1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 static inline void count_compact_event(enum vm_event_item item) 30 { 31 count_vm_event(item); 32 } 33 34 static inline void count_compact_events(enum vm_event_item item, long delta) 35 { 36 count_vm_events(item, delta); 37 } 38 #else 39 #define count_compact_event(item) do { } while (0) 40 #define count_compact_events(item, delta) do { } while (0) 41 #endif 42 43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/compaction.h> 47 48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 52 53 /* 54 * Fragmentation score check interval for proactive compaction purposes. 55 */ 56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500; 57 58 /* 59 * Page order with-respect-to which proactive compaction 60 * calculates external fragmentation, which is used as 61 * the "fragmentation score" of a node/zone. 62 */ 63 #if defined CONFIG_TRANSPARENT_HUGEPAGE 64 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 65 #elif defined CONFIG_HUGETLBFS 66 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 67 #else 68 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 69 #endif 70 71 static unsigned long release_freepages(struct list_head *freelist) 72 { 73 struct page *page, *next; 74 unsigned long high_pfn = 0; 75 76 list_for_each_entry_safe(page, next, freelist, lru) { 77 unsigned long pfn = page_to_pfn(page); 78 list_del(&page->lru); 79 __free_page(page); 80 if (pfn > high_pfn) 81 high_pfn = pfn; 82 } 83 84 return high_pfn; 85 } 86 87 static void split_map_pages(struct list_head *list) 88 { 89 unsigned int i, order, nr_pages; 90 struct page *page, *next; 91 LIST_HEAD(tmp_list); 92 93 list_for_each_entry_safe(page, next, list, lru) { 94 list_del(&page->lru); 95 96 order = page_private(page); 97 nr_pages = 1 << order; 98 99 post_alloc_hook(page, order, __GFP_MOVABLE); 100 if (order) 101 split_page(page, order); 102 103 for (i = 0; i < nr_pages; i++) { 104 list_add(&page->lru, &tmp_list); 105 page++; 106 } 107 } 108 109 list_splice(&tmp_list, list); 110 } 111 112 #ifdef CONFIG_COMPACTION 113 114 int PageMovable(struct page *page) 115 { 116 struct address_space *mapping; 117 118 VM_BUG_ON_PAGE(!PageLocked(page), page); 119 if (!__PageMovable(page)) 120 return 0; 121 122 mapping = page_mapping(page); 123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 124 return 1; 125 126 return 0; 127 } 128 EXPORT_SYMBOL(PageMovable); 129 130 void __SetPageMovable(struct page *page, struct address_space *mapping) 131 { 132 VM_BUG_ON_PAGE(!PageLocked(page), page); 133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 135 } 136 EXPORT_SYMBOL(__SetPageMovable); 137 138 void __ClearPageMovable(struct page *page) 139 { 140 VM_BUG_ON_PAGE(!PageLocked(page), page); 141 VM_BUG_ON_PAGE(!PageMovable(page), page); 142 /* 143 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 144 * flag so that VM can catch up released page by driver after isolation. 145 * With it, VM migration doesn't try to put it back. 146 */ 147 page->mapping = (void *)((unsigned long)page->mapping & 148 PAGE_MAPPING_MOVABLE); 149 } 150 EXPORT_SYMBOL(__ClearPageMovable); 151 152 /* Do not skip compaction more than 64 times */ 153 #define COMPACT_MAX_DEFER_SHIFT 6 154 155 /* 156 * Compaction is deferred when compaction fails to result in a page 157 * allocation success. 1 << compact_defer_shift, compactions are skipped up 158 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 159 */ 160 static void defer_compaction(struct zone *zone, int order) 161 { 162 zone->compact_considered = 0; 163 zone->compact_defer_shift++; 164 165 if (order < zone->compact_order_failed) 166 zone->compact_order_failed = order; 167 168 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 169 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 170 171 trace_mm_compaction_defer_compaction(zone, order); 172 } 173 174 /* Returns true if compaction should be skipped this time */ 175 static bool compaction_deferred(struct zone *zone, int order) 176 { 177 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 178 179 if (order < zone->compact_order_failed) 180 return false; 181 182 /* Avoid possible overflow */ 183 if (++zone->compact_considered >= defer_limit) { 184 zone->compact_considered = defer_limit; 185 return false; 186 } 187 188 trace_mm_compaction_deferred(zone, order); 189 190 return true; 191 } 192 193 /* 194 * Update defer tracking counters after successful compaction of given order, 195 * which means an allocation either succeeded (alloc_success == true) or is 196 * expected to succeed. 197 */ 198 void compaction_defer_reset(struct zone *zone, int order, 199 bool alloc_success) 200 { 201 if (alloc_success) { 202 zone->compact_considered = 0; 203 zone->compact_defer_shift = 0; 204 } 205 if (order >= zone->compact_order_failed) 206 zone->compact_order_failed = order + 1; 207 208 trace_mm_compaction_defer_reset(zone, order); 209 } 210 211 /* Returns true if restarting compaction after many failures */ 212 static bool compaction_restarting(struct zone *zone, int order) 213 { 214 if (order < zone->compact_order_failed) 215 return false; 216 217 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 218 zone->compact_considered >= 1UL << zone->compact_defer_shift; 219 } 220 221 /* Returns true if the pageblock should be scanned for pages to isolate. */ 222 static inline bool isolation_suitable(struct compact_control *cc, 223 struct page *page) 224 { 225 if (cc->ignore_skip_hint) 226 return true; 227 228 return !get_pageblock_skip(page); 229 } 230 231 static void reset_cached_positions(struct zone *zone) 232 { 233 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 234 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 235 zone->compact_cached_free_pfn = 236 pageblock_start_pfn(zone_end_pfn(zone) - 1); 237 } 238 239 /* 240 * Compound pages of >= pageblock_order should consistently be skipped until 241 * released. It is always pointless to compact pages of such order (if they are 242 * migratable), and the pageblocks they occupy cannot contain any free pages. 243 */ 244 static bool pageblock_skip_persistent(struct page *page) 245 { 246 if (!PageCompound(page)) 247 return false; 248 249 page = compound_head(page); 250 251 if (compound_order(page) >= pageblock_order) 252 return true; 253 254 return false; 255 } 256 257 static bool 258 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 259 bool check_target) 260 { 261 struct page *page = pfn_to_online_page(pfn); 262 struct page *block_page; 263 struct page *end_page; 264 unsigned long block_pfn; 265 266 if (!page) 267 return false; 268 if (zone != page_zone(page)) 269 return false; 270 if (pageblock_skip_persistent(page)) 271 return false; 272 273 /* 274 * If skip is already cleared do no further checking once the 275 * restart points have been set. 276 */ 277 if (check_source && check_target && !get_pageblock_skip(page)) 278 return true; 279 280 /* 281 * If clearing skip for the target scanner, do not select a 282 * non-movable pageblock as the starting point. 283 */ 284 if (!check_source && check_target && 285 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 286 return false; 287 288 /* Ensure the start of the pageblock or zone is online and valid */ 289 block_pfn = pageblock_start_pfn(pfn); 290 block_pfn = max(block_pfn, zone->zone_start_pfn); 291 block_page = pfn_to_online_page(block_pfn); 292 if (block_page) { 293 page = block_page; 294 pfn = block_pfn; 295 } 296 297 /* Ensure the end of the pageblock or zone is online and valid */ 298 block_pfn = pageblock_end_pfn(pfn) - 1; 299 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 300 end_page = pfn_to_online_page(block_pfn); 301 if (!end_page) 302 return false; 303 304 /* 305 * Only clear the hint if a sample indicates there is either a 306 * free page or an LRU page in the block. One or other condition 307 * is necessary for the block to be a migration source/target. 308 */ 309 do { 310 if (pfn_valid_within(pfn)) { 311 if (check_source && PageLRU(page)) { 312 clear_pageblock_skip(page); 313 return true; 314 } 315 316 if (check_target && PageBuddy(page)) { 317 clear_pageblock_skip(page); 318 return true; 319 } 320 } 321 322 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 323 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER); 324 } while (page <= end_page); 325 326 return false; 327 } 328 329 /* 330 * This function is called to clear all cached information on pageblocks that 331 * should be skipped for page isolation when the migrate and free page scanner 332 * meet. 333 */ 334 static void __reset_isolation_suitable(struct zone *zone) 335 { 336 unsigned long migrate_pfn = zone->zone_start_pfn; 337 unsigned long free_pfn = zone_end_pfn(zone) - 1; 338 unsigned long reset_migrate = free_pfn; 339 unsigned long reset_free = migrate_pfn; 340 bool source_set = false; 341 bool free_set = false; 342 343 if (!zone->compact_blockskip_flush) 344 return; 345 346 zone->compact_blockskip_flush = false; 347 348 /* 349 * Walk the zone and update pageblock skip information. Source looks 350 * for PageLRU while target looks for PageBuddy. When the scanner 351 * is found, both PageBuddy and PageLRU are checked as the pageblock 352 * is suitable as both source and target. 353 */ 354 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 355 free_pfn -= pageblock_nr_pages) { 356 cond_resched(); 357 358 /* Update the migrate PFN */ 359 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 360 migrate_pfn < reset_migrate) { 361 source_set = true; 362 reset_migrate = migrate_pfn; 363 zone->compact_init_migrate_pfn = reset_migrate; 364 zone->compact_cached_migrate_pfn[0] = reset_migrate; 365 zone->compact_cached_migrate_pfn[1] = reset_migrate; 366 } 367 368 /* Update the free PFN */ 369 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 370 free_pfn > reset_free) { 371 free_set = true; 372 reset_free = free_pfn; 373 zone->compact_init_free_pfn = reset_free; 374 zone->compact_cached_free_pfn = reset_free; 375 } 376 } 377 378 /* Leave no distance if no suitable block was reset */ 379 if (reset_migrate >= reset_free) { 380 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 381 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 382 zone->compact_cached_free_pfn = free_pfn; 383 } 384 } 385 386 void reset_isolation_suitable(pg_data_t *pgdat) 387 { 388 int zoneid; 389 390 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 391 struct zone *zone = &pgdat->node_zones[zoneid]; 392 if (!populated_zone(zone)) 393 continue; 394 395 /* Only flush if a full compaction finished recently */ 396 if (zone->compact_blockskip_flush) 397 __reset_isolation_suitable(zone); 398 } 399 } 400 401 /* 402 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 403 * locks are not required for read/writers. Returns true if it was already set. 404 */ 405 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 406 unsigned long pfn) 407 { 408 bool skip; 409 410 /* Do no update if skip hint is being ignored */ 411 if (cc->ignore_skip_hint) 412 return false; 413 414 if (!IS_ALIGNED(pfn, pageblock_nr_pages)) 415 return false; 416 417 skip = get_pageblock_skip(page); 418 if (!skip && !cc->no_set_skip_hint) 419 set_pageblock_skip(page); 420 421 return skip; 422 } 423 424 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 425 { 426 struct zone *zone = cc->zone; 427 428 pfn = pageblock_end_pfn(pfn); 429 430 /* Set for isolation rather than compaction */ 431 if (cc->no_set_skip_hint) 432 return; 433 434 if (pfn > zone->compact_cached_migrate_pfn[0]) 435 zone->compact_cached_migrate_pfn[0] = pfn; 436 if (cc->mode != MIGRATE_ASYNC && 437 pfn > zone->compact_cached_migrate_pfn[1]) 438 zone->compact_cached_migrate_pfn[1] = pfn; 439 } 440 441 /* 442 * If no pages were isolated then mark this pageblock to be skipped in the 443 * future. The information is later cleared by __reset_isolation_suitable(). 444 */ 445 static void update_pageblock_skip(struct compact_control *cc, 446 struct page *page, unsigned long pfn) 447 { 448 struct zone *zone = cc->zone; 449 450 if (cc->no_set_skip_hint) 451 return; 452 453 if (!page) 454 return; 455 456 set_pageblock_skip(page); 457 458 /* Update where async and sync compaction should restart */ 459 if (pfn < zone->compact_cached_free_pfn) 460 zone->compact_cached_free_pfn = pfn; 461 } 462 #else 463 static inline bool isolation_suitable(struct compact_control *cc, 464 struct page *page) 465 { 466 return true; 467 } 468 469 static inline bool pageblock_skip_persistent(struct page *page) 470 { 471 return false; 472 } 473 474 static inline void update_pageblock_skip(struct compact_control *cc, 475 struct page *page, unsigned long pfn) 476 { 477 } 478 479 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 480 { 481 } 482 483 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 484 unsigned long pfn) 485 { 486 return false; 487 } 488 #endif /* CONFIG_COMPACTION */ 489 490 /* 491 * Compaction requires the taking of some coarse locks that are potentially 492 * very heavily contended. For async compaction, trylock and record if the 493 * lock is contended. The lock will still be acquired but compaction will 494 * abort when the current block is finished regardless of success rate. 495 * Sync compaction acquires the lock. 496 * 497 * Always returns true which makes it easier to track lock state in callers. 498 */ 499 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 500 struct compact_control *cc) 501 __acquires(lock) 502 { 503 /* Track if the lock is contended in async mode */ 504 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 505 if (spin_trylock_irqsave(lock, *flags)) 506 return true; 507 508 cc->contended = true; 509 } 510 511 spin_lock_irqsave(lock, *flags); 512 return true; 513 } 514 515 /* 516 * Compaction requires the taking of some coarse locks that are potentially 517 * very heavily contended. The lock should be periodically unlocked to avoid 518 * having disabled IRQs for a long time, even when there is nobody waiting on 519 * the lock. It might also be that allowing the IRQs will result in 520 * need_resched() becoming true. If scheduling is needed, async compaction 521 * aborts. Sync compaction schedules. 522 * Either compaction type will also abort if a fatal signal is pending. 523 * In either case if the lock was locked, it is dropped and not regained. 524 * 525 * Returns true if compaction should abort due to fatal signal pending, or 526 * async compaction due to need_resched() 527 * Returns false when compaction can continue (sync compaction might have 528 * scheduled) 529 */ 530 static bool compact_unlock_should_abort(spinlock_t *lock, 531 unsigned long flags, bool *locked, struct compact_control *cc) 532 { 533 if (*locked) { 534 spin_unlock_irqrestore(lock, flags); 535 *locked = false; 536 } 537 538 if (fatal_signal_pending(current)) { 539 cc->contended = true; 540 return true; 541 } 542 543 cond_resched(); 544 545 return false; 546 } 547 548 /* 549 * Isolate free pages onto a private freelist. If @strict is true, will abort 550 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 551 * (even though it may still end up isolating some pages). 552 */ 553 static unsigned long isolate_freepages_block(struct compact_control *cc, 554 unsigned long *start_pfn, 555 unsigned long end_pfn, 556 struct list_head *freelist, 557 unsigned int stride, 558 bool strict) 559 { 560 int nr_scanned = 0, total_isolated = 0; 561 struct page *cursor; 562 unsigned long flags = 0; 563 bool locked = false; 564 unsigned long blockpfn = *start_pfn; 565 unsigned int order; 566 567 /* Strict mode is for isolation, speed is secondary */ 568 if (strict) 569 stride = 1; 570 571 cursor = pfn_to_page(blockpfn); 572 573 /* Isolate free pages. */ 574 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 575 int isolated; 576 struct page *page = cursor; 577 578 /* 579 * Periodically drop the lock (if held) regardless of its 580 * contention, to give chance to IRQs. Abort if fatal signal 581 * pending or async compaction detects need_resched() 582 */ 583 if (!(blockpfn % SWAP_CLUSTER_MAX) 584 && compact_unlock_should_abort(&cc->zone->lock, flags, 585 &locked, cc)) 586 break; 587 588 nr_scanned++; 589 if (!pfn_valid_within(blockpfn)) 590 goto isolate_fail; 591 592 /* 593 * For compound pages such as THP and hugetlbfs, we can save 594 * potentially a lot of iterations if we skip them at once. 595 * The check is racy, but we can consider only valid values 596 * and the only danger is skipping too much. 597 */ 598 if (PageCompound(page)) { 599 const unsigned int order = compound_order(page); 600 601 if (likely(order < MAX_ORDER)) { 602 blockpfn += (1UL << order) - 1; 603 cursor += (1UL << order) - 1; 604 } 605 goto isolate_fail; 606 } 607 608 if (!PageBuddy(page)) 609 goto isolate_fail; 610 611 /* 612 * If we already hold the lock, we can skip some rechecking. 613 * Note that if we hold the lock now, checked_pageblock was 614 * already set in some previous iteration (or strict is true), 615 * so it is correct to skip the suitable migration target 616 * recheck as well. 617 */ 618 if (!locked) { 619 locked = compact_lock_irqsave(&cc->zone->lock, 620 &flags, cc); 621 622 /* Recheck this is a buddy page under lock */ 623 if (!PageBuddy(page)) 624 goto isolate_fail; 625 } 626 627 /* Found a free page, will break it into order-0 pages */ 628 order = buddy_order(page); 629 isolated = __isolate_free_page(page, order); 630 if (!isolated) 631 break; 632 set_page_private(page, order); 633 634 total_isolated += isolated; 635 cc->nr_freepages += isolated; 636 list_add_tail(&page->lru, freelist); 637 638 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 639 blockpfn += isolated; 640 break; 641 } 642 /* Advance to the end of split page */ 643 blockpfn += isolated - 1; 644 cursor += isolated - 1; 645 continue; 646 647 isolate_fail: 648 if (strict) 649 break; 650 else 651 continue; 652 653 } 654 655 if (locked) 656 spin_unlock_irqrestore(&cc->zone->lock, flags); 657 658 /* 659 * There is a tiny chance that we have read bogus compound_order(), 660 * so be careful to not go outside of the pageblock. 661 */ 662 if (unlikely(blockpfn > end_pfn)) 663 blockpfn = end_pfn; 664 665 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 666 nr_scanned, total_isolated); 667 668 /* Record how far we have got within the block */ 669 *start_pfn = blockpfn; 670 671 /* 672 * If strict isolation is requested by CMA then check that all the 673 * pages requested were isolated. If there were any failures, 0 is 674 * returned and CMA will fail. 675 */ 676 if (strict && blockpfn < end_pfn) 677 total_isolated = 0; 678 679 cc->total_free_scanned += nr_scanned; 680 if (total_isolated) 681 count_compact_events(COMPACTISOLATED, total_isolated); 682 return total_isolated; 683 } 684 685 /** 686 * isolate_freepages_range() - isolate free pages. 687 * @cc: Compaction control structure. 688 * @start_pfn: The first PFN to start isolating. 689 * @end_pfn: The one-past-last PFN. 690 * 691 * Non-free pages, invalid PFNs, or zone boundaries within the 692 * [start_pfn, end_pfn) range are considered errors, cause function to 693 * undo its actions and return zero. 694 * 695 * Otherwise, function returns one-past-the-last PFN of isolated page 696 * (which may be greater then end_pfn if end fell in a middle of 697 * a free page). 698 */ 699 unsigned long 700 isolate_freepages_range(struct compact_control *cc, 701 unsigned long start_pfn, unsigned long end_pfn) 702 { 703 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 704 LIST_HEAD(freelist); 705 706 pfn = start_pfn; 707 block_start_pfn = pageblock_start_pfn(pfn); 708 if (block_start_pfn < cc->zone->zone_start_pfn) 709 block_start_pfn = cc->zone->zone_start_pfn; 710 block_end_pfn = pageblock_end_pfn(pfn); 711 712 for (; pfn < end_pfn; pfn += isolated, 713 block_start_pfn = block_end_pfn, 714 block_end_pfn += pageblock_nr_pages) { 715 /* Protect pfn from changing by isolate_freepages_block */ 716 unsigned long isolate_start_pfn = pfn; 717 718 block_end_pfn = min(block_end_pfn, end_pfn); 719 720 /* 721 * pfn could pass the block_end_pfn if isolated freepage 722 * is more than pageblock order. In this case, we adjust 723 * scanning range to right one. 724 */ 725 if (pfn >= block_end_pfn) { 726 block_start_pfn = pageblock_start_pfn(pfn); 727 block_end_pfn = pageblock_end_pfn(pfn); 728 block_end_pfn = min(block_end_pfn, end_pfn); 729 } 730 731 if (!pageblock_pfn_to_page(block_start_pfn, 732 block_end_pfn, cc->zone)) 733 break; 734 735 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 736 block_end_pfn, &freelist, 0, true); 737 738 /* 739 * In strict mode, isolate_freepages_block() returns 0 if 740 * there are any holes in the block (ie. invalid PFNs or 741 * non-free pages). 742 */ 743 if (!isolated) 744 break; 745 746 /* 747 * If we managed to isolate pages, it is always (1 << n) * 748 * pageblock_nr_pages for some non-negative n. (Max order 749 * page may span two pageblocks). 750 */ 751 } 752 753 /* __isolate_free_page() does not map the pages */ 754 split_map_pages(&freelist); 755 756 if (pfn < end_pfn) { 757 /* Loop terminated early, cleanup. */ 758 release_freepages(&freelist); 759 return 0; 760 } 761 762 /* We don't use freelists for anything. */ 763 return pfn; 764 } 765 766 /* Similar to reclaim, but different enough that they don't share logic */ 767 static bool too_many_isolated(pg_data_t *pgdat) 768 { 769 unsigned long active, inactive, isolated; 770 771 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 772 node_page_state(pgdat, NR_INACTIVE_ANON); 773 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 774 node_page_state(pgdat, NR_ACTIVE_ANON); 775 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 776 node_page_state(pgdat, NR_ISOLATED_ANON); 777 778 return isolated > (inactive + active) / 2; 779 } 780 781 /** 782 * isolate_migratepages_block() - isolate all migrate-able pages within 783 * a single pageblock 784 * @cc: Compaction control structure. 785 * @low_pfn: The first PFN to isolate 786 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 787 * @isolate_mode: Isolation mode to be used. 788 * 789 * Isolate all pages that can be migrated from the range specified by 790 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 791 * Returns zero if there is a fatal signal pending, otherwise PFN of the 792 * first page that was not scanned (which may be both less, equal to or more 793 * than end_pfn). 794 * 795 * The pages are isolated on cc->migratepages list (not required to be empty), 796 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 797 * is neither read nor updated. 798 */ 799 static unsigned long 800 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 801 unsigned long end_pfn, isolate_mode_t isolate_mode) 802 { 803 pg_data_t *pgdat = cc->zone->zone_pgdat; 804 unsigned long nr_scanned = 0, nr_isolated = 0; 805 struct lruvec *lruvec; 806 unsigned long flags = 0; 807 struct lruvec *locked = NULL; 808 struct page *page = NULL, *valid_page = NULL; 809 unsigned long start_pfn = low_pfn; 810 bool skip_on_failure = false; 811 unsigned long next_skip_pfn = 0; 812 bool skip_updated = false; 813 814 /* 815 * Ensure that there are not too many pages isolated from the LRU 816 * list by either parallel reclaimers or compaction. If there are, 817 * delay for some time until fewer pages are isolated 818 */ 819 while (unlikely(too_many_isolated(pgdat))) { 820 /* stop isolation if there are still pages not migrated */ 821 if (cc->nr_migratepages) 822 return 0; 823 824 /* async migration should just abort */ 825 if (cc->mode == MIGRATE_ASYNC) 826 return 0; 827 828 congestion_wait(BLK_RW_ASYNC, HZ/10); 829 830 if (fatal_signal_pending(current)) 831 return 0; 832 } 833 834 cond_resched(); 835 836 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 837 skip_on_failure = true; 838 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 839 } 840 841 /* Time to isolate some pages for migration */ 842 for (; low_pfn < end_pfn; low_pfn++) { 843 844 if (skip_on_failure && low_pfn >= next_skip_pfn) { 845 /* 846 * We have isolated all migration candidates in the 847 * previous order-aligned block, and did not skip it due 848 * to failure. We should migrate the pages now and 849 * hopefully succeed compaction. 850 */ 851 if (nr_isolated) 852 break; 853 854 /* 855 * We failed to isolate in the previous order-aligned 856 * block. Set the new boundary to the end of the 857 * current block. Note we can't simply increase 858 * next_skip_pfn by 1 << order, as low_pfn might have 859 * been incremented by a higher number due to skipping 860 * a compound or a high-order buddy page in the 861 * previous loop iteration. 862 */ 863 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 864 } 865 866 /* 867 * Periodically drop the lock (if held) regardless of its 868 * contention, to give chance to IRQs. Abort completely if 869 * a fatal signal is pending. 870 */ 871 if (!(low_pfn % SWAP_CLUSTER_MAX)) { 872 if (locked) { 873 unlock_page_lruvec_irqrestore(locked, flags); 874 locked = NULL; 875 } 876 877 if (fatal_signal_pending(current)) { 878 cc->contended = true; 879 880 low_pfn = 0; 881 goto fatal_pending; 882 } 883 884 cond_resched(); 885 } 886 887 if (!pfn_valid_within(low_pfn)) 888 goto isolate_fail; 889 nr_scanned++; 890 891 page = pfn_to_page(low_pfn); 892 893 /* 894 * Check if the pageblock has already been marked skipped. 895 * Only the aligned PFN is checked as the caller isolates 896 * COMPACT_CLUSTER_MAX at a time so the second call must 897 * not falsely conclude that the block should be skipped. 898 */ 899 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) { 900 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) { 901 low_pfn = end_pfn; 902 page = NULL; 903 goto isolate_abort; 904 } 905 valid_page = page; 906 } 907 908 /* 909 * Skip if free. We read page order here without zone lock 910 * which is generally unsafe, but the race window is small and 911 * the worst thing that can happen is that we skip some 912 * potential isolation targets. 913 */ 914 if (PageBuddy(page)) { 915 unsigned long freepage_order = buddy_order_unsafe(page); 916 917 /* 918 * Without lock, we cannot be sure that what we got is 919 * a valid page order. Consider only values in the 920 * valid order range to prevent low_pfn overflow. 921 */ 922 if (freepage_order > 0 && freepage_order < MAX_ORDER) 923 low_pfn += (1UL << freepage_order) - 1; 924 continue; 925 } 926 927 /* 928 * Regardless of being on LRU, compound pages such as THP and 929 * hugetlbfs are not to be compacted unless we are attempting 930 * an allocation much larger than the huge page size (eg CMA). 931 * We can potentially save a lot of iterations if we skip them 932 * at once. The check is racy, but we can consider only valid 933 * values and the only danger is skipping too much. 934 */ 935 if (PageCompound(page) && !cc->alloc_contig) { 936 const unsigned int order = compound_order(page); 937 938 if (likely(order < MAX_ORDER)) 939 low_pfn += (1UL << order) - 1; 940 goto isolate_fail; 941 } 942 943 /* 944 * Check may be lockless but that's ok as we recheck later. 945 * It's possible to migrate LRU and non-lru movable pages. 946 * Skip any other type of page 947 */ 948 if (!PageLRU(page)) { 949 /* 950 * __PageMovable can return false positive so we need 951 * to verify it under page_lock. 952 */ 953 if (unlikely(__PageMovable(page)) && 954 !PageIsolated(page)) { 955 if (locked) { 956 unlock_page_lruvec_irqrestore(locked, flags); 957 locked = NULL; 958 } 959 960 if (!isolate_movable_page(page, isolate_mode)) 961 goto isolate_success; 962 } 963 964 goto isolate_fail; 965 } 966 967 /* 968 * Migration will fail if an anonymous page is pinned in memory, 969 * so avoid taking lru_lock and isolating it unnecessarily in an 970 * admittedly racy check. 971 */ 972 if (!page_mapping(page) && 973 page_count(page) > page_mapcount(page)) 974 goto isolate_fail; 975 976 /* 977 * Only allow to migrate anonymous pages in GFP_NOFS context 978 * because those do not depend on fs locks. 979 */ 980 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page)) 981 goto isolate_fail; 982 983 /* 984 * Be careful not to clear PageLRU until after we're 985 * sure the page is not being freed elsewhere -- the 986 * page release code relies on it. 987 */ 988 if (unlikely(!get_page_unless_zero(page))) 989 goto isolate_fail; 990 991 if (__isolate_lru_page_prepare(page, isolate_mode) != 0) 992 goto isolate_fail_put; 993 994 /* Try isolate the page */ 995 if (!TestClearPageLRU(page)) 996 goto isolate_fail_put; 997 998 rcu_read_lock(); 999 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1000 1001 /* If we already hold the lock, we can skip some rechecking */ 1002 if (lruvec != locked) { 1003 if (locked) 1004 unlock_page_lruvec_irqrestore(locked, flags); 1005 1006 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); 1007 locked = lruvec; 1008 rcu_read_unlock(); 1009 1010 lruvec_memcg_debug(lruvec, page); 1011 1012 /* Try get exclusive access under lock */ 1013 if (!skip_updated) { 1014 skip_updated = true; 1015 if (test_and_set_skip(cc, page, low_pfn)) 1016 goto isolate_abort; 1017 } 1018 1019 /* 1020 * Page become compound since the non-locked check, 1021 * and it's on LRU. It can only be a THP so the order 1022 * is safe to read and it's 0 for tail pages. 1023 */ 1024 if (unlikely(PageCompound(page) && !cc->alloc_contig)) { 1025 low_pfn += compound_nr(page) - 1; 1026 SetPageLRU(page); 1027 goto isolate_fail_put; 1028 } 1029 } else 1030 rcu_read_unlock(); 1031 1032 /* The whole page is taken off the LRU; skip the tail pages. */ 1033 if (PageCompound(page)) 1034 low_pfn += compound_nr(page) - 1; 1035 1036 /* Successfully isolated */ 1037 del_page_from_lru_list(page, lruvec, page_lru(page)); 1038 mod_node_page_state(page_pgdat(page), 1039 NR_ISOLATED_ANON + page_is_file_lru(page), 1040 thp_nr_pages(page)); 1041 1042 isolate_success: 1043 list_add(&page->lru, &cc->migratepages); 1044 cc->nr_migratepages += compound_nr(page); 1045 nr_isolated += compound_nr(page); 1046 1047 /* 1048 * Avoid isolating too much unless this block is being 1049 * rescanned (e.g. dirty/writeback pages, parallel allocation) 1050 * or a lock is contended. For contention, isolate quickly to 1051 * potentially remove one source of contention. 1052 */ 1053 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1054 !cc->rescan && !cc->contended) { 1055 ++low_pfn; 1056 break; 1057 } 1058 1059 continue; 1060 1061 isolate_fail_put: 1062 /* Avoid potential deadlock in freeing page under lru_lock */ 1063 if (locked) { 1064 unlock_page_lruvec_irqrestore(locked, flags); 1065 locked = NULL; 1066 } 1067 put_page(page); 1068 1069 isolate_fail: 1070 if (!skip_on_failure) 1071 continue; 1072 1073 /* 1074 * We have isolated some pages, but then failed. Release them 1075 * instead of migrating, as we cannot form the cc->order buddy 1076 * page anyway. 1077 */ 1078 if (nr_isolated) { 1079 if (locked) { 1080 unlock_page_lruvec_irqrestore(locked, flags); 1081 locked = NULL; 1082 } 1083 putback_movable_pages(&cc->migratepages); 1084 cc->nr_migratepages = 0; 1085 nr_isolated = 0; 1086 } 1087 1088 if (low_pfn < next_skip_pfn) { 1089 low_pfn = next_skip_pfn - 1; 1090 /* 1091 * The check near the loop beginning would have updated 1092 * next_skip_pfn too, but this is a bit simpler. 1093 */ 1094 next_skip_pfn += 1UL << cc->order; 1095 } 1096 } 1097 1098 /* 1099 * The PageBuddy() check could have potentially brought us outside 1100 * the range to be scanned. 1101 */ 1102 if (unlikely(low_pfn > end_pfn)) 1103 low_pfn = end_pfn; 1104 1105 page = NULL; 1106 1107 isolate_abort: 1108 if (locked) 1109 unlock_page_lruvec_irqrestore(locked, flags); 1110 if (page) { 1111 SetPageLRU(page); 1112 put_page(page); 1113 } 1114 1115 /* 1116 * Updated the cached scanner pfn once the pageblock has been scanned 1117 * Pages will either be migrated in which case there is no point 1118 * scanning in the near future or migration failed in which case the 1119 * failure reason may persist. The block is marked for skipping if 1120 * there were no pages isolated in the block or if the block is 1121 * rescanned twice in a row. 1122 */ 1123 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) { 1124 if (valid_page && !skip_updated) 1125 set_pageblock_skip(valid_page); 1126 update_cached_migrate(cc, low_pfn); 1127 } 1128 1129 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1130 nr_scanned, nr_isolated); 1131 1132 fatal_pending: 1133 cc->total_migrate_scanned += nr_scanned; 1134 if (nr_isolated) 1135 count_compact_events(COMPACTISOLATED, nr_isolated); 1136 1137 return low_pfn; 1138 } 1139 1140 /** 1141 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1142 * @cc: Compaction control structure. 1143 * @start_pfn: The first PFN to start isolating. 1144 * @end_pfn: The one-past-last PFN. 1145 * 1146 * Returns zero if isolation fails fatally due to e.g. pending signal. 1147 * Otherwise, function returns one-past-the-last PFN of isolated page 1148 * (which may be greater than end_pfn if end fell in a middle of a THP page). 1149 */ 1150 unsigned long 1151 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1152 unsigned long end_pfn) 1153 { 1154 unsigned long pfn, block_start_pfn, block_end_pfn; 1155 1156 /* Scan block by block. First and last block may be incomplete */ 1157 pfn = start_pfn; 1158 block_start_pfn = pageblock_start_pfn(pfn); 1159 if (block_start_pfn < cc->zone->zone_start_pfn) 1160 block_start_pfn = cc->zone->zone_start_pfn; 1161 block_end_pfn = pageblock_end_pfn(pfn); 1162 1163 for (; pfn < end_pfn; pfn = block_end_pfn, 1164 block_start_pfn = block_end_pfn, 1165 block_end_pfn += pageblock_nr_pages) { 1166 1167 block_end_pfn = min(block_end_pfn, end_pfn); 1168 1169 if (!pageblock_pfn_to_page(block_start_pfn, 1170 block_end_pfn, cc->zone)) 1171 continue; 1172 1173 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 1174 ISOLATE_UNEVICTABLE); 1175 1176 if (!pfn) 1177 break; 1178 1179 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1180 break; 1181 } 1182 1183 return pfn; 1184 } 1185 1186 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1187 #ifdef CONFIG_COMPACTION 1188 1189 static bool suitable_migration_source(struct compact_control *cc, 1190 struct page *page) 1191 { 1192 int block_mt; 1193 1194 if (pageblock_skip_persistent(page)) 1195 return false; 1196 1197 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1198 return true; 1199 1200 block_mt = get_pageblock_migratetype(page); 1201 1202 if (cc->migratetype == MIGRATE_MOVABLE) 1203 return is_migrate_movable(block_mt); 1204 else 1205 return block_mt == cc->migratetype; 1206 } 1207 1208 /* Returns true if the page is within a block suitable for migration to */ 1209 static bool suitable_migration_target(struct compact_control *cc, 1210 struct page *page) 1211 { 1212 /* If the page is a large free page, then disallow migration */ 1213 if (PageBuddy(page)) { 1214 /* 1215 * We are checking page_order without zone->lock taken. But 1216 * the only small danger is that we skip a potentially suitable 1217 * pageblock, so it's not worth to check order for valid range. 1218 */ 1219 if (buddy_order_unsafe(page) >= pageblock_order) 1220 return false; 1221 } 1222 1223 if (cc->ignore_block_suitable) 1224 return true; 1225 1226 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1227 if (is_migrate_movable(get_pageblock_migratetype(page))) 1228 return true; 1229 1230 /* Otherwise skip the block */ 1231 return false; 1232 } 1233 1234 static inline unsigned int 1235 freelist_scan_limit(struct compact_control *cc) 1236 { 1237 unsigned short shift = BITS_PER_LONG - 1; 1238 1239 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1240 } 1241 1242 /* 1243 * Test whether the free scanner has reached the same or lower pageblock than 1244 * the migration scanner, and compaction should thus terminate. 1245 */ 1246 static inline bool compact_scanners_met(struct compact_control *cc) 1247 { 1248 return (cc->free_pfn >> pageblock_order) 1249 <= (cc->migrate_pfn >> pageblock_order); 1250 } 1251 1252 /* 1253 * Used when scanning for a suitable migration target which scans freelists 1254 * in reverse. Reorders the list such as the unscanned pages are scanned 1255 * first on the next iteration of the free scanner 1256 */ 1257 static void 1258 move_freelist_head(struct list_head *freelist, struct page *freepage) 1259 { 1260 LIST_HEAD(sublist); 1261 1262 if (!list_is_last(freelist, &freepage->lru)) { 1263 list_cut_before(&sublist, freelist, &freepage->lru); 1264 if (!list_empty(&sublist)) 1265 list_splice_tail(&sublist, freelist); 1266 } 1267 } 1268 1269 /* 1270 * Similar to move_freelist_head except used by the migration scanner 1271 * when scanning forward. It's possible for these list operations to 1272 * move against each other if they search the free list exactly in 1273 * lockstep. 1274 */ 1275 static void 1276 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1277 { 1278 LIST_HEAD(sublist); 1279 1280 if (!list_is_first(freelist, &freepage->lru)) { 1281 list_cut_position(&sublist, freelist, &freepage->lru); 1282 if (!list_empty(&sublist)) 1283 list_splice_tail(&sublist, freelist); 1284 } 1285 } 1286 1287 static void 1288 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated) 1289 { 1290 unsigned long start_pfn, end_pfn; 1291 struct page *page = pfn_to_page(pfn); 1292 1293 /* Do not search around if there are enough pages already */ 1294 if (cc->nr_freepages >= cc->nr_migratepages) 1295 return; 1296 1297 /* Minimise scanning during async compaction */ 1298 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1299 return; 1300 1301 /* Pageblock boundaries */ 1302 start_pfn = pageblock_start_pfn(pfn); 1303 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1; 1304 1305 /* Scan before */ 1306 if (start_pfn != pfn) { 1307 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false); 1308 if (cc->nr_freepages >= cc->nr_migratepages) 1309 return; 1310 } 1311 1312 /* Scan after */ 1313 start_pfn = pfn + nr_isolated; 1314 if (start_pfn < end_pfn) 1315 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1316 1317 /* Skip this pageblock in the future as it's full or nearly full */ 1318 if (cc->nr_freepages < cc->nr_migratepages) 1319 set_pageblock_skip(page); 1320 } 1321 1322 /* Search orders in round-robin fashion */ 1323 static int next_search_order(struct compact_control *cc, int order) 1324 { 1325 order--; 1326 if (order < 0) 1327 order = cc->order - 1; 1328 1329 /* Search wrapped around? */ 1330 if (order == cc->search_order) { 1331 cc->search_order--; 1332 if (cc->search_order < 0) 1333 cc->search_order = cc->order - 1; 1334 return -1; 1335 } 1336 1337 return order; 1338 } 1339 1340 static unsigned long 1341 fast_isolate_freepages(struct compact_control *cc) 1342 { 1343 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1); 1344 unsigned int nr_scanned = 0; 1345 unsigned long low_pfn, min_pfn, highest = 0; 1346 unsigned long nr_isolated = 0; 1347 unsigned long distance; 1348 struct page *page = NULL; 1349 bool scan_start = false; 1350 int order; 1351 1352 /* Full compaction passes in a negative order */ 1353 if (cc->order <= 0) 1354 return cc->free_pfn; 1355 1356 /* 1357 * If starting the scan, use a deeper search and use the highest 1358 * PFN found if a suitable one is not found. 1359 */ 1360 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1361 limit = pageblock_nr_pages >> 1; 1362 scan_start = true; 1363 } 1364 1365 /* 1366 * Preferred point is in the top quarter of the scan space but take 1367 * a pfn from the top half if the search is problematic. 1368 */ 1369 distance = (cc->free_pfn - cc->migrate_pfn); 1370 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1371 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1372 1373 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1374 low_pfn = min_pfn; 1375 1376 /* 1377 * Search starts from the last successful isolation order or the next 1378 * order to search after a previous failure 1379 */ 1380 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1381 1382 for (order = cc->search_order; 1383 !page && order >= 0; 1384 order = next_search_order(cc, order)) { 1385 struct free_area *area = &cc->zone->free_area[order]; 1386 struct list_head *freelist; 1387 struct page *freepage; 1388 unsigned long flags; 1389 unsigned int order_scanned = 0; 1390 unsigned long high_pfn = 0; 1391 1392 if (!area->nr_free) 1393 continue; 1394 1395 spin_lock_irqsave(&cc->zone->lock, flags); 1396 freelist = &area->free_list[MIGRATE_MOVABLE]; 1397 list_for_each_entry_reverse(freepage, freelist, lru) { 1398 unsigned long pfn; 1399 1400 order_scanned++; 1401 nr_scanned++; 1402 pfn = page_to_pfn(freepage); 1403 1404 if (pfn >= highest) 1405 highest = pageblock_start_pfn(pfn); 1406 1407 if (pfn >= low_pfn) { 1408 cc->fast_search_fail = 0; 1409 cc->search_order = order; 1410 page = freepage; 1411 break; 1412 } 1413 1414 if (pfn >= min_pfn && pfn > high_pfn) { 1415 high_pfn = pfn; 1416 1417 /* Shorten the scan if a candidate is found */ 1418 limit >>= 1; 1419 } 1420 1421 if (order_scanned >= limit) 1422 break; 1423 } 1424 1425 /* Use a minimum pfn if a preferred one was not found */ 1426 if (!page && high_pfn) { 1427 page = pfn_to_page(high_pfn); 1428 1429 /* Update freepage for the list reorder below */ 1430 freepage = page; 1431 } 1432 1433 /* Reorder to so a future search skips recent pages */ 1434 move_freelist_head(freelist, freepage); 1435 1436 /* Isolate the page if available */ 1437 if (page) { 1438 if (__isolate_free_page(page, order)) { 1439 set_page_private(page, order); 1440 nr_isolated = 1 << order; 1441 cc->nr_freepages += nr_isolated; 1442 list_add_tail(&page->lru, &cc->freepages); 1443 count_compact_events(COMPACTISOLATED, nr_isolated); 1444 } else { 1445 /* If isolation fails, abort the search */ 1446 order = cc->search_order + 1; 1447 page = NULL; 1448 } 1449 } 1450 1451 spin_unlock_irqrestore(&cc->zone->lock, flags); 1452 1453 /* 1454 * Smaller scan on next order so the total scan ig related 1455 * to freelist_scan_limit. 1456 */ 1457 if (order_scanned >= limit) 1458 limit = min(1U, limit >> 1); 1459 } 1460 1461 if (!page) { 1462 cc->fast_search_fail++; 1463 if (scan_start) { 1464 /* 1465 * Use the highest PFN found above min. If one was 1466 * not found, be pessimistic for direct compaction 1467 * and use the min mark. 1468 */ 1469 if (highest) { 1470 page = pfn_to_page(highest); 1471 cc->free_pfn = highest; 1472 } else { 1473 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1474 page = pageblock_pfn_to_page(min_pfn, 1475 pageblock_end_pfn(min_pfn), 1476 cc->zone); 1477 cc->free_pfn = min_pfn; 1478 } 1479 } 1480 } 1481 } 1482 1483 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1484 highest -= pageblock_nr_pages; 1485 cc->zone->compact_cached_free_pfn = highest; 1486 } 1487 1488 cc->total_free_scanned += nr_scanned; 1489 if (!page) 1490 return cc->free_pfn; 1491 1492 low_pfn = page_to_pfn(page); 1493 fast_isolate_around(cc, low_pfn, nr_isolated); 1494 return low_pfn; 1495 } 1496 1497 /* 1498 * Based on information in the current compact_control, find blocks 1499 * suitable for isolating free pages from and then isolate them. 1500 */ 1501 static void isolate_freepages(struct compact_control *cc) 1502 { 1503 struct zone *zone = cc->zone; 1504 struct page *page; 1505 unsigned long block_start_pfn; /* start of current pageblock */ 1506 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1507 unsigned long block_end_pfn; /* end of current pageblock */ 1508 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1509 struct list_head *freelist = &cc->freepages; 1510 unsigned int stride; 1511 1512 /* Try a small search of the free lists for a candidate */ 1513 isolate_start_pfn = fast_isolate_freepages(cc); 1514 if (cc->nr_freepages) 1515 goto splitmap; 1516 1517 /* 1518 * Initialise the free scanner. The starting point is where we last 1519 * successfully isolated from, zone-cached value, or the end of the 1520 * zone when isolating for the first time. For looping we also need 1521 * this pfn aligned down to the pageblock boundary, because we do 1522 * block_start_pfn -= pageblock_nr_pages in the for loop. 1523 * For ending point, take care when isolating in last pageblock of a 1524 * zone which ends in the middle of a pageblock. 1525 * The low boundary is the end of the pageblock the migration scanner 1526 * is using. 1527 */ 1528 isolate_start_pfn = cc->free_pfn; 1529 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1530 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1531 zone_end_pfn(zone)); 1532 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1533 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1534 1535 /* 1536 * Isolate free pages until enough are available to migrate the 1537 * pages on cc->migratepages. We stop searching if the migrate 1538 * and free page scanners meet or enough free pages are isolated. 1539 */ 1540 for (; block_start_pfn >= low_pfn; 1541 block_end_pfn = block_start_pfn, 1542 block_start_pfn -= pageblock_nr_pages, 1543 isolate_start_pfn = block_start_pfn) { 1544 unsigned long nr_isolated; 1545 1546 /* 1547 * This can iterate a massively long zone without finding any 1548 * suitable migration targets, so periodically check resched. 1549 */ 1550 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1551 cond_resched(); 1552 1553 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1554 zone); 1555 if (!page) 1556 continue; 1557 1558 /* Check the block is suitable for migration */ 1559 if (!suitable_migration_target(cc, page)) 1560 continue; 1561 1562 /* If isolation recently failed, do not retry */ 1563 if (!isolation_suitable(cc, page)) 1564 continue; 1565 1566 /* Found a block suitable for isolating free pages from. */ 1567 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1568 block_end_pfn, freelist, stride, false); 1569 1570 /* Update the skip hint if the full pageblock was scanned */ 1571 if (isolate_start_pfn == block_end_pfn) 1572 update_pageblock_skip(cc, page, block_start_pfn); 1573 1574 /* Are enough freepages isolated? */ 1575 if (cc->nr_freepages >= cc->nr_migratepages) { 1576 if (isolate_start_pfn >= block_end_pfn) { 1577 /* 1578 * Restart at previous pageblock if more 1579 * freepages can be isolated next time. 1580 */ 1581 isolate_start_pfn = 1582 block_start_pfn - pageblock_nr_pages; 1583 } 1584 break; 1585 } else if (isolate_start_pfn < block_end_pfn) { 1586 /* 1587 * If isolation failed early, do not continue 1588 * needlessly. 1589 */ 1590 break; 1591 } 1592 1593 /* Adjust stride depending on isolation */ 1594 if (nr_isolated) { 1595 stride = 1; 1596 continue; 1597 } 1598 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1599 } 1600 1601 /* 1602 * Record where the free scanner will restart next time. Either we 1603 * broke from the loop and set isolate_start_pfn based on the last 1604 * call to isolate_freepages_block(), or we met the migration scanner 1605 * and the loop terminated due to isolate_start_pfn < low_pfn 1606 */ 1607 cc->free_pfn = isolate_start_pfn; 1608 1609 splitmap: 1610 /* __isolate_free_page() does not map the pages */ 1611 split_map_pages(freelist); 1612 } 1613 1614 /* 1615 * This is a migrate-callback that "allocates" freepages by taking pages 1616 * from the isolated freelists in the block we are migrating to. 1617 */ 1618 static struct page *compaction_alloc(struct page *migratepage, 1619 unsigned long data) 1620 { 1621 struct compact_control *cc = (struct compact_control *)data; 1622 struct page *freepage; 1623 1624 if (list_empty(&cc->freepages)) { 1625 isolate_freepages(cc); 1626 1627 if (list_empty(&cc->freepages)) 1628 return NULL; 1629 } 1630 1631 freepage = list_entry(cc->freepages.next, struct page, lru); 1632 list_del(&freepage->lru); 1633 cc->nr_freepages--; 1634 1635 return freepage; 1636 } 1637 1638 /* 1639 * This is a migrate-callback that "frees" freepages back to the isolated 1640 * freelist. All pages on the freelist are from the same zone, so there is no 1641 * special handling needed for NUMA. 1642 */ 1643 static void compaction_free(struct page *page, unsigned long data) 1644 { 1645 struct compact_control *cc = (struct compact_control *)data; 1646 1647 list_add(&page->lru, &cc->freepages); 1648 cc->nr_freepages++; 1649 } 1650 1651 /* possible outcome of isolate_migratepages */ 1652 typedef enum { 1653 ISOLATE_ABORT, /* Abort compaction now */ 1654 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1655 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1656 } isolate_migrate_t; 1657 1658 /* 1659 * Allow userspace to control policy on scanning the unevictable LRU for 1660 * compactable pages. 1661 */ 1662 #ifdef CONFIG_PREEMPT_RT 1663 int sysctl_compact_unevictable_allowed __read_mostly = 0; 1664 #else 1665 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1666 #endif 1667 1668 static inline void 1669 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1670 { 1671 if (cc->fast_start_pfn == ULONG_MAX) 1672 return; 1673 1674 if (!cc->fast_start_pfn) 1675 cc->fast_start_pfn = pfn; 1676 1677 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1678 } 1679 1680 static inline unsigned long 1681 reinit_migrate_pfn(struct compact_control *cc) 1682 { 1683 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1684 return cc->migrate_pfn; 1685 1686 cc->migrate_pfn = cc->fast_start_pfn; 1687 cc->fast_start_pfn = ULONG_MAX; 1688 1689 return cc->migrate_pfn; 1690 } 1691 1692 /* 1693 * Briefly search the free lists for a migration source that already has 1694 * some free pages to reduce the number of pages that need migration 1695 * before a pageblock is free. 1696 */ 1697 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1698 { 1699 unsigned int limit = freelist_scan_limit(cc); 1700 unsigned int nr_scanned = 0; 1701 unsigned long distance; 1702 unsigned long pfn = cc->migrate_pfn; 1703 unsigned long high_pfn; 1704 int order; 1705 1706 /* Skip hints are relied on to avoid repeats on the fast search */ 1707 if (cc->ignore_skip_hint) 1708 return pfn; 1709 1710 /* 1711 * If the migrate_pfn is not at the start of a zone or the start 1712 * of a pageblock then assume this is a continuation of a previous 1713 * scan restarted due to COMPACT_CLUSTER_MAX. 1714 */ 1715 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1716 return pfn; 1717 1718 /* 1719 * For smaller orders, just linearly scan as the number of pages 1720 * to migrate should be relatively small and does not necessarily 1721 * justify freeing up a large block for a small allocation. 1722 */ 1723 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1724 return pfn; 1725 1726 /* 1727 * Only allow kcompactd and direct requests for movable pages to 1728 * quickly clear out a MOVABLE pageblock for allocation. This 1729 * reduces the risk that a large movable pageblock is freed for 1730 * an unmovable/reclaimable small allocation. 1731 */ 1732 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1733 return pfn; 1734 1735 /* 1736 * When starting the migration scanner, pick any pageblock within the 1737 * first half of the search space. Otherwise try and pick a pageblock 1738 * within the first eighth to reduce the chances that a migration 1739 * target later becomes a source. 1740 */ 1741 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1742 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1743 distance >>= 2; 1744 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1745 1746 for (order = cc->order - 1; 1747 order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit; 1748 order--) { 1749 struct free_area *area = &cc->zone->free_area[order]; 1750 struct list_head *freelist; 1751 unsigned long flags; 1752 struct page *freepage; 1753 1754 if (!area->nr_free) 1755 continue; 1756 1757 spin_lock_irqsave(&cc->zone->lock, flags); 1758 freelist = &area->free_list[MIGRATE_MOVABLE]; 1759 list_for_each_entry(freepage, freelist, lru) { 1760 unsigned long free_pfn; 1761 1762 nr_scanned++; 1763 free_pfn = page_to_pfn(freepage); 1764 if (free_pfn < high_pfn) { 1765 /* 1766 * Avoid if skipped recently. Ideally it would 1767 * move to the tail but even safe iteration of 1768 * the list assumes an entry is deleted, not 1769 * reordered. 1770 */ 1771 if (get_pageblock_skip(freepage)) { 1772 if (list_is_last(freelist, &freepage->lru)) 1773 break; 1774 1775 continue; 1776 } 1777 1778 /* Reorder to so a future search skips recent pages */ 1779 move_freelist_tail(freelist, freepage); 1780 1781 update_fast_start_pfn(cc, free_pfn); 1782 pfn = pageblock_start_pfn(free_pfn); 1783 cc->fast_search_fail = 0; 1784 set_pageblock_skip(freepage); 1785 break; 1786 } 1787 1788 if (nr_scanned >= limit) { 1789 cc->fast_search_fail++; 1790 move_freelist_tail(freelist, freepage); 1791 break; 1792 } 1793 } 1794 spin_unlock_irqrestore(&cc->zone->lock, flags); 1795 } 1796 1797 cc->total_migrate_scanned += nr_scanned; 1798 1799 /* 1800 * If fast scanning failed then use a cached entry for a page block 1801 * that had free pages as the basis for starting a linear scan. 1802 */ 1803 if (pfn == cc->migrate_pfn) 1804 pfn = reinit_migrate_pfn(cc); 1805 1806 return pfn; 1807 } 1808 1809 /* 1810 * Isolate all pages that can be migrated from the first suitable block, 1811 * starting at the block pointed to by the migrate scanner pfn within 1812 * compact_control. 1813 */ 1814 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1815 { 1816 unsigned long block_start_pfn; 1817 unsigned long block_end_pfn; 1818 unsigned long low_pfn; 1819 struct page *page; 1820 const isolate_mode_t isolate_mode = 1821 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1822 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1823 bool fast_find_block; 1824 1825 /* 1826 * Start at where we last stopped, or beginning of the zone as 1827 * initialized by compact_zone(). The first failure will use 1828 * the lowest PFN as the starting point for linear scanning. 1829 */ 1830 low_pfn = fast_find_migrateblock(cc); 1831 block_start_pfn = pageblock_start_pfn(low_pfn); 1832 if (block_start_pfn < cc->zone->zone_start_pfn) 1833 block_start_pfn = cc->zone->zone_start_pfn; 1834 1835 /* 1836 * fast_find_migrateblock marks a pageblock skipped so to avoid 1837 * the isolation_suitable check below, check whether the fast 1838 * search was successful. 1839 */ 1840 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1841 1842 /* Only scan within a pageblock boundary */ 1843 block_end_pfn = pageblock_end_pfn(low_pfn); 1844 1845 /* 1846 * Iterate over whole pageblocks until we find the first suitable. 1847 * Do not cross the free scanner. 1848 */ 1849 for (; block_end_pfn <= cc->free_pfn; 1850 fast_find_block = false, 1851 low_pfn = block_end_pfn, 1852 block_start_pfn = block_end_pfn, 1853 block_end_pfn += pageblock_nr_pages) { 1854 1855 /* 1856 * This can potentially iterate a massively long zone with 1857 * many pageblocks unsuitable, so periodically check if we 1858 * need to schedule. 1859 */ 1860 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1861 cond_resched(); 1862 1863 page = pageblock_pfn_to_page(block_start_pfn, 1864 block_end_pfn, cc->zone); 1865 if (!page) 1866 continue; 1867 1868 /* 1869 * If isolation recently failed, do not retry. Only check the 1870 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1871 * to be visited multiple times. Assume skip was checked 1872 * before making it "skip" so other compaction instances do 1873 * not scan the same block. 1874 */ 1875 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) && 1876 !fast_find_block && !isolation_suitable(cc, page)) 1877 continue; 1878 1879 /* 1880 * For async compaction, also only scan in MOVABLE blocks 1881 * without huge pages. Async compaction is optimistic to see 1882 * if the minimum amount of work satisfies the allocation. 1883 * The cached PFN is updated as it's possible that all 1884 * remaining blocks between source and target are unsuitable 1885 * and the compaction scanners fail to meet. 1886 */ 1887 if (!suitable_migration_source(cc, page)) { 1888 update_cached_migrate(cc, block_end_pfn); 1889 continue; 1890 } 1891 1892 /* Perform the isolation */ 1893 low_pfn = isolate_migratepages_block(cc, low_pfn, 1894 block_end_pfn, isolate_mode); 1895 1896 if (!low_pfn) 1897 return ISOLATE_ABORT; 1898 1899 /* 1900 * Either we isolated something and proceed with migration. Or 1901 * we failed and compact_zone should decide if we should 1902 * continue or not. 1903 */ 1904 break; 1905 } 1906 1907 /* Record where migration scanner will be restarted. */ 1908 cc->migrate_pfn = low_pfn; 1909 1910 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1911 } 1912 1913 /* 1914 * order == -1 is expected when compacting via 1915 * /proc/sys/vm/compact_memory 1916 */ 1917 static inline bool is_via_compact_memory(int order) 1918 { 1919 return order == -1; 1920 } 1921 1922 static bool kswapd_is_running(pg_data_t *pgdat) 1923 { 1924 return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING); 1925 } 1926 1927 /* 1928 * A zone's fragmentation score is the external fragmentation wrt to the 1929 * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value 1930 * in the range [0, 100]. 1931 * 1932 * The scaling factor ensures that proactive compaction focuses on larger 1933 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 1934 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 1935 * and thus never exceeds the high threshold for proactive compaction. 1936 */ 1937 static unsigned int fragmentation_score_zone(struct zone *zone) 1938 { 1939 unsigned long score; 1940 1941 score = zone->present_pages * 1942 extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 1943 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 1944 } 1945 1946 /* 1947 * The per-node proactive (background) compaction process is started by its 1948 * corresponding kcompactd thread when the node's fragmentation score 1949 * exceeds the high threshold. The compaction process remains active till 1950 * the node's score falls below the low threshold, or one of the back-off 1951 * conditions is met. 1952 */ 1953 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 1954 { 1955 unsigned int score = 0; 1956 int zoneid; 1957 1958 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1959 struct zone *zone; 1960 1961 zone = &pgdat->node_zones[zoneid]; 1962 score += fragmentation_score_zone(zone); 1963 } 1964 1965 return score; 1966 } 1967 1968 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low) 1969 { 1970 unsigned int wmark_low; 1971 1972 /* 1973 * Cap the low watermak to avoid excessive compaction 1974 * activity in case a user sets the proactivess tunable 1975 * close to 100 (maximum). 1976 */ 1977 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 1978 return low ? wmark_low : min(wmark_low + 10, 100U); 1979 } 1980 1981 static bool should_proactive_compact_node(pg_data_t *pgdat) 1982 { 1983 int wmark_high; 1984 1985 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 1986 return false; 1987 1988 wmark_high = fragmentation_score_wmark(pgdat, false); 1989 return fragmentation_score_node(pgdat) > wmark_high; 1990 } 1991 1992 static enum compact_result __compact_finished(struct compact_control *cc) 1993 { 1994 unsigned int order; 1995 const int migratetype = cc->migratetype; 1996 int ret; 1997 1998 /* Compaction run completes if the migrate and free scanner meet */ 1999 if (compact_scanners_met(cc)) { 2000 /* Let the next compaction start anew. */ 2001 reset_cached_positions(cc->zone); 2002 2003 /* 2004 * Mark that the PG_migrate_skip information should be cleared 2005 * by kswapd when it goes to sleep. kcompactd does not set the 2006 * flag itself as the decision to be clear should be directly 2007 * based on an allocation request. 2008 */ 2009 if (cc->direct_compaction) 2010 cc->zone->compact_blockskip_flush = true; 2011 2012 if (cc->whole_zone) 2013 return COMPACT_COMPLETE; 2014 else 2015 return COMPACT_PARTIAL_SKIPPED; 2016 } 2017 2018 if (cc->proactive_compaction) { 2019 int score, wmark_low; 2020 pg_data_t *pgdat; 2021 2022 pgdat = cc->zone->zone_pgdat; 2023 if (kswapd_is_running(pgdat)) 2024 return COMPACT_PARTIAL_SKIPPED; 2025 2026 score = fragmentation_score_zone(cc->zone); 2027 wmark_low = fragmentation_score_wmark(pgdat, true); 2028 2029 if (score > wmark_low) 2030 ret = COMPACT_CONTINUE; 2031 else 2032 ret = COMPACT_SUCCESS; 2033 2034 goto out; 2035 } 2036 2037 if (is_via_compact_memory(cc->order)) 2038 return COMPACT_CONTINUE; 2039 2040 /* 2041 * Always finish scanning a pageblock to reduce the possibility of 2042 * fallbacks in the future. This is particularly important when 2043 * migration source is unmovable/reclaimable but it's not worth 2044 * special casing. 2045 */ 2046 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages)) 2047 return COMPACT_CONTINUE; 2048 2049 /* Direct compactor: Is a suitable page free? */ 2050 ret = COMPACT_NO_SUITABLE_PAGE; 2051 for (order = cc->order; order < MAX_ORDER; order++) { 2052 struct free_area *area = &cc->zone->free_area[order]; 2053 bool can_steal; 2054 2055 /* Job done if page is free of the right migratetype */ 2056 if (!free_area_empty(area, migratetype)) 2057 return COMPACT_SUCCESS; 2058 2059 #ifdef CONFIG_CMA 2060 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2061 if (migratetype == MIGRATE_MOVABLE && 2062 !free_area_empty(area, MIGRATE_CMA)) 2063 return COMPACT_SUCCESS; 2064 #endif 2065 /* 2066 * Job done if allocation would steal freepages from 2067 * other migratetype buddy lists. 2068 */ 2069 if (find_suitable_fallback(area, order, migratetype, 2070 true, &can_steal) != -1) { 2071 2072 /* movable pages are OK in any pageblock */ 2073 if (migratetype == MIGRATE_MOVABLE) 2074 return COMPACT_SUCCESS; 2075 2076 /* 2077 * We are stealing for a non-movable allocation. Make 2078 * sure we finish compacting the current pageblock 2079 * first so it is as free as possible and we won't 2080 * have to steal another one soon. This only applies 2081 * to sync compaction, as async compaction operates 2082 * on pageblocks of the same migratetype. 2083 */ 2084 if (cc->mode == MIGRATE_ASYNC || 2085 IS_ALIGNED(cc->migrate_pfn, 2086 pageblock_nr_pages)) { 2087 return COMPACT_SUCCESS; 2088 } 2089 2090 ret = COMPACT_CONTINUE; 2091 break; 2092 } 2093 } 2094 2095 out: 2096 if (cc->contended || fatal_signal_pending(current)) 2097 ret = COMPACT_CONTENDED; 2098 2099 return ret; 2100 } 2101 2102 static enum compact_result compact_finished(struct compact_control *cc) 2103 { 2104 int ret; 2105 2106 ret = __compact_finished(cc); 2107 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2108 if (ret == COMPACT_NO_SUITABLE_PAGE) 2109 ret = COMPACT_CONTINUE; 2110 2111 return ret; 2112 } 2113 2114 static enum compact_result __compaction_suitable(struct zone *zone, int order, 2115 unsigned int alloc_flags, 2116 int highest_zoneidx, 2117 unsigned long wmark_target) 2118 { 2119 unsigned long watermark; 2120 2121 if (is_via_compact_memory(order)) 2122 return COMPACT_CONTINUE; 2123 2124 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 2125 /* 2126 * If watermarks for high-order allocation are already met, there 2127 * should be no need for compaction at all. 2128 */ 2129 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, 2130 alloc_flags)) 2131 return COMPACT_SUCCESS; 2132 2133 /* 2134 * Watermarks for order-0 must be met for compaction to be able to 2135 * isolate free pages for migration targets. This means that the 2136 * watermark and alloc_flags have to match, or be more pessimistic than 2137 * the check in __isolate_free_page(). We don't use the direct 2138 * compactor's alloc_flags, as they are not relevant for freepage 2139 * isolation. We however do use the direct compactor's highest_zoneidx 2140 * to skip over zones where lowmem reserves would prevent allocation 2141 * even if compaction succeeds. 2142 * For costly orders, we require low watermark instead of min for 2143 * compaction to proceed to increase its chances. 2144 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2145 * suitable migration targets 2146 */ 2147 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2148 low_wmark_pages(zone) : min_wmark_pages(zone); 2149 watermark += compact_gap(order); 2150 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2151 ALLOC_CMA, wmark_target)) 2152 return COMPACT_SKIPPED; 2153 2154 return COMPACT_CONTINUE; 2155 } 2156 2157 /* 2158 * compaction_suitable: Is this suitable to run compaction on this zone now? 2159 * Returns 2160 * COMPACT_SKIPPED - If there are too few free pages for compaction 2161 * COMPACT_SUCCESS - If the allocation would succeed without compaction 2162 * COMPACT_CONTINUE - If compaction should run now 2163 */ 2164 enum compact_result compaction_suitable(struct zone *zone, int order, 2165 unsigned int alloc_flags, 2166 int highest_zoneidx) 2167 { 2168 enum compact_result ret; 2169 int fragindex; 2170 2171 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx, 2172 zone_page_state(zone, NR_FREE_PAGES)); 2173 /* 2174 * fragmentation index determines if allocation failures are due to 2175 * low memory or external fragmentation 2176 * 2177 * index of -1000 would imply allocations might succeed depending on 2178 * watermarks, but we already failed the high-order watermark check 2179 * index towards 0 implies failure is due to lack of memory 2180 * index towards 1000 implies failure is due to fragmentation 2181 * 2182 * Only compact if a failure would be due to fragmentation. Also 2183 * ignore fragindex for non-costly orders where the alternative to 2184 * a successful reclaim/compaction is OOM. Fragindex and the 2185 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2186 * excessive compaction for costly orders, but it should not be at the 2187 * expense of system stability. 2188 */ 2189 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2190 fragindex = fragmentation_index(zone, order); 2191 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2192 ret = COMPACT_NOT_SUITABLE_ZONE; 2193 } 2194 2195 trace_mm_compaction_suitable(zone, order, ret); 2196 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2197 ret = COMPACT_SKIPPED; 2198 2199 return ret; 2200 } 2201 2202 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2203 int alloc_flags) 2204 { 2205 struct zone *zone; 2206 struct zoneref *z; 2207 2208 /* 2209 * Make sure at least one zone would pass __compaction_suitable if we continue 2210 * retrying the reclaim. 2211 */ 2212 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2213 ac->highest_zoneidx, ac->nodemask) { 2214 unsigned long available; 2215 enum compact_result compact_result; 2216 2217 /* 2218 * Do not consider all the reclaimable memory because we do not 2219 * want to trash just for a single high order allocation which 2220 * is even not guaranteed to appear even if __compaction_suitable 2221 * is happy about the watermark check. 2222 */ 2223 available = zone_reclaimable_pages(zone) / order; 2224 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2225 compact_result = __compaction_suitable(zone, order, alloc_flags, 2226 ac->highest_zoneidx, available); 2227 if (compact_result != COMPACT_SKIPPED) 2228 return true; 2229 } 2230 2231 return false; 2232 } 2233 2234 static enum compact_result 2235 compact_zone(struct compact_control *cc, struct capture_control *capc) 2236 { 2237 enum compact_result ret; 2238 unsigned long start_pfn = cc->zone->zone_start_pfn; 2239 unsigned long end_pfn = zone_end_pfn(cc->zone); 2240 unsigned long last_migrated_pfn; 2241 const bool sync = cc->mode != MIGRATE_ASYNC; 2242 bool update_cached; 2243 2244 /* 2245 * These counters track activities during zone compaction. Initialize 2246 * them before compacting a new zone. 2247 */ 2248 cc->total_migrate_scanned = 0; 2249 cc->total_free_scanned = 0; 2250 cc->nr_migratepages = 0; 2251 cc->nr_freepages = 0; 2252 INIT_LIST_HEAD(&cc->freepages); 2253 INIT_LIST_HEAD(&cc->migratepages); 2254 2255 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2256 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2257 cc->highest_zoneidx); 2258 /* Compaction is likely to fail */ 2259 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2260 return ret; 2261 2262 /* huh, compaction_suitable is returning something unexpected */ 2263 VM_BUG_ON(ret != COMPACT_CONTINUE); 2264 2265 /* 2266 * Clear pageblock skip if there were failures recently and compaction 2267 * is about to be retried after being deferred. 2268 */ 2269 if (compaction_restarting(cc->zone, cc->order)) 2270 __reset_isolation_suitable(cc->zone); 2271 2272 /* 2273 * Setup to move all movable pages to the end of the zone. Used cached 2274 * information on where the scanners should start (unless we explicitly 2275 * want to compact the whole zone), but check that it is initialised 2276 * by ensuring the values are within zone boundaries. 2277 */ 2278 cc->fast_start_pfn = 0; 2279 if (cc->whole_zone) { 2280 cc->migrate_pfn = start_pfn; 2281 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2282 } else { 2283 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2284 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2285 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2286 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2287 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2288 } 2289 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2290 cc->migrate_pfn = start_pfn; 2291 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2292 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2293 } 2294 2295 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2296 cc->whole_zone = true; 2297 } 2298 2299 last_migrated_pfn = 0; 2300 2301 /* 2302 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2303 * the basis that some migrations will fail in ASYNC mode. However, 2304 * if the cached PFNs match and pageblocks are skipped due to having 2305 * no isolation candidates, then the sync state does not matter. 2306 * Until a pageblock with isolation candidates is found, keep the 2307 * cached PFNs in sync to avoid revisiting the same blocks. 2308 */ 2309 update_cached = !sync && 2310 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2311 2312 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 2313 cc->free_pfn, end_pfn, sync); 2314 2315 migrate_prep_local(); 2316 2317 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2318 int err; 2319 unsigned long iteration_start_pfn = cc->migrate_pfn; 2320 2321 /* 2322 * Avoid multiple rescans which can happen if a page cannot be 2323 * isolated (dirty/writeback in async mode) or if the migrated 2324 * pages are being allocated before the pageblock is cleared. 2325 * The first rescan will capture the entire pageblock for 2326 * migration. If it fails, it'll be marked skip and scanning 2327 * will proceed as normal. 2328 */ 2329 cc->rescan = false; 2330 if (pageblock_start_pfn(last_migrated_pfn) == 2331 pageblock_start_pfn(iteration_start_pfn)) { 2332 cc->rescan = true; 2333 } 2334 2335 switch (isolate_migratepages(cc)) { 2336 case ISOLATE_ABORT: 2337 ret = COMPACT_CONTENDED; 2338 putback_movable_pages(&cc->migratepages); 2339 cc->nr_migratepages = 0; 2340 goto out; 2341 case ISOLATE_NONE: 2342 if (update_cached) { 2343 cc->zone->compact_cached_migrate_pfn[1] = 2344 cc->zone->compact_cached_migrate_pfn[0]; 2345 } 2346 2347 /* 2348 * We haven't isolated and migrated anything, but 2349 * there might still be unflushed migrations from 2350 * previous cc->order aligned block. 2351 */ 2352 goto check_drain; 2353 case ISOLATE_SUCCESS: 2354 update_cached = false; 2355 last_migrated_pfn = iteration_start_pfn; 2356 } 2357 2358 err = migrate_pages(&cc->migratepages, compaction_alloc, 2359 compaction_free, (unsigned long)cc, cc->mode, 2360 MR_COMPACTION); 2361 2362 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 2363 &cc->migratepages); 2364 2365 /* All pages were either migrated or will be released */ 2366 cc->nr_migratepages = 0; 2367 if (err) { 2368 putback_movable_pages(&cc->migratepages); 2369 /* 2370 * migrate_pages() may return -ENOMEM when scanners meet 2371 * and we want compact_finished() to detect it 2372 */ 2373 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2374 ret = COMPACT_CONTENDED; 2375 goto out; 2376 } 2377 /* 2378 * We failed to migrate at least one page in the current 2379 * order-aligned block, so skip the rest of it. 2380 */ 2381 if (cc->direct_compaction && 2382 (cc->mode == MIGRATE_ASYNC)) { 2383 cc->migrate_pfn = block_end_pfn( 2384 cc->migrate_pfn - 1, cc->order); 2385 /* Draining pcplists is useless in this case */ 2386 last_migrated_pfn = 0; 2387 } 2388 } 2389 2390 check_drain: 2391 /* 2392 * Has the migration scanner moved away from the previous 2393 * cc->order aligned block where we migrated from? If yes, 2394 * flush the pages that were freed, so that they can merge and 2395 * compact_finished() can detect immediately if allocation 2396 * would succeed. 2397 */ 2398 if (cc->order > 0 && last_migrated_pfn) { 2399 unsigned long current_block_start = 2400 block_start_pfn(cc->migrate_pfn, cc->order); 2401 2402 if (last_migrated_pfn < current_block_start) { 2403 lru_add_drain_cpu_zone(cc->zone); 2404 /* No more flushing until we migrate again */ 2405 last_migrated_pfn = 0; 2406 } 2407 } 2408 2409 /* Stop if a page has been captured */ 2410 if (capc && capc->page) { 2411 ret = COMPACT_SUCCESS; 2412 break; 2413 } 2414 } 2415 2416 out: 2417 /* 2418 * Release free pages and update where the free scanner should restart, 2419 * so we don't leave any returned pages behind in the next attempt. 2420 */ 2421 if (cc->nr_freepages > 0) { 2422 unsigned long free_pfn = release_freepages(&cc->freepages); 2423 2424 cc->nr_freepages = 0; 2425 VM_BUG_ON(free_pfn == 0); 2426 /* The cached pfn is always the first in a pageblock */ 2427 free_pfn = pageblock_start_pfn(free_pfn); 2428 /* 2429 * Only go back, not forward. The cached pfn might have been 2430 * already reset to zone end in compact_finished() 2431 */ 2432 if (free_pfn > cc->zone->compact_cached_free_pfn) 2433 cc->zone->compact_cached_free_pfn = free_pfn; 2434 } 2435 2436 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2437 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2438 2439 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 2440 cc->free_pfn, end_pfn, sync, ret); 2441 2442 return ret; 2443 } 2444 2445 static enum compact_result compact_zone_order(struct zone *zone, int order, 2446 gfp_t gfp_mask, enum compact_priority prio, 2447 unsigned int alloc_flags, int highest_zoneidx, 2448 struct page **capture) 2449 { 2450 enum compact_result ret; 2451 struct compact_control cc = { 2452 .order = order, 2453 .search_order = order, 2454 .gfp_mask = gfp_mask, 2455 .zone = zone, 2456 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2457 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2458 .alloc_flags = alloc_flags, 2459 .highest_zoneidx = highest_zoneidx, 2460 .direct_compaction = true, 2461 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2462 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2463 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2464 }; 2465 struct capture_control capc = { 2466 .cc = &cc, 2467 .page = NULL, 2468 }; 2469 2470 /* 2471 * Make sure the structs are really initialized before we expose the 2472 * capture control, in case we are interrupted and the interrupt handler 2473 * frees a page. 2474 */ 2475 barrier(); 2476 WRITE_ONCE(current->capture_control, &capc); 2477 2478 ret = compact_zone(&cc, &capc); 2479 2480 VM_BUG_ON(!list_empty(&cc.freepages)); 2481 VM_BUG_ON(!list_empty(&cc.migratepages)); 2482 2483 /* 2484 * Make sure we hide capture control first before we read the captured 2485 * page pointer, otherwise an interrupt could free and capture a page 2486 * and we would leak it. 2487 */ 2488 WRITE_ONCE(current->capture_control, NULL); 2489 *capture = READ_ONCE(capc.page); 2490 2491 return ret; 2492 } 2493 2494 int sysctl_extfrag_threshold = 500; 2495 2496 /** 2497 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2498 * @gfp_mask: The GFP mask of the current allocation 2499 * @order: The order of the current allocation 2500 * @alloc_flags: The allocation flags of the current allocation 2501 * @ac: The context of current allocation 2502 * @prio: Determines how hard direct compaction should try to succeed 2503 * @capture: Pointer to free page created by compaction will be stored here 2504 * 2505 * This is the main entry point for direct page compaction. 2506 */ 2507 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2508 unsigned int alloc_flags, const struct alloc_context *ac, 2509 enum compact_priority prio, struct page **capture) 2510 { 2511 int may_perform_io = gfp_mask & __GFP_IO; 2512 struct zoneref *z; 2513 struct zone *zone; 2514 enum compact_result rc = COMPACT_SKIPPED; 2515 2516 /* 2517 * Check if the GFP flags allow compaction - GFP_NOIO is really 2518 * tricky context because the migration might require IO 2519 */ 2520 if (!may_perform_io) 2521 return COMPACT_SKIPPED; 2522 2523 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2524 2525 /* Compact each zone in the list */ 2526 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2527 ac->highest_zoneidx, ac->nodemask) { 2528 enum compact_result status; 2529 2530 if (prio > MIN_COMPACT_PRIORITY 2531 && compaction_deferred(zone, order)) { 2532 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2533 continue; 2534 } 2535 2536 status = compact_zone_order(zone, order, gfp_mask, prio, 2537 alloc_flags, ac->highest_zoneidx, capture); 2538 rc = max(status, rc); 2539 2540 /* The allocation should succeed, stop compacting */ 2541 if (status == COMPACT_SUCCESS) { 2542 /* 2543 * We think the allocation will succeed in this zone, 2544 * but it is not certain, hence the false. The caller 2545 * will repeat this with true if allocation indeed 2546 * succeeds in this zone. 2547 */ 2548 compaction_defer_reset(zone, order, false); 2549 2550 break; 2551 } 2552 2553 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2554 status == COMPACT_PARTIAL_SKIPPED)) 2555 /* 2556 * We think that allocation won't succeed in this zone 2557 * so we defer compaction there. If it ends up 2558 * succeeding after all, it will be reset. 2559 */ 2560 defer_compaction(zone, order); 2561 2562 /* 2563 * We might have stopped compacting due to need_resched() in 2564 * async compaction, or due to a fatal signal detected. In that 2565 * case do not try further zones 2566 */ 2567 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2568 || fatal_signal_pending(current)) 2569 break; 2570 } 2571 2572 return rc; 2573 } 2574 2575 /* 2576 * Compact all zones within a node till each zone's fragmentation score 2577 * reaches within proactive compaction thresholds (as determined by the 2578 * proactiveness tunable). 2579 * 2580 * It is possible that the function returns before reaching score targets 2581 * due to various back-off conditions, such as, contention on per-node or 2582 * per-zone locks. 2583 */ 2584 static void proactive_compact_node(pg_data_t *pgdat) 2585 { 2586 int zoneid; 2587 struct zone *zone; 2588 struct compact_control cc = { 2589 .order = -1, 2590 .mode = MIGRATE_SYNC_LIGHT, 2591 .ignore_skip_hint = true, 2592 .whole_zone = true, 2593 .gfp_mask = GFP_KERNEL, 2594 .proactive_compaction = true, 2595 }; 2596 2597 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2598 zone = &pgdat->node_zones[zoneid]; 2599 if (!populated_zone(zone)) 2600 continue; 2601 2602 cc.zone = zone; 2603 2604 compact_zone(&cc, NULL); 2605 2606 VM_BUG_ON(!list_empty(&cc.freepages)); 2607 VM_BUG_ON(!list_empty(&cc.migratepages)); 2608 } 2609 } 2610 2611 /* Compact all zones within a node */ 2612 static void compact_node(int nid) 2613 { 2614 pg_data_t *pgdat = NODE_DATA(nid); 2615 int zoneid; 2616 struct zone *zone; 2617 struct compact_control cc = { 2618 .order = -1, 2619 .mode = MIGRATE_SYNC, 2620 .ignore_skip_hint = true, 2621 .whole_zone = true, 2622 .gfp_mask = GFP_KERNEL, 2623 }; 2624 2625 2626 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2627 2628 zone = &pgdat->node_zones[zoneid]; 2629 if (!populated_zone(zone)) 2630 continue; 2631 2632 cc.zone = zone; 2633 2634 compact_zone(&cc, NULL); 2635 2636 VM_BUG_ON(!list_empty(&cc.freepages)); 2637 VM_BUG_ON(!list_empty(&cc.migratepages)); 2638 } 2639 } 2640 2641 /* Compact all nodes in the system */ 2642 static void compact_nodes(void) 2643 { 2644 int nid; 2645 2646 /* Flush pending updates to the LRU lists */ 2647 lru_add_drain_all(); 2648 2649 for_each_online_node(nid) 2650 compact_node(nid); 2651 } 2652 2653 /* The written value is actually unused, all memory is compacted */ 2654 int sysctl_compact_memory; 2655 2656 /* 2657 * Tunable for proactive compaction. It determines how 2658 * aggressively the kernel should compact memory in the 2659 * background. It takes values in the range [0, 100]. 2660 */ 2661 unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 2662 2663 /* 2664 * This is the entry point for compacting all nodes via 2665 * /proc/sys/vm/compact_memory 2666 */ 2667 int sysctl_compaction_handler(struct ctl_table *table, int write, 2668 void *buffer, size_t *length, loff_t *ppos) 2669 { 2670 if (write) 2671 compact_nodes(); 2672 2673 return 0; 2674 } 2675 2676 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2677 static ssize_t sysfs_compact_node(struct device *dev, 2678 struct device_attribute *attr, 2679 const char *buf, size_t count) 2680 { 2681 int nid = dev->id; 2682 2683 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2684 /* Flush pending updates to the LRU lists */ 2685 lru_add_drain_all(); 2686 2687 compact_node(nid); 2688 } 2689 2690 return count; 2691 } 2692 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node); 2693 2694 int compaction_register_node(struct node *node) 2695 { 2696 return device_create_file(&node->dev, &dev_attr_compact); 2697 } 2698 2699 void compaction_unregister_node(struct node *node) 2700 { 2701 return device_remove_file(&node->dev, &dev_attr_compact); 2702 } 2703 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2704 2705 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2706 { 2707 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 2708 } 2709 2710 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2711 { 2712 int zoneid; 2713 struct zone *zone; 2714 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 2715 2716 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 2717 zone = &pgdat->node_zones[zoneid]; 2718 2719 if (!populated_zone(zone)) 2720 continue; 2721 2722 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2723 highest_zoneidx) == COMPACT_CONTINUE) 2724 return true; 2725 } 2726 2727 return false; 2728 } 2729 2730 static void kcompactd_do_work(pg_data_t *pgdat) 2731 { 2732 /* 2733 * With no special task, compact all zones so that a page of requested 2734 * order is allocatable. 2735 */ 2736 int zoneid; 2737 struct zone *zone; 2738 struct compact_control cc = { 2739 .order = pgdat->kcompactd_max_order, 2740 .search_order = pgdat->kcompactd_max_order, 2741 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 2742 .mode = MIGRATE_SYNC_LIGHT, 2743 .ignore_skip_hint = false, 2744 .gfp_mask = GFP_KERNEL, 2745 }; 2746 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2747 cc.highest_zoneidx); 2748 count_compact_event(KCOMPACTD_WAKE); 2749 2750 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 2751 int status; 2752 2753 zone = &pgdat->node_zones[zoneid]; 2754 if (!populated_zone(zone)) 2755 continue; 2756 2757 if (compaction_deferred(zone, cc.order)) 2758 continue; 2759 2760 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2761 COMPACT_CONTINUE) 2762 continue; 2763 2764 if (kthread_should_stop()) 2765 return; 2766 2767 cc.zone = zone; 2768 status = compact_zone(&cc, NULL); 2769 2770 if (status == COMPACT_SUCCESS) { 2771 compaction_defer_reset(zone, cc.order, false); 2772 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2773 /* 2774 * Buddy pages may become stranded on pcps that could 2775 * otherwise coalesce on the zone's free area for 2776 * order >= cc.order. This is ratelimited by the 2777 * upcoming deferral. 2778 */ 2779 drain_all_pages(zone); 2780 2781 /* 2782 * We use sync migration mode here, so we defer like 2783 * sync direct compaction does. 2784 */ 2785 defer_compaction(zone, cc.order); 2786 } 2787 2788 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2789 cc.total_migrate_scanned); 2790 count_compact_events(KCOMPACTD_FREE_SCANNED, 2791 cc.total_free_scanned); 2792 2793 VM_BUG_ON(!list_empty(&cc.freepages)); 2794 VM_BUG_ON(!list_empty(&cc.migratepages)); 2795 } 2796 2797 /* 2798 * Regardless of success, we are done until woken up next. But remember 2799 * the requested order/highest_zoneidx in case it was higher/tighter 2800 * than our current ones 2801 */ 2802 if (pgdat->kcompactd_max_order <= cc.order) 2803 pgdat->kcompactd_max_order = 0; 2804 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 2805 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2806 } 2807 2808 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 2809 { 2810 if (!order) 2811 return; 2812 2813 if (pgdat->kcompactd_max_order < order) 2814 pgdat->kcompactd_max_order = order; 2815 2816 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 2817 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 2818 2819 /* 2820 * Pairs with implicit barrier in wait_event_freezable() 2821 * such that wakeups are not missed. 2822 */ 2823 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2824 return; 2825 2826 if (!kcompactd_node_suitable(pgdat)) 2827 return; 2828 2829 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2830 highest_zoneidx); 2831 wake_up_interruptible(&pgdat->kcompactd_wait); 2832 } 2833 2834 /* 2835 * The background compaction daemon, started as a kernel thread 2836 * from the init process. 2837 */ 2838 static int kcompactd(void *p) 2839 { 2840 pg_data_t *pgdat = (pg_data_t*)p; 2841 struct task_struct *tsk = current; 2842 unsigned int proactive_defer = 0; 2843 2844 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2845 2846 if (!cpumask_empty(cpumask)) 2847 set_cpus_allowed_ptr(tsk, cpumask); 2848 2849 set_freezable(); 2850 2851 pgdat->kcompactd_max_order = 0; 2852 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2853 2854 while (!kthread_should_stop()) { 2855 unsigned long pflags; 2856 2857 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2858 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 2859 kcompactd_work_requested(pgdat), 2860 msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) { 2861 2862 psi_memstall_enter(&pflags); 2863 kcompactd_do_work(pgdat); 2864 psi_memstall_leave(&pflags); 2865 continue; 2866 } 2867 2868 /* kcompactd wait timeout */ 2869 if (should_proactive_compact_node(pgdat)) { 2870 unsigned int prev_score, score; 2871 2872 if (proactive_defer) { 2873 proactive_defer--; 2874 continue; 2875 } 2876 prev_score = fragmentation_score_node(pgdat); 2877 proactive_compact_node(pgdat); 2878 score = fragmentation_score_node(pgdat); 2879 /* 2880 * Defer proactive compaction if the fragmentation 2881 * score did not go down i.e. no progress made. 2882 */ 2883 proactive_defer = score < prev_score ? 2884 0 : 1 << COMPACT_MAX_DEFER_SHIFT; 2885 } 2886 } 2887 2888 return 0; 2889 } 2890 2891 /* 2892 * This kcompactd start function will be called by init and node-hot-add. 2893 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2894 */ 2895 int kcompactd_run(int nid) 2896 { 2897 pg_data_t *pgdat = NODE_DATA(nid); 2898 int ret = 0; 2899 2900 if (pgdat->kcompactd) 2901 return 0; 2902 2903 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2904 if (IS_ERR(pgdat->kcompactd)) { 2905 pr_err("Failed to start kcompactd on node %d\n", nid); 2906 ret = PTR_ERR(pgdat->kcompactd); 2907 pgdat->kcompactd = NULL; 2908 } 2909 return ret; 2910 } 2911 2912 /* 2913 * Called by memory hotplug when all memory in a node is offlined. Caller must 2914 * hold mem_hotplug_begin/end(). 2915 */ 2916 void kcompactd_stop(int nid) 2917 { 2918 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2919 2920 if (kcompactd) { 2921 kthread_stop(kcompactd); 2922 NODE_DATA(nid)->kcompactd = NULL; 2923 } 2924 } 2925 2926 /* 2927 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2928 * not required for correctness. So if the last cpu in a node goes 2929 * away, we get changed to run anywhere: as the first one comes back, 2930 * restore their cpu bindings. 2931 */ 2932 static int kcompactd_cpu_online(unsigned int cpu) 2933 { 2934 int nid; 2935 2936 for_each_node_state(nid, N_MEMORY) { 2937 pg_data_t *pgdat = NODE_DATA(nid); 2938 const struct cpumask *mask; 2939 2940 mask = cpumask_of_node(pgdat->node_id); 2941 2942 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2943 /* One of our CPUs online: restore mask */ 2944 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2945 } 2946 return 0; 2947 } 2948 2949 static int __init kcompactd_init(void) 2950 { 2951 int nid; 2952 int ret; 2953 2954 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 2955 "mm/compaction:online", 2956 kcompactd_cpu_online, NULL); 2957 if (ret < 0) { 2958 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 2959 return ret; 2960 } 2961 2962 for_each_node_state(nid, N_MEMORY) 2963 kcompactd_run(nid); 2964 return 0; 2965 } 2966 subsys_initcall(kcompactd_init) 2967 2968 #endif /* CONFIG_COMPACTION */ 2969