xref: /openbmc/linux/mm/compaction.c (revision 8bbecfb4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 	count_vm_event(item);
32 }
33 
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 	count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42 
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47 
48 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
52 
53 /*
54  * Fragmentation score check interval for proactive compaction purposes.
55  */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57 
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
69 #endif
70 
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73 	struct page *page, *next;
74 	unsigned long high_pfn = 0;
75 
76 	list_for_each_entry_safe(page, next, freelist, lru) {
77 		unsigned long pfn = page_to_pfn(page);
78 		list_del(&page->lru);
79 		__free_page(page);
80 		if (pfn > high_pfn)
81 			high_pfn = pfn;
82 	}
83 
84 	return high_pfn;
85 }
86 
87 static void split_map_pages(struct list_head *list)
88 {
89 	unsigned int i, order, nr_pages;
90 	struct page *page, *next;
91 	LIST_HEAD(tmp_list);
92 
93 	list_for_each_entry_safe(page, next, list, lru) {
94 		list_del(&page->lru);
95 
96 		order = page_private(page);
97 		nr_pages = 1 << order;
98 
99 		post_alloc_hook(page, order, __GFP_MOVABLE);
100 		if (order)
101 			split_page(page, order);
102 
103 		for (i = 0; i < nr_pages; i++) {
104 			list_add(&page->lru, &tmp_list);
105 			page++;
106 		}
107 	}
108 
109 	list_splice(&tmp_list, list);
110 }
111 
112 #ifdef CONFIG_COMPACTION
113 
114 int PageMovable(struct page *page)
115 {
116 	struct address_space *mapping;
117 
118 	VM_BUG_ON_PAGE(!PageLocked(page), page);
119 	if (!__PageMovable(page))
120 		return 0;
121 
122 	mapping = page_mapping(page);
123 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 		return 1;
125 
126 	return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129 
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132 	VM_BUG_ON_PAGE(!PageLocked(page), page);
133 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137 
138 void __ClearPageMovable(struct page *page)
139 {
140 	VM_BUG_ON_PAGE(!PageMovable(page), page);
141 	/*
142 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
143 	 * flag so that VM can catch up released page by driver after isolation.
144 	 * With it, VM migration doesn't try to put it back.
145 	 */
146 	page->mapping = (void *)((unsigned long)page->mapping &
147 				PAGE_MAPPING_MOVABLE);
148 }
149 EXPORT_SYMBOL(__ClearPageMovable);
150 
151 /* Do not skip compaction more than 64 times */
152 #define COMPACT_MAX_DEFER_SHIFT 6
153 
154 /*
155  * Compaction is deferred when compaction fails to result in a page
156  * allocation success. 1 << compact_defer_shift, compactions are skipped up
157  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158  */
159 static void defer_compaction(struct zone *zone, int order)
160 {
161 	zone->compact_considered = 0;
162 	zone->compact_defer_shift++;
163 
164 	if (order < zone->compact_order_failed)
165 		zone->compact_order_failed = order;
166 
167 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169 
170 	trace_mm_compaction_defer_compaction(zone, order);
171 }
172 
173 /* Returns true if compaction should be skipped this time */
174 static bool compaction_deferred(struct zone *zone, int order)
175 {
176 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177 
178 	if (order < zone->compact_order_failed)
179 		return false;
180 
181 	/* Avoid possible overflow */
182 	if (++zone->compact_considered >= defer_limit) {
183 		zone->compact_considered = defer_limit;
184 		return false;
185 	}
186 
187 	trace_mm_compaction_deferred(zone, order);
188 
189 	return true;
190 }
191 
192 /*
193  * Update defer tracking counters after successful compaction of given order,
194  * which means an allocation either succeeded (alloc_success == true) or is
195  * expected to succeed.
196  */
197 void compaction_defer_reset(struct zone *zone, int order,
198 		bool alloc_success)
199 {
200 	if (alloc_success) {
201 		zone->compact_considered = 0;
202 		zone->compact_defer_shift = 0;
203 	}
204 	if (order >= zone->compact_order_failed)
205 		zone->compact_order_failed = order + 1;
206 
207 	trace_mm_compaction_defer_reset(zone, order);
208 }
209 
210 /* Returns true if restarting compaction after many failures */
211 static bool compaction_restarting(struct zone *zone, int order)
212 {
213 	if (order < zone->compact_order_failed)
214 		return false;
215 
216 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
218 }
219 
220 /* Returns true if the pageblock should be scanned for pages to isolate. */
221 static inline bool isolation_suitable(struct compact_control *cc,
222 					struct page *page)
223 {
224 	if (cc->ignore_skip_hint)
225 		return true;
226 
227 	return !get_pageblock_skip(page);
228 }
229 
230 static void reset_cached_positions(struct zone *zone)
231 {
232 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
234 	zone->compact_cached_free_pfn =
235 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
236 }
237 
238 /*
239  * Compound pages of >= pageblock_order should consistently be skipped until
240  * released. It is always pointless to compact pages of such order (if they are
241  * migratable), and the pageblocks they occupy cannot contain any free pages.
242  */
243 static bool pageblock_skip_persistent(struct page *page)
244 {
245 	if (!PageCompound(page))
246 		return false;
247 
248 	page = compound_head(page);
249 
250 	if (compound_order(page) >= pageblock_order)
251 		return true;
252 
253 	return false;
254 }
255 
256 static bool
257 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
258 							bool check_target)
259 {
260 	struct page *page = pfn_to_online_page(pfn);
261 	struct page *block_page;
262 	struct page *end_page;
263 	unsigned long block_pfn;
264 
265 	if (!page)
266 		return false;
267 	if (zone != page_zone(page))
268 		return false;
269 	if (pageblock_skip_persistent(page))
270 		return false;
271 
272 	/*
273 	 * If skip is already cleared do no further checking once the
274 	 * restart points have been set.
275 	 */
276 	if (check_source && check_target && !get_pageblock_skip(page))
277 		return true;
278 
279 	/*
280 	 * If clearing skip for the target scanner, do not select a
281 	 * non-movable pageblock as the starting point.
282 	 */
283 	if (!check_source && check_target &&
284 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
285 		return false;
286 
287 	/* Ensure the start of the pageblock or zone is online and valid */
288 	block_pfn = pageblock_start_pfn(pfn);
289 	block_pfn = max(block_pfn, zone->zone_start_pfn);
290 	block_page = pfn_to_online_page(block_pfn);
291 	if (block_page) {
292 		page = block_page;
293 		pfn = block_pfn;
294 	}
295 
296 	/* Ensure the end of the pageblock or zone is online and valid */
297 	block_pfn = pageblock_end_pfn(pfn) - 1;
298 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
299 	end_page = pfn_to_online_page(block_pfn);
300 	if (!end_page)
301 		return false;
302 
303 	/*
304 	 * Only clear the hint if a sample indicates there is either a
305 	 * free page or an LRU page in the block. One or other condition
306 	 * is necessary for the block to be a migration source/target.
307 	 */
308 	do {
309 		if (pfn_valid_within(pfn)) {
310 			if (check_source && PageLRU(page)) {
311 				clear_pageblock_skip(page);
312 				return true;
313 			}
314 
315 			if (check_target && PageBuddy(page)) {
316 				clear_pageblock_skip(page);
317 				return true;
318 			}
319 		}
320 
321 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
322 		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
323 	} while (page <= end_page);
324 
325 	return false;
326 }
327 
328 /*
329  * This function is called to clear all cached information on pageblocks that
330  * should be skipped for page isolation when the migrate and free page scanner
331  * meet.
332  */
333 static void __reset_isolation_suitable(struct zone *zone)
334 {
335 	unsigned long migrate_pfn = zone->zone_start_pfn;
336 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
337 	unsigned long reset_migrate = free_pfn;
338 	unsigned long reset_free = migrate_pfn;
339 	bool source_set = false;
340 	bool free_set = false;
341 
342 	if (!zone->compact_blockskip_flush)
343 		return;
344 
345 	zone->compact_blockskip_flush = false;
346 
347 	/*
348 	 * Walk the zone and update pageblock skip information. Source looks
349 	 * for PageLRU while target looks for PageBuddy. When the scanner
350 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
351 	 * is suitable as both source and target.
352 	 */
353 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
354 					free_pfn -= pageblock_nr_pages) {
355 		cond_resched();
356 
357 		/* Update the migrate PFN */
358 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
359 		    migrate_pfn < reset_migrate) {
360 			source_set = true;
361 			reset_migrate = migrate_pfn;
362 			zone->compact_init_migrate_pfn = reset_migrate;
363 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
364 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
365 		}
366 
367 		/* Update the free PFN */
368 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
369 		    free_pfn > reset_free) {
370 			free_set = true;
371 			reset_free = free_pfn;
372 			zone->compact_init_free_pfn = reset_free;
373 			zone->compact_cached_free_pfn = reset_free;
374 		}
375 	}
376 
377 	/* Leave no distance if no suitable block was reset */
378 	if (reset_migrate >= reset_free) {
379 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
380 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
381 		zone->compact_cached_free_pfn = free_pfn;
382 	}
383 }
384 
385 void reset_isolation_suitable(pg_data_t *pgdat)
386 {
387 	int zoneid;
388 
389 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
390 		struct zone *zone = &pgdat->node_zones[zoneid];
391 		if (!populated_zone(zone))
392 			continue;
393 
394 		/* Only flush if a full compaction finished recently */
395 		if (zone->compact_blockskip_flush)
396 			__reset_isolation_suitable(zone);
397 	}
398 }
399 
400 /*
401  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
402  * locks are not required for read/writers. Returns true if it was already set.
403  */
404 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
405 							unsigned long pfn)
406 {
407 	bool skip;
408 
409 	/* Do no update if skip hint is being ignored */
410 	if (cc->ignore_skip_hint)
411 		return false;
412 
413 	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
414 		return false;
415 
416 	skip = get_pageblock_skip(page);
417 	if (!skip && !cc->no_set_skip_hint)
418 		set_pageblock_skip(page);
419 
420 	return skip;
421 }
422 
423 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
424 {
425 	struct zone *zone = cc->zone;
426 
427 	pfn = pageblock_end_pfn(pfn);
428 
429 	/* Set for isolation rather than compaction */
430 	if (cc->no_set_skip_hint)
431 		return;
432 
433 	if (pfn > zone->compact_cached_migrate_pfn[0])
434 		zone->compact_cached_migrate_pfn[0] = pfn;
435 	if (cc->mode != MIGRATE_ASYNC &&
436 	    pfn > zone->compact_cached_migrate_pfn[1])
437 		zone->compact_cached_migrate_pfn[1] = pfn;
438 }
439 
440 /*
441  * If no pages were isolated then mark this pageblock to be skipped in the
442  * future. The information is later cleared by __reset_isolation_suitable().
443  */
444 static void update_pageblock_skip(struct compact_control *cc,
445 			struct page *page, unsigned long pfn)
446 {
447 	struct zone *zone = cc->zone;
448 
449 	if (cc->no_set_skip_hint)
450 		return;
451 
452 	if (!page)
453 		return;
454 
455 	set_pageblock_skip(page);
456 
457 	/* Update where async and sync compaction should restart */
458 	if (pfn < zone->compact_cached_free_pfn)
459 		zone->compact_cached_free_pfn = pfn;
460 }
461 #else
462 static inline bool isolation_suitable(struct compact_control *cc,
463 					struct page *page)
464 {
465 	return true;
466 }
467 
468 static inline bool pageblock_skip_persistent(struct page *page)
469 {
470 	return false;
471 }
472 
473 static inline void update_pageblock_skip(struct compact_control *cc,
474 			struct page *page, unsigned long pfn)
475 {
476 }
477 
478 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
479 {
480 }
481 
482 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
483 							unsigned long pfn)
484 {
485 	return false;
486 }
487 #endif /* CONFIG_COMPACTION */
488 
489 /*
490  * Compaction requires the taking of some coarse locks that are potentially
491  * very heavily contended. For async compaction, trylock and record if the
492  * lock is contended. The lock will still be acquired but compaction will
493  * abort when the current block is finished regardless of success rate.
494  * Sync compaction acquires the lock.
495  *
496  * Always returns true which makes it easier to track lock state in callers.
497  */
498 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
499 						struct compact_control *cc)
500 	__acquires(lock)
501 {
502 	/* Track if the lock is contended in async mode */
503 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
504 		if (spin_trylock_irqsave(lock, *flags))
505 			return true;
506 
507 		cc->contended = true;
508 	}
509 
510 	spin_lock_irqsave(lock, *flags);
511 	return true;
512 }
513 
514 /*
515  * Compaction requires the taking of some coarse locks that are potentially
516  * very heavily contended. The lock should be periodically unlocked to avoid
517  * having disabled IRQs for a long time, even when there is nobody waiting on
518  * the lock. It might also be that allowing the IRQs will result in
519  * need_resched() becoming true. If scheduling is needed, async compaction
520  * aborts. Sync compaction schedules.
521  * Either compaction type will also abort if a fatal signal is pending.
522  * In either case if the lock was locked, it is dropped and not regained.
523  *
524  * Returns true if compaction should abort due to fatal signal pending, or
525  *		async compaction due to need_resched()
526  * Returns false when compaction can continue (sync compaction might have
527  *		scheduled)
528  */
529 static bool compact_unlock_should_abort(spinlock_t *lock,
530 		unsigned long flags, bool *locked, struct compact_control *cc)
531 {
532 	if (*locked) {
533 		spin_unlock_irqrestore(lock, flags);
534 		*locked = false;
535 	}
536 
537 	if (fatal_signal_pending(current)) {
538 		cc->contended = true;
539 		return true;
540 	}
541 
542 	cond_resched();
543 
544 	return false;
545 }
546 
547 /*
548  * Isolate free pages onto a private freelist. If @strict is true, will abort
549  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
550  * (even though it may still end up isolating some pages).
551  */
552 static unsigned long isolate_freepages_block(struct compact_control *cc,
553 				unsigned long *start_pfn,
554 				unsigned long end_pfn,
555 				struct list_head *freelist,
556 				unsigned int stride,
557 				bool strict)
558 {
559 	int nr_scanned = 0, total_isolated = 0;
560 	struct page *cursor;
561 	unsigned long flags = 0;
562 	bool locked = false;
563 	unsigned long blockpfn = *start_pfn;
564 	unsigned int order;
565 
566 	/* Strict mode is for isolation, speed is secondary */
567 	if (strict)
568 		stride = 1;
569 
570 	cursor = pfn_to_page(blockpfn);
571 
572 	/* Isolate free pages. */
573 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
574 		int isolated;
575 		struct page *page = cursor;
576 
577 		/*
578 		 * Periodically drop the lock (if held) regardless of its
579 		 * contention, to give chance to IRQs. Abort if fatal signal
580 		 * pending or async compaction detects need_resched()
581 		 */
582 		if (!(blockpfn % SWAP_CLUSTER_MAX)
583 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
584 								&locked, cc))
585 			break;
586 
587 		nr_scanned++;
588 		if (!pfn_valid_within(blockpfn))
589 			goto isolate_fail;
590 
591 		/*
592 		 * For compound pages such as THP and hugetlbfs, we can save
593 		 * potentially a lot of iterations if we skip them at once.
594 		 * The check is racy, but we can consider only valid values
595 		 * and the only danger is skipping too much.
596 		 */
597 		if (PageCompound(page)) {
598 			const unsigned int order = compound_order(page);
599 
600 			if (likely(order < MAX_ORDER)) {
601 				blockpfn += (1UL << order) - 1;
602 				cursor += (1UL << order) - 1;
603 			}
604 			goto isolate_fail;
605 		}
606 
607 		if (!PageBuddy(page))
608 			goto isolate_fail;
609 
610 		/*
611 		 * If we already hold the lock, we can skip some rechecking.
612 		 * Note that if we hold the lock now, checked_pageblock was
613 		 * already set in some previous iteration (or strict is true),
614 		 * so it is correct to skip the suitable migration target
615 		 * recheck as well.
616 		 */
617 		if (!locked) {
618 			locked = compact_lock_irqsave(&cc->zone->lock,
619 								&flags, cc);
620 
621 			/* Recheck this is a buddy page under lock */
622 			if (!PageBuddy(page))
623 				goto isolate_fail;
624 		}
625 
626 		/* Found a free page, will break it into order-0 pages */
627 		order = buddy_order(page);
628 		isolated = __isolate_free_page(page, order);
629 		if (!isolated)
630 			break;
631 		set_page_private(page, order);
632 
633 		total_isolated += isolated;
634 		cc->nr_freepages += isolated;
635 		list_add_tail(&page->lru, freelist);
636 
637 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
638 			blockpfn += isolated;
639 			break;
640 		}
641 		/* Advance to the end of split page */
642 		blockpfn += isolated - 1;
643 		cursor += isolated - 1;
644 		continue;
645 
646 isolate_fail:
647 		if (strict)
648 			break;
649 		else
650 			continue;
651 
652 	}
653 
654 	if (locked)
655 		spin_unlock_irqrestore(&cc->zone->lock, flags);
656 
657 	/*
658 	 * There is a tiny chance that we have read bogus compound_order(),
659 	 * so be careful to not go outside of the pageblock.
660 	 */
661 	if (unlikely(blockpfn > end_pfn))
662 		blockpfn = end_pfn;
663 
664 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
665 					nr_scanned, total_isolated);
666 
667 	/* Record how far we have got within the block */
668 	*start_pfn = blockpfn;
669 
670 	/*
671 	 * If strict isolation is requested by CMA then check that all the
672 	 * pages requested were isolated. If there were any failures, 0 is
673 	 * returned and CMA will fail.
674 	 */
675 	if (strict && blockpfn < end_pfn)
676 		total_isolated = 0;
677 
678 	cc->total_free_scanned += nr_scanned;
679 	if (total_isolated)
680 		count_compact_events(COMPACTISOLATED, total_isolated);
681 	return total_isolated;
682 }
683 
684 /**
685  * isolate_freepages_range() - isolate free pages.
686  * @cc:        Compaction control structure.
687  * @start_pfn: The first PFN to start isolating.
688  * @end_pfn:   The one-past-last PFN.
689  *
690  * Non-free pages, invalid PFNs, or zone boundaries within the
691  * [start_pfn, end_pfn) range are considered errors, cause function to
692  * undo its actions and return zero.
693  *
694  * Otherwise, function returns one-past-the-last PFN of isolated page
695  * (which may be greater then end_pfn if end fell in a middle of
696  * a free page).
697  */
698 unsigned long
699 isolate_freepages_range(struct compact_control *cc,
700 			unsigned long start_pfn, unsigned long end_pfn)
701 {
702 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
703 	LIST_HEAD(freelist);
704 
705 	pfn = start_pfn;
706 	block_start_pfn = pageblock_start_pfn(pfn);
707 	if (block_start_pfn < cc->zone->zone_start_pfn)
708 		block_start_pfn = cc->zone->zone_start_pfn;
709 	block_end_pfn = pageblock_end_pfn(pfn);
710 
711 	for (; pfn < end_pfn; pfn += isolated,
712 				block_start_pfn = block_end_pfn,
713 				block_end_pfn += pageblock_nr_pages) {
714 		/* Protect pfn from changing by isolate_freepages_block */
715 		unsigned long isolate_start_pfn = pfn;
716 
717 		block_end_pfn = min(block_end_pfn, end_pfn);
718 
719 		/*
720 		 * pfn could pass the block_end_pfn if isolated freepage
721 		 * is more than pageblock order. In this case, we adjust
722 		 * scanning range to right one.
723 		 */
724 		if (pfn >= block_end_pfn) {
725 			block_start_pfn = pageblock_start_pfn(pfn);
726 			block_end_pfn = pageblock_end_pfn(pfn);
727 			block_end_pfn = min(block_end_pfn, end_pfn);
728 		}
729 
730 		if (!pageblock_pfn_to_page(block_start_pfn,
731 					block_end_pfn, cc->zone))
732 			break;
733 
734 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
735 					block_end_pfn, &freelist, 0, true);
736 
737 		/*
738 		 * In strict mode, isolate_freepages_block() returns 0 if
739 		 * there are any holes in the block (ie. invalid PFNs or
740 		 * non-free pages).
741 		 */
742 		if (!isolated)
743 			break;
744 
745 		/*
746 		 * If we managed to isolate pages, it is always (1 << n) *
747 		 * pageblock_nr_pages for some non-negative n.  (Max order
748 		 * page may span two pageblocks).
749 		 */
750 	}
751 
752 	/* __isolate_free_page() does not map the pages */
753 	split_map_pages(&freelist);
754 
755 	if (pfn < end_pfn) {
756 		/* Loop terminated early, cleanup. */
757 		release_freepages(&freelist);
758 		return 0;
759 	}
760 
761 	/* We don't use freelists for anything. */
762 	return pfn;
763 }
764 
765 /* Similar to reclaim, but different enough that they don't share logic */
766 static bool too_many_isolated(pg_data_t *pgdat)
767 {
768 	unsigned long active, inactive, isolated;
769 
770 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
771 			node_page_state(pgdat, NR_INACTIVE_ANON);
772 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
773 			node_page_state(pgdat, NR_ACTIVE_ANON);
774 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
775 			node_page_state(pgdat, NR_ISOLATED_ANON);
776 
777 	return isolated > (inactive + active) / 2;
778 }
779 
780 /**
781  * isolate_migratepages_block() - isolate all migrate-able pages within
782  *				  a single pageblock
783  * @cc:		Compaction control structure.
784  * @low_pfn:	The first PFN to isolate
785  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
786  * @isolate_mode: Isolation mode to be used.
787  *
788  * Isolate all pages that can be migrated from the range specified by
789  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
790  * Returns zero if there is a fatal signal pending, otherwise PFN of the
791  * first page that was not scanned (which may be both less, equal to or more
792  * than end_pfn).
793  *
794  * The pages are isolated on cc->migratepages list (not required to be empty),
795  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
796  * is neither read nor updated.
797  */
798 static unsigned long
799 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
800 			unsigned long end_pfn, isolate_mode_t isolate_mode)
801 {
802 	pg_data_t *pgdat = cc->zone->zone_pgdat;
803 	unsigned long nr_scanned = 0, nr_isolated = 0;
804 	struct lruvec *lruvec;
805 	unsigned long flags = 0;
806 	struct lruvec *locked = NULL;
807 	struct page *page = NULL, *valid_page = NULL;
808 	unsigned long start_pfn = low_pfn;
809 	bool skip_on_failure = false;
810 	unsigned long next_skip_pfn = 0;
811 	bool skip_updated = false;
812 
813 	/*
814 	 * Ensure that there are not too many pages isolated from the LRU
815 	 * list by either parallel reclaimers or compaction. If there are,
816 	 * delay for some time until fewer pages are isolated
817 	 */
818 	while (unlikely(too_many_isolated(pgdat))) {
819 		/* stop isolation if there are still pages not migrated */
820 		if (cc->nr_migratepages)
821 			return 0;
822 
823 		/* async migration should just abort */
824 		if (cc->mode == MIGRATE_ASYNC)
825 			return 0;
826 
827 		congestion_wait(BLK_RW_ASYNC, HZ/10);
828 
829 		if (fatal_signal_pending(current))
830 			return 0;
831 	}
832 
833 	cond_resched();
834 
835 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
836 		skip_on_failure = true;
837 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
838 	}
839 
840 	/* Time to isolate some pages for migration */
841 	for (; low_pfn < end_pfn; low_pfn++) {
842 
843 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
844 			/*
845 			 * We have isolated all migration candidates in the
846 			 * previous order-aligned block, and did not skip it due
847 			 * to failure. We should migrate the pages now and
848 			 * hopefully succeed compaction.
849 			 */
850 			if (nr_isolated)
851 				break;
852 
853 			/*
854 			 * We failed to isolate in the previous order-aligned
855 			 * block. Set the new boundary to the end of the
856 			 * current block. Note we can't simply increase
857 			 * next_skip_pfn by 1 << order, as low_pfn might have
858 			 * been incremented by a higher number due to skipping
859 			 * a compound or a high-order buddy page in the
860 			 * previous loop iteration.
861 			 */
862 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
863 		}
864 
865 		/*
866 		 * Periodically drop the lock (if held) regardless of its
867 		 * contention, to give chance to IRQs. Abort completely if
868 		 * a fatal signal is pending.
869 		 */
870 		if (!(low_pfn % SWAP_CLUSTER_MAX)) {
871 			if (locked) {
872 				unlock_page_lruvec_irqrestore(locked, flags);
873 				locked = NULL;
874 			}
875 
876 			if (fatal_signal_pending(current)) {
877 				cc->contended = true;
878 
879 				low_pfn = 0;
880 				goto fatal_pending;
881 			}
882 
883 			cond_resched();
884 		}
885 
886 		if (!pfn_valid_within(low_pfn))
887 			goto isolate_fail;
888 		nr_scanned++;
889 
890 		page = pfn_to_page(low_pfn);
891 
892 		/*
893 		 * Check if the pageblock has already been marked skipped.
894 		 * Only the aligned PFN is checked as the caller isolates
895 		 * COMPACT_CLUSTER_MAX at a time so the second call must
896 		 * not falsely conclude that the block should be skipped.
897 		 */
898 		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
899 			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
900 				low_pfn = end_pfn;
901 				page = NULL;
902 				goto isolate_abort;
903 			}
904 			valid_page = page;
905 		}
906 
907 		/*
908 		 * Skip if free. We read page order here without zone lock
909 		 * which is generally unsafe, but the race window is small and
910 		 * the worst thing that can happen is that we skip some
911 		 * potential isolation targets.
912 		 */
913 		if (PageBuddy(page)) {
914 			unsigned long freepage_order = buddy_order_unsafe(page);
915 
916 			/*
917 			 * Without lock, we cannot be sure that what we got is
918 			 * a valid page order. Consider only values in the
919 			 * valid order range to prevent low_pfn overflow.
920 			 */
921 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
922 				low_pfn += (1UL << freepage_order) - 1;
923 			continue;
924 		}
925 
926 		/*
927 		 * Regardless of being on LRU, compound pages such as THP and
928 		 * hugetlbfs are not to be compacted unless we are attempting
929 		 * an allocation much larger than the huge page size (eg CMA).
930 		 * We can potentially save a lot of iterations if we skip them
931 		 * at once. The check is racy, but we can consider only valid
932 		 * values and the only danger is skipping too much.
933 		 */
934 		if (PageCompound(page) && !cc->alloc_contig) {
935 			const unsigned int order = compound_order(page);
936 
937 			if (likely(order < MAX_ORDER))
938 				low_pfn += (1UL << order) - 1;
939 			goto isolate_fail;
940 		}
941 
942 		/*
943 		 * Check may be lockless but that's ok as we recheck later.
944 		 * It's possible to migrate LRU and non-lru movable pages.
945 		 * Skip any other type of page
946 		 */
947 		if (!PageLRU(page)) {
948 			/*
949 			 * __PageMovable can return false positive so we need
950 			 * to verify it under page_lock.
951 			 */
952 			if (unlikely(__PageMovable(page)) &&
953 					!PageIsolated(page)) {
954 				if (locked) {
955 					unlock_page_lruvec_irqrestore(locked, flags);
956 					locked = NULL;
957 				}
958 
959 				if (!isolate_movable_page(page, isolate_mode))
960 					goto isolate_success;
961 			}
962 
963 			goto isolate_fail;
964 		}
965 
966 		/*
967 		 * Migration will fail if an anonymous page is pinned in memory,
968 		 * so avoid taking lru_lock and isolating it unnecessarily in an
969 		 * admittedly racy check.
970 		 */
971 		if (!page_mapping(page) &&
972 		    page_count(page) > page_mapcount(page))
973 			goto isolate_fail;
974 
975 		/*
976 		 * Only allow to migrate anonymous pages in GFP_NOFS context
977 		 * because those do not depend on fs locks.
978 		 */
979 		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
980 			goto isolate_fail;
981 
982 		/*
983 		 * Be careful not to clear PageLRU until after we're
984 		 * sure the page is not being freed elsewhere -- the
985 		 * page release code relies on it.
986 		 */
987 		if (unlikely(!get_page_unless_zero(page)))
988 			goto isolate_fail;
989 
990 		if (!__isolate_lru_page_prepare(page, isolate_mode))
991 			goto isolate_fail_put;
992 
993 		/* Try isolate the page */
994 		if (!TestClearPageLRU(page))
995 			goto isolate_fail_put;
996 
997 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
998 
999 		/* If we already hold the lock, we can skip some rechecking */
1000 		if (lruvec != locked) {
1001 			if (locked)
1002 				unlock_page_lruvec_irqrestore(locked, flags);
1003 
1004 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1005 			locked = lruvec;
1006 
1007 			lruvec_memcg_debug(lruvec, page);
1008 
1009 			/* Try get exclusive access under lock */
1010 			if (!skip_updated) {
1011 				skip_updated = true;
1012 				if (test_and_set_skip(cc, page, low_pfn))
1013 					goto isolate_abort;
1014 			}
1015 
1016 			/*
1017 			 * Page become compound since the non-locked check,
1018 			 * and it's on LRU. It can only be a THP so the order
1019 			 * is safe to read and it's 0 for tail pages.
1020 			 */
1021 			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1022 				low_pfn += compound_nr(page) - 1;
1023 				SetPageLRU(page);
1024 				goto isolate_fail_put;
1025 			}
1026 		}
1027 
1028 		/* The whole page is taken off the LRU; skip the tail pages. */
1029 		if (PageCompound(page))
1030 			low_pfn += compound_nr(page) - 1;
1031 
1032 		/* Successfully isolated */
1033 		del_page_from_lru_list(page, lruvec);
1034 		mod_node_page_state(page_pgdat(page),
1035 				NR_ISOLATED_ANON + page_is_file_lru(page),
1036 				thp_nr_pages(page));
1037 
1038 isolate_success:
1039 		list_add(&page->lru, &cc->migratepages);
1040 		cc->nr_migratepages += compound_nr(page);
1041 		nr_isolated += compound_nr(page);
1042 
1043 		/*
1044 		 * Avoid isolating too much unless this block is being
1045 		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1046 		 * or a lock is contended. For contention, isolate quickly to
1047 		 * potentially remove one source of contention.
1048 		 */
1049 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1050 		    !cc->rescan && !cc->contended) {
1051 			++low_pfn;
1052 			break;
1053 		}
1054 
1055 		continue;
1056 
1057 isolate_fail_put:
1058 		/* Avoid potential deadlock in freeing page under lru_lock */
1059 		if (locked) {
1060 			unlock_page_lruvec_irqrestore(locked, flags);
1061 			locked = NULL;
1062 		}
1063 		put_page(page);
1064 
1065 isolate_fail:
1066 		if (!skip_on_failure)
1067 			continue;
1068 
1069 		/*
1070 		 * We have isolated some pages, but then failed. Release them
1071 		 * instead of migrating, as we cannot form the cc->order buddy
1072 		 * page anyway.
1073 		 */
1074 		if (nr_isolated) {
1075 			if (locked) {
1076 				unlock_page_lruvec_irqrestore(locked, flags);
1077 				locked = NULL;
1078 			}
1079 			putback_movable_pages(&cc->migratepages);
1080 			cc->nr_migratepages = 0;
1081 			nr_isolated = 0;
1082 		}
1083 
1084 		if (low_pfn < next_skip_pfn) {
1085 			low_pfn = next_skip_pfn - 1;
1086 			/*
1087 			 * The check near the loop beginning would have updated
1088 			 * next_skip_pfn too, but this is a bit simpler.
1089 			 */
1090 			next_skip_pfn += 1UL << cc->order;
1091 		}
1092 	}
1093 
1094 	/*
1095 	 * The PageBuddy() check could have potentially brought us outside
1096 	 * the range to be scanned.
1097 	 */
1098 	if (unlikely(low_pfn > end_pfn))
1099 		low_pfn = end_pfn;
1100 
1101 	page = NULL;
1102 
1103 isolate_abort:
1104 	if (locked)
1105 		unlock_page_lruvec_irqrestore(locked, flags);
1106 	if (page) {
1107 		SetPageLRU(page);
1108 		put_page(page);
1109 	}
1110 
1111 	/*
1112 	 * Updated the cached scanner pfn once the pageblock has been scanned
1113 	 * Pages will either be migrated in which case there is no point
1114 	 * scanning in the near future or migration failed in which case the
1115 	 * failure reason may persist. The block is marked for skipping if
1116 	 * there were no pages isolated in the block or if the block is
1117 	 * rescanned twice in a row.
1118 	 */
1119 	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1120 		if (valid_page && !skip_updated)
1121 			set_pageblock_skip(valid_page);
1122 		update_cached_migrate(cc, low_pfn);
1123 	}
1124 
1125 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1126 						nr_scanned, nr_isolated);
1127 
1128 fatal_pending:
1129 	cc->total_migrate_scanned += nr_scanned;
1130 	if (nr_isolated)
1131 		count_compact_events(COMPACTISOLATED, nr_isolated);
1132 
1133 	return low_pfn;
1134 }
1135 
1136 /**
1137  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1138  * @cc:        Compaction control structure.
1139  * @start_pfn: The first PFN to start isolating.
1140  * @end_pfn:   The one-past-last PFN.
1141  *
1142  * Returns zero if isolation fails fatally due to e.g. pending signal.
1143  * Otherwise, function returns one-past-the-last PFN of isolated page
1144  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1145  */
1146 unsigned long
1147 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1148 							unsigned long end_pfn)
1149 {
1150 	unsigned long pfn, block_start_pfn, block_end_pfn;
1151 
1152 	/* Scan block by block. First and last block may be incomplete */
1153 	pfn = start_pfn;
1154 	block_start_pfn = pageblock_start_pfn(pfn);
1155 	if (block_start_pfn < cc->zone->zone_start_pfn)
1156 		block_start_pfn = cc->zone->zone_start_pfn;
1157 	block_end_pfn = pageblock_end_pfn(pfn);
1158 
1159 	for (; pfn < end_pfn; pfn = block_end_pfn,
1160 				block_start_pfn = block_end_pfn,
1161 				block_end_pfn += pageblock_nr_pages) {
1162 
1163 		block_end_pfn = min(block_end_pfn, end_pfn);
1164 
1165 		if (!pageblock_pfn_to_page(block_start_pfn,
1166 					block_end_pfn, cc->zone))
1167 			continue;
1168 
1169 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1170 							ISOLATE_UNEVICTABLE);
1171 
1172 		if (!pfn)
1173 			break;
1174 
1175 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1176 			break;
1177 	}
1178 
1179 	return pfn;
1180 }
1181 
1182 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1183 #ifdef CONFIG_COMPACTION
1184 
1185 static bool suitable_migration_source(struct compact_control *cc,
1186 							struct page *page)
1187 {
1188 	int block_mt;
1189 
1190 	if (pageblock_skip_persistent(page))
1191 		return false;
1192 
1193 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1194 		return true;
1195 
1196 	block_mt = get_pageblock_migratetype(page);
1197 
1198 	if (cc->migratetype == MIGRATE_MOVABLE)
1199 		return is_migrate_movable(block_mt);
1200 	else
1201 		return block_mt == cc->migratetype;
1202 }
1203 
1204 /* Returns true if the page is within a block suitable for migration to */
1205 static bool suitable_migration_target(struct compact_control *cc,
1206 							struct page *page)
1207 {
1208 	/* If the page is a large free page, then disallow migration */
1209 	if (PageBuddy(page)) {
1210 		/*
1211 		 * We are checking page_order without zone->lock taken. But
1212 		 * the only small danger is that we skip a potentially suitable
1213 		 * pageblock, so it's not worth to check order for valid range.
1214 		 */
1215 		if (buddy_order_unsafe(page) >= pageblock_order)
1216 			return false;
1217 	}
1218 
1219 	if (cc->ignore_block_suitable)
1220 		return true;
1221 
1222 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1223 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1224 		return true;
1225 
1226 	/* Otherwise skip the block */
1227 	return false;
1228 }
1229 
1230 static inline unsigned int
1231 freelist_scan_limit(struct compact_control *cc)
1232 {
1233 	unsigned short shift = BITS_PER_LONG - 1;
1234 
1235 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1236 }
1237 
1238 /*
1239  * Test whether the free scanner has reached the same or lower pageblock than
1240  * the migration scanner, and compaction should thus terminate.
1241  */
1242 static inline bool compact_scanners_met(struct compact_control *cc)
1243 {
1244 	return (cc->free_pfn >> pageblock_order)
1245 		<= (cc->migrate_pfn >> pageblock_order);
1246 }
1247 
1248 /*
1249  * Used when scanning for a suitable migration target which scans freelists
1250  * in reverse. Reorders the list such as the unscanned pages are scanned
1251  * first on the next iteration of the free scanner
1252  */
1253 static void
1254 move_freelist_head(struct list_head *freelist, struct page *freepage)
1255 {
1256 	LIST_HEAD(sublist);
1257 
1258 	if (!list_is_last(freelist, &freepage->lru)) {
1259 		list_cut_before(&sublist, freelist, &freepage->lru);
1260 		if (!list_empty(&sublist))
1261 			list_splice_tail(&sublist, freelist);
1262 	}
1263 }
1264 
1265 /*
1266  * Similar to move_freelist_head except used by the migration scanner
1267  * when scanning forward. It's possible for these list operations to
1268  * move against each other if they search the free list exactly in
1269  * lockstep.
1270  */
1271 static void
1272 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1273 {
1274 	LIST_HEAD(sublist);
1275 
1276 	if (!list_is_first(freelist, &freepage->lru)) {
1277 		list_cut_position(&sublist, freelist, &freepage->lru);
1278 		if (!list_empty(&sublist))
1279 			list_splice_tail(&sublist, freelist);
1280 	}
1281 }
1282 
1283 static void
1284 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1285 {
1286 	unsigned long start_pfn, end_pfn;
1287 	struct page *page;
1288 
1289 	/* Do not search around if there are enough pages already */
1290 	if (cc->nr_freepages >= cc->nr_migratepages)
1291 		return;
1292 
1293 	/* Minimise scanning during async compaction */
1294 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1295 		return;
1296 
1297 	/* Pageblock boundaries */
1298 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1299 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1300 
1301 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1302 	if (!page)
1303 		return;
1304 
1305 	/* Scan before */
1306 	if (start_pfn != pfn) {
1307 		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1308 		if (cc->nr_freepages >= cc->nr_migratepages)
1309 			return;
1310 	}
1311 
1312 	/* Scan after */
1313 	start_pfn = pfn + nr_isolated;
1314 	if (start_pfn < end_pfn)
1315 		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1316 
1317 	/* Skip this pageblock in the future as it's full or nearly full */
1318 	if (cc->nr_freepages < cc->nr_migratepages)
1319 		set_pageblock_skip(page);
1320 }
1321 
1322 /* Search orders in round-robin fashion */
1323 static int next_search_order(struct compact_control *cc, int order)
1324 {
1325 	order--;
1326 	if (order < 0)
1327 		order = cc->order - 1;
1328 
1329 	/* Search wrapped around? */
1330 	if (order == cc->search_order) {
1331 		cc->search_order--;
1332 		if (cc->search_order < 0)
1333 			cc->search_order = cc->order - 1;
1334 		return -1;
1335 	}
1336 
1337 	return order;
1338 }
1339 
1340 static unsigned long
1341 fast_isolate_freepages(struct compact_control *cc)
1342 {
1343 	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1344 	unsigned int nr_scanned = 0;
1345 	unsigned long low_pfn, min_pfn, highest = 0;
1346 	unsigned long nr_isolated = 0;
1347 	unsigned long distance;
1348 	struct page *page = NULL;
1349 	bool scan_start = false;
1350 	int order;
1351 
1352 	/* Full compaction passes in a negative order */
1353 	if (cc->order <= 0)
1354 		return cc->free_pfn;
1355 
1356 	/*
1357 	 * If starting the scan, use a deeper search and use the highest
1358 	 * PFN found if a suitable one is not found.
1359 	 */
1360 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1361 		limit = pageblock_nr_pages >> 1;
1362 		scan_start = true;
1363 	}
1364 
1365 	/*
1366 	 * Preferred point is in the top quarter of the scan space but take
1367 	 * a pfn from the top half if the search is problematic.
1368 	 */
1369 	distance = (cc->free_pfn - cc->migrate_pfn);
1370 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1371 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1372 
1373 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1374 		low_pfn = min_pfn;
1375 
1376 	/*
1377 	 * Search starts from the last successful isolation order or the next
1378 	 * order to search after a previous failure
1379 	 */
1380 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1381 
1382 	for (order = cc->search_order;
1383 	     !page && order >= 0;
1384 	     order = next_search_order(cc, order)) {
1385 		struct free_area *area = &cc->zone->free_area[order];
1386 		struct list_head *freelist;
1387 		struct page *freepage;
1388 		unsigned long flags;
1389 		unsigned int order_scanned = 0;
1390 		unsigned long high_pfn = 0;
1391 
1392 		if (!area->nr_free)
1393 			continue;
1394 
1395 		spin_lock_irqsave(&cc->zone->lock, flags);
1396 		freelist = &area->free_list[MIGRATE_MOVABLE];
1397 		list_for_each_entry_reverse(freepage, freelist, lru) {
1398 			unsigned long pfn;
1399 
1400 			order_scanned++;
1401 			nr_scanned++;
1402 			pfn = page_to_pfn(freepage);
1403 
1404 			if (pfn >= highest)
1405 				highest = max(pageblock_start_pfn(pfn),
1406 					      cc->zone->zone_start_pfn);
1407 
1408 			if (pfn >= low_pfn) {
1409 				cc->fast_search_fail = 0;
1410 				cc->search_order = order;
1411 				page = freepage;
1412 				break;
1413 			}
1414 
1415 			if (pfn >= min_pfn && pfn > high_pfn) {
1416 				high_pfn = pfn;
1417 
1418 				/* Shorten the scan if a candidate is found */
1419 				limit >>= 1;
1420 			}
1421 
1422 			if (order_scanned >= limit)
1423 				break;
1424 		}
1425 
1426 		/* Use a minimum pfn if a preferred one was not found */
1427 		if (!page && high_pfn) {
1428 			page = pfn_to_page(high_pfn);
1429 
1430 			/* Update freepage for the list reorder below */
1431 			freepage = page;
1432 		}
1433 
1434 		/* Reorder to so a future search skips recent pages */
1435 		move_freelist_head(freelist, freepage);
1436 
1437 		/* Isolate the page if available */
1438 		if (page) {
1439 			if (__isolate_free_page(page, order)) {
1440 				set_page_private(page, order);
1441 				nr_isolated = 1 << order;
1442 				cc->nr_freepages += nr_isolated;
1443 				list_add_tail(&page->lru, &cc->freepages);
1444 				count_compact_events(COMPACTISOLATED, nr_isolated);
1445 			} else {
1446 				/* If isolation fails, abort the search */
1447 				order = cc->search_order + 1;
1448 				page = NULL;
1449 			}
1450 		}
1451 
1452 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1453 
1454 		/*
1455 		 * Smaller scan on next order so the total scan ig related
1456 		 * to freelist_scan_limit.
1457 		 */
1458 		if (order_scanned >= limit)
1459 			limit = min(1U, limit >> 1);
1460 	}
1461 
1462 	if (!page) {
1463 		cc->fast_search_fail++;
1464 		if (scan_start) {
1465 			/*
1466 			 * Use the highest PFN found above min. If one was
1467 			 * not found, be pessimistic for direct compaction
1468 			 * and use the min mark.
1469 			 */
1470 			if (highest) {
1471 				page = pfn_to_page(highest);
1472 				cc->free_pfn = highest;
1473 			} else {
1474 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1475 					page = pageblock_pfn_to_page(min_pfn,
1476 						min(pageblock_end_pfn(min_pfn),
1477 						    zone_end_pfn(cc->zone)),
1478 						cc->zone);
1479 					cc->free_pfn = min_pfn;
1480 				}
1481 			}
1482 		}
1483 	}
1484 
1485 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1486 		highest -= pageblock_nr_pages;
1487 		cc->zone->compact_cached_free_pfn = highest;
1488 	}
1489 
1490 	cc->total_free_scanned += nr_scanned;
1491 	if (!page)
1492 		return cc->free_pfn;
1493 
1494 	low_pfn = page_to_pfn(page);
1495 	fast_isolate_around(cc, low_pfn, nr_isolated);
1496 	return low_pfn;
1497 }
1498 
1499 /*
1500  * Based on information in the current compact_control, find blocks
1501  * suitable for isolating free pages from and then isolate them.
1502  */
1503 static void isolate_freepages(struct compact_control *cc)
1504 {
1505 	struct zone *zone = cc->zone;
1506 	struct page *page;
1507 	unsigned long block_start_pfn;	/* start of current pageblock */
1508 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1509 	unsigned long block_end_pfn;	/* end of current pageblock */
1510 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1511 	struct list_head *freelist = &cc->freepages;
1512 	unsigned int stride;
1513 
1514 	/* Try a small search of the free lists for a candidate */
1515 	isolate_start_pfn = fast_isolate_freepages(cc);
1516 	if (cc->nr_freepages)
1517 		goto splitmap;
1518 
1519 	/*
1520 	 * Initialise the free scanner. The starting point is where we last
1521 	 * successfully isolated from, zone-cached value, or the end of the
1522 	 * zone when isolating for the first time. For looping we also need
1523 	 * this pfn aligned down to the pageblock boundary, because we do
1524 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1525 	 * For ending point, take care when isolating in last pageblock of a
1526 	 * zone which ends in the middle of a pageblock.
1527 	 * The low boundary is the end of the pageblock the migration scanner
1528 	 * is using.
1529 	 */
1530 	isolate_start_pfn = cc->free_pfn;
1531 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1532 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1533 						zone_end_pfn(zone));
1534 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1535 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1536 
1537 	/*
1538 	 * Isolate free pages until enough are available to migrate the
1539 	 * pages on cc->migratepages. We stop searching if the migrate
1540 	 * and free page scanners meet or enough free pages are isolated.
1541 	 */
1542 	for (; block_start_pfn >= low_pfn;
1543 				block_end_pfn = block_start_pfn,
1544 				block_start_pfn -= pageblock_nr_pages,
1545 				isolate_start_pfn = block_start_pfn) {
1546 		unsigned long nr_isolated;
1547 
1548 		/*
1549 		 * This can iterate a massively long zone without finding any
1550 		 * suitable migration targets, so periodically check resched.
1551 		 */
1552 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1553 			cond_resched();
1554 
1555 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1556 									zone);
1557 		if (!page)
1558 			continue;
1559 
1560 		/* Check the block is suitable for migration */
1561 		if (!suitable_migration_target(cc, page))
1562 			continue;
1563 
1564 		/* If isolation recently failed, do not retry */
1565 		if (!isolation_suitable(cc, page))
1566 			continue;
1567 
1568 		/* Found a block suitable for isolating free pages from. */
1569 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1570 					block_end_pfn, freelist, stride, false);
1571 
1572 		/* Update the skip hint if the full pageblock was scanned */
1573 		if (isolate_start_pfn == block_end_pfn)
1574 			update_pageblock_skip(cc, page, block_start_pfn);
1575 
1576 		/* Are enough freepages isolated? */
1577 		if (cc->nr_freepages >= cc->nr_migratepages) {
1578 			if (isolate_start_pfn >= block_end_pfn) {
1579 				/*
1580 				 * Restart at previous pageblock if more
1581 				 * freepages can be isolated next time.
1582 				 */
1583 				isolate_start_pfn =
1584 					block_start_pfn - pageblock_nr_pages;
1585 			}
1586 			break;
1587 		} else if (isolate_start_pfn < block_end_pfn) {
1588 			/*
1589 			 * If isolation failed early, do not continue
1590 			 * needlessly.
1591 			 */
1592 			break;
1593 		}
1594 
1595 		/* Adjust stride depending on isolation */
1596 		if (nr_isolated) {
1597 			stride = 1;
1598 			continue;
1599 		}
1600 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1601 	}
1602 
1603 	/*
1604 	 * Record where the free scanner will restart next time. Either we
1605 	 * broke from the loop and set isolate_start_pfn based on the last
1606 	 * call to isolate_freepages_block(), or we met the migration scanner
1607 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1608 	 */
1609 	cc->free_pfn = isolate_start_pfn;
1610 
1611 splitmap:
1612 	/* __isolate_free_page() does not map the pages */
1613 	split_map_pages(freelist);
1614 }
1615 
1616 /*
1617  * This is a migrate-callback that "allocates" freepages by taking pages
1618  * from the isolated freelists in the block we are migrating to.
1619  */
1620 static struct page *compaction_alloc(struct page *migratepage,
1621 					unsigned long data)
1622 {
1623 	struct compact_control *cc = (struct compact_control *)data;
1624 	struct page *freepage;
1625 
1626 	if (list_empty(&cc->freepages)) {
1627 		isolate_freepages(cc);
1628 
1629 		if (list_empty(&cc->freepages))
1630 			return NULL;
1631 	}
1632 
1633 	freepage = list_entry(cc->freepages.next, struct page, lru);
1634 	list_del(&freepage->lru);
1635 	cc->nr_freepages--;
1636 
1637 	return freepage;
1638 }
1639 
1640 /*
1641  * This is a migrate-callback that "frees" freepages back to the isolated
1642  * freelist.  All pages on the freelist are from the same zone, so there is no
1643  * special handling needed for NUMA.
1644  */
1645 static void compaction_free(struct page *page, unsigned long data)
1646 {
1647 	struct compact_control *cc = (struct compact_control *)data;
1648 
1649 	list_add(&page->lru, &cc->freepages);
1650 	cc->nr_freepages++;
1651 }
1652 
1653 /* possible outcome of isolate_migratepages */
1654 typedef enum {
1655 	ISOLATE_ABORT,		/* Abort compaction now */
1656 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1657 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1658 } isolate_migrate_t;
1659 
1660 /*
1661  * Allow userspace to control policy on scanning the unevictable LRU for
1662  * compactable pages.
1663  */
1664 #ifdef CONFIG_PREEMPT_RT
1665 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1666 #else
1667 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1668 #endif
1669 
1670 static inline void
1671 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1672 {
1673 	if (cc->fast_start_pfn == ULONG_MAX)
1674 		return;
1675 
1676 	if (!cc->fast_start_pfn)
1677 		cc->fast_start_pfn = pfn;
1678 
1679 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1680 }
1681 
1682 static inline unsigned long
1683 reinit_migrate_pfn(struct compact_control *cc)
1684 {
1685 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1686 		return cc->migrate_pfn;
1687 
1688 	cc->migrate_pfn = cc->fast_start_pfn;
1689 	cc->fast_start_pfn = ULONG_MAX;
1690 
1691 	return cc->migrate_pfn;
1692 }
1693 
1694 /*
1695  * Briefly search the free lists for a migration source that already has
1696  * some free pages to reduce the number of pages that need migration
1697  * before a pageblock is free.
1698  */
1699 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1700 {
1701 	unsigned int limit = freelist_scan_limit(cc);
1702 	unsigned int nr_scanned = 0;
1703 	unsigned long distance;
1704 	unsigned long pfn = cc->migrate_pfn;
1705 	unsigned long high_pfn;
1706 	int order;
1707 	bool found_block = false;
1708 
1709 	/* Skip hints are relied on to avoid repeats on the fast search */
1710 	if (cc->ignore_skip_hint)
1711 		return pfn;
1712 
1713 	/*
1714 	 * If the migrate_pfn is not at the start of a zone or the start
1715 	 * of a pageblock then assume this is a continuation of a previous
1716 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1717 	 */
1718 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1719 		return pfn;
1720 
1721 	/*
1722 	 * For smaller orders, just linearly scan as the number of pages
1723 	 * to migrate should be relatively small and does not necessarily
1724 	 * justify freeing up a large block for a small allocation.
1725 	 */
1726 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1727 		return pfn;
1728 
1729 	/*
1730 	 * Only allow kcompactd and direct requests for movable pages to
1731 	 * quickly clear out a MOVABLE pageblock for allocation. This
1732 	 * reduces the risk that a large movable pageblock is freed for
1733 	 * an unmovable/reclaimable small allocation.
1734 	 */
1735 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1736 		return pfn;
1737 
1738 	/*
1739 	 * When starting the migration scanner, pick any pageblock within the
1740 	 * first half of the search space. Otherwise try and pick a pageblock
1741 	 * within the first eighth to reduce the chances that a migration
1742 	 * target later becomes a source.
1743 	 */
1744 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1745 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1746 		distance >>= 2;
1747 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1748 
1749 	for (order = cc->order - 1;
1750 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1751 	     order--) {
1752 		struct free_area *area = &cc->zone->free_area[order];
1753 		struct list_head *freelist;
1754 		unsigned long flags;
1755 		struct page *freepage;
1756 
1757 		if (!area->nr_free)
1758 			continue;
1759 
1760 		spin_lock_irqsave(&cc->zone->lock, flags);
1761 		freelist = &area->free_list[MIGRATE_MOVABLE];
1762 		list_for_each_entry(freepage, freelist, lru) {
1763 			unsigned long free_pfn;
1764 
1765 			if (nr_scanned++ >= limit) {
1766 				move_freelist_tail(freelist, freepage);
1767 				break;
1768 			}
1769 
1770 			free_pfn = page_to_pfn(freepage);
1771 			if (free_pfn < high_pfn) {
1772 				/*
1773 				 * Avoid if skipped recently. Ideally it would
1774 				 * move to the tail but even safe iteration of
1775 				 * the list assumes an entry is deleted, not
1776 				 * reordered.
1777 				 */
1778 				if (get_pageblock_skip(freepage))
1779 					continue;
1780 
1781 				/* Reorder to so a future search skips recent pages */
1782 				move_freelist_tail(freelist, freepage);
1783 
1784 				update_fast_start_pfn(cc, free_pfn);
1785 				pfn = pageblock_start_pfn(free_pfn);
1786 				cc->fast_search_fail = 0;
1787 				found_block = true;
1788 				set_pageblock_skip(freepage);
1789 				break;
1790 			}
1791 		}
1792 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1793 	}
1794 
1795 	cc->total_migrate_scanned += nr_scanned;
1796 
1797 	/*
1798 	 * If fast scanning failed then use a cached entry for a page block
1799 	 * that had free pages as the basis for starting a linear scan.
1800 	 */
1801 	if (!found_block) {
1802 		cc->fast_search_fail++;
1803 		pfn = reinit_migrate_pfn(cc);
1804 	}
1805 	return pfn;
1806 }
1807 
1808 /*
1809  * Isolate all pages that can be migrated from the first suitable block,
1810  * starting at the block pointed to by the migrate scanner pfn within
1811  * compact_control.
1812  */
1813 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1814 {
1815 	unsigned long block_start_pfn;
1816 	unsigned long block_end_pfn;
1817 	unsigned long low_pfn;
1818 	struct page *page;
1819 	const isolate_mode_t isolate_mode =
1820 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1821 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1822 	bool fast_find_block;
1823 
1824 	/*
1825 	 * Start at where we last stopped, or beginning of the zone as
1826 	 * initialized by compact_zone(). The first failure will use
1827 	 * the lowest PFN as the starting point for linear scanning.
1828 	 */
1829 	low_pfn = fast_find_migrateblock(cc);
1830 	block_start_pfn = pageblock_start_pfn(low_pfn);
1831 	if (block_start_pfn < cc->zone->zone_start_pfn)
1832 		block_start_pfn = cc->zone->zone_start_pfn;
1833 
1834 	/*
1835 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1836 	 * the isolation_suitable check below, check whether the fast
1837 	 * search was successful.
1838 	 */
1839 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1840 
1841 	/* Only scan within a pageblock boundary */
1842 	block_end_pfn = pageblock_end_pfn(low_pfn);
1843 
1844 	/*
1845 	 * Iterate over whole pageblocks until we find the first suitable.
1846 	 * Do not cross the free scanner.
1847 	 */
1848 	for (; block_end_pfn <= cc->free_pfn;
1849 			fast_find_block = false,
1850 			low_pfn = block_end_pfn,
1851 			block_start_pfn = block_end_pfn,
1852 			block_end_pfn += pageblock_nr_pages) {
1853 
1854 		/*
1855 		 * This can potentially iterate a massively long zone with
1856 		 * many pageblocks unsuitable, so periodically check if we
1857 		 * need to schedule.
1858 		 */
1859 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1860 			cond_resched();
1861 
1862 		page = pageblock_pfn_to_page(block_start_pfn,
1863 						block_end_pfn, cc->zone);
1864 		if (!page)
1865 			continue;
1866 
1867 		/*
1868 		 * If isolation recently failed, do not retry. Only check the
1869 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1870 		 * to be visited multiple times. Assume skip was checked
1871 		 * before making it "skip" so other compaction instances do
1872 		 * not scan the same block.
1873 		 */
1874 		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1875 		    !fast_find_block && !isolation_suitable(cc, page))
1876 			continue;
1877 
1878 		/*
1879 		 * For async compaction, also only scan in MOVABLE blocks
1880 		 * without huge pages. Async compaction is optimistic to see
1881 		 * if the minimum amount of work satisfies the allocation.
1882 		 * The cached PFN is updated as it's possible that all
1883 		 * remaining blocks between source and target are unsuitable
1884 		 * and the compaction scanners fail to meet.
1885 		 */
1886 		if (!suitable_migration_source(cc, page)) {
1887 			update_cached_migrate(cc, block_end_pfn);
1888 			continue;
1889 		}
1890 
1891 		/* Perform the isolation */
1892 		low_pfn = isolate_migratepages_block(cc, low_pfn,
1893 						block_end_pfn, isolate_mode);
1894 
1895 		if (!low_pfn)
1896 			return ISOLATE_ABORT;
1897 
1898 		/*
1899 		 * Either we isolated something and proceed with migration. Or
1900 		 * we failed and compact_zone should decide if we should
1901 		 * continue or not.
1902 		 */
1903 		break;
1904 	}
1905 
1906 	/* Record where migration scanner will be restarted. */
1907 	cc->migrate_pfn = low_pfn;
1908 
1909 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1910 }
1911 
1912 /*
1913  * order == -1 is expected when compacting via
1914  * /proc/sys/vm/compact_memory
1915  */
1916 static inline bool is_via_compact_memory(int order)
1917 {
1918 	return order == -1;
1919 }
1920 
1921 static bool kswapd_is_running(pg_data_t *pgdat)
1922 {
1923 	return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1924 }
1925 
1926 /*
1927  * A zone's fragmentation score is the external fragmentation wrt to the
1928  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1929  */
1930 static unsigned int fragmentation_score_zone(struct zone *zone)
1931 {
1932 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1933 }
1934 
1935 /*
1936  * A weighted zone's fragmentation score is the external fragmentation
1937  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1938  * returns a value in the range [0, 100].
1939  *
1940  * The scaling factor ensures that proactive compaction focuses on larger
1941  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1942  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1943  * and thus never exceeds the high threshold for proactive compaction.
1944  */
1945 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
1946 {
1947 	unsigned long score;
1948 
1949 	score = zone->present_pages * fragmentation_score_zone(zone);
1950 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1951 }
1952 
1953 /*
1954  * The per-node proactive (background) compaction process is started by its
1955  * corresponding kcompactd thread when the node's fragmentation score
1956  * exceeds the high threshold. The compaction process remains active till
1957  * the node's score falls below the low threshold, or one of the back-off
1958  * conditions is met.
1959  */
1960 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1961 {
1962 	unsigned int score = 0;
1963 	int zoneid;
1964 
1965 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1966 		struct zone *zone;
1967 
1968 		zone = &pgdat->node_zones[zoneid];
1969 		score += fragmentation_score_zone_weighted(zone);
1970 	}
1971 
1972 	return score;
1973 }
1974 
1975 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
1976 {
1977 	unsigned int wmark_low;
1978 
1979 	/*
1980 	 * Cap the low watermak to avoid excessive compaction
1981 	 * activity in case a user sets the proactivess tunable
1982 	 * close to 100 (maximum).
1983 	 */
1984 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1985 	return low ? wmark_low : min(wmark_low + 10, 100U);
1986 }
1987 
1988 static bool should_proactive_compact_node(pg_data_t *pgdat)
1989 {
1990 	int wmark_high;
1991 
1992 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1993 		return false;
1994 
1995 	wmark_high = fragmentation_score_wmark(pgdat, false);
1996 	return fragmentation_score_node(pgdat) > wmark_high;
1997 }
1998 
1999 static enum compact_result __compact_finished(struct compact_control *cc)
2000 {
2001 	unsigned int order;
2002 	const int migratetype = cc->migratetype;
2003 	int ret;
2004 
2005 	/* Compaction run completes if the migrate and free scanner meet */
2006 	if (compact_scanners_met(cc)) {
2007 		/* Let the next compaction start anew. */
2008 		reset_cached_positions(cc->zone);
2009 
2010 		/*
2011 		 * Mark that the PG_migrate_skip information should be cleared
2012 		 * by kswapd when it goes to sleep. kcompactd does not set the
2013 		 * flag itself as the decision to be clear should be directly
2014 		 * based on an allocation request.
2015 		 */
2016 		if (cc->direct_compaction)
2017 			cc->zone->compact_blockskip_flush = true;
2018 
2019 		if (cc->whole_zone)
2020 			return COMPACT_COMPLETE;
2021 		else
2022 			return COMPACT_PARTIAL_SKIPPED;
2023 	}
2024 
2025 	if (cc->proactive_compaction) {
2026 		int score, wmark_low;
2027 		pg_data_t *pgdat;
2028 
2029 		pgdat = cc->zone->zone_pgdat;
2030 		if (kswapd_is_running(pgdat))
2031 			return COMPACT_PARTIAL_SKIPPED;
2032 
2033 		score = fragmentation_score_zone(cc->zone);
2034 		wmark_low = fragmentation_score_wmark(pgdat, true);
2035 
2036 		if (score > wmark_low)
2037 			ret = COMPACT_CONTINUE;
2038 		else
2039 			ret = COMPACT_SUCCESS;
2040 
2041 		goto out;
2042 	}
2043 
2044 	if (is_via_compact_memory(cc->order))
2045 		return COMPACT_CONTINUE;
2046 
2047 	/*
2048 	 * Always finish scanning a pageblock to reduce the possibility of
2049 	 * fallbacks in the future. This is particularly important when
2050 	 * migration source is unmovable/reclaimable but it's not worth
2051 	 * special casing.
2052 	 */
2053 	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2054 		return COMPACT_CONTINUE;
2055 
2056 	/* Direct compactor: Is a suitable page free? */
2057 	ret = COMPACT_NO_SUITABLE_PAGE;
2058 	for (order = cc->order; order < MAX_ORDER; order++) {
2059 		struct free_area *area = &cc->zone->free_area[order];
2060 		bool can_steal;
2061 
2062 		/* Job done if page is free of the right migratetype */
2063 		if (!free_area_empty(area, migratetype))
2064 			return COMPACT_SUCCESS;
2065 
2066 #ifdef CONFIG_CMA
2067 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2068 		if (migratetype == MIGRATE_MOVABLE &&
2069 			!free_area_empty(area, MIGRATE_CMA))
2070 			return COMPACT_SUCCESS;
2071 #endif
2072 		/*
2073 		 * Job done if allocation would steal freepages from
2074 		 * other migratetype buddy lists.
2075 		 */
2076 		if (find_suitable_fallback(area, order, migratetype,
2077 						true, &can_steal) != -1) {
2078 
2079 			/* movable pages are OK in any pageblock */
2080 			if (migratetype == MIGRATE_MOVABLE)
2081 				return COMPACT_SUCCESS;
2082 
2083 			/*
2084 			 * We are stealing for a non-movable allocation. Make
2085 			 * sure we finish compacting the current pageblock
2086 			 * first so it is as free as possible and we won't
2087 			 * have to steal another one soon. This only applies
2088 			 * to sync compaction, as async compaction operates
2089 			 * on pageblocks of the same migratetype.
2090 			 */
2091 			if (cc->mode == MIGRATE_ASYNC ||
2092 					IS_ALIGNED(cc->migrate_pfn,
2093 							pageblock_nr_pages)) {
2094 				return COMPACT_SUCCESS;
2095 			}
2096 
2097 			ret = COMPACT_CONTINUE;
2098 			break;
2099 		}
2100 	}
2101 
2102 out:
2103 	if (cc->contended || fatal_signal_pending(current))
2104 		ret = COMPACT_CONTENDED;
2105 
2106 	return ret;
2107 }
2108 
2109 static enum compact_result compact_finished(struct compact_control *cc)
2110 {
2111 	int ret;
2112 
2113 	ret = __compact_finished(cc);
2114 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2115 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2116 		ret = COMPACT_CONTINUE;
2117 
2118 	return ret;
2119 }
2120 
2121 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2122 					unsigned int alloc_flags,
2123 					int highest_zoneidx,
2124 					unsigned long wmark_target)
2125 {
2126 	unsigned long watermark;
2127 
2128 	if (is_via_compact_memory(order))
2129 		return COMPACT_CONTINUE;
2130 
2131 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2132 	/*
2133 	 * If watermarks for high-order allocation are already met, there
2134 	 * should be no need for compaction at all.
2135 	 */
2136 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2137 								alloc_flags))
2138 		return COMPACT_SUCCESS;
2139 
2140 	/*
2141 	 * Watermarks for order-0 must be met for compaction to be able to
2142 	 * isolate free pages for migration targets. This means that the
2143 	 * watermark and alloc_flags have to match, or be more pessimistic than
2144 	 * the check in __isolate_free_page(). We don't use the direct
2145 	 * compactor's alloc_flags, as they are not relevant for freepage
2146 	 * isolation. We however do use the direct compactor's highest_zoneidx
2147 	 * to skip over zones where lowmem reserves would prevent allocation
2148 	 * even if compaction succeeds.
2149 	 * For costly orders, we require low watermark instead of min for
2150 	 * compaction to proceed to increase its chances.
2151 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2152 	 * suitable migration targets
2153 	 */
2154 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2155 				low_wmark_pages(zone) : min_wmark_pages(zone);
2156 	watermark += compact_gap(order);
2157 	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2158 						ALLOC_CMA, wmark_target))
2159 		return COMPACT_SKIPPED;
2160 
2161 	return COMPACT_CONTINUE;
2162 }
2163 
2164 /*
2165  * compaction_suitable: Is this suitable to run compaction on this zone now?
2166  * Returns
2167  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2168  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2169  *   COMPACT_CONTINUE - If compaction should run now
2170  */
2171 enum compact_result compaction_suitable(struct zone *zone, int order,
2172 					unsigned int alloc_flags,
2173 					int highest_zoneidx)
2174 {
2175 	enum compact_result ret;
2176 	int fragindex;
2177 
2178 	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2179 				    zone_page_state(zone, NR_FREE_PAGES));
2180 	/*
2181 	 * fragmentation index determines if allocation failures are due to
2182 	 * low memory or external fragmentation
2183 	 *
2184 	 * index of -1000 would imply allocations might succeed depending on
2185 	 * watermarks, but we already failed the high-order watermark check
2186 	 * index towards 0 implies failure is due to lack of memory
2187 	 * index towards 1000 implies failure is due to fragmentation
2188 	 *
2189 	 * Only compact if a failure would be due to fragmentation. Also
2190 	 * ignore fragindex for non-costly orders where the alternative to
2191 	 * a successful reclaim/compaction is OOM. Fragindex and the
2192 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2193 	 * excessive compaction for costly orders, but it should not be at the
2194 	 * expense of system stability.
2195 	 */
2196 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2197 		fragindex = fragmentation_index(zone, order);
2198 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2199 			ret = COMPACT_NOT_SUITABLE_ZONE;
2200 	}
2201 
2202 	trace_mm_compaction_suitable(zone, order, ret);
2203 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2204 		ret = COMPACT_SKIPPED;
2205 
2206 	return ret;
2207 }
2208 
2209 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2210 		int alloc_flags)
2211 {
2212 	struct zone *zone;
2213 	struct zoneref *z;
2214 
2215 	/*
2216 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2217 	 * retrying the reclaim.
2218 	 */
2219 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2220 				ac->highest_zoneidx, ac->nodemask) {
2221 		unsigned long available;
2222 		enum compact_result compact_result;
2223 
2224 		/*
2225 		 * Do not consider all the reclaimable memory because we do not
2226 		 * want to trash just for a single high order allocation which
2227 		 * is even not guaranteed to appear even if __compaction_suitable
2228 		 * is happy about the watermark check.
2229 		 */
2230 		available = zone_reclaimable_pages(zone) / order;
2231 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2232 		compact_result = __compaction_suitable(zone, order, alloc_flags,
2233 				ac->highest_zoneidx, available);
2234 		if (compact_result != COMPACT_SKIPPED)
2235 			return true;
2236 	}
2237 
2238 	return false;
2239 }
2240 
2241 static enum compact_result
2242 compact_zone(struct compact_control *cc, struct capture_control *capc)
2243 {
2244 	enum compact_result ret;
2245 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2246 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2247 	unsigned long last_migrated_pfn;
2248 	const bool sync = cc->mode != MIGRATE_ASYNC;
2249 	bool update_cached;
2250 
2251 	/*
2252 	 * These counters track activities during zone compaction.  Initialize
2253 	 * them before compacting a new zone.
2254 	 */
2255 	cc->total_migrate_scanned = 0;
2256 	cc->total_free_scanned = 0;
2257 	cc->nr_migratepages = 0;
2258 	cc->nr_freepages = 0;
2259 	INIT_LIST_HEAD(&cc->freepages);
2260 	INIT_LIST_HEAD(&cc->migratepages);
2261 
2262 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2263 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2264 							cc->highest_zoneidx);
2265 	/* Compaction is likely to fail */
2266 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2267 		return ret;
2268 
2269 	/* huh, compaction_suitable is returning something unexpected */
2270 	VM_BUG_ON(ret != COMPACT_CONTINUE);
2271 
2272 	/*
2273 	 * Clear pageblock skip if there were failures recently and compaction
2274 	 * is about to be retried after being deferred.
2275 	 */
2276 	if (compaction_restarting(cc->zone, cc->order))
2277 		__reset_isolation_suitable(cc->zone);
2278 
2279 	/*
2280 	 * Setup to move all movable pages to the end of the zone. Used cached
2281 	 * information on where the scanners should start (unless we explicitly
2282 	 * want to compact the whole zone), but check that it is initialised
2283 	 * by ensuring the values are within zone boundaries.
2284 	 */
2285 	cc->fast_start_pfn = 0;
2286 	if (cc->whole_zone) {
2287 		cc->migrate_pfn = start_pfn;
2288 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2289 	} else {
2290 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2291 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2292 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2293 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2294 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2295 		}
2296 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2297 			cc->migrate_pfn = start_pfn;
2298 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2299 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2300 		}
2301 
2302 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2303 			cc->whole_zone = true;
2304 	}
2305 
2306 	last_migrated_pfn = 0;
2307 
2308 	/*
2309 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2310 	 * the basis that some migrations will fail in ASYNC mode. However,
2311 	 * if the cached PFNs match and pageblocks are skipped due to having
2312 	 * no isolation candidates, then the sync state does not matter.
2313 	 * Until a pageblock with isolation candidates is found, keep the
2314 	 * cached PFNs in sync to avoid revisiting the same blocks.
2315 	 */
2316 	update_cached = !sync &&
2317 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2318 
2319 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2320 				cc->free_pfn, end_pfn, sync);
2321 
2322 	migrate_prep_local();
2323 
2324 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2325 		int err;
2326 		unsigned long iteration_start_pfn = cc->migrate_pfn;
2327 
2328 		/*
2329 		 * Avoid multiple rescans which can happen if a page cannot be
2330 		 * isolated (dirty/writeback in async mode) or if the migrated
2331 		 * pages are being allocated before the pageblock is cleared.
2332 		 * The first rescan will capture the entire pageblock for
2333 		 * migration. If it fails, it'll be marked skip and scanning
2334 		 * will proceed as normal.
2335 		 */
2336 		cc->rescan = false;
2337 		if (pageblock_start_pfn(last_migrated_pfn) ==
2338 		    pageblock_start_pfn(iteration_start_pfn)) {
2339 			cc->rescan = true;
2340 		}
2341 
2342 		switch (isolate_migratepages(cc)) {
2343 		case ISOLATE_ABORT:
2344 			ret = COMPACT_CONTENDED;
2345 			putback_movable_pages(&cc->migratepages);
2346 			cc->nr_migratepages = 0;
2347 			goto out;
2348 		case ISOLATE_NONE:
2349 			if (update_cached) {
2350 				cc->zone->compact_cached_migrate_pfn[1] =
2351 					cc->zone->compact_cached_migrate_pfn[0];
2352 			}
2353 
2354 			/*
2355 			 * We haven't isolated and migrated anything, but
2356 			 * there might still be unflushed migrations from
2357 			 * previous cc->order aligned block.
2358 			 */
2359 			goto check_drain;
2360 		case ISOLATE_SUCCESS:
2361 			update_cached = false;
2362 			last_migrated_pfn = iteration_start_pfn;
2363 		}
2364 
2365 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2366 				compaction_free, (unsigned long)cc, cc->mode,
2367 				MR_COMPACTION);
2368 
2369 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2370 							&cc->migratepages);
2371 
2372 		/* All pages were either migrated or will be released */
2373 		cc->nr_migratepages = 0;
2374 		if (err) {
2375 			putback_movable_pages(&cc->migratepages);
2376 			/*
2377 			 * migrate_pages() may return -ENOMEM when scanners meet
2378 			 * and we want compact_finished() to detect it
2379 			 */
2380 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2381 				ret = COMPACT_CONTENDED;
2382 				goto out;
2383 			}
2384 			/*
2385 			 * We failed to migrate at least one page in the current
2386 			 * order-aligned block, so skip the rest of it.
2387 			 */
2388 			if (cc->direct_compaction &&
2389 						(cc->mode == MIGRATE_ASYNC)) {
2390 				cc->migrate_pfn = block_end_pfn(
2391 						cc->migrate_pfn - 1, cc->order);
2392 				/* Draining pcplists is useless in this case */
2393 				last_migrated_pfn = 0;
2394 			}
2395 		}
2396 
2397 check_drain:
2398 		/*
2399 		 * Has the migration scanner moved away from the previous
2400 		 * cc->order aligned block where we migrated from? If yes,
2401 		 * flush the pages that were freed, so that they can merge and
2402 		 * compact_finished() can detect immediately if allocation
2403 		 * would succeed.
2404 		 */
2405 		if (cc->order > 0 && last_migrated_pfn) {
2406 			unsigned long current_block_start =
2407 				block_start_pfn(cc->migrate_pfn, cc->order);
2408 
2409 			if (last_migrated_pfn < current_block_start) {
2410 				lru_add_drain_cpu_zone(cc->zone);
2411 				/* No more flushing until we migrate again */
2412 				last_migrated_pfn = 0;
2413 			}
2414 		}
2415 
2416 		/* Stop if a page has been captured */
2417 		if (capc && capc->page) {
2418 			ret = COMPACT_SUCCESS;
2419 			break;
2420 		}
2421 	}
2422 
2423 out:
2424 	/*
2425 	 * Release free pages and update where the free scanner should restart,
2426 	 * so we don't leave any returned pages behind in the next attempt.
2427 	 */
2428 	if (cc->nr_freepages > 0) {
2429 		unsigned long free_pfn = release_freepages(&cc->freepages);
2430 
2431 		cc->nr_freepages = 0;
2432 		VM_BUG_ON(free_pfn == 0);
2433 		/* The cached pfn is always the first in a pageblock */
2434 		free_pfn = pageblock_start_pfn(free_pfn);
2435 		/*
2436 		 * Only go back, not forward. The cached pfn might have been
2437 		 * already reset to zone end in compact_finished()
2438 		 */
2439 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2440 			cc->zone->compact_cached_free_pfn = free_pfn;
2441 	}
2442 
2443 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2444 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2445 
2446 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2447 				cc->free_pfn, end_pfn, sync, ret);
2448 
2449 	return ret;
2450 }
2451 
2452 static enum compact_result compact_zone_order(struct zone *zone, int order,
2453 		gfp_t gfp_mask, enum compact_priority prio,
2454 		unsigned int alloc_flags, int highest_zoneidx,
2455 		struct page **capture)
2456 {
2457 	enum compact_result ret;
2458 	struct compact_control cc = {
2459 		.order = order,
2460 		.search_order = order,
2461 		.gfp_mask = gfp_mask,
2462 		.zone = zone,
2463 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2464 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2465 		.alloc_flags = alloc_flags,
2466 		.highest_zoneidx = highest_zoneidx,
2467 		.direct_compaction = true,
2468 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2469 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2470 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2471 	};
2472 	struct capture_control capc = {
2473 		.cc = &cc,
2474 		.page = NULL,
2475 	};
2476 
2477 	/*
2478 	 * Make sure the structs are really initialized before we expose the
2479 	 * capture control, in case we are interrupted and the interrupt handler
2480 	 * frees a page.
2481 	 */
2482 	barrier();
2483 	WRITE_ONCE(current->capture_control, &capc);
2484 
2485 	ret = compact_zone(&cc, &capc);
2486 
2487 	VM_BUG_ON(!list_empty(&cc.freepages));
2488 	VM_BUG_ON(!list_empty(&cc.migratepages));
2489 
2490 	/*
2491 	 * Make sure we hide capture control first before we read the captured
2492 	 * page pointer, otherwise an interrupt could free and capture a page
2493 	 * and we would leak it.
2494 	 */
2495 	WRITE_ONCE(current->capture_control, NULL);
2496 	*capture = READ_ONCE(capc.page);
2497 
2498 	return ret;
2499 }
2500 
2501 int sysctl_extfrag_threshold = 500;
2502 
2503 /**
2504  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2505  * @gfp_mask: The GFP mask of the current allocation
2506  * @order: The order of the current allocation
2507  * @alloc_flags: The allocation flags of the current allocation
2508  * @ac: The context of current allocation
2509  * @prio: Determines how hard direct compaction should try to succeed
2510  * @capture: Pointer to free page created by compaction will be stored here
2511  *
2512  * This is the main entry point for direct page compaction.
2513  */
2514 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2515 		unsigned int alloc_flags, const struct alloc_context *ac,
2516 		enum compact_priority prio, struct page **capture)
2517 {
2518 	int may_perform_io = gfp_mask & __GFP_IO;
2519 	struct zoneref *z;
2520 	struct zone *zone;
2521 	enum compact_result rc = COMPACT_SKIPPED;
2522 
2523 	/*
2524 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2525 	 * tricky context because the migration might require IO
2526 	 */
2527 	if (!may_perform_io)
2528 		return COMPACT_SKIPPED;
2529 
2530 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2531 
2532 	/* Compact each zone in the list */
2533 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2534 					ac->highest_zoneidx, ac->nodemask) {
2535 		enum compact_result status;
2536 
2537 		if (prio > MIN_COMPACT_PRIORITY
2538 					&& compaction_deferred(zone, order)) {
2539 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2540 			continue;
2541 		}
2542 
2543 		status = compact_zone_order(zone, order, gfp_mask, prio,
2544 				alloc_flags, ac->highest_zoneidx, capture);
2545 		rc = max(status, rc);
2546 
2547 		/* The allocation should succeed, stop compacting */
2548 		if (status == COMPACT_SUCCESS) {
2549 			/*
2550 			 * We think the allocation will succeed in this zone,
2551 			 * but it is not certain, hence the false. The caller
2552 			 * will repeat this with true if allocation indeed
2553 			 * succeeds in this zone.
2554 			 */
2555 			compaction_defer_reset(zone, order, false);
2556 
2557 			break;
2558 		}
2559 
2560 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2561 					status == COMPACT_PARTIAL_SKIPPED))
2562 			/*
2563 			 * We think that allocation won't succeed in this zone
2564 			 * so we defer compaction there. If it ends up
2565 			 * succeeding after all, it will be reset.
2566 			 */
2567 			defer_compaction(zone, order);
2568 
2569 		/*
2570 		 * We might have stopped compacting due to need_resched() in
2571 		 * async compaction, or due to a fatal signal detected. In that
2572 		 * case do not try further zones
2573 		 */
2574 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2575 					|| fatal_signal_pending(current))
2576 			break;
2577 	}
2578 
2579 	return rc;
2580 }
2581 
2582 /*
2583  * Compact all zones within a node till each zone's fragmentation score
2584  * reaches within proactive compaction thresholds (as determined by the
2585  * proactiveness tunable).
2586  *
2587  * It is possible that the function returns before reaching score targets
2588  * due to various back-off conditions, such as, contention on per-node or
2589  * per-zone locks.
2590  */
2591 static void proactive_compact_node(pg_data_t *pgdat)
2592 {
2593 	int zoneid;
2594 	struct zone *zone;
2595 	struct compact_control cc = {
2596 		.order = -1,
2597 		.mode = MIGRATE_SYNC_LIGHT,
2598 		.ignore_skip_hint = true,
2599 		.whole_zone = true,
2600 		.gfp_mask = GFP_KERNEL,
2601 		.proactive_compaction = true,
2602 	};
2603 
2604 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2605 		zone = &pgdat->node_zones[zoneid];
2606 		if (!populated_zone(zone))
2607 			continue;
2608 
2609 		cc.zone = zone;
2610 
2611 		compact_zone(&cc, NULL);
2612 
2613 		VM_BUG_ON(!list_empty(&cc.freepages));
2614 		VM_BUG_ON(!list_empty(&cc.migratepages));
2615 	}
2616 }
2617 
2618 /* Compact all zones within a node */
2619 static void compact_node(int nid)
2620 {
2621 	pg_data_t *pgdat = NODE_DATA(nid);
2622 	int zoneid;
2623 	struct zone *zone;
2624 	struct compact_control cc = {
2625 		.order = -1,
2626 		.mode = MIGRATE_SYNC,
2627 		.ignore_skip_hint = true,
2628 		.whole_zone = true,
2629 		.gfp_mask = GFP_KERNEL,
2630 	};
2631 
2632 
2633 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2634 
2635 		zone = &pgdat->node_zones[zoneid];
2636 		if (!populated_zone(zone))
2637 			continue;
2638 
2639 		cc.zone = zone;
2640 
2641 		compact_zone(&cc, NULL);
2642 
2643 		VM_BUG_ON(!list_empty(&cc.freepages));
2644 		VM_BUG_ON(!list_empty(&cc.migratepages));
2645 	}
2646 }
2647 
2648 /* Compact all nodes in the system */
2649 static void compact_nodes(void)
2650 {
2651 	int nid;
2652 
2653 	/* Flush pending updates to the LRU lists */
2654 	lru_add_drain_all();
2655 
2656 	for_each_online_node(nid)
2657 		compact_node(nid);
2658 }
2659 
2660 /* The written value is actually unused, all memory is compacted */
2661 int sysctl_compact_memory;
2662 
2663 /*
2664  * Tunable for proactive compaction. It determines how
2665  * aggressively the kernel should compact memory in the
2666  * background. It takes values in the range [0, 100].
2667  */
2668 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2669 
2670 /*
2671  * This is the entry point for compacting all nodes via
2672  * /proc/sys/vm/compact_memory
2673  */
2674 int sysctl_compaction_handler(struct ctl_table *table, int write,
2675 			void *buffer, size_t *length, loff_t *ppos)
2676 {
2677 	if (write)
2678 		compact_nodes();
2679 
2680 	return 0;
2681 }
2682 
2683 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2684 static ssize_t sysfs_compact_node(struct device *dev,
2685 			struct device_attribute *attr,
2686 			const char *buf, size_t count)
2687 {
2688 	int nid = dev->id;
2689 
2690 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2691 		/* Flush pending updates to the LRU lists */
2692 		lru_add_drain_all();
2693 
2694 		compact_node(nid);
2695 	}
2696 
2697 	return count;
2698 }
2699 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2700 
2701 int compaction_register_node(struct node *node)
2702 {
2703 	return device_create_file(&node->dev, &dev_attr_compact);
2704 }
2705 
2706 void compaction_unregister_node(struct node *node)
2707 {
2708 	return device_remove_file(&node->dev, &dev_attr_compact);
2709 }
2710 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2711 
2712 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2713 {
2714 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2715 }
2716 
2717 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2718 {
2719 	int zoneid;
2720 	struct zone *zone;
2721 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2722 
2723 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2724 		zone = &pgdat->node_zones[zoneid];
2725 
2726 		if (!populated_zone(zone))
2727 			continue;
2728 
2729 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2730 					highest_zoneidx) == COMPACT_CONTINUE)
2731 			return true;
2732 	}
2733 
2734 	return false;
2735 }
2736 
2737 static void kcompactd_do_work(pg_data_t *pgdat)
2738 {
2739 	/*
2740 	 * With no special task, compact all zones so that a page of requested
2741 	 * order is allocatable.
2742 	 */
2743 	int zoneid;
2744 	struct zone *zone;
2745 	struct compact_control cc = {
2746 		.order = pgdat->kcompactd_max_order,
2747 		.search_order = pgdat->kcompactd_max_order,
2748 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2749 		.mode = MIGRATE_SYNC_LIGHT,
2750 		.ignore_skip_hint = false,
2751 		.gfp_mask = GFP_KERNEL,
2752 	};
2753 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2754 							cc.highest_zoneidx);
2755 	count_compact_event(KCOMPACTD_WAKE);
2756 
2757 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2758 		int status;
2759 
2760 		zone = &pgdat->node_zones[zoneid];
2761 		if (!populated_zone(zone))
2762 			continue;
2763 
2764 		if (compaction_deferred(zone, cc.order))
2765 			continue;
2766 
2767 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2768 							COMPACT_CONTINUE)
2769 			continue;
2770 
2771 		if (kthread_should_stop())
2772 			return;
2773 
2774 		cc.zone = zone;
2775 		status = compact_zone(&cc, NULL);
2776 
2777 		if (status == COMPACT_SUCCESS) {
2778 			compaction_defer_reset(zone, cc.order, false);
2779 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2780 			/*
2781 			 * Buddy pages may become stranded on pcps that could
2782 			 * otherwise coalesce on the zone's free area for
2783 			 * order >= cc.order.  This is ratelimited by the
2784 			 * upcoming deferral.
2785 			 */
2786 			drain_all_pages(zone);
2787 
2788 			/*
2789 			 * We use sync migration mode here, so we defer like
2790 			 * sync direct compaction does.
2791 			 */
2792 			defer_compaction(zone, cc.order);
2793 		}
2794 
2795 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2796 				     cc.total_migrate_scanned);
2797 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2798 				     cc.total_free_scanned);
2799 
2800 		VM_BUG_ON(!list_empty(&cc.freepages));
2801 		VM_BUG_ON(!list_empty(&cc.migratepages));
2802 	}
2803 
2804 	/*
2805 	 * Regardless of success, we are done until woken up next. But remember
2806 	 * the requested order/highest_zoneidx in case it was higher/tighter
2807 	 * than our current ones
2808 	 */
2809 	if (pgdat->kcompactd_max_order <= cc.order)
2810 		pgdat->kcompactd_max_order = 0;
2811 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2812 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2813 }
2814 
2815 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2816 {
2817 	if (!order)
2818 		return;
2819 
2820 	if (pgdat->kcompactd_max_order < order)
2821 		pgdat->kcompactd_max_order = order;
2822 
2823 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2824 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2825 
2826 	/*
2827 	 * Pairs with implicit barrier in wait_event_freezable()
2828 	 * such that wakeups are not missed.
2829 	 */
2830 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2831 		return;
2832 
2833 	if (!kcompactd_node_suitable(pgdat))
2834 		return;
2835 
2836 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2837 							highest_zoneidx);
2838 	wake_up_interruptible(&pgdat->kcompactd_wait);
2839 }
2840 
2841 /*
2842  * The background compaction daemon, started as a kernel thread
2843  * from the init process.
2844  */
2845 static int kcompactd(void *p)
2846 {
2847 	pg_data_t *pgdat = (pg_data_t*)p;
2848 	struct task_struct *tsk = current;
2849 	unsigned int proactive_defer = 0;
2850 
2851 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2852 
2853 	if (!cpumask_empty(cpumask))
2854 		set_cpus_allowed_ptr(tsk, cpumask);
2855 
2856 	set_freezable();
2857 
2858 	pgdat->kcompactd_max_order = 0;
2859 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2860 
2861 	while (!kthread_should_stop()) {
2862 		unsigned long pflags;
2863 
2864 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2865 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2866 			kcompactd_work_requested(pgdat),
2867 			msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2868 
2869 			psi_memstall_enter(&pflags);
2870 			kcompactd_do_work(pgdat);
2871 			psi_memstall_leave(&pflags);
2872 			continue;
2873 		}
2874 
2875 		/* kcompactd wait timeout */
2876 		if (should_proactive_compact_node(pgdat)) {
2877 			unsigned int prev_score, score;
2878 
2879 			if (proactive_defer) {
2880 				proactive_defer--;
2881 				continue;
2882 			}
2883 			prev_score = fragmentation_score_node(pgdat);
2884 			proactive_compact_node(pgdat);
2885 			score = fragmentation_score_node(pgdat);
2886 			/*
2887 			 * Defer proactive compaction if the fragmentation
2888 			 * score did not go down i.e. no progress made.
2889 			 */
2890 			proactive_defer = score < prev_score ?
2891 					0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2892 		}
2893 	}
2894 
2895 	return 0;
2896 }
2897 
2898 /*
2899  * This kcompactd start function will be called by init and node-hot-add.
2900  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2901  */
2902 int kcompactd_run(int nid)
2903 {
2904 	pg_data_t *pgdat = NODE_DATA(nid);
2905 	int ret = 0;
2906 
2907 	if (pgdat->kcompactd)
2908 		return 0;
2909 
2910 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2911 	if (IS_ERR(pgdat->kcompactd)) {
2912 		pr_err("Failed to start kcompactd on node %d\n", nid);
2913 		ret = PTR_ERR(pgdat->kcompactd);
2914 		pgdat->kcompactd = NULL;
2915 	}
2916 	return ret;
2917 }
2918 
2919 /*
2920  * Called by memory hotplug when all memory in a node is offlined. Caller must
2921  * hold mem_hotplug_begin/end().
2922  */
2923 void kcompactd_stop(int nid)
2924 {
2925 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2926 
2927 	if (kcompactd) {
2928 		kthread_stop(kcompactd);
2929 		NODE_DATA(nid)->kcompactd = NULL;
2930 	}
2931 }
2932 
2933 /*
2934  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2935  * not required for correctness. So if the last cpu in a node goes
2936  * away, we get changed to run anywhere: as the first one comes back,
2937  * restore their cpu bindings.
2938  */
2939 static int kcompactd_cpu_online(unsigned int cpu)
2940 {
2941 	int nid;
2942 
2943 	for_each_node_state(nid, N_MEMORY) {
2944 		pg_data_t *pgdat = NODE_DATA(nid);
2945 		const struct cpumask *mask;
2946 
2947 		mask = cpumask_of_node(pgdat->node_id);
2948 
2949 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2950 			/* One of our CPUs online: restore mask */
2951 			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2952 	}
2953 	return 0;
2954 }
2955 
2956 static int __init kcompactd_init(void)
2957 {
2958 	int nid;
2959 	int ret;
2960 
2961 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2962 					"mm/compaction:online",
2963 					kcompactd_cpu_online, NULL);
2964 	if (ret < 0) {
2965 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
2966 		return ret;
2967 	}
2968 
2969 	for_each_node_state(nid, N_MEMORY)
2970 		kcompactd_run(nid);
2971 	return 0;
2972 }
2973 subsys_initcall(kcompactd_init)
2974 
2975 #endif /* CONFIG_COMPACTION */
2976