1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/swap.h> 11 #include <linux/migrate.h> 12 #include <linux/compaction.h> 13 #include <linux/mm_inline.h> 14 #include <linux/backing-dev.h> 15 #include <linux/sysctl.h> 16 #include <linux/sysfs.h> 17 #include "internal.h" 18 19 #define CREATE_TRACE_POINTS 20 #include <trace/events/compaction.h> 21 22 /* 23 * compact_control is used to track pages being migrated and the free pages 24 * they are being migrated to during memory compaction. The free_pfn starts 25 * at the end of a zone and migrate_pfn begins at the start. Movable pages 26 * are moved to the end of a zone during a compaction run and the run 27 * completes when free_pfn <= migrate_pfn 28 */ 29 struct compact_control { 30 struct list_head freepages; /* List of free pages to migrate to */ 31 struct list_head migratepages; /* List of pages being migrated */ 32 unsigned long nr_freepages; /* Number of isolated free pages */ 33 unsigned long nr_migratepages; /* Number of pages to migrate */ 34 unsigned long free_pfn; /* isolate_freepages search base */ 35 unsigned long migrate_pfn; /* isolate_migratepages search base */ 36 bool sync; /* Synchronous migration */ 37 38 /* Account for isolated anon and file pages */ 39 unsigned long nr_anon; 40 unsigned long nr_file; 41 42 unsigned int order; /* order a direct compactor needs */ 43 int migratetype; /* MOVABLE, RECLAIMABLE etc */ 44 struct zone *zone; 45 }; 46 47 static unsigned long release_freepages(struct list_head *freelist) 48 { 49 struct page *page, *next; 50 unsigned long count = 0; 51 52 list_for_each_entry_safe(page, next, freelist, lru) { 53 list_del(&page->lru); 54 __free_page(page); 55 count++; 56 } 57 58 return count; 59 } 60 61 /* Isolate free pages onto a private freelist. Must hold zone->lock */ 62 static unsigned long isolate_freepages_block(struct zone *zone, 63 unsigned long blockpfn, 64 struct list_head *freelist) 65 { 66 unsigned long zone_end_pfn, end_pfn; 67 int nr_scanned = 0, total_isolated = 0; 68 struct page *cursor; 69 70 /* Get the last PFN we should scan for free pages at */ 71 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages; 72 end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn); 73 74 /* Find the first usable PFN in the block to initialse page cursor */ 75 for (; blockpfn < end_pfn; blockpfn++) { 76 if (pfn_valid_within(blockpfn)) 77 break; 78 } 79 cursor = pfn_to_page(blockpfn); 80 81 /* Isolate free pages. This assumes the block is valid */ 82 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 83 int isolated, i; 84 struct page *page = cursor; 85 86 if (!pfn_valid_within(blockpfn)) 87 continue; 88 nr_scanned++; 89 90 if (!PageBuddy(page)) 91 continue; 92 93 /* Found a free page, break it into order-0 pages */ 94 isolated = split_free_page(page); 95 total_isolated += isolated; 96 for (i = 0; i < isolated; i++) { 97 list_add(&page->lru, freelist); 98 page++; 99 } 100 101 /* If a page was split, advance to the end of it */ 102 if (isolated) { 103 blockpfn += isolated - 1; 104 cursor += isolated - 1; 105 } 106 } 107 108 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated); 109 return total_isolated; 110 } 111 112 /* Returns true if the page is within a block suitable for migration to */ 113 static bool suitable_migration_target(struct page *page) 114 { 115 116 int migratetype = get_pageblock_migratetype(page); 117 118 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */ 119 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE) 120 return false; 121 122 /* If the page is a large free page, then allow migration */ 123 if (PageBuddy(page) && page_order(page) >= pageblock_order) 124 return true; 125 126 /* If the block is MIGRATE_MOVABLE, allow migration */ 127 if (migratetype == MIGRATE_MOVABLE) 128 return true; 129 130 /* Otherwise skip the block */ 131 return false; 132 } 133 134 /* 135 * Based on information in the current compact_control, find blocks 136 * suitable for isolating free pages from and then isolate them. 137 */ 138 static void isolate_freepages(struct zone *zone, 139 struct compact_control *cc) 140 { 141 struct page *page; 142 unsigned long high_pfn, low_pfn, pfn; 143 unsigned long flags; 144 int nr_freepages = cc->nr_freepages; 145 struct list_head *freelist = &cc->freepages; 146 147 /* 148 * Initialise the free scanner. The starting point is where we last 149 * scanned from (or the end of the zone if starting). The low point 150 * is the end of the pageblock the migration scanner is using. 151 */ 152 pfn = cc->free_pfn; 153 low_pfn = cc->migrate_pfn + pageblock_nr_pages; 154 155 /* 156 * Take care that if the migration scanner is at the end of the zone 157 * that the free scanner does not accidentally move to the next zone 158 * in the next isolation cycle. 159 */ 160 high_pfn = min(low_pfn, pfn); 161 162 /* 163 * Isolate free pages until enough are available to migrate the 164 * pages on cc->migratepages. We stop searching if the migrate 165 * and free page scanners meet or enough free pages are isolated. 166 */ 167 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages; 168 pfn -= pageblock_nr_pages) { 169 unsigned long isolated; 170 171 if (!pfn_valid(pfn)) 172 continue; 173 174 /* 175 * Check for overlapping nodes/zones. It's possible on some 176 * configurations to have a setup like 177 * node0 node1 node0 178 * i.e. it's possible that all pages within a zones range of 179 * pages do not belong to a single zone. 180 */ 181 page = pfn_to_page(pfn); 182 if (page_zone(page) != zone) 183 continue; 184 185 /* Check the block is suitable for migration */ 186 if (!suitable_migration_target(page)) 187 continue; 188 189 /* 190 * Found a block suitable for isolating free pages from. Now 191 * we disabled interrupts, double check things are ok and 192 * isolate the pages. This is to minimise the time IRQs 193 * are disabled 194 */ 195 isolated = 0; 196 spin_lock_irqsave(&zone->lock, flags); 197 if (suitable_migration_target(page)) { 198 isolated = isolate_freepages_block(zone, pfn, freelist); 199 nr_freepages += isolated; 200 } 201 spin_unlock_irqrestore(&zone->lock, flags); 202 203 /* 204 * Record the highest PFN we isolated pages from. When next 205 * looking for free pages, the search will restart here as 206 * page migration may have returned some pages to the allocator 207 */ 208 if (isolated) 209 high_pfn = max(high_pfn, pfn); 210 } 211 212 /* split_free_page does not map the pages */ 213 list_for_each_entry(page, freelist, lru) { 214 arch_alloc_page(page, 0); 215 kernel_map_pages(page, 1, 1); 216 } 217 218 cc->free_pfn = high_pfn; 219 cc->nr_freepages = nr_freepages; 220 } 221 222 /* Update the number of anon and file isolated pages in the zone */ 223 static void acct_isolated(struct zone *zone, struct compact_control *cc) 224 { 225 struct page *page; 226 unsigned int count[NR_LRU_LISTS] = { 0, }; 227 228 list_for_each_entry(page, &cc->migratepages, lru) { 229 int lru = page_lru_base_type(page); 230 count[lru]++; 231 } 232 233 cc->nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON]; 234 cc->nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE]; 235 __mod_zone_page_state(zone, NR_ISOLATED_ANON, cc->nr_anon); 236 __mod_zone_page_state(zone, NR_ISOLATED_FILE, cc->nr_file); 237 } 238 239 /* Similar to reclaim, but different enough that they don't share logic */ 240 static bool too_many_isolated(struct zone *zone) 241 { 242 unsigned long active, inactive, isolated; 243 244 inactive = zone_page_state(zone, NR_INACTIVE_FILE) + 245 zone_page_state(zone, NR_INACTIVE_ANON); 246 active = zone_page_state(zone, NR_ACTIVE_FILE) + 247 zone_page_state(zone, NR_ACTIVE_ANON); 248 isolated = zone_page_state(zone, NR_ISOLATED_FILE) + 249 zone_page_state(zone, NR_ISOLATED_ANON); 250 251 return isolated > (inactive + active) / 2; 252 } 253 254 /* possible outcome of isolate_migratepages */ 255 typedef enum { 256 ISOLATE_ABORT, /* Abort compaction now */ 257 ISOLATE_NONE, /* No pages isolated, continue scanning */ 258 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 259 } isolate_migrate_t; 260 261 /* 262 * Isolate all pages that can be migrated from the block pointed to by 263 * the migrate scanner within compact_control. 264 */ 265 static isolate_migrate_t isolate_migratepages(struct zone *zone, 266 struct compact_control *cc) 267 { 268 unsigned long low_pfn, end_pfn; 269 unsigned long last_pageblock_nr = 0, pageblock_nr; 270 unsigned long nr_scanned = 0, nr_isolated = 0; 271 struct list_head *migratelist = &cc->migratepages; 272 273 /* Do not scan outside zone boundaries */ 274 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn); 275 276 /* Only scan within a pageblock boundary */ 277 end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages); 278 279 /* Do not cross the free scanner or scan within a memory hole */ 280 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) { 281 cc->migrate_pfn = end_pfn; 282 return ISOLATE_NONE; 283 } 284 285 /* 286 * Ensure that there are not too many pages isolated from the LRU 287 * list by either parallel reclaimers or compaction. If there are, 288 * delay for some time until fewer pages are isolated 289 */ 290 while (unlikely(too_many_isolated(zone))) { 291 /* async migration should just abort */ 292 if (!cc->sync) 293 return ISOLATE_ABORT; 294 295 congestion_wait(BLK_RW_ASYNC, HZ/10); 296 297 if (fatal_signal_pending(current)) 298 return ISOLATE_ABORT; 299 } 300 301 /* Time to isolate some pages for migration */ 302 cond_resched(); 303 spin_lock_irq(&zone->lru_lock); 304 for (; low_pfn < end_pfn; low_pfn++) { 305 struct page *page; 306 bool locked = true; 307 308 /* give a chance to irqs before checking need_resched() */ 309 if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) { 310 spin_unlock_irq(&zone->lru_lock); 311 locked = false; 312 } 313 if (need_resched() || spin_is_contended(&zone->lru_lock)) { 314 if (locked) 315 spin_unlock_irq(&zone->lru_lock); 316 cond_resched(); 317 spin_lock_irq(&zone->lru_lock); 318 if (fatal_signal_pending(current)) 319 break; 320 } else if (!locked) 321 spin_lock_irq(&zone->lru_lock); 322 323 if (!pfn_valid_within(low_pfn)) 324 continue; 325 nr_scanned++; 326 327 /* Get the page and skip if free */ 328 page = pfn_to_page(low_pfn); 329 if (PageBuddy(page)) 330 continue; 331 332 /* 333 * For async migration, also only scan in MOVABLE blocks. Async 334 * migration is optimistic to see if the minimum amount of work 335 * satisfies the allocation 336 */ 337 pageblock_nr = low_pfn >> pageblock_order; 338 if (!cc->sync && last_pageblock_nr != pageblock_nr && 339 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) { 340 low_pfn += pageblock_nr_pages; 341 low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1; 342 last_pageblock_nr = pageblock_nr; 343 continue; 344 } 345 346 if (!PageLRU(page)) 347 continue; 348 349 /* 350 * PageLRU is set, and lru_lock excludes isolation, 351 * splitting and collapsing (collapsing has already 352 * happened if PageLRU is set). 353 */ 354 if (PageTransHuge(page)) { 355 low_pfn += (1 << compound_order(page)) - 1; 356 continue; 357 } 358 359 /* Try isolate the page */ 360 if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0) 361 continue; 362 363 VM_BUG_ON(PageTransCompound(page)); 364 365 /* Successfully isolated */ 366 del_page_from_lru_list(zone, page, page_lru(page)); 367 list_add(&page->lru, migratelist); 368 cc->nr_migratepages++; 369 nr_isolated++; 370 371 /* Avoid isolating too much */ 372 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 373 break; 374 } 375 376 acct_isolated(zone, cc); 377 378 spin_unlock_irq(&zone->lru_lock); 379 cc->migrate_pfn = low_pfn; 380 381 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated); 382 383 return ISOLATE_SUCCESS; 384 } 385 386 /* 387 * This is a migrate-callback that "allocates" freepages by taking pages 388 * from the isolated freelists in the block we are migrating to. 389 */ 390 static struct page *compaction_alloc(struct page *migratepage, 391 unsigned long data, 392 int **result) 393 { 394 struct compact_control *cc = (struct compact_control *)data; 395 struct page *freepage; 396 397 /* Isolate free pages if necessary */ 398 if (list_empty(&cc->freepages)) { 399 isolate_freepages(cc->zone, cc); 400 401 if (list_empty(&cc->freepages)) 402 return NULL; 403 } 404 405 freepage = list_entry(cc->freepages.next, struct page, lru); 406 list_del(&freepage->lru); 407 cc->nr_freepages--; 408 409 return freepage; 410 } 411 412 /* 413 * We cannot control nr_migratepages and nr_freepages fully when migration is 414 * running as migrate_pages() has no knowledge of compact_control. When 415 * migration is complete, we count the number of pages on the lists by hand. 416 */ 417 static void update_nr_listpages(struct compact_control *cc) 418 { 419 int nr_migratepages = 0; 420 int nr_freepages = 0; 421 struct page *page; 422 423 list_for_each_entry(page, &cc->migratepages, lru) 424 nr_migratepages++; 425 list_for_each_entry(page, &cc->freepages, lru) 426 nr_freepages++; 427 428 cc->nr_migratepages = nr_migratepages; 429 cc->nr_freepages = nr_freepages; 430 } 431 432 static int compact_finished(struct zone *zone, 433 struct compact_control *cc) 434 { 435 unsigned int order; 436 unsigned long watermark; 437 438 if (fatal_signal_pending(current)) 439 return COMPACT_PARTIAL; 440 441 /* Compaction run completes if the migrate and free scanner meet */ 442 if (cc->free_pfn <= cc->migrate_pfn) 443 return COMPACT_COMPLETE; 444 445 /* 446 * order == -1 is expected when compacting via 447 * /proc/sys/vm/compact_memory 448 */ 449 if (cc->order == -1) 450 return COMPACT_CONTINUE; 451 452 /* Compaction run is not finished if the watermark is not met */ 453 watermark = low_wmark_pages(zone); 454 watermark += (1 << cc->order); 455 456 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0)) 457 return COMPACT_CONTINUE; 458 459 /* Direct compactor: Is a suitable page free? */ 460 for (order = cc->order; order < MAX_ORDER; order++) { 461 /* Job done if page is free of the right migratetype */ 462 if (!list_empty(&zone->free_area[order].free_list[cc->migratetype])) 463 return COMPACT_PARTIAL; 464 465 /* Job done if allocation would set block type */ 466 if (order >= pageblock_order && zone->free_area[order].nr_free) 467 return COMPACT_PARTIAL; 468 } 469 470 return COMPACT_CONTINUE; 471 } 472 473 /* 474 * compaction_suitable: Is this suitable to run compaction on this zone now? 475 * Returns 476 * COMPACT_SKIPPED - If there are too few free pages for compaction 477 * COMPACT_PARTIAL - If the allocation would succeed without compaction 478 * COMPACT_CONTINUE - If compaction should run now 479 */ 480 unsigned long compaction_suitable(struct zone *zone, int order) 481 { 482 int fragindex; 483 unsigned long watermark; 484 485 /* 486 * order == -1 is expected when compacting via 487 * /proc/sys/vm/compact_memory 488 */ 489 if (order == -1) 490 return COMPACT_CONTINUE; 491 492 /* 493 * Watermarks for order-0 must be met for compaction. Note the 2UL. 494 * This is because during migration, copies of pages need to be 495 * allocated and for a short time, the footprint is higher 496 */ 497 watermark = low_wmark_pages(zone) + (2UL << order); 498 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 499 return COMPACT_SKIPPED; 500 501 /* 502 * fragmentation index determines if allocation failures are due to 503 * low memory or external fragmentation 504 * 505 * index of -1000 implies allocations might succeed depending on 506 * watermarks 507 * index towards 0 implies failure is due to lack of memory 508 * index towards 1000 implies failure is due to fragmentation 509 * 510 * Only compact if a failure would be due to fragmentation. 511 */ 512 fragindex = fragmentation_index(zone, order); 513 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 514 return COMPACT_SKIPPED; 515 516 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark, 517 0, 0)) 518 return COMPACT_PARTIAL; 519 520 return COMPACT_CONTINUE; 521 } 522 523 static int compact_zone(struct zone *zone, struct compact_control *cc) 524 { 525 int ret; 526 527 ret = compaction_suitable(zone, cc->order); 528 switch (ret) { 529 case COMPACT_PARTIAL: 530 case COMPACT_SKIPPED: 531 /* Compaction is likely to fail */ 532 return ret; 533 case COMPACT_CONTINUE: 534 /* Fall through to compaction */ 535 ; 536 } 537 538 /* Setup to move all movable pages to the end of the zone */ 539 cc->migrate_pfn = zone->zone_start_pfn; 540 cc->free_pfn = cc->migrate_pfn + zone->spanned_pages; 541 cc->free_pfn &= ~(pageblock_nr_pages-1); 542 543 migrate_prep_local(); 544 545 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { 546 unsigned long nr_migrate, nr_remaining; 547 int err; 548 549 switch (isolate_migratepages(zone, cc)) { 550 case ISOLATE_ABORT: 551 ret = COMPACT_PARTIAL; 552 goto out; 553 case ISOLATE_NONE: 554 continue; 555 case ISOLATE_SUCCESS: 556 ; 557 } 558 559 nr_migrate = cc->nr_migratepages; 560 err = migrate_pages(&cc->migratepages, compaction_alloc, 561 (unsigned long)cc, false, 562 cc->sync); 563 update_nr_listpages(cc); 564 nr_remaining = cc->nr_migratepages; 565 566 count_vm_event(COMPACTBLOCKS); 567 count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining); 568 if (nr_remaining) 569 count_vm_events(COMPACTPAGEFAILED, nr_remaining); 570 trace_mm_compaction_migratepages(nr_migrate - nr_remaining, 571 nr_remaining); 572 573 /* Release LRU pages not migrated */ 574 if (err) { 575 putback_lru_pages(&cc->migratepages); 576 cc->nr_migratepages = 0; 577 } 578 579 } 580 581 out: 582 /* Release free pages and check accounting */ 583 cc->nr_freepages -= release_freepages(&cc->freepages); 584 VM_BUG_ON(cc->nr_freepages != 0); 585 586 return ret; 587 } 588 589 unsigned long compact_zone_order(struct zone *zone, 590 int order, gfp_t gfp_mask, 591 bool sync) 592 { 593 struct compact_control cc = { 594 .nr_freepages = 0, 595 .nr_migratepages = 0, 596 .order = order, 597 .migratetype = allocflags_to_migratetype(gfp_mask), 598 .zone = zone, 599 .sync = sync, 600 }; 601 INIT_LIST_HEAD(&cc.freepages); 602 INIT_LIST_HEAD(&cc.migratepages); 603 604 return compact_zone(zone, &cc); 605 } 606 607 int sysctl_extfrag_threshold = 500; 608 609 /** 610 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 611 * @zonelist: The zonelist used for the current allocation 612 * @order: The order of the current allocation 613 * @gfp_mask: The GFP mask of the current allocation 614 * @nodemask: The allowed nodes to allocate from 615 * @sync: Whether migration is synchronous or not 616 * 617 * This is the main entry point for direct page compaction. 618 */ 619 unsigned long try_to_compact_pages(struct zonelist *zonelist, 620 int order, gfp_t gfp_mask, nodemask_t *nodemask, 621 bool sync) 622 { 623 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 624 int may_enter_fs = gfp_mask & __GFP_FS; 625 int may_perform_io = gfp_mask & __GFP_IO; 626 struct zoneref *z; 627 struct zone *zone; 628 int rc = COMPACT_SKIPPED; 629 630 /* 631 * Check whether it is worth even starting compaction. The order check is 632 * made because an assumption is made that the page allocator can satisfy 633 * the "cheaper" orders without taking special steps 634 */ 635 if (!order || !may_enter_fs || !may_perform_io) 636 return rc; 637 638 count_vm_event(COMPACTSTALL); 639 640 /* Compact each zone in the list */ 641 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 642 nodemask) { 643 int status; 644 645 status = compact_zone_order(zone, order, gfp_mask, sync); 646 rc = max(status, rc); 647 648 /* If a normal allocation would succeed, stop compacting */ 649 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0)) 650 break; 651 } 652 653 return rc; 654 } 655 656 657 /* Compact all zones within a node */ 658 static int compact_node(int nid) 659 { 660 int zoneid; 661 pg_data_t *pgdat; 662 struct zone *zone; 663 664 if (nid < 0 || nid >= nr_node_ids || !node_online(nid)) 665 return -EINVAL; 666 pgdat = NODE_DATA(nid); 667 668 /* Flush pending updates to the LRU lists */ 669 lru_add_drain_all(); 670 671 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 672 struct compact_control cc = { 673 .nr_freepages = 0, 674 .nr_migratepages = 0, 675 .order = -1, 676 }; 677 678 zone = &pgdat->node_zones[zoneid]; 679 if (!populated_zone(zone)) 680 continue; 681 682 cc.zone = zone; 683 INIT_LIST_HEAD(&cc.freepages); 684 INIT_LIST_HEAD(&cc.migratepages); 685 686 compact_zone(zone, &cc); 687 688 VM_BUG_ON(!list_empty(&cc.freepages)); 689 VM_BUG_ON(!list_empty(&cc.migratepages)); 690 } 691 692 return 0; 693 } 694 695 /* Compact all nodes in the system */ 696 static int compact_nodes(void) 697 { 698 int nid; 699 700 for_each_online_node(nid) 701 compact_node(nid); 702 703 return COMPACT_COMPLETE; 704 } 705 706 /* The written value is actually unused, all memory is compacted */ 707 int sysctl_compact_memory; 708 709 /* This is the entry point for compacting all nodes via /proc/sys/vm */ 710 int sysctl_compaction_handler(struct ctl_table *table, int write, 711 void __user *buffer, size_t *length, loff_t *ppos) 712 { 713 if (write) 714 return compact_nodes(); 715 716 return 0; 717 } 718 719 int sysctl_extfrag_handler(struct ctl_table *table, int write, 720 void __user *buffer, size_t *length, loff_t *ppos) 721 { 722 proc_dointvec_minmax(table, write, buffer, length, ppos); 723 724 return 0; 725 } 726 727 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 728 ssize_t sysfs_compact_node(struct sys_device *dev, 729 struct sysdev_attribute *attr, 730 const char *buf, size_t count) 731 { 732 compact_node(dev->id); 733 734 return count; 735 } 736 static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 737 738 int compaction_register_node(struct node *node) 739 { 740 return sysdev_create_file(&node->sysdev, &attr_compact); 741 } 742 743 void compaction_unregister_node(struct node *node) 744 { 745 return sysdev_remove_file(&node->sysdev, &attr_compact); 746 } 747 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 748