) ==
2409 		    pageblock_start_pfn(iteration_start_pfn)) {
2410 			cc->rescan = true;
2411 		}
2412 
2413 		switch (isolate_migratepages(cc)) {
2414 		case ISOLATE_ABORT:
2415 			ret = COMPACT_CONTENDED;
2416 			putback_movable_pages(&cc->migratepages);
2417 			cc->nr_migratepages = 0;
2418 			goto out;
2419 		case ISOLATE_NONE:
2420 			if (update_cached) {
2421 				cc->zone->compact_cached_migrate_pfn[1] =
2422 					cc->zone->compact_cached_migrate_pfn[0];
2423 			}
2424 
2425 			/*
2426 			 * We haven't isolated and migrated anything, but
2427 			 * there might still be unflushed migrations from
2428 			 * previous cc->order aligned block.
2429 			 */
2430 			goto check_drain;
2431 		case ISOLATE_SUCCESS:
2432 			update_cached = false;
2433 			last_migrated_pfn = iteration_start_pfn;
2434 		}
2435 
2436 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2437 				compaction_free, (unsigned long)cc, cc->mode,
2438 				MR_COMPACTION, &nr_succeeded);
2439 
2440 		trace_mm_compaction_migratepages(cc, nr_succeeded);
2441 
2442 		/* All pages were either migrated or will be released */
2443 		cc->nr_migratepages = 0;
2444 		if (err) {
2445 			putback_movable_pages(&cc->migratepages);
2446 			/*
2447 			 * migrate_pages() may return -ENOMEM when scanners meet
2448 			 * and we want compact_finished() to detect it
2449 			 */
2450 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2451 				ret = COMPACT_CONTENDED;
2452 				goto out;
2453 			}
2454 			/*
2455 			 * We failed to migrate at least one page in the current
2456 			 * order-aligned block, so skip the rest of it.
2457 			 */
2458 			if (cc->direct_compaction &&
2459 						(cc->mode == MIGRATE_ASYNC)) {
2460 				cc->migrate_pfn = block_end_pfn(
2461 						cc->migrate_pfn - 1, cc->order);
2462 				/* Draining pcplists is useless in this case */
2463 				last_migrated_pfn = 0;
2464 			}
2465 		}
2466 
2467 check_drain:
2468 		/*
2469 		 * Has the migration scanner moved away from the previous
2470 		 * cc->order aligned block where we migrated from? If yes,
2471 		 * flush the pages that were freed, so that they can merge and
2472 		 * compact_finished() can detect immediately if allocation
2473 		 * would succeed.
2474 		 */
2475 		if (cc->order > 0 && last_migrated_pfn) {
2476 			unsigned long current_block_start =
2477 				block_start_pfn(cc->migrate_pfn, cc->order);
2478 
2479 			if (last_migrated_pfn < current_block_start) {
2480 				lru_add_drain_cpu_zone(cc->zone);
2481 				/* No more flushing until we migrate again */
2482 				last_migrated_pfn = 0;
2483 			}
2484 		}
2485 
2486 		/* Stop if a page has been captured */
2487 		if (capc && capc->page) {
2488 			ret = COMPACT_SUCCESS;
2489 			break;
2490 		}
2491 	}
2492 
2493 out:
2494 	/*
2495 	 * Release free pages and update where the free scanner should restart,
2496 	 * so we don't leave any returned pages behind in the next attempt.
2497 	 */
2498 	if (cc->nr_freepages > 0) {
2499 		unsigned long free_pfn = release_freepages(&cc->freepages);
2500 
2501 		cc->nr_freepages = 0;
2502 		VM_BUG_ON(free_pfn == 0);
2503 		/* The cached pfn is always the first in a pageblock */
2504 		free_pfn = pageblock_start_pfn(free_pfn);
2505 		/*
2506 		 * Only go back, not forward. The cached pfn might have been
2507 		 * already reset to zone end in compact_finished()
2508 		 */
2509 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2510 			cc->zone->compact_cached_free_pfn = free_pfn;
2511 	}
2512 
2513 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2514 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2515 
2516 	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2517 
2518 	return ret;
2519 }
2520 
2521 static enum compact_result compact_zone_order(struct zone *zone, int order,
2522 		gfp_t gfp_mask, enum compact_priority prio,
2523 		unsigned int alloc_flags, int highest_zoneidx,
2524 		struct page **capture)
2525 {
2526 	enum compact_result ret;
2527 	struct compact_control cc = {
2528 		.order = order,
2529 		.search_order = order,
2530 		.gfp_mask = gfp_mask,
2531 		.zone = zone,
2532 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2533 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2534 		.alloc_flags = alloc_flags,
2535 		.highest_zoneidx = highest_zoneidx,
2536 		.direct_compaction = true,
2537 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2538 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2539 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2540 	};
2541 	struct capture_control capc = {
2542 		.cc = &cc,
2543 		.page = NULL,
2544 	};
2545 
2546 	/*
2547 	 * Make sure the structs are really initialized before we expose the
2548 	 * capture control, in case we are interrupted and the interrupt handler
2549 	 * frees a page.
2550 	 */
2551 	barrier();
2552 	WRITE_ONCE(current->capture_control, &capc);
2553 
2554 	ret = compact_zone(&cc, &capc);
2555 
2556 	VM_BUG_ON(!list_empty(&cc.freepages));
2557 	VM_BUG_ON(!list_empty(&cc.migratepages));
2558 
2559 	/*
2560 	 * Make sure we hide capture control first before we read the captured
2561 	 * page pointer, otherwise an interrupt could free and capture a page
2562 	 * and we would leak it.
2563 	 */
2564 	WRITE_ONCE(current->capture_control, NULL);
2565 	*capture = READ_ONCE(capc.page);
2566 	/*
2567 	 * Technically, it is also possible that compaction is skipped but
2568 	 * the page is still captured out of luck(IRQ came and freed the page).
2569 	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2570 	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2571 	 */
2572 	if (*capture)
2573 		ret = COMPACT_SUCCESS;
2574 
2575 	return ret;
2576 }
2577 
2578 int sysctl_extfrag_threshold = 500;
2579 
2580 /**
2581  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2582  * @gfp_mask: The GFP mask of the current allocation
2583  * @order: The order of the current allocation
2584  * @alloc_flags: The allocation flags of the current allocation
2585  * @ac: The context of current allocation
2586  * @prio: Determines how hard direct compaction should try to succeed
2587  * @capture: Pointer to free page created by compaction will be stored here
2588  *
2589  * This is the main entry point for direct page compaction.
2590  */
2591 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2592 		unsigned int alloc_flags, const struct alloc_context *ac,
2593 		enum compact_priority prio, struct page **capture)
2594 {
2595 	int may_perform_io = gfp_mask & __GFP_IO;
2596 	struct zoneref *z;
2597 	struct zone *zone;
2598 	enum compact_result rc = COMPACT_SKIPPED;
2599 
2600 	/*
2601 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2602 	 * tricky context because the migration might require IO
2603 	 */
2604 	if (!may_perform_io)
2605 		return COMPACT_SKIPPED;
2606 
2607 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2608 
2609 	/* Compact each zone in the list */
2610 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2611 					ac->highest_zoneidx, ac->nodemask) {
2612 		enum compact_result status;
2613 
2614 		if (prio > MIN_COMPACT_PRIORITY
2615 					&& compaction_deferred(zone, order)) {
2616 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2617 			continue;
2618 		}
2619 
2620 		status = compact_zone_order(zone, order, gfp_mask, prio,
2621 				alloc_flags, ac->highest_zoneidx, capture);
2622 		rc = max(status, rc);
2623 
2624 		/* The allocation should succeed, stop compacting */
2625 		if (status == COMPACT_SUCCESS) {
2626 			/*
2627 			 * We think the allocation will succeed in this zone,
2628 			 * but it is not certain, hence the false. The caller
2629 			 * will repeat this with true if allocation indeed
2630 			 * succeeds in this zone.
2631 			 */
2632 			compaction_defer_reset(zone, order, false);
2633 
2634 			break;
2635 		}
2636 
2637 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2638 					status == COMPACT_PARTIAL_SKIPPED))
2639 			/*
2640 			 * We think that allocation won't succeed in this zone
2641 			 * so we defer compaction there. If it ends up
2642 			 * succeeding after all, it will be reset.
2643 			 */
2644 			defer_compaction(zone, order);
2645 
2646 		/*
2647 		 * We might have stopped compacting due to need_resched() in
2648 		 * async compaction, or due to a fatal signal detected. In that
2649 		 * case do not try further zones
2650 		 */
2651 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2652 					|| fatal_signal_pending(current))
2653 			break;
2654 	}
2655 
2656 	return rc;
2657 }
2658 
2659 /*
2660  * Compact all zones within a node till each zone's fragmentation score
2661  * reaches within proactive compaction thresholds (as determined by the
2662  * proactiveness tunable).
2663  *
2664  * It is possible that the function returns before reaching score targets
2665  * due to various back-off conditions, such as, contention on per-node or
2666  * per-zone locks.
2667  */
2668 static void proactive_compact_node(pg_data_t *pgdat)
2669 {
2670 	int zoneid;
2671 	struct zone *zone;
2672 	struct compact_control cc = {
2673 		.order = -1,
2674 		.mode = MIGRATE_SYNC_LIGHT,
2675 		.ignore_skip_hint = true,
2676 		.whole_zone = true,
2677 		.gfp_mask = GFP_KERNEL,
2678 		.proactive_compaction = true,
2679 	};
2680 
2681 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2682 		zone = &pgdat->node_zones[zoneid];
2683 		if (!populated_zone(zone))
2684 			continue;
2685 
2686 		cc.zone = zone;
2687 
2688 		compact_zone(&cc, NULL);
2689 
2690 		VM_BUG_ON(!list_empty(&cc.freepages));
2691 		VM_BUG_ON(!list_empty(&cc.migratepages));
2692 	}
2693 }
2694 
2695 /* Compact all zones within a node */
2696 static void compact_node(int nid)
2697 {
2698 	pg_data_t *pgdat = NODE_DATA(nid);
2699 	int zoneid;
2700 	struct zone *zone;
2701 	struct compact_control cc = {
2702 		.order = -1,
2703 		.mode = MIGRATE_SYNC,
2704 		.ignore_skip_hint = true,
2705 		.whole_zone = true,
2706 		.gfp_mask = GFP_KERNEL,
2707 	};
2708 
2709 
2710 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2711 
2712 		zone = &pgdat->node_zones[zoneid];
2713 		if (!populated_zone(zone))
2714 			continue;
2715 
2716 		cc.zone = zone;
2717 
2718 		compact_zone(&cc, NULL);
2719 
2720 		VM_BUG_ON(!list_empty(&cc.freepages));
2721 		VM_BUG_ON(!list_empty(&cc.migratepages));
2722 	}
2723 }
2724 
2725 /* Compact all nodes in the system */
2726 static void compact_nodes(void)
2727 {
2728 	int nid;
2729 
2730 	/* Flush pending updates to the LRU lists */
2731 	lru_add_drain_all();
2732 
2733 	for_each_online_node(nid)
2734 		compact_node(nid);
2735 }
2736 
2737 /*
2738  * Tunable for proactive compaction. It determines how
2739  * aggressively the kernel should compact memory in the
2740  * background. It takes values in the range [0, 100].
2741  */
2742 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2743 
2744 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2745 		void *buffer, size_t *length, loff_t *ppos)
2746 {
2747 	int rc, nid;
2748 
2749 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2750 	if (rc)
2751 		return rc;
2752 
2753 	if (write && sysctl_compaction_proactiveness) {
2754 		for_each_online_node(nid) {
2755 			pg_data_t *pgdat = NODE_DATA(nid);
2756 
2757 			if (pgdat->proactive_compact_trigger)
2758 				continue;
2759 
2760 			pgdat->proactive_compact_trigger = true;
2761 			wake_up_interruptible(&pgdat->kcompactd_wait);
2762 		}
2763 	}
2764 
2765 	return 0;
2766 }
2767 
2768 /*
2769  * This is the entry point for compacting all nodes via
2770  * /proc/sys/vm/compact_memory
2771  */
2772 int sysctl_compaction_handler(struct ctl_table *table, int write,
2773 			void *buffer, size_t *length, loff_t *ppos)
2774 {
2775 	if (write)
2776 		compact_nodes();
2777 
2778 	return 0;
2779 }
2780 
2781 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2782 static ssize_t compact_store(struct device *dev,
2783 			     struct device_attribute *attr,
2784 			     const char *buf, size_t count)
2785 {
2786 	int nid = dev->id;
2787 
2788 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2789 		/* Flush pending updates to the LRU lists */
2790 		lru_add_drain_all();
2791 
2792 		compact_node(nid);
2793 	}
2794 
2795 	return count;
2796 }
2797 static DEVICE_ATTR_WO(compact);
2798 
2799 int compaction_register_node(struct node *node)
2800 {
2801 	return device_create_file(&node->dev, &dev_attr_compact);
2802 }
2803 
2804 void compaction_unregister_node(struct node *node)
2805 {
2806 	return device_remove_file(&node->dev, &dev_attr_compact);
2807 }
2808 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2809 
2810 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2811 {
2812 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2813 		pgdat->proactive_compact_trigger;
2814 }
2815 
2816 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2817 {
2818 	int zoneid;
2819 	struct zone *zone;
2820 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2821 
2822 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2823 		zone = &pgdat->node_zones[zoneid];
2824 
2825 		if (!populated_zone(zone))
2826 			continue;
2827 
2828 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2829 					highest_zoneidx) == COMPACT_CONTINUE)
2830 			return true;
2831 	}
2832 
2833 	return false;
2834 }
2835 
2836 static void kcompactd_do_work(pg_data_t *pgdat)
2837 {
2838 	/*
2839 	 * With no special task, compact all zones so that a page of requested
2840 	 * order is allocatable.
2841 	 */
2842 	int zoneid;
2843 	struct zone *zone;
2844 	struct compact_control cc = {
2845 		.order = pgdat->kcompactd_max_order,
2846 		.search_order = pgdat->kcompactd_max_order,
2847 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2848 		.mode = MIGRATE_SYNC_LIGHT,
2849 		.ignore_skip_hint = false,
2850 		.gfp_mask = GFP_KERNEL,
2851 	};
2852 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2853 							cc.highest_zoneidx);
2854 	count_compact_event(KCOMPACTD_WAKE);
2855 
2856 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2857 		int status;
2858 
2859 		zone = &pgdat->node_zones[zoneid];
2860 		if (!populated_zone(zone))
2861 			continue;
2862 
2863 		if (compaction_deferred(zone, cc.order))
2864 			continue;
2865 
2866 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2867 							COMPACT_CONTINUE)
2868 			continue;
2869 
2870 		if (kthread_should_stop())
2871 			return;
2872 
2873 		cc.zone = zone;
2874 		status = compact_zone(&cc, NULL);
2875 
2876 		if (status == COMPACT_SUCCESS) {
2877 			compaction_defer_reset(zone, cc.order, false);
2878 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2879 			/*
2880 			 * Buddy pages may become stranded on pcps that could
2881 			 * otherwise coalesce on the zone's free area for
2882 			 * order >= cc.order.  This is ratelimited by the
2883 			 * upcoming deferral.
2884 			 */
2885 			drain_all_pages(zone);
2886 
2887 			/*
2888 			 * We use sync migration mode here, so we defer like
2889 			 * sync direct compaction does.
2890 			 */
2891 			defer_compaction(zone, cc.order);
2892 		}
2893 
2894 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2895 				     cc.total_migrate_scanned);
2896 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2897 				     cc.total_free_scanned);
2898 
2899 		VM_BUG_ON(!list_empty(&cc.freepages));
2900 		VM_BUG_ON(!list_empty(&cc.migratepages));
2901 	}
2902 
2903 	/*
2904 	 * Regardless of success, we are done until woken up next. But remember
2905 	 * the requested order/highest_zoneidx in case it was higher/tighter
2906 	 * than our current ones
2907 	 */
2908 	if (pgdat->kcompactd_max_order <= cc.order)
2909 		pgdat->kcompactd_max_order = 0;
2910 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2911 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2912 }
2913 
2914 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2915 {
2916 	if (!order)
2917 		return;
2918 
2919 	if (pgdat->kcompactd_max_order < order)
2920 		pgdat->kcompactd_max_order = order;
2921 
2922 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2923 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2924 
2925 	/*
2926 	 * Pairs with implicit barrier in wait_event_freezable()
2927 	 * such that wakeups are not missed.
2928 	 */
2929 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2930 		return;
2931 
2932 	if (!kcompactd_node_suitable(pgdat))
2933 		return;
2934 
2935 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2936 							highest_zoneidx);
2937 	wake_up_interruptible(&pgdat->kcompactd_wait);
2938 }
2939 
2940 /*
2941  * The background compaction daemon, started as a kernel thread
2942  * from the init process.
2943  */
2944 static int kcompactd(void *p)
2945 {
2946 	pg_data_t *pgdat = (pg_data_t *)p;
2947 	struct task_struct *tsk = current;
2948 	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2949 	long timeout = default_timeout;
2950 
2951 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2952 
2953 	if (!cpumask_empty(cpumask))
2954 		set_cpus_allowed_ptr(tsk, cpumask);
2955 
2956 	set_freezable();
2957 
2958 	pgdat->kcompactd_max_order = 0;
2959 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2960 
2961 	while (!kthread_should_stop()) {
2962 		unsigned long pflags;
2963 
2964 		/*
2965 		 * Avoid the unnecessary wakeup for proactive compaction
2966 		 * when it is disabled.
2967 		 */
2968 		if (!sysctl_compaction_proactiveness)
2969 			timeout = MAX_SCHEDULE_TIMEOUT;
2970 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2971 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2972 			kcompactd_work_requested(pgdat), timeout) &&
2973 			!pgdat->proactive_compact_trigger) {
2974 
2975 			psi_memstall_enter(&pflags);
2976 			kcompactd_do_work(pgdat);
2977 			psi_memstall_leave(&pflags);
2978 			/*
2979 			 * Reset the timeout value. The defer timeout from
2980 			 * proactive compaction is lost here but that is fine
2981 			 * as the condition of the zone changing substantionally
2982 			 * then carrying on with the previous defer interval is
2983 			 * not useful.
2984 			 */
2985 			timeout = default_timeout;
2986 			continue;
2987 		}
2988 
2989 		/*
2990 		 * Start the proactive work with default timeout. Based
2991 		 * on the fragmentation score, this timeout is updated.
2992 		 */
2993 		timeout = default_timeout;
2994 		if (should_proactive_compact_node(pgdat)) {
2995 			unsigned int prev_score, score;
2996 
2997 			prev_score = fragmentation_score_node(pgdat);
2998 			proactive_compact_node(pgdat);
2999 			score = fragmentation_score_node(pgdat);
3000 			/*
3001 			 * Defer proactive compaction if the fragmentation
3002 			 * score did not go down i.e. no progress made.
3003 			 */
3004 			if (unlikely(score >= prev_score))
3005 				timeout =
3006 				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
3007 		}
3008 		if (unlikely(pgdat->proactive_compact_trigger))
3009 			pgdat->proactive_compact_trigger = false;
3010 	}
3011 
3012 	return 0;
3013 }
3014 
3015 /*
3016  * This kcompactd start function will be called by init and node-hot-add.
3017  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3018  */
3019 int kcompactd_run(int nid)
3020 {
3021 	pg_data_t *pgdat = NODE_DATA(nid);
3022 	int ret = 0;
3023 
3024 	if (pgdat->kcompactd)
3025 		return 0;
3026 
3027 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3028 	if (IS_ERR(pgdat->kcompactd)) {
3029 		pr_err("Failed to start kcompactd on node %d\n", nid);
3030 		ret = PTR_ERR(pgdat->kcompactd);
3031 		pgdat->kcompactd = NULL;
3032 	}
3033 	return ret;
3034 }
3035 
3036 /*
3037  * Called by memory hotplug when all memory in a node is offlined. Caller must
3038  * hold mem_hotplug_begin/end().
3039  */
3040 void kcompactd_stop(int nid)
3041 {
3042 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3043 
3044 	if (kcompactd) {
3045 		kthread_stop(kcompactd);
3046 		NODE_DATA(nid)->kcompactd = NULL;
3047 	}
3048 }
3049 
3050 /*
3051  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3052  * not required for correctness. So if the last cpu in a node goes
3053  * away, we get changed to run anywhere: as the first one comes back,
3054  * restore their cpu bindings.
3055  */
3056 static int kcompactd_cpu_online(unsigned int cpu)
3057 {
3058 	int nid;
3059 
3060 	for_each_node_state(nid, N_MEMORY) {
3061 		pg_data_t *pgdat = NODE_DATA(nid);
3062 		const struct cpumask *mask;
3063 
3064 		mask = cpumask_of_node(pgdat->node_id);
3065 
3066 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3067 			/* One of our CPUs online: restore mask */
3068 			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3069 	}
3070 	return 0;
3071 }
3072 
3073 static int __init kcompactd_init(void)
3074 {
3075 	int nid;
3076 	int ret;
3077 
3078 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3079 					"mm/compaction:online",
3080 					kcompactd_cpu_online, NULL);
3081 	if (ret < 0) {
3082 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3083 		return ret;
3084 	}
3085 
3086 	for_each_node_state(nid, N_MEMORY)
3087 		kcompactd_run(nid);
3088 	return 0;
3089 }
3090 subsys_initcall(kcompactd_init)
3091 
3092 #endif /* CONFIG_COMPACTION */
3093