1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/swap.h> 11 #include <linux/migrate.h> 12 #include <linux/compaction.h> 13 #include <linux/mm_inline.h> 14 #include <linux/backing-dev.h> 15 #include <linux/sysctl.h> 16 #include <linux/sysfs.h> 17 #include "internal.h" 18 19 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 20 21 #define CREATE_TRACE_POINTS 22 #include <trace/events/compaction.h> 23 24 static unsigned long release_freepages(struct list_head *freelist) 25 { 26 struct page *page, *next; 27 unsigned long count = 0; 28 29 list_for_each_entry_safe(page, next, freelist, lru) { 30 list_del(&page->lru); 31 __free_page(page); 32 count++; 33 } 34 35 return count; 36 } 37 38 static void map_pages(struct list_head *list) 39 { 40 struct page *page; 41 42 list_for_each_entry(page, list, lru) { 43 arch_alloc_page(page, 0); 44 kernel_map_pages(page, 1, 1); 45 } 46 } 47 48 static inline bool migrate_async_suitable(int migratetype) 49 { 50 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; 51 } 52 53 /* 54 * Isolate free pages onto a private freelist. Caller must hold zone->lock. 55 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free 56 * pages inside of the pageblock (even though it may still end up isolating 57 * some pages). 58 */ 59 static unsigned long isolate_freepages_block(unsigned long blockpfn, 60 unsigned long end_pfn, 61 struct list_head *freelist, 62 bool strict) 63 { 64 int nr_scanned = 0, total_isolated = 0; 65 struct page *cursor; 66 67 cursor = pfn_to_page(blockpfn); 68 69 /* Isolate free pages. This assumes the block is valid */ 70 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 71 int isolated, i; 72 struct page *page = cursor; 73 74 if (!pfn_valid_within(blockpfn)) { 75 if (strict) 76 return 0; 77 continue; 78 } 79 nr_scanned++; 80 81 if (!PageBuddy(page)) { 82 if (strict) 83 return 0; 84 continue; 85 } 86 87 /* Found a free page, break it into order-0 pages */ 88 isolated = split_free_page(page); 89 if (!isolated && strict) 90 return 0; 91 total_isolated += isolated; 92 for (i = 0; i < isolated; i++) { 93 list_add(&page->lru, freelist); 94 page++; 95 } 96 97 /* If a page was split, advance to the end of it */ 98 if (isolated) { 99 blockpfn += isolated - 1; 100 cursor += isolated - 1; 101 } 102 } 103 104 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated); 105 return total_isolated; 106 } 107 108 /** 109 * isolate_freepages_range() - isolate free pages. 110 * @start_pfn: The first PFN to start isolating. 111 * @end_pfn: The one-past-last PFN. 112 * 113 * Non-free pages, invalid PFNs, or zone boundaries within the 114 * [start_pfn, end_pfn) range are considered errors, cause function to 115 * undo its actions and return zero. 116 * 117 * Otherwise, function returns one-past-the-last PFN of isolated page 118 * (which may be greater then end_pfn if end fell in a middle of 119 * a free page). 120 */ 121 unsigned long 122 isolate_freepages_range(unsigned long start_pfn, unsigned long end_pfn) 123 { 124 unsigned long isolated, pfn, block_end_pfn, flags; 125 struct zone *zone = NULL; 126 LIST_HEAD(freelist); 127 128 if (pfn_valid(start_pfn)) 129 zone = page_zone(pfn_to_page(start_pfn)); 130 131 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) { 132 if (!pfn_valid(pfn) || zone != page_zone(pfn_to_page(pfn))) 133 break; 134 135 /* 136 * On subsequent iterations ALIGN() is actually not needed, 137 * but we keep it that we not to complicate the code. 138 */ 139 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 140 block_end_pfn = min(block_end_pfn, end_pfn); 141 142 spin_lock_irqsave(&zone->lock, flags); 143 isolated = isolate_freepages_block(pfn, block_end_pfn, 144 &freelist, true); 145 spin_unlock_irqrestore(&zone->lock, flags); 146 147 /* 148 * In strict mode, isolate_freepages_block() returns 0 if 149 * there are any holes in the block (ie. invalid PFNs or 150 * non-free pages). 151 */ 152 if (!isolated) 153 break; 154 155 /* 156 * If we managed to isolate pages, it is always (1 << n) * 157 * pageblock_nr_pages for some non-negative n. (Max order 158 * page may span two pageblocks). 159 */ 160 } 161 162 /* split_free_page does not map the pages */ 163 map_pages(&freelist); 164 165 if (pfn < end_pfn) { 166 /* Loop terminated early, cleanup. */ 167 release_freepages(&freelist); 168 return 0; 169 } 170 171 /* We don't use freelists for anything. */ 172 return pfn; 173 } 174 175 /* Update the number of anon and file isolated pages in the zone */ 176 static void acct_isolated(struct zone *zone, struct compact_control *cc) 177 { 178 struct page *page; 179 unsigned int count[2] = { 0, }; 180 181 list_for_each_entry(page, &cc->migratepages, lru) 182 count[!!page_is_file_cache(page)]++; 183 184 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 185 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 186 } 187 188 /* Similar to reclaim, but different enough that they don't share logic */ 189 static bool too_many_isolated(struct zone *zone) 190 { 191 unsigned long active, inactive, isolated; 192 193 inactive = zone_page_state(zone, NR_INACTIVE_FILE) + 194 zone_page_state(zone, NR_INACTIVE_ANON); 195 active = zone_page_state(zone, NR_ACTIVE_FILE) + 196 zone_page_state(zone, NR_ACTIVE_ANON); 197 isolated = zone_page_state(zone, NR_ISOLATED_FILE) + 198 zone_page_state(zone, NR_ISOLATED_ANON); 199 200 return isolated > (inactive + active) / 2; 201 } 202 203 /** 204 * isolate_migratepages_range() - isolate all migrate-able pages in range. 205 * @zone: Zone pages are in. 206 * @cc: Compaction control structure. 207 * @low_pfn: The first PFN of the range. 208 * @end_pfn: The one-past-the-last PFN of the range. 209 * 210 * Isolate all pages that can be migrated from the range specified by 211 * [low_pfn, end_pfn). Returns zero if there is a fatal signal 212 * pending), otherwise PFN of the first page that was not scanned 213 * (which may be both less, equal to or more then end_pfn). 214 * 215 * Assumes that cc->migratepages is empty and cc->nr_migratepages is 216 * zero. 217 * 218 * Apart from cc->migratepages and cc->nr_migratetypes this function 219 * does not modify any cc's fields, in particular it does not modify 220 * (or read for that matter) cc->migrate_pfn. 221 */ 222 unsigned long 223 isolate_migratepages_range(struct zone *zone, struct compact_control *cc, 224 unsigned long low_pfn, unsigned long end_pfn) 225 { 226 unsigned long last_pageblock_nr = 0, pageblock_nr; 227 unsigned long nr_scanned = 0, nr_isolated = 0; 228 struct list_head *migratelist = &cc->migratepages; 229 isolate_mode_t mode = 0; 230 struct lruvec *lruvec; 231 232 /* 233 * Ensure that there are not too many pages isolated from the LRU 234 * list by either parallel reclaimers or compaction. If there are, 235 * delay for some time until fewer pages are isolated 236 */ 237 while (unlikely(too_many_isolated(zone))) { 238 /* async migration should just abort */ 239 if (!cc->sync) 240 return 0; 241 242 congestion_wait(BLK_RW_ASYNC, HZ/10); 243 244 if (fatal_signal_pending(current)) 245 return 0; 246 } 247 248 /* Time to isolate some pages for migration */ 249 cond_resched(); 250 spin_lock_irq(&zone->lru_lock); 251 for (; low_pfn < end_pfn; low_pfn++) { 252 struct page *page; 253 bool locked = true; 254 255 /* give a chance to irqs before checking need_resched() */ 256 if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) { 257 spin_unlock_irq(&zone->lru_lock); 258 locked = false; 259 } 260 if (need_resched() || spin_is_contended(&zone->lru_lock)) { 261 if (locked) 262 spin_unlock_irq(&zone->lru_lock); 263 cond_resched(); 264 spin_lock_irq(&zone->lru_lock); 265 if (fatal_signal_pending(current)) 266 break; 267 } else if (!locked) 268 spin_lock_irq(&zone->lru_lock); 269 270 /* 271 * migrate_pfn does not necessarily start aligned to a 272 * pageblock. Ensure that pfn_valid is called when moving 273 * into a new MAX_ORDER_NR_PAGES range in case of large 274 * memory holes within the zone 275 */ 276 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { 277 if (!pfn_valid(low_pfn)) { 278 low_pfn += MAX_ORDER_NR_PAGES - 1; 279 continue; 280 } 281 } 282 283 if (!pfn_valid_within(low_pfn)) 284 continue; 285 nr_scanned++; 286 287 /* 288 * Get the page and ensure the page is within the same zone. 289 * See the comment in isolate_freepages about overlapping 290 * nodes. It is deliberate that the new zone lock is not taken 291 * as memory compaction should not move pages between nodes. 292 */ 293 page = pfn_to_page(low_pfn); 294 if (page_zone(page) != zone) 295 continue; 296 297 /* Skip if free */ 298 if (PageBuddy(page)) 299 continue; 300 301 /* 302 * For async migration, also only scan in MOVABLE blocks. Async 303 * migration is optimistic to see if the minimum amount of work 304 * satisfies the allocation 305 */ 306 pageblock_nr = low_pfn >> pageblock_order; 307 if (!cc->sync && last_pageblock_nr != pageblock_nr && 308 !migrate_async_suitable(get_pageblock_migratetype(page))) { 309 low_pfn += pageblock_nr_pages; 310 low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1; 311 last_pageblock_nr = pageblock_nr; 312 continue; 313 } 314 315 if (!PageLRU(page)) 316 continue; 317 318 /* 319 * PageLRU is set, and lru_lock excludes isolation, 320 * splitting and collapsing (collapsing has already 321 * happened if PageLRU is set). 322 */ 323 if (PageTransHuge(page)) { 324 low_pfn += (1 << compound_order(page)) - 1; 325 continue; 326 } 327 328 if (!cc->sync) 329 mode |= ISOLATE_ASYNC_MIGRATE; 330 331 lruvec = mem_cgroup_page_lruvec(page, zone); 332 333 /* Try isolate the page */ 334 if (__isolate_lru_page(page, mode) != 0) 335 continue; 336 337 VM_BUG_ON(PageTransCompound(page)); 338 339 /* Successfully isolated */ 340 del_page_from_lru_list(page, lruvec, page_lru(page)); 341 list_add(&page->lru, migratelist); 342 cc->nr_migratepages++; 343 nr_isolated++; 344 345 /* Avoid isolating too much */ 346 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 347 ++low_pfn; 348 break; 349 } 350 } 351 352 acct_isolated(zone, cc); 353 354 spin_unlock_irq(&zone->lru_lock); 355 356 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated); 357 358 return low_pfn; 359 } 360 361 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 362 #ifdef CONFIG_COMPACTION 363 364 /* Returns true if the page is within a block suitable for migration to */ 365 static bool suitable_migration_target(struct page *page) 366 { 367 368 int migratetype = get_pageblock_migratetype(page); 369 370 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */ 371 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE) 372 return false; 373 374 /* If the page is a large free page, then allow migration */ 375 if (PageBuddy(page) && page_order(page) >= pageblock_order) 376 return true; 377 378 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 379 if (migrate_async_suitable(migratetype)) 380 return true; 381 382 /* Otherwise skip the block */ 383 return false; 384 } 385 386 /* 387 * Based on information in the current compact_control, find blocks 388 * suitable for isolating free pages from and then isolate them. 389 */ 390 static void isolate_freepages(struct zone *zone, 391 struct compact_control *cc) 392 { 393 struct page *page; 394 unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn; 395 unsigned long flags; 396 int nr_freepages = cc->nr_freepages; 397 struct list_head *freelist = &cc->freepages; 398 399 /* 400 * Initialise the free scanner. The starting point is where we last 401 * scanned from (or the end of the zone if starting). The low point 402 * is the end of the pageblock the migration scanner is using. 403 */ 404 pfn = cc->free_pfn; 405 low_pfn = cc->migrate_pfn + pageblock_nr_pages; 406 407 /* 408 * Take care that if the migration scanner is at the end of the zone 409 * that the free scanner does not accidentally move to the next zone 410 * in the next isolation cycle. 411 */ 412 high_pfn = min(low_pfn, pfn); 413 414 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages; 415 416 /* 417 * Isolate free pages until enough are available to migrate the 418 * pages on cc->migratepages. We stop searching if the migrate 419 * and free page scanners meet or enough free pages are isolated. 420 */ 421 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages; 422 pfn -= pageblock_nr_pages) { 423 unsigned long isolated; 424 425 /* 426 * Skip ahead if another thread is compacting in the area 427 * simultaneously. If we wrapped around, we can only skip 428 * ahead if zone->compact_cached_free_pfn also wrapped to 429 * above our starting point. 430 */ 431 if (cc->order > 0 && (!cc->wrapped || 432 zone->compact_cached_free_pfn > 433 cc->start_free_pfn)) 434 pfn = min(pfn, zone->compact_cached_free_pfn); 435 436 if (!pfn_valid(pfn)) 437 continue; 438 439 /* 440 * Check for overlapping nodes/zones. It's possible on some 441 * configurations to have a setup like 442 * node0 node1 node0 443 * i.e. it's possible that all pages within a zones range of 444 * pages do not belong to a single zone. 445 */ 446 page = pfn_to_page(pfn); 447 if (page_zone(page) != zone) 448 continue; 449 450 /* Check the block is suitable for migration */ 451 if (!suitable_migration_target(page)) 452 continue; 453 454 /* 455 * Found a block suitable for isolating free pages from. Now 456 * we disabled interrupts, double check things are ok and 457 * isolate the pages. This is to minimise the time IRQs 458 * are disabled 459 */ 460 isolated = 0; 461 spin_lock_irqsave(&zone->lock, flags); 462 if (suitable_migration_target(page)) { 463 end_pfn = min(pfn + pageblock_nr_pages, zone_end_pfn); 464 isolated = isolate_freepages_block(pfn, end_pfn, 465 freelist, false); 466 nr_freepages += isolated; 467 } 468 spin_unlock_irqrestore(&zone->lock, flags); 469 470 /* 471 * Record the highest PFN we isolated pages from. When next 472 * looking for free pages, the search will restart here as 473 * page migration may have returned some pages to the allocator 474 */ 475 if (isolated) { 476 high_pfn = max(high_pfn, pfn); 477 if (cc->order > 0) 478 zone->compact_cached_free_pfn = high_pfn; 479 } 480 } 481 482 /* split_free_page does not map the pages */ 483 map_pages(freelist); 484 485 cc->free_pfn = high_pfn; 486 cc->nr_freepages = nr_freepages; 487 } 488 489 /* 490 * This is a migrate-callback that "allocates" freepages by taking pages 491 * from the isolated freelists in the block we are migrating to. 492 */ 493 static struct page *compaction_alloc(struct page *migratepage, 494 unsigned long data, 495 int **result) 496 { 497 struct compact_control *cc = (struct compact_control *)data; 498 struct page *freepage; 499 500 /* Isolate free pages if necessary */ 501 if (list_empty(&cc->freepages)) { 502 isolate_freepages(cc->zone, cc); 503 504 if (list_empty(&cc->freepages)) 505 return NULL; 506 } 507 508 freepage = list_entry(cc->freepages.next, struct page, lru); 509 list_del(&freepage->lru); 510 cc->nr_freepages--; 511 512 return freepage; 513 } 514 515 /* 516 * We cannot control nr_migratepages and nr_freepages fully when migration is 517 * running as migrate_pages() has no knowledge of compact_control. When 518 * migration is complete, we count the number of pages on the lists by hand. 519 */ 520 static void update_nr_listpages(struct compact_control *cc) 521 { 522 int nr_migratepages = 0; 523 int nr_freepages = 0; 524 struct page *page; 525 526 list_for_each_entry(page, &cc->migratepages, lru) 527 nr_migratepages++; 528 list_for_each_entry(page, &cc->freepages, lru) 529 nr_freepages++; 530 531 cc->nr_migratepages = nr_migratepages; 532 cc->nr_freepages = nr_freepages; 533 } 534 535 /* possible outcome of isolate_migratepages */ 536 typedef enum { 537 ISOLATE_ABORT, /* Abort compaction now */ 538 ISOLATE_NONE, /* No pages isolated, continue scanning */ 539 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 540 } isolate_migrate_t; 541 542 /* 543 * Isolate all pages that can be migrated from the block pointed to by 544 * the migrate scanner within compact_control. 545 */ 546 static isolate_migrate_t isolate_migratepages(struct zone *zone, 547 struct compact_control *cc) 548 { 549 unsigned long low_pfn, end_pfn; 550 551 /* Do not scan outside zone boundaries */ 552 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn); 553 554 /* Only scan within a pageblock boundary */ 555 end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages); 556 557 /* Do not cross the free scanner or scan within a memory hole */ 558 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) { 559 cc->migrate_pfn = end_pfn; 560 return ISOLATE_NONE; 561 } 562 563 /* Perform the isolation */ 564 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn); 565 if (!low_pfn) 566 return ISOLATE_ABORT; 567 568 cc->migrate_pfn = low_pfn; 569 570 return ISOLATE_SUCCESS; 571 } 572 573 /* 574 * Returns the start pfn of the last page block in a zone. This is the starting 575 * point for full compaction of a zone. Compaction searches for free pages from 576 * the end of each zone, while isolate_freepages_block scans forward inside each 577 * page block. 578 */ 579 static unsigned long start_free_pfn(struct zone *zone) 580 { 581 unsigned long free_pfn; 582 free_pfn = zone->zone_start_pfn + zone->spanned_pages; 583 free_pfn &= ~(pageblock_nr_pages-1); 584 return free_pfn; 585 } 586 587 static int compact_finished(struct zone *zone, 588 struct compact_control *cc) 589 { 590 unsigned int order; 591 unsigned long watermark; 592 593 if (fatal_signal_pending(current)) 594 return COMPACT_PARTIAL; 595 596 /* 597 * A full (order == -1) compaction run starts at the beginning and 598 * end of a zone; it completes when the migrate and free scanner meet. 599 * A partial (order > 0) compaction can start with the free scanner 600 * at a random point in the zone, and may have to restart. 601 */ 602 if (cc->free_pfn <= cc->migrate_pfn) { 603 if (cc->order > 0 && !cc->wrapped) { 604 /* We started partway through; restart at the end. */ 605 unsigned long free_pfn = start_free_pfn(zone); 606 zone->compact_cached_free_pfn = free_pfn; 607 cc->free_pfn = free_pfn; 608 cc->wrapped = 1; 609 return COMPACT_CONTINUE; 610 } 611 return COMPACT_COMPLETE; 612 } 613 614 /* We wrapped around and ended up where we started. */ 615 if (cc->wrapped && cc->free_pfn <= cc->start_free_pfn) 616 return COMPACT_COMPLETE; 617 618 /* 619 * order == -1 is expected when compacting via 620 * /proc/sys/vm/compact_memory 621 */ 622 if (cc->order == -1) 623 return COMPACT_CONTINUE; 624 625 /* Compaction run is not finished if the watermark is not met */ 626 watermark = low_wmark_pages(zone); 627 watermark += (1 << cc->order); 628 629 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0)) 630 return COMPACT_CONTINUE; 631 632 /* Direct compactor: Is a suitable page free? */ 633 for (order = cc->order; order < MAX_ORDER; order++) { 634 /* Job done if page is free of the right migratetype */ 635 if (!list_empty(&zone->free_area[order].free_list[cc->migratetype])) 636 return COMPACT_PARTIAL; 637 638 /* Job done if allocation would set block type */ 639 if (order >= pageblock_order && zone->free_area[order].nr_free) 640 return COMPACT_PARTIAL; 641 } 642 643 return COMPACT_CONTINUE; 644 } 645 646 /* 647 * compaction_suitable: Is this suitable to run compaction on this zone now? 648 * Returns 649 * COMPACT_SKIPPED - If there are too few free pages for compaction 650 * COMPACT_PARTIAL - If the allocation would succeed without compaction 651 * COMPACT_CONTINUE - If compaction should run now 652 */ 653 unsigned long compaction_suitable(struct zone *zone, int order) 654 { 655 int fragindex; 656 unsigned long watermark; 657 658 /* 659 * order == -1 is expected when compacting via 660 * /proc/sys/vm/compact_memory 661 */ 662 if (order == -1) 663 return COMPACT_CONTINUE; 664 665 /* 666 * Watermarks for order-0 must be met for compaction. Note the 2UL. 667 * This is because during migration, copies of pages need to be 668 * allocated and for a short time, the footprint is higher 669 */ 670 watermark = low_wmark_pages(zone) + (2UL << order); 671 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 672 return COMPACT_SKIPPED; 673 674 /* 675 * fragmentation index determines if allocation failures are due to 676 * low memory or external fragmentation 677 * 678 * index of -1000 implies allocations might succeed depending on 679 * watermarks 680 * index towards 0 implies failure is due to lack of memory 681 * index towards 1000 implies failure is due to fragmentation 682 * 683 * Only compact if a failure would be due to fragmentation. 684 */ 685 fragindex = fragmentation_index(zone, order); 686 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 687 return COMPACT_SKIPPED; 688 689 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark, 690 0, 0)) 691 return COMPACT_PARTIAL; 692 693 return COMPACT_CONTINUE; 694 } 695 696 static int compact_zone(struct zone *zone, struct compact_control *cc) 697 { 698 int ret; 699 700 ret = compaction_suitable(zone, cc->order); 701 switch (ret) { 702 case COMPACT_PARTIAL: 703 case COMPACT_SKIPPED: 704 /* Compaction is likely to fail */ 705 return ret; 706 case COMPACT_CONTINUE: 707 /* Fall through to compaction */ 708 ; 709 } 710 711 /* Setup to move all movable pages to the end of the zone */ 712 cc->migrate_pfn = zone->zone_start_pfn; 713 714 if (cc->order > 0) { 715 /* Incremental compaction. Start where the last one stopped. */ 716 cc->free_pfn = zone->compact_cached_free_pfn; 717 cc->start_free_pfn = cc->free_pfn; 718 } else { 719 /* Order == -1 starts at the end of the zone. */ 720 cc->free_pfn = start_free_pfn(zone); 721 } 722 723 migrate_prep_local(); 724 725 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { 726 unsigned long nr_migrate, nr_remaining; 727 int err; 728 729 switch (isolate_migratepages(zone, cc)) { 730 case ISOLATE_ABORT: 731 ret = COMPACT_PARTIAL; 732 goto out; 733 case ISOLATE_NONE: 734 continue; 735 case ISOLATE_SUCCESS: 736 ; 737 } 738 739 nr_migrate = cc->nr_migratepages; 740 err = migrate_pages(&cc->migratepages, compaction_alloc, 741 (unsigned long)cc, false, 742 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC); 743 update_nr_listpages(cc); 744 nr_remaining = cc->nr_migratepages; 745 746 count_vm_event(COMPACTBLOCKS); 747 count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining); 748 if (nr_remaining) 749 count_vm_events(COMPACTPAGEFAILED, nr_remaining); 750 trace_mm_compaction_migratepages(nr_migrate - nr_remaining, 751 nr_remaining); 752 753 /* Release LRU pages not migrated */ 754 if (err) { 755 putback_lru_pages(&cc->migratepages); 756 cc->nr_migratepages = 0; 757 if (err == -ENOMEM) { 758 ret = COMPACT_PARTIAL; 759 goto out; 760 } 761 } 762 } 763 764 out: 765 /* Release free pages and check accounting */ 766 cc->nr_freepages -= release_freepages(&cc->freepages); 767 VM_BUG_ON(cc->nr_freepages != 0); 768 769 return ret; 770 } 771 772 static unsigned long compact_zone_order(struct zone *zone, 773 int order, gfp_t gfp_mask, 774 bool sync) 775 { 776 struct compact_control cc = { 777 .nr_freepages = 0, 778 .nr_migratepages = 0, 779 .order = order, 780 .migratetype = allocflags_to_migratetype(gfp_mask), 781 .zone = zone, 782 .sync = sync, 783 }; 784 INIT_LIST_HEAD(&cc.freepages); 785 INIT_LIST_HEAD(&cc.migratepages); 786 787 return compact_zone(zone, &cc); 788 } 789 790 int sysctl_extfrag_threshold = 500; 791 792 /** 793 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 794 * @zonelist: The zonelist used for the current allocation 795 * @order: The order of the current allocation 796 * @gfp_mask: The GFP mask of the current allocation 797 * @nodemask: The allowed nodes to allocate from 798 * @sync: Whether migration is synchronous or not 799 * 800 * This is the main entry point for direct page compaction. 801 */ 802 unsigned long try_to_compact_pages(struct zonelist *zonelist, 803 int order, gfp_t gfp_mask, nodemask_t *nodemask, 804 bool sync) 805 { 806 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 807 int may_enter_fs = gfp_mask & __GFP_FS; 808 int may_perform_io = gfp_mask & __GFP_IO; 809 struct zoneref *z; 810 struct zone *zone; 811 int rc = COMPACT_SKIPPED; 812 813 /* 814 * Check whether it is worth even starting compaction. The order check is 815 * made because an assumption is made that the page allocator can satisfy 816 * the "cheaper" orders without taking special steps 817 */ 818 if (!order || !may_enter_fs || !may_perform_io) 819 return rc; 820 821 count_vm_event(COMPACTSTALL); 822 823 /* Compact each zone in the list */ 824 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 825 nodemask) { 826 int status; 827 828 status = compact_zone_order(zone, order, gfp_mask, sync); 829 rc = max(status, rc); 830 831 /* If a normal allocation would succeed, stop compacting */ 832 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0)) 833 break; 834 } 835 836 return rc; 837 } 838 839 840 /* Compact all zones within a node */ 841 static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) 842 { 843 int zoneid; 844 struct zone *zone; 845 846 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 847 848 zone = &pgdat->node_zones[zoneid]; 849 if (!populated_zone(zone)) 850 continue; 851 852 cc->nr_freepages = 0; 853 cc->nr_migratepages = 0; 854 cc->zone = zone; 855 INIT_LIST_HEAD(&cc->freepages); 856 INIT_LIST_HEAD(&cc->migratepages); 857 858 if (cc->order == -1 || !compaction_deferred(zone, cc->order)) 859 compact_zone(zone, cc); 860 861 if (cc->order > 0) { 862 int ok = zone_watermark_ok(zone, cc->order, 863 low_wmark_pages(zone), 0, 0); 864 if (ok && cc->order > zone->compact_order_failed) 865 zone->compact_order_failed = cc->order + 1; 866 /* Currently async compaction is never deferred. */ 867 else if (!ok && cc->sync) 868 defer_compaction(zone, cc->order); 869 } 870 871 VM_BUG_ON(!list_empty(&cc->freepages)); 872 VM_BUG_ON(!list_empty(&cc->migratepages)); 873 } 874 875 return 0; 876 } 877 878 int compact_pgdat(pg_data_t *pgdat, int order) 879 { 880 struct compact_control cc = { 881 .order = order, 882 .sync = false, 883 }; 884 885 return __compact_pgdat(pgdat, &cc); 886 } 887 888 static int compact_node(int nid) 889 { 890 struct compact_control cc = { 891 .order = -1, 892 .sync = true, 893 }; 894 895 return __compact_pgdat(NODE_DATA(nid), &cc); 896 } 897 898 /* Compact all nodes in the system */ 899 static int compact_nodes(void) 900 { 901 int nid; 902 903 /* Flush pending updates to the LRU lists */ 904 lru_add_drain_all(); 905 906 for_each_online_node(nid) 907 compact_node(nid); 908 909 return COMPACT_COMPLETE; 910 } 911 912 /* The written value is actually unused, all memory is compacted */ 913 int sysctl_compact_memory; 914 915 /* This is the entry point for compacting all nodes via /proc/sys/vm */ 916 int sysctl_compaction_handler(struct ctl_table *table, int write, 917 void __user *buffer, size_t *length, loff_t *ppos) 918 { 919 if (write) 920 return compact_nodes(); 921 922 return 0; 923 } 924 925 int sysctl_extfrag_handler(struct ctl_table *table, int write, 926 void __user *buffer, size_t *length, loff_t *ppos) 927 { 928 proc_dointvec_minmax(table, write, buffer, length, ppos); 929 930 return 0; 931 } 932 933 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 934 ssize_t sysfs_compact_node(struct device *dev, 935 struct device_attribute *attr, 936 const char *buf, size_t count) 937 { 938 int nid = dev->id; 939 940 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 941 /* Flush pending updates to the LRU lists */ 942 lru_add_drain_all(); 943 944 compact_node(nid); 945 } 946 947 return count; 948 } 949 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 950 951 int compaction_register_node(struct node *node) 952 { 953 return device_create_file(&node->dev, &dev_attr_compact); 954 } 955 956 void compaction_unregister_node(struct node *node) 957 { 958 return device_remove_file(&node->dev, &dev_attr_compact); 959 } 960 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 961 962 #endif /* CONFIG_COMPACTION */ 963