xref: /openbmc/linux/mm/compaction.c (revision 7e035230)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include "internal.h"
18 
19 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
20 
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/compaction.h>
23 
24 static unsigned long release_freepages(struct list_head *freelist)
25 {
26 	struct page *page, *next;
27 	unsigned long count = 0;
28 
29 	list_for_each_entry_safe(page, next, freelist, lru) {
30 		list_del(&page->lru);
31 		__free_page(page);
32 		count++;
33 	}
34 
35 	return count;
36 }
37 
38 static void map_pages(struct list_head *list)
39 {
40 	struct page *page;
41 
42 	list_for_each_entry(page, list, lru) {
43 		arch_alloc_page(page, 0);
44 		kernel_map_pages(page, 1, 1);
45 	}
46 }
47 
48 static inline bool migrate_async_suitable(int migratetype)
49 {
50 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
51 }
52 
53 /*
54  * Isolate free pages onto a private freelist. Caller must hold zone->lock.
55  * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
56  * pages inside of the pageblock (even though it may still end up isolating
57  * some pages).
58  */
59 static unsigned long isolate_freepages_block(unsigned long blockpfn,
60 				unsigned long end_pfn,
61 				struct list_head *freelist,
62 				bool strict)
63 {
64 	int nr_scanned = 0, total_isolated = 0;
65 	struct page *cursor;
66 
67 	cursor = pfn_to_page(blockpfn);
68 
69 	/* Isolate free pages. This assumes the block is valid */
70 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
71 		int isolated, i;
72 		struct page *page = cursor;
73 
74 		if (!pfn_valid_within(blockpfn)) {
75 			if (strict)
76 				return 0;
77 			continue;
78 		}
79 		nr_scanned++;
80 
81 		if (!PageBuddy(page)) {
82 			if (strict)
83 				return 0;
84 			continue;
85 		}
86 
87 		/* Found a free page, break it into order-0 pages */
88 		isolated = split_free_page(page);
89 		if (!isolated && strict)
90 			return 0;
91 		total_isolated += isolated;
92 		for (i = 0; i < isolated; i++) {
93 			list_add(&page->lru, freelist);
94 			page++;
95 		}
96 
97 		/* If a page was split, advance to the end of it */
98 		if (isolated) {
99 			blockpfn += isolated - 1;
100 			cursor += isolated - 1;
101 		}
102 	}
103 
104 	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
105 	return total_isolated;
106 }
107 
108 /**
109  * isolate_freepages_range() - isolate free pages.
110  * @start_pfn: The first PFN to start isolating.
111  * @end_pfn:   The one-past-last PFN.
112  *
113  * Non-free pages, invalid PFNs, or zone boundaries within the
114  * [start_pfn, end_pfn) range are considered errors, cause function to
115  * undo its actions and return zero.
116  *
117  * Otherwise, function returns one-past-the-last PFN of isolated page
118  * (which may be greater then end_pfn if end fell in a middle of
119  * a free page).
120  */
121 unsigned long
122 isolate_freepages_range(unsigned long start_pfn, unsigned long end_pfn)
123 {
124 	unsigned long isolated, pfn, block_end_pfn, flags;
125 	struct zone *zone = NULL;
126 	LIST_HEAD(freelist);
127 
128 	if (pfn_valid(start_pfn))
129 		zone = page_zone(pfn_to_page(start_pfn));
130 
131 	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
132 		if (!pfn_valid(pfn) || zone != page_zone(pfn_to_page(pfn)))
133 			break;
134 
135 		/*
136 		 * On subsequent iterations ALIGN() is actually not needed,
137 		 * but we keep it that we not to complicate the code.
138 		 */
139 		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
140 		block_end_pfn = min(block_end_pfn, end_pfn);
141 
142 		spin_lock_irqsave(&zone->lock, flags);
143 		isolated = isolate_freepages_block(pfn, block_end_pfn,
144 						   &freelist, true);
145 		spin_unlock_irqrestore(&zone->lock, flags);
146 
147 		/*
148 		 * In strict mode, isolate_freepages_block() returns 0 if
149 		 * there are any holes in the block (ie. invalid PFNs or
150 		 * non-free pages).
151 		 */
152 		if (!isolated)
153 			break;
154 
155 		/*
156 		 * If we managed to isolate pages, it is always (1 << n) *
157 		 * pageblock_nr_pages for some non-negative n.  (Max order
158 		 * page may span two pageblocks).
159 		 */
160 	}
161 
162 	/* split_free_page does not map the pages */
163 	map_pages(&freelist);
164 
165 	if (pfn < end_pfn) {
166 		/* Loop terminated early, cleanup. */
167 		release_freepages(&freelist);
168 		return 0;
169 	}
170 
171 	/* We don't use freelists for anything. */
172 	return pfn;
173 }
174 
175 /* Update the number of anon and file isolated pages in the zone */
176 static void acct_isolated(struct zone *zone, struct compact_control *cc)
177 {
178 	struct page *page;
179 	unsigned int count[2] = { 0, };
180 
181 	list_for_each_entry(page, &cc->migratepages, lru)
182 		count[!!page_is_file_cache(page)]++;
183 
184 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
185 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
186 }
187 
188 /* Similar to reclaim, but different enough that they don't share logic */
189 static bool too_many_isolated(struct zone *zone)
190 {
191 	unsigned long active, inactive, isolated;
192 
193 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
194 					zone_page_state(zone, NR_INACTIVE_ANON);
195 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
196 					zone_page_state(zone, NR_ACTIVE_ANON);
197 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
198 					zone_page_state(zone, NR_ISOLATED_ANON);
199 
200 	return isolated > (inactive + active) / 2;
201 }
202 
203 /**
204  * isolate_migratepages_range() - isolate all migrate-able pages in range.
205  * @zone:	Zone pages are in.
206  * @cc:		Compaction control structure.
207  * @low_pfn:	The first PFN of the range.
208  * @end_pfn:	The one-past-the-last PFN of the range.
209  *
210  * Isolate all pages that can be migrated from the range specified by
211  * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
212  * pending), otherwise PFN of the first page that was not scanned
213  * (which may be both less, equal to or more then end_pfn).
214  *
215  * Assumes that cc->migratepages is empty and cc->nr_migratepages is
216  * zero.
217  *
218  * Apart from cc->migratepages and cc->nr_migratetypes this function
219  * does not modify any cc's fields, in particular it does not modify
220  * (or read for that matter) cc->migrate_pfn.
221  */
222 unsigned long
223 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
224 			   unsigned long low_pfn, unsigned long end_pfn)
225 {
226 	unsigned long last_pageblock_nr = 0, pageblock_nr;
227 	unsigned long nr_scanned = 0, nr_isolated = 0;
228 	struct list_head *migratelist = &cc->migratepages;
229 	isolate_mode_t mode = 0;
230 	struct lruvec *lruvec;
231 
232 	/*
233 	 * Ensure that there are not too many pages isolated from the LRU
234 	 * list by either parallel reclaimers or compaction. If there are,
235 	 * delay for some time until fewer pages are isolated
236 	 */
237 	while (unlikely(too_many_isolated(zone))) {
238 		/* async migration should just abort */
239 		if (!cc->sync)
240 			return 0;
241 
242 		congestion_wait(BLK_RW_ASYNC, HZ/10);
243 
244 		if (fatal_signal_pending(current))
245 			return 0;
246 	}
247 
248 	/* Time to isolate some pages for migration */
249 	cond_resched();
250 	spin_lock_irq(&zone->lru_lock);
251 	for (; low_pfn < end_pfn; low_pfn++) {
252 		struct page *page;
253 		bool locked = true;
254 
255 		/* give a chance to irqs before checking need_resched() */
256 		if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
257 			spin_unlock_irq(&zone->lru_lock);
258 			locked = false;
259 		}
260 		if (need_resched() || spin_is_contended(&zone->lru_lock)) {
261 			if (locked)
262 				spin_unlock_irq(&zone->lru_lock);
263 			cond_resched();
264 			spin_lock_irq(&zone->lru_lock);
265 			if (fatal_signal_pending(current))
266 				break;
267 		} else if (!locked)
268 			spin_lock_irq(&zone->lru_lock);
269 
270 		/*
271 		 * migrate_pfn does not necessarily start aligned to a
272 		 * pageblock. Ensure that pfn_valid is called when moving
273 		 * into a new MAX_ORDER_NR_PAGES range in case of large
274 		 * memory holes within the zone
275 		 */
276 		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
277 			if (!pfn_valid(low_pfn)) {
278 				low_pfn += MAX_ORDER_NR_PAGES - 1;
279 				continue;
280 			}
281 		}
282 
283 		if (!pfn_valid_within(low_pfn))
284 			continue;
285 		nr_scanned++;
286 
287 		/*
288 		 * Get the page and ensure the page is within the same zone.
289 		 * See the comment in isolate_freepages about overlapping
290 		 * nodes. It is deliberate that the new zone lock is not taken
291 		 * as memory compaction should not move pages between nodes.
292 		 */
293 		page = pfn_to_page(low_pfn);
294 		if (page_zone(page) != zone)
295 			continue;
296 
297 		/* Skip if free */
298 		if (PageBuddy(page))
299 			continue;
300 
301 		/*
302 		 * For async migration, also only scan in MOVABLE blocks. Async
303 		 * migration is optimistic to see if the minimum amount of work
304 		 * satisfies the allocation
305 		 */
306 		pageblock_nr = low_pfn >> pageblock_order;
307 		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
308 		    !migrate_async_suitable(get_pageblock_migratetype(page))) {
309 			low_pfn += pageblock_nr_pages;
310 			low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
311 			last_pageblock_nr = pageblock_nr;
312 			continue;
313 		}
314 
315 		if (!PageLRU(page))
316 			continue;
317 
318 		/*
319 		 * PageLRU is set, and lru_lock excludes isolation,
320 		 * splitting and collapsing (collapsing has already
321 		 * happened if PageLRU is set).
322 		 */
323 		if (PageTransHuge(page)) {
324 			low_pfn += (1 << compound_order(page)) - 1;
325 			continue;
326 		}
327 
328 		if (!cc->sync)
329 			mode |= ISOLATE_ASYNC_MIGRATE;
330 
331 		lruvec = mem_cgroup_page_lruvec(page, zone);
332 
333 		/* Try isolate the page */
334 		if (__isolate_lru_page(page, mode) != 0)
335 			continue;
336 
337 		VM_BUG_ON(PageTransCompound(page));
338 
339 		/* Successfully isolated */
340 		del_page_from_lru_list(page, lruvec, page_lru(page));
341 		list_add(&page->lru, migratelist);
342 		cc->nr_migratepages++;
343 		nr_isolated++;
344 
345 		/* Avoid isolating too much */
346 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
347 			++low_pfn;
348 			break;
349 		}
350 	}
351 
352 	acct_isolated(zone, cc);
353 
354 	spin_unlock_irq(&zone->lru_lock);
355 
356 	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
357 
358 	return low_pfn;
359 }
360 
361 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
362 #ifdef CONFIG_COMPACTION
363 
364 /* Returns true if the page is within a block suitable for migration to */
365 static bool suitable_migration_target(struct page *page)
366 {
367 
368 	int migratetype = get_pageblock_migratetype(page);
369 
370 	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
371 	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
372 		return false;
373 
374 	/* If the page is a large free page, then allow migration */
375 	if (PageBuddy(page) && page_order(page) >= pageblock_order)
376 		return true;
377 
378 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
379 	if (migrate_async_suitable(migratetype))
380 		return true;
381 
382 	/* Otherwise skip the block */
383 	return false;
384 }
385 
386 /*
387  * Based on information in the current compact_control, find blocks
388  * suitable for isolating free pages from and then isolate them.
389  */
390 static void isolate_freepages(struct zone *zone,
391 				struct compact_control *cc)
392 {
393 	struct page *page;
394 	unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
395 	unsigned long flags;
396 	int nr_freepages = cc->nr_freepages;
397 	struct list_head *freelist = &cc->freepages;
398 
399 	/*
400 	 * Initialise the free scanner. The starting point is where we last
401 	 * scanned from (or the end of the zone if starting). The low point
402 	 * is the end of the pageblock the migration scanner is using.
403 	 */
404 	pfn = cc->free_pfn;
405 	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
406 
407 	/*
408 	 * Take care that if the migration scanner is at the end of the zone
409 	 * that the free scanner does not accidentally move to the next zone
410 	 * in the next isolation cycle.
411 	 */
412 	high_pfn = min(low_pfn, pfn);
413 
414 	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
415 
416 	/*
417 	 * Isolate free pages until enough are available to migrate the
418 	 * pages on cc->migratepages. We stop searching if the migrate
419 	 * and free page scanners meet or enough free pages are isolated.
420 	 */
421 	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
422 					pfn -= pageblock_nr_pages) {
423 		unsigned long isolated;
424 
425 		/*
426 		 * Skip ahead if another thread is compacting in the area
427 		 * simultaneously. If we wrapped around, we can only skip
428 		 * ahead if zone->compact_cached_free_pfn also wrapped to
429 		 * above our starting point.
430 		 */
431 		if (cc->order > 0 && (!cc->wrapped ||
432 				      zone->compact_cached_free_pfn >
433 				      cc->start_free_pfn))
434 			pfn = min(pfn, zone->compact_cached_free_pfn);
435 
436 		if (!pfn_valid(pfn))
437 			continue;
438 
439 		/*
440 		 * Check for overlapping nodes/zones. It's possible on some
441 		 * configurations to have a setup like
442 		 * node0 node1 node0
443 		 * i.e. it's possible that all pages within a zones range of
444 		 * pages do not belong to a single zone.
445 		 */
446 		page = pfn_to_page(pfn);
447 		if (page_zone(page) != zone)
448 			continue;
449 
450 		/* Check the block is suitable for migration */
451 		if (!suitable_migration_target(page))
452 			continue;
453 
454 		/*
455 		 * Found a block suitable for isolating free pages from. Now
456 		 * we disabled interrupts, double check things are ok and
457 		 * isolate the pages. This is to minimise the time IRQs
458 		 * are disabled
459 		 */
460 		isolated = 0;
461 		spin_lock_irqsave(&zone->lock, flags);
462 		if (suitable_migration_target(page)) {
463 			end_pfn = min(pfn + pageblock_nr_pages, zone_end_pfn);
464 			isolated = isolate_freepages_block(pfn, end_pfn,
465 							   freelist, false);
466 			nr_freepages += isolated;
467 		}
468 		spin_unlock_irqrestore(&zone->lock, flags);
469 
470 		/*
471 		 * Record the highest PFN we isolated pages from. When next
472 		 * looking for free pages, the search will restart here as
473 		 * page migration may have returned some pages to the allocator
474 		 */
475 		if (isolated) {
476 			high_pfn = max(high_pfn, pfn);
477 			if (cc->order > 0)
478 				zone->compact_cached_free_pfn = high_pfn;
479 		}
480 	}
481 
482 	/* split_free_page does not map the pages */
483 	map_pages(freelist);
484 
485 	cc->free_pfn = high_pfn;
486 	cc->nr_freepages = nr_freepages;
487 }
488 
489 /*
490  * This is a migrate-callback that "allocates" freepages by taking pages
491  * from the isolated freelists in the block we are migrating to.
492  */
493 static struct page *compaction_alloc(struct page *migratepage,
494 					unsigned long data,
495 					int **result)
496 {
497 	struct compact_control *cc = (struct compact_control *)data;
498 	struct page *freepage;
499 
500 	/* Isolate free pages if necessary */
501 	if (list_empty(&cc->freepages)) {
502 		isolate_freepages(cc->zone, cc);
503 
504 		if (list_empty(&cc->freepages))
505 			return NULL;
506 	}
507 
508 	freepage = list_entry(cc->freepages.next, struct page, lru);
509 	list_del(&freepage->lru);
510 	cc->nr_freepages--;
511 
512 	return freepage;
513 }
514 
515 /*
516  * We cannot control nr_migratepages and nr_freepages fully when migration is
517  * running as migrate_pages() has no knowledge of compact_control. When
518  * migration is complete, we count the number of pages on the lists by hand.
519  */
520 static void update_nr_listpages(struct compact_control *cc)
521 {
522 	int nr_migratepages = 0;
523 	int nr_freepages = 0;
524 	struct page *page;
525 
526 	list_for_each_entry(page, &cc->migratepages, lru)
527 		nr_migratepages++;
528 	list_for_each_entry(page, &cc->freepages, lru)
529 		nr_freepages++;
530 
531 	cc->nr_migratepages = nr_migratepages;
532 	cc->nr_freepages = nr_freepages;
533 }
534 
535 /* possible outcome of isolate_migratepages */
536 typedef enum {
537 	ISOLATE_ABORT,		/* Abort compaction now */
538 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
539 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
540 } isolate_migrate_t;
541 
542 /*
543  * Isolate all pages that can be migrated from the block pointed to by
544  * the migrate scanner within compact_control.
545  */
546 static isolate_migrate_t isolate_migratepages(struct zone *zone,
547 					struct compact_control *cc)
548 {
549 	unsigned long low_pfn, end_pfn;
550 
551 	/* Do not scan outside zone boundaries */
552 	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
553 
554 	/* Only scan within a pageblock boundary */
555 	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
556 
557 	/* Do not cross the free scanner or scan within a memory hole */
558 	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
559 		cc->migrate_pfn = end_pfn;
560 		return ISOLATE_NONE;
561 	}
562 
563 	/* Perform the isolation */
564 	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn);
565 	if (!low_pfn)
566 		return ISOLATE_ABORT;
567 
568 	cc->migrate_pfn = low_pfn;
569 
570 	return ISOLATE_SUCCESS;
571 }
572 
573 /*
574  * Returns the start pfn of the last page block in a zone.  This is the starting
575  * point for full compaction of a zone.  Compaction searches for free pages from
576  * the end of each zone, while isolate_freepages_block scans forward inside each
577  * page block.
578  */
579 static unsigned long start_free_pfn(struct zone *zone)
580 {
581 	unsigned long free_pfn;
582 	free_pfn = zone->zone_start_pfn + zone->spanned_pages;
583 	free_pfn &= ~(pageblock_nr_pages-1);
584 	return free_pfn;
585 }
586 
587 static int compact_finished(struct zone *zone,
588 			    struct compact_control *cc)
589 {
590 	unsigned int order;
591 	unsigned long watermark;
592 
593 	if (fatal_signal_pending(current))
594 		return COMPACT_PARTIAL;
595 
596 	/*
597 	 * A full (order == -1) compaction run starts at the beginning and
598 	 * end of a zone; it completes when the migrate and free scanner meet.
599 	 * A partial (order > 0) compaction can start with the free scanner
600 	 * at a random point in the zone, and may have to restart.
601 	 */
602 	if (cc->free_pfn <= cc->migrate_pfn) {
603 		if (cc->order > 0 && !cc->wrapped) {
604 			/* We started partway through; restart at the end. */
605 			unsigned long free_pfn = start_free_pfn(zone);
606 			zone->compact_cached_free_pfn = free_pfn;
607 			cc->free_pfn = free_pfn;
608 			cc->wrapped = 1;
609 			return COMPACT_CONTINUE;
610 		}
611 		return COMPACT_COMPLETE;
612 	}
613 
614 	/* We wrapped around and ended up where we started. */
615 	if (cc->wrapped && cc->free_pfn <= cc->start_free_pfn)
616 		return COMPACT_COMPLETE;
617 
618 	/*
619 	 * order == -1 is expected when compacting via
620 	 * /proc/sys/vm/compact_memory
621 	 */
622 	if (cc->order == -1)
623 		return COMPACT_CONTINUE;
624 
625 	/* Compaction run is not finished if the watermark is not met */
626 	watermark = low_wmark_pages(zone);
627 	watermark += (1 << cc->order);
628 
629 	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
630 		return COMPACT_CONTINUE;
631 
632 	/* Direct compactor: Is a suitable page free? */
633 	for (order = cc->order; order < MAX_ORDER; order++) {
634 		/* Job done if page is free of the right migratetype */
635 		if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
636 			return COMPACT_PARTIAL;
637 
638 		/* Job done if allocation would set block type */
639 		if (order >= pageblock_order && zone->free_area[order].nr_free)
640 			return COMPACT_PARTIAL;
641 	}
642 
643 	return COMPACT_CONTINUE;
644 }
645 
646 /*
647  * compaction_suitable: Is this suitable to run compaction on this zone now?
648  * Returns
649  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
650  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
651  *   COMPACT_CONTINUE - If compaction should run now
652  */
653 unsigned long compaction_suitable(struct zone *zone, int order)
654 {
655 	int fragindex;
656 	unsigned long watermark;
657 
658 	/*
659 	 * order == -1 is expected when compacting via
660 	 * /proc/sys/vm/compact_memory
661 	 */
662 	if (order == -1)
663 		return COMPACT_CONTINUE;
664 
665 	/*
666 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
667 	 * This is because during migration, copies of pages need to be
668 	 * allocated and for a short time, the footprint is higher
669 	 */
670 	watermark = low_wmark_pages(zone) + (2UL << order);
671 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
672 		return COMPACT_SKIPPED;
673 
674 	/*
675 	 * fragmentation index determines if allocation failures are due to
676 	 * low memory or external fragmentation
677 	 *
678 	 * index of -1000 implies allocations might succeed depending on
679 	 * watermarks
680 	 * index towards 0 implies failure is due to lack of memory
681 	 * index towards 1000 implies failure is due to fragmentation
682 	 *
683 	 * Only compact if a failure would be due to fragmentation.
684 	 */
685 	fragindex = fragmentation_index(zone, order);
686 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
687 		return COMPACT_SKIPPED;
688 
689 	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
690 	    0, 0))
691 		return COMPACT_PARTIAL;
692 
693 	return COMPACT_CONTINUE;
694 }
695 
696 static int compact_zone(struct zone *zone, struct compact_control *cc)
697 {
698 	int ret;
699 
700 	ret = compaction_suitable(zone, cc->order);
701 	switch (ret) {
702 	case COMPACT_PARTIAL:
703 	case COMPACT_SKIPPED:
704 		/* Compaction is likely to fail */
705 		return ret;
706 	case COMPACT_CONTINUE:
707 		/* Fall through to compaction */
708 		;
709 	}
710 
711 	/* Setup to move all movable pages to the end of the zone */
712 	cc->migrate_pfn = zone->zone_start_pfn;
713 
714 	if (cc->order > 0) {
715 		/* Incremental compaction. Start where the last one stopped. */
716 		cc->free_pfn = zone->compact_cached_free_pfn;
717 		cc->start_free_pfn = cc->free_pfn;
718 	} else {
719 		/* Order == -1 starts at the end of the zone. */
720 		cc->free_pfn = start_free_pfn(zone);
721 	}
722 
723 	migrate_prep_local();
724 
725 	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
726 		unsigned long nr_migrate, nr_remaining;
727 		int err;
728 
729 		switch (isolate_migratepages(zone, cc)) {
730 		case ISOLATE_ABORT:
731 			ret = COMPACT_PARTIAL;
732 			goto out;
733 		case ISOLATE_NONE:
734 			continue;
735 		case ISOLATE_SUCCESS:
736 			;
737 		}
738 
739 		nr_migrate = cc->nr_migratepages;
740 		err = migrate_pages(&cc->migratepages, compaction_alloc,
741 				(unsigned long)cc, false,
742 				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC);
743 		update_nr_listpages(cc);
744 		nr_remaining = cc->nr_migratepages;
745 
746 		count_vm_event(COMPACTBLOCKS);
747 		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
748 		if (nr_remaining)
749 			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
750 		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
751 						nr_remaining);
752 
753 		/* Release LRU pages not migrated */
754 		if (err) {
755 			putback_lru_pages(&cc->migratepages);
756 			cc->nr_migratepages = 0;
757 			if (err == -ENOMEM) {
758 				ret = COMPACT_PARTIAL;
759 				goto out;
760 			}
761 		}
762 	}
763 
764 out:
765 	/* Release free pages and check accounting */
766 	cc->nr_freepages -= release_freepages(&cc->freepages);
767 	VM_BUG_ON(cc->nr_freepages != 0);
768 
769 	return ret;
770 }
771 
772 static unsigned long compact_zone_order(struct zone *zone,
773 				 int order, gfp_t gfp_mask,
774 				 bool sync)
775 {
776 	struct compact_control cc = {
777 		.nr_freepages = 0,
778 		.nr_migratepages = 0,
779 		.order = order,
780 		.migratetype = allocflags_to_migratetype(gfp_mask),
781 		.zone = zone,
782 		.sync = sync,
783 	};
784 	INIT_LIST_HEAD(&cc.freepages);
785 	INIT_LIST_HEAD(&cc.migratepages);
786 
787 	return compact_zone(zone, &cc);
788 }
789 
790 int sysctl_extfrag_threshold = 500;
791 
792 /**
793  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
794  * @zonelist: The zonelist used for the current allocation
795  * @order: The order of the current allocation
796  * @gfp_mask: The GFP mask of the current allocation
797  * @nodemask: The allowed nodes to allocate from
798  * @sync: Whether migration is synchronous or not
799  *
800  * This is the main entry point for direct page compaction.
801  */
802 unsigned long try_to_compact_pages(struct zonelist *zonelist,
803 			int order, gfp_t gfp_mask, nodemask_t *nodemask,
804 			bool sync)
805 {
806 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
807 	int may_enter_fs = gfp_mask & __GFP_FS;
808 	int may_perform_io = gfp_mask & __GFP_IO;
809 	struct zoneref *z;
810 	struct zone *zone;
811 	int rc = COMPACT_SKIPPED;
812 
813 	/*
814 	 * Check whether it is worth even starting compaction. The order check is
815 	 * made because an assumption is made that the page allocator can satisfy
816 	 * the "cheaper" orders without taking special steps
817 	 */
818 	if (!order || !may_enter_fs || !may_perform_io)
819 		return rc;
820 
821 	count_vm_event(COMPACTSTALL);
822 
823 	/* Compact each zone in the list */
824 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
825 								nodemask) {
826 		int status;
827 
828 		status = compact_zone_order(zone, order, gfp_mask, sync);
829 		rc = max(status, rc);
830 
831 		/* If a normal allocation would succeed, stop compacting */
832 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
833 			break;
834 	}
835 
836 	return rc;
837 }
838 
839 
840 /* Compact all zones within a node */
841 static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
842 {
843 	int zoneid;
844 	struct zone *zone;
845 
846 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
847 
848 		zone = &pgdat->node_zones[zoneid];
849 		if (!populated_zone(zone))
850 			continue;
851 
852 		cc->nr_freepages = 0;
853 		cc->nr_migratepages = 0;
854 		cc->zone = zone;
855 		INIT_LIST_HEAD(&cc->freepages);
856 		INIT_LIST_HEAD(&cc->migratepages);
857 
858 		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
859 			compact_zone(zone, cc);
860 
861 		if (cc->order > 0) {
862 			int ok = zone_watermark_ok(zone, cc->order,
863 						low_wmark_pages(zone), 0, 0);
864 			if (ok && cc->order > zone->compact_order_failed)
865 				zone->compact_order_failed = cc->order + 1;
866 			/* Currently async compaction is never deferred. */
867 			else if (!ok && cc->sync)
868 				defer_compaction(zone, cc->order);
869 		}
870 
871 		VM_BUG_ON(!list_empty(&cc->freepages));
872 		VM_BUG_ON(!list_empty(&cc->migratepages));
873 	}
874 
875 	return 0;
876 }
877 
878 int compact_pgdat(pg_data_t *pgdat, int order)
879 {
880 	struct compact_control cc = {
881 		.order = order,
882 		.sync = false,
883 	};
884 
885 	return __compact_pgdat(pgdat, &cc);
886 }
887 
888 static int compact_node(int nid)
889 {
890 	struct compact_control cc = {
891 		.order = -1,
892 		.sync = true,
893 	};
894 
895 	return __compact_pgdat(NODE_DATA(nid), &cc);
896 }
897 
898 /* Compact all nodes in the system */
899 static int compact_nodes(void)
900 {
901 	int nid;
902 
903 	/* Flush pending updates to the LRU lists */
904 	lru_add_drain_all();
905 
906 	for_each_online_node(nid)
907 		compact_node(nid);
908 
909 	return COMPACT_COMPLETE;
910 }
911 
912 /* The written value is actually unused, all memory is compacted */
913 int sysctl_compact_memory;
914 
915 /* This is the entry point for compacting all nodes via /proc/sys/vm */
916 int sysctl_compaction_handler(struct ctl_table *table, int write,
917 			void __user *buffer, size_t *length, loff_t *ppos)
918 {
919 	if (write)
920 		return compact_nodes();
921 
922 	return 0;
923 }
924 
925 int sysctl_extfrag_handler(struct ctl_table *table, int write,
926 			void __user *buffer, size_t *length, loff_t *ppos)
927 {
928 	proc_dointvec_minmax(table, write, buffer, length, ppos);
929 
930 	return 0;
931 }
932 
933 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
934 ssize_t sysfs_compact_node(struct device *dev,
935 			struct device_attribute *attr,
936 			const char *buf, size_t count)
937 {
938 	int nid = dev->id;
939 
940 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
941 		/* Flush pending updates to the LRU lists */
942 		lru_add_drain_all();
943 
944 		compact_node(nid);
945 	}
946 
947 	return count;
948 }
949 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
950 
951 int compaction_register_node(struct node *node)
952 {
953 	return device_create_file(&node->dev, &dev_attr_compact);
954 }
955 
956 void compaction_unregister_node(struct node *node)
957 {
958 	return device_remove_file(&node->dev, &dev_attr_compact);
959 }
960 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
961 
962 #endif /* CONFIG_COMPACTION */
963