1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/swap.h> 11 #include <linux/migrate.h> 12 #include <linux/compaction.h> 13 #include <linux/mm_inline.h> 14 #include <linux/backing-dev.h> 15 #include <linux/sysctl.h> 16 #include <linux/sysfs.h> 17 #include <linux/balloon_compaction.h> 18 #include <linux/page-isolation.h> 19 #include "internal.h" 20 21 #ifdef CONFIG_COMPACTION 22 static inline void count_compact_event(enum vm_event_item item) 23 { 24 count_vm_event(item); 25 } 26 27 static inline void count_compact_events(enum vm_event_item item, long delta) 28 { 29 count_vm_events(item, delta); 30 } 31 #else 32 #define count_compact_event(item) do { } while (0) 33 #define count_compact_events(item, delta) do { } while (0) 34 #endif 35 36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/compaction.h> 40 41 static unsigned long release_freepages(struct list_head *freelist) 42 { 43 struct page *page, *next; 44 unsigned long high_pfn = 0; 45 46 list_for_each_entry_safe(page, next, freelist, lru) { 47 unsigned long pfn = page_to_pfn(page); 48 list_del(&page->lru); 49 __free_page(page); 50 if (pfn > high_pfn) 51 high_pfn = pfn; 52 } 53 54 return high_pfn; 55 } 56 57 static void map_pages(struct list_head *list) 58 { 59 struct page *page; 60 61 list_for_each_entry(page, list, lru) { 62 arch_alloc_page(page, 0); 63 kernel_map_pages(page, 1, 1); 64 } 65 } 66 67 static inline bool migrate_async_suitable(int migratetype) 68 { 69 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; 70 } 71 72 /* 73 * Check that the whole (or subset of) a pageblock given by the interval of 74 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 75 * with the migration of free compaction scanner. The scanners then need to 76 * use only pfn_valid_within() check for arches that allow holes within 77 * pageblocks. 78 * 79 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 80 * 81 * It's possible on some configurations to have a setup like node0 node1 node0 82 * i.e. it's possible that all pages within a zones range of pages do not 83 * belong to a single zone. We assume that a border between node0 and node1 84 * can occur within a single pageblock, but not a node0 node1 node0 85 * interleaving within a single pageblock. It is therefore sufficient to check 86 * the first and last page of a pageblock and avoid checking each individual 87 * page in a pageblock. 88 */ 89 static struct page *pageblock_pfn_to_page(unsigned long start_pfn, 90 unsigned long end_pfn, struct zone *zone) 91 { 92 struct page *start_page; 93 struct page *end_page; 94 95 /* end_pfn is one past the range we are checking */ 96 end_pfn--; 97 98 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 99 return NULL; 100 101 start_page = pfn_to_page(start_pfn); 102 103 if (page_zone(start_page) != zone) 104 return NULL; 105 106 end_page = pfn_to_page(end_pfn); 107 108 /* This gives a shorter code than deriving page_zone(end_page) */ 109 if (page_zone_id(start_page) != page_zone_id(end_page)) 110 return NULL; 111 112 return start_page; 113 } 114 115 #ifdef CONFIG_COMPACTION 116 /* Returns true if the pageblock should be scanned for pages to isolate. */ 117 static inline bool isolation_suitable(struct compact_control *cc, 118 struct page *page) 119 { 120 if (cc->ignore_skip_hint) 121 return true; 122 123 return !get_pageblock_skip(page); 124 } 125 126 /* 127 * This function is called to clear all cached information on pageblocks that 128 * should be skipped for page isolation when the migrate and free page scanner 129 * meet. 130 */ 131 static void __reset_isolation_suitable(struct zone *zone) 132 { 133 unsigned long start_pfn = zone->zone_start_pfn; 134 unsigned long end_pfn = zone_end_pfn(zone); 135 unsigned long pfn; 136 137 zone->compact_cached_migrate_pfn[0] = start_pfn; 138 zone->compact_cached_migrate_pfn[1] = start_pfn; 139 zone->compact_cached_free_pfn = end_pfn; 140 zone->compact_blockskip_flush = false; 141 142 /* Walk the zone and mark every pageblock as suitable for isolation */ 143 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 144 struct page *page; 145 146 cond_resched(); 147 148 if (!pfn_valid(pfn)) 149 continue; 150 151 page = pfn_to_page(pfn); 152 if (zone != page_zone(page)) 153 continue; 154 155 clear_pageblock_skip(page); 156 } 157 } 158 159 void reset_isolation_suitable(pg_data_t *pgdat) 160 { 161 int zoneid; 162 163 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 164 struct zone *zone = &pgdat->node_zones[zoneid]; 165 if (!populated_zone(zone)) 166 continue; 167 168 /* Only flush if a full compaction finished recently */ 169 if (zone->compact_blockskip_flush) 170 __reset_isolation_suitable(zone); 171 } 172 } 173 174 /* 175 * If no pages were isolated then mark this pageblock to be skipped in the 176 * future. The information is later cleared by __reset_isolation_suitable(). 177 */ 178 static void update_pageblock_skip(struct compact_control *cc, 179 struct page *page, unsigned long nr_isolated, 180 bool migrate_scanner) 181 { 182 struct zone *zone = cc->zone; 183 unsigned long pfn; 184 185 if (cc->ignore_skip_hint) 186 return; 187 188 if (!page) 189 return; 190 191 if (nr_isolated) 192 return; 193 194 set_pageblock_skip(page); 195 196 pfn = page_to_pfn(page); 197 198 /* Update where async and sync compaction should restart */ 199 if (migrate_scanner) { 200 if (pfn > zone->compact_cached_migrate_pfn[0]) 201 zone->compact_cached_migrate_pfn[0] = pfn; 202 if (cc->mode != MIGRATE_ASYNC && 203 pfn > zone->compact_cached_migrate_pfn[1]) 204 zone->compact_cached_migrate_pfn[1] = pfn; 205 } else { 206 if (pfn < zone->compact_cached_free_pfn) 207 zone->compact_cached_free_pfn = pfn; 208 } 209 } 210 #else 211 static inline bool isolation_suitable(struct compact_control *cc, 212 struct page *page) 213 { 214 return true; 215 } 216 217 static void update_pageblock_skip(struct compact_control *cc, 218 struct page *page, unsigned long nr_isolated, 219 bool migrate_scanner) 220 { 221 } 222 #endif /* CONFIG_COMPACTION */ 223 224 /* 225 * Compaction requires the taking of some coarse locks that are potentially 226 * very heavily contended. For async compaction, back out if the lock cannot 227 * be taken immediately. For sync compaction, spin on the lock if needed. 228 * 229 * Returns true if the lock is held 230 * Returns false if the lock is not held and compaction should abort 231 */ 232 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags, 233 struct compact_control *cc) 234 { 235 if (cc->mode == MIGRATE_ASYNC) { 236 if (!spin_trylock_irqsave(lock, *flags)) { 237 cc->contended = COMPACT_CONTENDED_LOCK; 238 return false; 239 } 240 } else { 241 spin_lock_irqsave(lock, *flags); 242 } 243 244 return true; 245 } 246 247 /* 248 * Compaction requires the taking of some coarse locks that are potentially 249 * very heavily contended. The lock should be periodically unlocked to avoid 250 * having disabled IRQs for a long time, even when there is nobody waiting on 251 * the lock. It might also be that allowing the IRQs will result in 252 * need_resched() becoming true. If scheduling is needed, async compaction 253 * aborts. Sync compaction schedules. 254 * Either compaction type will also abort if a fatal signal is pending. 255 * In either case if the lock was locked, it is dropped and not regained. 256 * 257 * Returns true if compaction should abort due to fatal signal pending, or 258 * async compaction due to need_resched() 259 * Returns false when compaction can continue (sync compaction might have 260 * scheduled) 261 */ 262 static bool compact_unlock_should_abort(spinlock_t *lock, 263 unsigned long flags, bool *locked, struct compact_control *cc) 264 { 265 if (*locked) { 266 spin_unlock_irqrestore(lock, flags); 267 *locked = false; 268 } 269 270 if (fatal_signal_pending(current)) { 271 cc->contended = COMPACT_CONTENDED_SCHED; 272 return true; 273 } 274 275 if (need_resched()) { 276 if (cc->mode == MIGRATE_ASYNC) { 277 cc->contended = COMPACT_CONTENDED_SCHED; 278 return true; 279 } 280 cond_resched(); 281 } 282 283 return false; 284 } 285 286 /* 287 * Aside from avoiding lock contention, compaction also periodically checks 288 * need_resched() and either schedules in sync compaction or aborts async 289 * compaction. This is similar to what compact_unlock_should_abort() does, but 290 * is used where no lock is concerned. 291 * 292 * Returns false when no scheduling was needed, or sync compaction scheduled. 293 * Returns true when async compaction should abort. 294 */ 295 static inline bool compact_should_abort(struct compact_control *cc) 296 { 297 /* async compaction aborts if contended */ 298 if (need_resched()) { 299 if (cc->mode == MIGRATE_ASYNC) { 300 cc->contended = COMPACT_CONTENDED_SCHED; 301 return true; 302 } 303 304 cond_resched(); 305 } 306 307 return false; 308 } 309 310 /* Returns true if the page is within a block suitable for migration to */ 311 static bool suitable_migration_target(struct page *page) 312 { 313 /* If the page is a large free page, then disallow migration */ 314 if (PageBuddy(page)) { 315 /* 316 * We are checking page_order without zone->lock taken. But 317 * the only small danger is that we skip a potentially suitable 318 * pageblock, so it's not worth to check order for valid range. 319 */ 320 if (page_order_unsafe(page) >= pageblock_order) 321 return false; 322 } 323 324 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 325 if (migrate_async_suitable(get_pageblock_migratetype(page))) 326 return true; 327 328 /* Otherwise skip the block */ 329 return false; 330 } 331 332 /* 333 * Isolate free pages onto a private freelist. If @strict is true, will abort 334 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 335 * (even though it may still end up isolating some pages). 336 */ 337 static unsigned long isolate_freepages_block(struct compact_control *cc, 338 unsigned long *start_pfn, 339 unsigned long end_pfn, 340 struct list_head *freelist, 341 bool strict) 342 { 343 int nr_scanned = 0, total_isolated = 0; 344 struct page *cursor, *valid_page = NULL; 345 unsigned long flags = 0; 346 bool locked = false; 347 unsigned long blockpfn = *start_pfn; 348 349 cursor = pfn_to_page(blockpfn); 350 351 /* Isolate free pages. */ 352 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 353 int isolated, i; 354 struct page *page = cursor; 355 356 /* 357 * Periodically drop the lock (if held) regardless of its 358 * contention, to give chance to IRQs. Abort if fatal signal 359 * pending or async compaction detects need_resched() 360 */ 361 if (!(blockpfn % SWAP_CLUSTER_MAX) 362 && compact_unlock_should_abort(&cc->zone->lock, flags, 363 &locked, cc)) 364 break; 365 366 nr_scanned++; 367 if (!pfn_valid_within(blockpfn)) 368 goto isolate_fail; 369 370 if (!valid_page) 371 valid_page = page; 372 if (!PageBuddy(page)) 373 goto isolate_fail; 374 375 /* 376 * If we already hold the lock, we can skip some rechecking. 377 * Note that if we hold the lock now, checked_pageblock was 378 * already set in some previous iteration (or strict is true), 379 * so it is correct to skip the suitable migration target 380 * recheck as well. 381 */ 382 if (!locked) { 383 /* 384 * The zone lock must be held to isolate freepages. 385 * Unfortunately this is a very coarse lock and can be 386 * heavily contended if there are parallel allocations 387 * or parallel compactions. For async compaction do not 388 * spin on the lock and we acquire the lock as late as 389 * possible. 390 */ 391 locked = compact_trylock_irqsave(&cc->zone->lock, 392 &flags, cc); 393 if (!locked) 394 break; 395 396 /* Recheck this is a buddy page under lock */ 397 if (!PageBuddy(page)) 398 goto isolate_fail; 399 } 400 401 /* Found a free page, break it into order-0 pages */ 402 isolated = split_free_page(page); 403 total_isolated += isolated; 404 for (i = 0; i < isolated; i++) { 405 list_add(&page->lru, freelist); 406 page++; 407 } 408 409 /* If a page was split, advance to the end of it */ 410 if (isolated) { 411 blockpfn += isolated - 1; 412 cursor += isolated - 1; 413 continue; 414 } 415 416 isolate_fail: 417 if (strict) 418 break; 419 else 420 continue; 421 422 } 423 424 /* Record how far we have got within the block */ 425 *start_pfn = blockpfn; 426 427 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated); 428 429 /* 430 * If strict isolation is requested by CMA then check that all the 431 * pages requested were isolated. If there were any failures, 0 is 432 * returned and CMA will fail. 433 */ 434 if (strict && blockpfn < end_pfn) 435 total_isolated = 0; 436 437 if (locked) 438 spin_unlock_irqrestore(&cc->zone->lock, flags); 439 440 /* Update the pageblock-skip if the whole pageblock was scanned */ 441 if (blockpfn == end_pfn) 442 update_pageblock_skip(cc, valid_page, total_isolated, false); 443 444 count_compact_events(COMPACTFREE_SCANNED, nr_scanned); 445 if (total_isolated) 446 count_compact_events(COMPACTISOLATED, total_isolated); 447 return total_isolated; 448 } 449 450 /** 451 * isolate_freepages_range() - isolate free pages. 452 * @start_pfn: The first PFN to start isolating. 453 * @end_pfn: The one-past-last PFN. 454 * 455 * Non-free pages, invalid PFNs, or zone boundaries within the 456 * [start_pfn, end_pfn) range are considered errors, cause function to 457 * undo its actions and return zero. 458 * 459 * Otherwise, function returns one-past-the-last PFN of isolated page 460 * (which may be greater then end_pfn if end fell in a middle of 461 * a free page). 462 */ 463 unsigned long 464 isolate_freepages_range(struct compact_control *cc, 465 unsigned long start_pfn, unsigned long end_pfn) 466 { 467 unsigned long isolated, pfn, block_end_pfn; 468 LIST_HEAD(freelist); 469 470 pfn = start_pfn; 471 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 472 473 for (; pfn < end_pfn; pfn += isolated, 474 block_end_pfn += pageblock_nr_pages) { 475 /* Protect pfn from changing by isolate_freepages_block */ 476 unsigned long isolate_start_pfn = pfn; 477 478 block_end_pfn = min(block_end_pfn, end_pfn); 479 480 /* 481 * pfn could pass the block_end_pfn if isolated freepage 482 * is more than pageblock order. In this case, we adjust 483 * scanning range to right one. 484 */ 485 if (pfn >= block_end_pfn) { 486 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 487 block_end_pfn = min(block_end_pfn, end_pfn); 488 } 489 490 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone)) 491 break; 492 493 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 494 block_end_pfn, &freelist, true); 495 496 /* 497 * In strict mode, isolate_freepages_block() returns 0 if 498 * there are any holes in the block (ie. invalid PFNs or 499 * non-free pages). 500 */ 501 if (!isolated) 502 break; 503 504 /* 505 * If we managed to isolate pages, it is always (1 << n) * 506 * pageblock_nr_pages for some non-negative n. (Max order 507 * page may span two pageblocks). 508 */ 509 } 510 511 /* split_free_page does not map the pages */ 512 map_pages(&freelist); 513 514 if (pfn < end_pfn) { 515 /* Loop terminated early, cleanup. */ 516 release_freepages(&freelist); 517 return 0; 518 } 519 520 /* We don't use freelists for anything. */ 521 return pfn; 522 } 523 524 /* Update the number of anon and file isolated pages in the zone */ 525 static void acct_isolated(struct zone *zone, struct compact_control *cc) 526 { 527 struct page *page; 528 unsigned int count[2] = { 0, }; 529 530 if (list_empty(&cc->migratepages)) 531 return; 532 533 list_for_each_entry(page, &cc->migratepages, lru) 534 count[!!page_is_file_cache(page)]++; 535 536 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 537 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 538 } 539 540 /* Similar to reclaim, but different enough that they don't share logic */ 541 static bool too_many_isolated(struct zone *zone) 542 { 543 unsigned long active, inactive, isolated; 544 545 inactive = zone_page_state(zone, NR_INACTIVE_FILE) + 546 zone_page_state(zone, NR_INACTIVE_ANON); 547 active = zone_page_state(zone, NR_ACTIVE_FILE) + 548 zone_page_state(zone, NR_ACTIVE_ANON); 549 isolated = zone_page_state(zone, NR_ISOLATED_FILE) + 550 zone_page_state(zone, NR_ISOLATED_ANON); 551 552 return isolated > (inactive + active) / 2; 553 } 554 555 /** 556 * isolate_migratepages_block() - isolate all migrate-able pages within 557 * a single pageblock 558 * @cc: Compaction control structure. 559 * @low_pfn: The first PFN to isolate 560 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 561 * @isolate_mode: Isolation mode to be used. 562 * 563 * Isolate all pages that can be migrated from the range specified by 564 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 565 * Returns zero if there is a fatal signal pending, otherwise PFN of the 566 * first page that was not scanned (which may be both less, equal to or more 567 * than end_pfn). 568 * 569 * The pages are isolated on cc->migratepages list (not required to be empty), 570 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 571 * is neither read nor updated. 572 */ 573 static unsigned long 574 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 575 unsigned long end_pfn, isolate_mode_t isolate_mode) 576 { 577 struct zone *zone = cc->zone; 578 unsigned long nr_scanned = 0, nr_isolated = 0; 579 struct list_head *migratelist = &cc->migratepages; 580 struct lruvec *lruvec; 581 unsigned long flags = 0; 582 bool locked = false; 583 struct page *page = NULL, *valid_page = NULL; 584 585 /* 586 * Ensure that there are not too many pages isolated from the LRU 587 * list by either parallel reclaimers or compaction. If there are, 588 * delay for some time until fewer pages are isolated 589 */ 590 while (unlikely(too_many_isolated(zone))) { 591 /* async migration should just abort */ 592 if (cc->mode == MIGRATE_ASYNC) 593 return 0; 594 595 congestion_wait(BLK_RW_ASYNC, HZ/10); 596 597 if (fatal_signal_pending(current)) 598 return 0; 599 } 600 601 if (compact_should_abort(cc)) 602 return 0; 603 604 /* Time to isolate some pages for migration */ 605 for (; low_pfn < end_pfn; low_pfn++) { 606 /* 607 * Periodically drop the lock (if held) regardless of its 608 * contention, to give chance to IRQs. Abort async compaction 609 * if contended. 610 */ 611 if (!(low_pfn % SWAP_CLUSTER_MAX) 612 && compact_unlock_should_abort(&zone->lru_lock, flags, 613 &locked, cc)) 614 break; 615 616 if (!pfn_valid_within(low_pfn)) 617 continue; 618 nr_scanned++; 619 620 page = pfn_to_page(low_pfn); 621 622 if (!valid_page) 623 valid_page = page; 624 625 /* 626 * Skip if free. We read page order here without zone lock 627 * which is generally unsafe, but the race window is small and 628 * the worst thing that can happen is that we skip some 629 * potential isolation targets. 630 */ 631 if (PageBuddy(page)) { 632 unsigned long freepage_order = page_order_unsafe(page); 633 634 /* 635 * Without lock, we cannot be sure that what we got is 636 * a valid page order. Consider only values in the 637 * valid order range to prevent low_pfn overflow. 638 */ 639 if (freepage_order > 0 && freepage_order < MAX_ORDER) 640 low_pfn += (1UL << freepage_order) - 1; 641 continue; 642 } 643 644 /* 645 * Check may be lockless but that's ok as we recheck later. 646 * It's possible to migrate LRU pages and balloon pages 647 * Skip any other type of page 648 */ 649 if (!PageLRU(page)) { 650 if (unlikely(balloon_page_movable(page))) { 651 if (balloon_page_isolate(page)) { 652 /* Successfully isolated */ 653 goto isolate_success; 654 } 655 } 656 continue; 657 } 658 659 /* 660 * PageLRU is set. lru_lock normally excludes isolation 661 * splitting and collapsing (collapsing has already happened 662 * if PageLRU is set) but the lock is not necessarily taken 663 * here and it is wasteful to take it just to check transhuge. 664 * Check TransHuge without lock and skip the whole pageblock if 665 * it's either a transhuge or hugetlbfs page, as calling 666 * compound_order() without preventing THP from splitting the 667 * page underneath us may return surprising results. 668 */ 669 if (PageTransHuge(page)) { 670 if (!locked) 671 low_pfn = ALIGN(low_pfn + 1, 672 pageblock_nr_pages) - 1; 673 else 674 low_pfn += (1 << compound_order(page)) - 1; 675 676 continue; 677 } 678 679 /* 680 * Migration will fail if an anonymous page is pinned in memory, 681 * so avoid taking lru_lock and isolating it unnecessarily in an 682 * admittedly racy check. 683 */ 684 if (!page_mapping(page) && 685 page_count(page) > page_mapcount(page)) 686 continue; 687 688 /* If we already hold the lock, we can skip some rechecking */ 689 if (!locked) { 690 locked = compact_trylock_irqsave(&zone->lru_lock, 691 &flags, cc); 692 if (!locked) 693 break; 694 695 /* Recheck PageLRU and PageTransHuge under lock */ 696 if (!PageLRU(page)) 697 continue; 698 if (PageTransHuge(page)) { 699 low_pfn += (1 << compound_order(page)) - 1; 700 continue; 701 } 702 } 703 704 lruvec = mem_cgroup_page_lruvec(page, zone); 705 706 /* Try isolate the page */ 707 if (__isolate_lru_page(page, isolate_mode) != 0) 708 continue; 709 710 VM_BUG_ON_PAGE(PageTransCompound(page), page); 711 712 /* Successfully isolated */ 713 del_page_from_lru_list(page, lruvec, page_lru(page)); 714 715 isolate_success: 716 list_add(&page->lru, migratelist); 717 cc->nr_migratepages++; 718 nr_isolated++; 719 720 /* Avoid isolating too much */ 721 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 722 ++low_pfn; 723 break; 724 } 725 } 726 727 /* 728 * The PageBuddy() check could have potentially brought us outside 729 * the range to be scanned. 730 */ 731 if (unlikely(low_pfn > end_pfn)) 732 low_pfn = end_pfn; 733 734 if (locked) 735 spin_unlock_irqrestore(&zone->lru_lock, flags); 736 737 /* 738 * Update the pageblock-skip information and cached scanner pfn, 739 * if the whole pageblock was scanned without isolating any page. 740 */ 741 if (low_pfn == end_pfn) 742 update_pageblock_skip(cc, valid_page, nr_isolated, true); 743 744 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated); 745 746 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned); 747 if (nr_isolated) 748 count_compact_events(COMPACTISOLATED, nr_isolated); 749 750 return low_pfn; 751 } 752 753 /** 754 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 755 * @cc: Compaction control structure. 756 * @start_pfn: The first PFN to start isolating. 757 * @end_pfn: The one-past-last PFN. 758 * 759 * Returns zero if isolation fails fatally due to e.g. pending signal. 760 * Otherwise, function returns one-past-the-last PFN of isolated page 761 * (which may be greater than end_pfn if end fell in a middle of a THP page). 762 */ 763 unsigned long 764 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 765 unsigned long end_pfn) 766 { 767 unsigned long pfn, block_end_pfn; 768 769 /* Scan block by block. First and last block may be incomplete */ 770 pfn = start_pfn; 771 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 772 773 for (; pfn < end_pfn; pfn = block_end_pfn, 774 block_end_pfn += pageblock_nr_pages) { 775 776 block_end_pfn = min(block_end_pfn, end_pfn); 777 778 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone)) 779 continue; 780 781 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 782 ISOLATE_UNEVICTABLE); 783 784 /* 785 * In case of fatal failure, release everything that might 786 * have been isolated in the previous iteration, and signal 787 * the failure back to caller. 788 */ 789 if (!pfn) { 790 putback_movable_pages(&cc->migratepages); 791 cc->nr_migratepages = 0; 792 break; 793 } 794 795 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 796 break; 797 } 798 acct_isolated(cc->zone, cc); 799 800 return pfn; 801 } 802 803 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 804 #ifdef CONFIG_COMPACTION 805 /* 806 * Based on information in the current compact_control, find blocks 807 * suitable for isolating free pages from and then isolate them. 808 */ 809 static void isolate_freepages(struct compact_control *cc) 810 { 811 struct zone *zone = cc->zone; 812 struct page *page; 813 unsigned long block_start_pfn; /* start of current pageblock */ 814 unsigned long isolate_start_pfn; /* exact pfn we start at */ 815 unsigned long block_end_pfn; /* end of current pageblock */ 816 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 817 int nr_freepages = cc->nr_freepages; 818 struct list_head *freelist = &cc->freepages; 819 820 /* 821 * Initialise the free scanner. The starting point is where we last 822 * successfully isolated from, zone-cached value, or the end of the 823 * zone when isolating for the first time. For looping we also need 824 * this pfn aligned down to the pageblock boundary, because we do 825 * block_start_pfn -= pageblock_nr_pages in the for loop. 826 * For ending point, take care when isolating in last pageblock of a 827 * a zone which ends in the middle of a pageblock. 828 * The low boundary is the end of the pageblock the migration scanner 829 * is using. 830 */ 831 isolate_start_pfn = cc->free_pfn; 832 block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1); 833 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 834 zone_end_pfn(zone)); 835 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages); 836 837 /* 838 * Isolate free pages until enough are available to migrate the 839 * pages on cc->migratepages. We stop searching if the migrate 840 * and free page scanners meet or enough free pages are isolated. 841 */ 842 for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages; 843 block_end_pfn = block_start_pfn, 844 block_start_pfn -= pageblock_nr_pages, 845 isolate_start_pfn = block_start_pfn) { 846 unsigned long isolated; 847 848 /* 849 * This can iterate a massively long zone without finding any 850 * suitable migration targets, so periodically check if we need 851 * to schedule, or even abort async compaction. 852 */ 853 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 854 && compact_should_abort(cc)) 855 break; 856 857 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 858 zone); 859 if (!page) 860 continue; 861 862 /* Check the block is suitable for migration */ 863 if (!suitable_migration_target(page)) 864 continue; 865 866 /* If isolation recently failed, do not retry */ 867 if (!isolation_suitable(cc, page)) 868 continue; 869 870 /* Found a block suitable for isolating free pages from. */ 871 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 872 block_end_pfn, freelist, false); 873 nr_freepages += isolated; 874 875 /* 876 * Remember where the free scanner should restart next time, 877 * which is where isolate_freepages_block() left off. 878 * But if it scanned the whole pageblock, isolate_start_pfn 879 * now points at block_end_pfn, which is the start of the next 880 * pageblock. 881 * In that case we will however want to restart at the start 882 * of the previous pageblock. 883 */ 884 cc->free_pfn = (isolate_start_pfn < block_end_pfn) ? 885 isolate_start_pfn : 886 block_start_pfn - pageblock_nr_pages; 887 888 /* 889 * isolate_freepages_block() might have aborted due to async 890 * compaction being contended 891 */ 892 if (cc->contended) 893 break; 894 } 895 896 /* split_free_page does not map the pages */ 897 map_pages(freelist); 898 899 /* 900 * If we crossed the migrate scanner, we want to keep it that way 901 * so that compact_finished() may detect this 902 */ 903 if (block_start_pfn < low_pfn) 904 cc->free_pfn = cc->migrate_pfn; 905 906 cc->nr_freepages = nr_freepages; 907 } 908 909 /* 910 * This is a migrate-callback that "allocates" freepages by taking pages 911 * from the isolated freelists in the block we are migrating to. 912 */ 913 static struct page *compaction_alloc(struct page *migratepage, 914 unsigned long data, 915 int **result) 916 { 917 struct compact_control *cc = (struct compact_control *)data; 918 struct page *freepage; 919 920 /* 921 * Isolate free pages if necessary, and if we are not aborting due to 922 * contention. 923 */ 924 if (list_empty(&cc->freepages)) { 925 if (!cc->contended) 926 isolate_freepages(cc); 927 928 if (list_empty(&cc->freepages)) 929 return NULL; 930 } 931 932 freepage = list_entry(cc->freepages.next, struct page, lru); 933 list_del(&freepage->lru); 934 cc->nr_freepages--; 935 936 return freepage; 937 } 938 939 /* 940 * This is a migrate-callback that "frees" freepages back to the isolated 941 * freelist. All pages on the freelist are from the same zone, so there is no 942 * special handling needed for NUMA. 943 */ 944 static void compaction_free(struct page *page, unsigned long data) 945 { 946 struct compact_control *cc = (struct compact_control *)data; 947 948 list_add(&page->lru, &cc->freepages); 949 cc->nr_freepages++; 950 } 951 952 /* possible outcome of isolate_migratepages */ 953 typedef enum { 954 ISOLATE_ABORT, /* Abort compaction now */ 955 ISOLATE_NONE, /* No pages isolated, continue scanning */ 956 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 957 } isolate_migrate_t; 958 959 /* 960 * Isolate all pages that can be migrated from the first suitable block, 961 * starting at the block pointed to by the migrate scanner pfn within 962 * compact_control. 963 */ 964 static isolate_migrate_t isolate_migratepages(struct zone *zone, 965 struct compact_control *cc) 966 { 967 unsigned long low_pfn, end_pfn; 968 struct page *page; 969 const isolate_mode_t isolate_mode = 970 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0); 971 972 /* 973 * Start at where we last stopped, or beginning of the zone as 974 * initialized by compact_zone() 975 */ 976 low_pfn = cc->migrate_pfn; 977 978 /* Only scan within a pageblock boundary */ 979 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages); 980 981 /* 982 * Iterate over whole pageblocks until we find the first suitable. 983 * Do not cross the free scanner. 984 */ 985 for (; end_pfn <= cc->free_pfn; 986 low_pfn = end_pfn, end_pfn += pageblock_nr_pages) { 987 988 /* 989 * This can potentially iterate a massively long zone with 990 * many pageblocks unsuitable, so periodically check if we 991 * need to schedule, or even abort async compaction. 992 */ 993 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 994 && compact_should_abort(cc)) 995 break; 996 997 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone); 998 if (!page) 999 continue; 1000 1001 /* If isolation recently failed, do not retry */ 1002 if (!isolation_suitable(cc, page)) 1003 continue; 1004 1005 /* 1006 * For async compaction, also only scan in MOVABLE blocks. 1007 * Async compaction is optimistic to see if the minimum amount 1008 * of work satisfies the allocation. 1009 */ 1010 if (cc->mode == MIGRATE_ASYNC && 1011 !migrate_async_suitable(get_pageblock_migratetype(page))) 1012 continue; 1013 1014 /* Perform the isolation */ 1015 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn, 1016 isolate_mode); 1017 1018 if (!low_pfn || cc->contended) 1019 return ISOLATE_ABORT; 1020 1021 /* 1022 * Either we isolated something and proceed with migration. Or 1023 * we failed and compact_zone should decide if we should 1024 * continue or not. 1025 */ 1026 break; 1027 } 1028 1029 acct_isolated(zone, cc); 1030 /* 1031 * Record where migration scanner will be restarted. If we end up in 1032 * the same pageblock as the free scanner, make the scanners fully 1033 * meet so that compact_finished() terminates compaction. 1034 */ 1035 cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn; 1036 1037 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1038 } 1039 1040 static int compact_finished(struct zone *zone, struct compact_control *cc, 1041 const int migratetype) 1042 { 1043 unsigned int order; 1044 unsigned long watermark; 1045 1046 if (cc->contended || fatal_signal_pending(current)) 1047 return COMPACT_PARTIAL; 1048 1049 /* Compaction run completes if the migrate and free scanner meet */ 1050 if (cc->free_pfn <= cc->migrate_pfn) { 1051 /* Let the next compaction start anew. */ 1052 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 1053 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 1054 zone->compact_cached_free_pfn = zone_end_pfn(zone); 1055 1056 /* 1057 * Mark that the PG_migrate_skip information should be cleared 1058 * by kswapd when it goes to sleep. kswapd does not set the 1059 * flag itself as the decision to be clear should be directly 1060 * based on an allocation request. 1061 */ 1062 if (!current_is_kswapd()) 1063 zone->compact_blockskip_flush = true; 1064 1065 return COMPACT_COMPLETE; 1066 } 1067 1068 /* 1069 * order == -1 is expected when compacting via 1070 * /proc/sys/vm/compact_memory 1071 */ 1072 if (cc->order == -1) 1073 return COMPACT_CONTINUE; 1074 1075 /* Compaction run is not finished if the watermark is not met */ 1076 watermark = low_wmark_pages(zone); 1077 1078 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx, 1079 cc->alloc_flags)) 1080 return COMPACT_CONTINUE; 1081 1082 /* Direct compactor: Is a suitable page free? */ 1083 for (order = cc->order; order < MAX_ORDER; order++) { 1084 struct free_area *area = &zone->free_area[order]; 1085 1086 /* Job done if page is free of the right migratetype */ 1087 if (!list_empty(&area->free_list[migratetype])) 1088 return COMPACT_PARTIAL; 1089 1090 /* Job done if allocation would set block type */ 1091 if (cc->order >= pageblock_order && area->nr_free) 1092 return COMPACT_PARTIAL; 1093 } 1094 1095 return COMPACT_CONTINUE; 1096 } 1097 1098 /* 1099 * compaction_suitable: Is this suitable to run compaction on this zone now? 1100 * Returns 1101 * COMPACT_SKIPPED - If there are too few free pages for compaction 1102 * COMPACT_PARTIAL - If the allocation would succeed without compaction 1103 * COMPACT_CONTINUE - If compaction should run now 1104 */ 1105 unsigned long compaction_suitable(struct zone *zone, int order, 1106 int alloc_flags, int classzone_idx) 1107 { 1108 int fragindex; 1109 unsigned long watermark; 1110 1111 /* 1112 * order == -1 is expected when compacting via 1113 * /proc/sys/vm/compact_memory 1114 */ 1115 if (order == -1) 1116 return COMPACT_CONTINUE; 1117 1118 watermark = low_wmark_pages(zone); 1119 /* 1120 * If watermarks for high-order allocation are already met, there 1121 * should be no need for compaction at all. 1122 */ 1123 if (zone_watermark_ok(zone, order, watermark, classzone_idx, 1124 alloc_flags)) 1125 return COMPACT_PARTIAL; 1126 1127 /* 1128 * Watermarks for order-0 must be met for compaction. Note the 2UL. 1129 * This is because during migration, copies of pages need to be 1130 * allocated and for a short time, the footprint is higher 1131 */ 1132 watermark += (2UL << order); 1133 if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags)) 1134 return COMPACT_SKIPPED; 1135 1136 /* 1137 * fragmentation index determines if allocation failures are due to 1138 * low memory or external fragmentation 1139 * 1140 * index of -1000 would imply allocations might succeed depending on 1141 * watermarks, but we already failed the high-order watermark check 1142 * index towards 0 implies failure is due to lack of memory 1143 * index towards 1000 implies failure is due to fragmentation 1144 * 1145 * Only compact if a failure would be due to fragmentation. 1146 */ 1147 fragindex = fragmentation_index(zone, order); 1148 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 1149 return COMPACT_SKIPPED; 1150 1151 return COMPACT_CONTINUE; 1152 } 1153 1154 static int compact_zone(struct zone *zone, struct compact_control *cc) 1155 { 1156 int ret; 1157 unsigned long start_pfn = zone->zone_start_pfn; 1158 unsigned long end_pfn = zone_end_pfn(zone); 1159 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask); 1160 const bool sync = cc->mode != MIGRATE_ASYNC; 1161 unsigned long last_migrated_pfn = 0; 1162 1163 ret = compaction_suitable(zone, cc->order, cc->alloc_flags, 1164 cc->classzone_idx); 1165 switch (ret) { 1166 case COMPACT_PARTIAL: 1167 case COMPACT_SKIPPED: 1168 /* Compaction is likely to fail */ 1169 return ret; 1170 case COMPACT_CONTINUE: 1171 /* Fall through to compaction */ 1172 ; 1173 } 1174 1175 /* 1176 * Clear pageblock skip if there were failures recently and compaction 1177 * is about to be retried after being deferred. kswapd does not do 1178 * this reset as it'll reset the cached information when going to sleep. 1179 */ 1180 if (compaction_restarting(zone, cc->order) && !current_is_kswapd()) 1181 __reset_isolation_suitable(zone); 1182 1183 /* 1184 * Setup to move all movable pages to the end of the zone. Used cached 1185 * information on where the scanners should start but check that it 1186 * is initialised by ensuring the values are within zone boundaries. 1187 */ 1188 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync]; 1189 cc->free_pfn = zone->compact_cached_free_pfn; 1190 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) { 1191 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1); 1192 zone->compact_cached_free_pfn = cc->free_pfn; 1193 } 1194 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) { 1195 cc->migrate_pfn = start_pfn; 1196 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 1197 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 1198 } 1199 1200 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn); 1201 1202 migrate_prep_local(); 1203 1204 while ((ret = compact_finished(zone, cc, migratetype)) == 1205 COMPACT_CONTINUE) { 1206 int err; 1207 unsigned long isolate_start_pfn = cc->migrate_pfn; 1208 1209 switch (isolate_migratepages(zone, cc)) { 1210 case ISOLATE_ABORT: 1211 ret = COMPACT_PARTIAL; 1212 putback_movable_pages(&cc->migratepages); 1213 cc->nr_migratepages = 0; 1214 goto out; 1215 case ISOLATE_NONE: 1216 /* 1217 * We haven't isolated and migrated anything, but 1218 * there might still be unflushed migrations from 1219 * previous cc->order aligned block. 1220 */ 1221 goto check_drain; 1222 case ISOLATE_SUCCESS: 1223 ; 1224 } 1225 1226 err = migrate_pages(&cc->migratepages, compaction_alloc, 1227 compaction_free, (unsigned long)cc, cc->mode, 1228 MR_COMPACTION); 1229 1230 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 1231 &cc->migratepages); 1232 1233 /* All pages were either migrated or will be released */ 1234 cc->nr_migratepages = 0; 1235 if (err) { 1236 putback_movable_pages(&cc->migratepages); 1237 /* 1238 * migrate_pages() may return -ENOMEM when scanners meet 1239 * and we want compact_finished() to detect it 1240 */ 1241 if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) { 1242 ret = COMPACT_PARTIAL; 1243 goto out; 1244 } 1245 } 1246 1247 /* 1248 * Record where we could have freed pages by migration and not 1249 * yet flushed them to buddy allocator. We use the pfn that 1250 * isolate_migratepages() started from in this loop iteration 1251 * - this is the lowest page that could have been isolated and 1252 * then freed by migration. 1253 */ 1254 if (!last_migrated_pfn) 1255 last_migrated_pfn = isolate_start_pfn; 1256 1257 check_drain: 1258 /* 1259 * Has the migration scanner moved away from the previous 1260 * cc->order aligned block where we migrated from? If yes, 1261 * flush the pages that were freed, so that they can merge and 1262 * compact_finished() can detect immediately if allocation 1263 * would succeed. 1264 */ 1265 if (cc->order > 0 && last_migrated_pfn) { 1266 int cpu; 1267 unsigned long current_block_start = 1268 cc->migrate_pfn & ~((1UL << cc->order) - 1); 1269 1270 if (last_migrated_pfn < current_block_start) { 1271 cpu = get_cpu(); 1272 lru_add_drain_cpu(cpu); 1273 drain_local_pages(zone); 1274 put_cpu(); 1275 /* No more flushing until we migrate again */ 1276 last_migrated_pfn = 0; 1277 } 1278 } 1279 1280 } 1281 1282 out: 1283 /* 1284 * Release free pages and update where the free scanner should restart, 1285 * so we don't leave any returned pages behind in the next attempt. 1286 */ 1287 if (cc->nr_freepages > 0) { 1288 unsigned long free_pfn = release_freepages(&cc->freepages); 1289 1290 cc->nr_freepages = 0; 1291 VM_BUG_ON(free_pfn == 0); 1292 /* The cached pfn is always the first in a pageblock */ 1293 free_pfn &= ~(pageblock_nr_pages-1); 1294 /* 1295 * Only go back, not forward. The cached pfn might have been 1296 * already reset to zone end in compact_finished() 1297 */ 1298 if (free_pfn > zone->compact_cached_free_pfn) 1299 zone->compact_cached_free_pfn = free_pfn; 1300 } 1301 1302 trace_mm_compaction_end(ret); 1303 1304 return ret; 1305 } 1306 1307 static unsigned long compact_zone_order(struct zone *zone, int order, 1308 gfp_t gfp_mask, enum migrate_mode mode, int *contended, 1309 int alloc_flags, int classzone_idx) 1310 { 1311 unsigned long ret; 1312 struct compact_control cc = { 1313 .nr_freepages = 0, 1314 .nr_migratepages = 0, 1315 .order = order, 1316 .gfp_mask = gfp_mask, 1317 .zone = zone, 1318 .mode = mode, 1319 .alloc_flags = alloc_flags, 1320 .classzone_idx = classzone_idx, 1321 }; 1322 INIT_LIST_HEAD(&cc.freepages); 1323 INIT_LIST_HEAD(&cc.migratepages); 1324 1325 ret = compact_zone(zone, &cc); 1326 1327 VM_BUG_ON(!list_empty(&cc.freepages)); 1328 VM_BUG_ON(!list_empty(&cc.migratepages)); 1329 1330 *contended = cc.contended; 1331 return ret; 1332 } 1333 1334 int sysctl_extfrag_threshold = 500; 1335 1336 /** 1337 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 1338 * @zonelist: The zonelist used for the current allocation 1339 * @order: The order of the current allocation 1340 * @gfp_mask: The GFP mask of the current allocation 1341 * @nodemask: The allowed nodes to allocate from 1342 * @mode: The migration mode for async, sync light, or sync migration 1343 * @contended: Return value that determines if compaction was aborted due to 1344 * need_resched() or lock contention 1345 * 1346 * This is the main entry point for direct page compaction. 1347 */ 1348 unsigned long try_to_compact_pages(struct zonelist *zonelist, 1349 int order, gfp_t gfp_mask, nodemask_t *nodemask, 1350 enum migrate_mode mode, int *contended, 1351 int alloc_flags, int classzone_idx) 1352 { 1353 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1354 int may_enter_fs = gfp_mask & __GFP_FS; 1355 int may_perform_io = gfp_mask & __GFP_IO; 1356 struct zoneref *z; 1357 struct zone *zone; 1358 int rc = COMPACT_DEFERRED; 1359 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */ 1360 1361 *contended = COMPACT_CONTENDED_NONE; 1362 1363 /* Check if the GFP flags allow compaction */ 1364 if (!order || !may_enter_fs || !may_perform_io) 1365 return COMPACT_SKIPPED; 1366 1367 /* Compact each zone in the list */ 1368 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 1369 nodemask) { 1370 int status; 1371 int zone_contended; 1372 1373 if (compaction_deferred(zone, order)) 1374 continue; 1375 1376 status = compact_zone_order(zone, order, gfp_mask, mode, 1377 &zone_contended, alloc_flags, classzone_idx); 1378 rc = max(status, rc); 1379 /* 1380 * It takes at least one zone that wasn't lock contended 1381 * to clear all_zones_contended. 1382 */ 1383 all_zones_contended &= zone_contended; 1384 1385 /* If a normal allocation would succeed, stop compacting */ 1386 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 1387 classzone_idx, alloc_flags)) { 1388 /* 1389 * We think the allocation will succeed in this zone, 1390 * but it is not certain, hence the false. The caller 1391 * will repeat this with true if allocation indeed 1392 * succeeds in this zone. 1393 */ 1394 compaction_defer_reset(zone, order, false); 1395 /* 1396 * It is possible that async compaction aborted due to 1397 * need_resched() and the watermarks were ok thanks to 1398 * somebody else freeing memory. The allocation can 1399 * however still fail so we better signal the 1400 * need_resched() contention anyway (this will not 1401 * prevent the allocation attempt). 1402 */ 1403 if (zone_contended == COMPACT_CONTENDED_SCHED) 1404 *contended = COMPACT_CONTENDED_SCHED; 1405 1406 goto break_loop; 1407 } 1408 1409 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) { 1410 /* 1411 * We think that allocation won't succeed in this zone 1412 * so we defer compaction there. If it ends up 1413 * succeeding after all, it will be reset. 1414 */ 1415 defer_compaction(zone, order); 1416 } 1417 1418 /* 1419 * We might have stopped compacting due to need_resched() in 1420 * async compaction, or due to a fatal signal detected. In that 1421 * case do not try further zones and signal need_resched() 1422 * contention. 1423 */ 1424 if ((zone_contended == COMPACT_CONTENDED_SCHED) 1425 || fatal_signal_pending(current)) { 1426 *contended = COMPACT_CONTENDED_SCHED; 1427 goto break_loop; 1428 } 1429 1430 continue; 1431 break_loop: 1432 /* 1433 * We might not have tried all the zones, so be conservative 1434 * and assume they are not all lock contended. 1435 */ 1436 all_zones_contended = 0; 1437 break; 1438 } 1439 1440 /* 1441 * If at least one zone wasn't deferred or skipped, we report if all 1442 * zones that were tried were lock contended. 1443 */ 1444 if (rc > COMPACT_SKIPPED && all_zones_contended) 1445 *contended = COMPACT_CONTENDED_LOCK; 1446 1447 return rc; 1448 } 1449 1450 1451 /* Compact all zones within a node */ 1452 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) 1453 { 1454 int zoneid; 1455 struct zone *zone; 1456 1457 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1458 1459 zone = &pgdat->node_zones[zoneid]; 1460 if (!populated_zone(zone)) 1461 continue; 1462 1463 cc->nr_freepages = 0; 1464 cc->nr_migratepages = 0; 1465 cc->zone = zone; 1466 INIT_LIST_HEAD(&cc->freepages); 1467 INIT_LIST_HEAD(&cc->migratepages); 1468 1469 if (cc->order == -1 || !compaction_deferred(zone, cc->order)) 1470 compact_zone(zone, cc); 1471 1472 if (cc->order > 0) { 1473 if (zone_watermark_ok(zone, cc->order, 1474 low_wmark_pages(zone), 0, 0)) 1475 compaction_defer_reset(zone, cc->order, false); 1476 } 1477 1478 VM_BUG_ON(!list_empty(&cc->freepages)); 1479 VM_BUG_ON(!list_empty(&cc->migratepages)); 1480 } 1481 } 1482 1483 void compact_pgdat(pg_data_t *pgdat, int order) 1484 { 1485 struct compact_control cc = { 1486 .order = order, 1487 .mode = MIGRATE_ASYNC, 1488 }; 1489 1490 if (!order) 1491 return; 1492 1493 __compact_pgdat(pgdat, &cc); 1494 } 1495 1496 static void compact_node(int nid) 1497 { 1498 struct compact_control cc = { 1499 .order = -1, 1500 .mode = MIGRATE_SYNC, 1501 .ignore_skip_hint = true, 1502 }; 1503 1504 __compact_pgdat(NODE_DATA(nid), &cc); 1505 } 1506 1507 /* Compact all nodes in the system */ 1508 static void compact_nodes(void) 1509 { 1510 int nid; 1511 1512 /* Flush pending updates to the LRU lists */ 1513 lru_add_drain_all(); 1514 1515 for_each_online_node(nid) 1516 compact_node(nid); 1517 } 1518 1519 /* The written value is actually unused, all memory is compacted */ 1520 int sysctl_compact_memory; 1521 1522 /* This is the entry point for compacting all nodes via /proc/sys/vm */ 1523 int sysctl_compaction_handler(struct ctl_table *table, int write, 1524 void __user *buffer, size_t *length, loff_t *ppos) 1525 { 1526 if (write) 1527 compact_nodes(); 1528 1529 return 0; 1530 } 1531 1532 int sysctl_extfrag_handler(struct ctl_table *table, int write, 1533 void __user *buffer, size_t *length, loff_t *ppos) 1534 { 1535 proc_dointvec_minmax(table, write, buffer, length, ppos); 1536 1537 return 0; 1538 } 1539 1540 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 1541 static ssize_t sysfs_compact_node(struct device *dev, 1542 struct device_attribute *attr, 1543 const char *buf, size_t count) 1544 { 1545 int nid = dev->id; 1546 1547 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 1548 /* Flush pending updates to the LRU lists */ 1549 lru_add_drain_all(); 1550 1551 compact_node(nid); 1552 } 1553 1554 return count; 1555 } 1556 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 1557 1558 int compaction_register_node(struct node *node) 1559 { 1560 return device_create_file(&node->dev, &dev_attr_compact); 1561 } 1562 1563 void compaction_unregister_node(struct node *node) 1564 { 1565 return device_remove_file(&node->dev, &dev_attr_compact); 1566 } 1567 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 1568 1569 #endif /* CONFIG_COMPACTION */ 1570