1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/cpu.h> 11 #include <linux/swap.h> 12 #include <linux/migrate.h> 13 #include <linux/compaction.h> 14 #include <linux/mm_inline.h> 15 #include <linux/backing-dev.h> 16 #include <linux/sysctl.h> 17 #include <linux/sysfs.h> 18 #include <linux/balloon_compaction.h> 19 #include <linux/page-isolation.h> 20 #include <linux/kasan.h> 21 #include <linux/kthread.h> 22 #include <linux/freezer.h> 23 #include "internal.h" 24 25 #ifdef CONFIG_COMPACTION 26 static inline void count_compact_event(enum vm_event_item item) 27 { 28 count_vm_event(item); 29 } 30 31 static inline void count_compact_events(enum vm_event_item item, long delta) 32 { 33 count_vm_events(item, delta); 34 } 35 #else 36 #define count_compact_event(item) do { } while (0) 37 #define count_compact_events(item, delta) do { } while (0) 38 #endif 39 40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/compaction.h> 44 45 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 46 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 47 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 48 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 49 50 static unsigned long release_freepages(struct list_head *freelist) 51 { 52 struct page *page, *next; 53 unsigned long high_pfn = 0; 54 55 list_for_each_entry_safe(page, next, freelist, lru) { 56 unsigned long pfn = page_to_pfn(page); 57 list_del(&page->lru); 58 __free_page(page); 59 if (pfn > high_pfn) 60 high_pfn = pfn; 61 } 62 63 return high_pfn; 64 } 65 66 static void map_pages(struct list_head *list) 67 { 68 struct page *page; 69 70 list_for_each_entry(page, list, lru) { 71 arch_alloc_page(page, 0); 72 kernel_map_pages(page, 1, 1); 73 kasan_alloc_pages(page, 0); 74 } 75 } 76 77 static inline bool migrate_async_suitable(int migratetype) 78 { 79 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; 80 } 81 82 #ifdef CONFIG_COMPACTION 83 84 /* Do not skip compaction more than 64 times */ 85 #define COMPACT_MAX_DEFER_SHIFT 6 86 87 /* 88 * Compaction is deferred when compaction fails to result in a page 89 * allocation success. 1 << compact_defer_limit compactions are skipped up 90 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 91 */ 92 void defer_compaction(struct zone *zone, int order) 93 { 94 zone->compact_considered = 0; 95 zone->compact_defer_shift++; 96 97 if (order < zone->compact_order_failed) 98 zone->compact_order_failed = order; 99 100 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 101 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 102 103 trace_mm_compaction_defer_compaction(zone, order); 104 } 105 106 /* Returns true if compaction should be skipped this time */ 107 bool compaction_deferred(struct zone *zone, int order) 108 { 109 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 110 111 if (order < zone->compact_order_failed) 112 return false; 113 114 /* Avoid possible overflow */ 115 if (++zone->compact_considered > defer_limit) 116 zone->compact_considered = defer_limit; 117 118 if (zone->compact_considered >= defer_limit) 119 return false; 120 121 trace_mm_compaction_deferred(zone, order); 122 123 return true; 124 } 125 126 /* 127 * Update defer tracking counters after successful compaction of given order, 128 * which means an allocation either succeeded (alloc_success == true) or is 129 * expected to succeed. 130 */ 131 void compaction_defer_reset(struct zone *zone, int order, 132 bool alloc_success) 133 { 134 if (alloc_success) { 135 zone->compact_considered = 0; 136 zone->compact_defer_shift = 0; 137 } 138 if (order >= zone->compact_order_failed) 139 zone->compact_order_failed = order + 1; 140 141 trace_mm_compaction_defer_reset(zone, order); 142 } 143 144 /* Returns true if restarting compaction after many failures */ 145 bool compaction_restarting(struct zone *zone, int order) 146 { 147 if (order < zone->compact_order_failed) 148 return false; 149 150 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 151 zone->compact_considered >= 1UL << zone->compact_defer_shift; 152 } 153 154 /* Returns true if the pageblock should be scanned for pages to isolate. */ 155 static inline bool isolation_suitable(struct compact_control *cc, 156 struct page *page) 157 { 158 if (cc->ignore_skip_hint) 159 return true; 160 161 return !get_pageblock_skip(page); 162 } 163 164 static void reset_cached_positions(struct zone *zone) 165 { 166 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 167 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 168 zone->compact_cached_free_pfn = 169 pageblock_start_pfn(zone_end_pfn(zone) - 1); 170 } 171 172 /* 173 * This function is called to clear all cached information on pageblocks that 174 * should be skipped for page isolation when the migrate and free page scanner 175 * meet. 176 */ 177 static void __reset_isolation_suitable(struct zone *zone) 178 { 179 unsigned long start_pfn = zone->zone_start_pfn; 180 unsigned long end_pfn = zone_end_pfn(zone); 181 unsigned long pfn; 182 183 zone->compact_blockskip_flush = false; 184 185 /* Walk the zone and mark every pageblock as suitable for isolation */ 186 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 187 struct page *page; 188 189 cond_resched(); 190 191 if (!pfn_valid(pfn)) 192 continue; 193 194 page = pfn_to_page(pfn); 195 if (zone != page_zone(page)) 196 continue; 197 198 clear_pageblock_skip(page); 199 } 200 201 reset_cached_positions(zone); 202 } 203 204 void reset_isolation_suitable(pg_data_t *pgdat) 205 { 206 int zoneid; 207 208 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 209 struct zone *zone = &pgdat->node_zones[zoneid]; 210 if (!populated_zone(zone)) 211 continue; 212 213 /* Only flush if a full compaction finished recently */ 214 if (zone->compact_blockskip_flush) 215 __reset_isolation_suitable(zone); 216 } 217 } 218 219 /* 220 * If no pages were isolated then mark this pageblock to be skipped in the 221 * future. The information is later cleared by __reset_isolation_suitable(). 222 */ 223 static void update_pageblock_skip(struct compact_control *cc, 224 struct page *page, unsigned long nr_isolated, 225 bool migrate_scanner) 226 { 227 struct zone *zone = cc->zone; 228 unsigned long pfn; 229 230 if (cc->ignore_skip_hint) 231 return; 232 233 if (!page) 234 return; 235 236 if (nr_isolated) 237 return; 238 239 set_pageblock_skip(page); 240 241 pfn = page_to_pfn(page); 242 243 /* Update where async and sync compaction should restart */ 244 if (migrate_scanner) { 245 if (pfn > zone->compact_cached_migrate_pfn[0]) 246 zone->compact_cached_migrate_pfn[0] = pfn; 247 if (cc->mode != MIGRATE_ASYNC && 248 pfn > zone->compact_cached_migrate_pfn[1]) 249 zone->compact_cached_migrate_pfn[1] = pfn; 250 } else { 251 if (pfn < zone->compact_cached_free_pfn) 252 zone->compact_cached_free_pfn = pfn; 253 } 254 } 255 #else 256 static inline bool isolation_suitable(struct compact_control *cc, 257 struct page *page) 258 { 259 return true; 260 } 261 262 static void update_pageblock_skip(struct compact_control *cc, 263 struct page *page, unsigned long nr_isolated, 264 bool migrate_scanner) 265 { 266 } 267 #endif /* CONFIG_COMPACTION */ 268 269 /* 270 * Compaction requires the taking of some coarse locks that are potentially 271 * very heavily contended. For async compaction, back out if the lock cannot 272 * be taken immediately. For sync compaction, spin on the lock if needed. 273 * 274 * Returns true if the lock is held 275 * Returns false if the lock is not held and compaction should abort 276 */ 277 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags, 278 struct compact_control *cc) 279 { 280 if (cc->mode == MIGRATE_ASYNC) { 281 if (!spin_trylock_irqsave(lock, *flags)) { 282 cc->contended = COMPACT_CONTENDED_LOCK; 283 return false; 284 } 285 } else { 286 spin_lock_irqsave(lock, *flags); 287 } 288 289 return true; 290 } 291 292 /* 293 * Compaction requires the taking of some coarse locks that are potentially 294 * very heavily contended. The lock should be periodically unlocked to avoid 295 * having disabled IRQs for a long time, even when there is nobody waiting on 296 * the lock. It might also be that allowing the IRQs will result in 297 * need_resched() becoming true. If scheduling is needed, async compaction 298 * aborts. Sync compaction schedules. 299 * Either compaction type will also abort if a fatal signal is pending. 300 * In either case if the lock was locked, it is dropped and not regained. 301 * 302 * Returns true if compaction should abort due to fatal signal pending, or 303 * async compaction due to need_resched() 304 * Returns false when compaction can continue (sync compaction might have 305 * scheduled) 306 */ 307 static bool compact_unlock_should_abort(spinlock_t *lock, 308 unsigned long flags, bool *locked, struct compact_control *cc) 309 { 310 if (*locked) { 311 spin_unlock_irqrestore(lock, flags); 312 *locked = false; 313 } 314 315 if (fatal_signal_pending(current)) { 316 cc->contended = COMPACT_CONTENDED_SCHED; 317 return true; 318 } 319 320 if (need_resched()) { 321 if (cc->mode == MIGRATE_ASYNC) { 322 cc->contended = COMPACT_CONTENDED_SCHED; 323 return true; 324 } 325 cond_resched(); 326 } 327 328 return false; 329 } 330 331 /* 332 * Aside from avoiding lock contention, compaction also periodically checks 333 * need_resched() and either schedules in sync compaction or aborts async 334 * compaction. This is similar to what compact_unlock_should_abort() does, but 335 * is used where no lock is concerned. 336 * 337 * Returns false when no scheduling was needed, or sync compaction scheduled. 338 * Returns true when async compaction should abort. 339 */ 340 static inline bool compact_should_abort(struct compact_control *cc) 341 { 342 /* async compaction aborts if contended */ 343 if (need_resched()) { 344 if (cc->mode == MIGRATE_ASYNC) { 345 cc->contended = COMPACT_CONTENDED_SCHED; 346 return true; 347 } 348 349 cond_resched(); 350 } 351 352 return false; 353 } 354 355 /* 356 * Isolate free pages onto a private freelist. If @strict is true, will abort 357 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 358 * (even though it may still end up isolating some pages). 359 */ 360 static unsigned long isolate_freepages_block(struct compact_control *cc, 361 unsigned long *start_pfn, 362 unsigned long end_pfn, 363 struct list_head *freelist, 364 bool strict) 365 { 366 int nr_scanned = 0, total_isolated = 0; 367 struct page *cursor, *valid_page = NULL; 368 unsigned long flags = 0; 369 bool locked = false; 370 unsigned long blockpfn = *start_pfn; 371 372 cursor = pfn_to_page(blockpfn); 373 374 /* Isolate free pages. */ 375 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 376 int isolated, i; 377 struct page *page = cursor; 378 379 /* 380 * Periodically drop the lock (if held) regardless of its 381 * contention, to give chance to IRQs. Abort if fatal signal 382 * pending or async compaction detects need_resched() 383 */ 384 if (!(blockpfn % SWAP_CLUSTER_MAX) 385 && compact_unlock_should_abort(&cc->zone->lock, flags, 386 &locked, cc)) 387 break; 388 389 nr_scanned++; 390 if (!pfn_valid_within(blockpfn)) 391 goto isolate_fail; 392 393 if (!valid_page) 394 valid_page = page; 395 396 /* 397 * For compound pages such as THP and hugetlbfs, we can save 398 * potentially a lot of iterations if we skip them at once. 399 * The check is racy, but we can consider only valid values 400 * and the only danger is skipping too much. 401 */ 402 if (PageCompound(page)) { 403 unsigned int comp_order = compound_order(page); 404 405 if (likely(comp_order < MAX_ORDER)) { 406 blockpfn += (1UL << comp_order) - 1; 407 cursor += (1UL << comp_order) - 1; 408 } 409 410 goto isolate_fail; 411 } 412 413 if (!PageBuddy(page)) 414 goto isolate_fail; 415 416 /* 417 * If we already hold the lock, we can skip some rechecking. 418 * Note that if we hold the lock now, checked_pageblock was 419 * already set in some previous iteration (or strict is true), 420 * so it is correct to skip the suitable migration target 421 * recheck as well. 422 */ 423 if (!locked) { 424 /* 425 * The zone lock must be held to isolate freepages. 426 * Unfortunately this is a very coarse lock and can be 427 * heavily contended if there are parallel allocations 428 * or parallel compactions. For async compaction do not 429 * spin on the lock and we acquire the lock as late as 430 * possible. 431 */ 432 locked = compact_trylock_irqsave(&cc->zone->lock, 433 &flags, cc); 434 if (!locked) 435 break; 436 437 /* Recheck this is a buddy page under lock */ 438 if (!PageBuddy(page)) 439 goto isolate_fail; 440 } 441 442 /* Found a free page, break it into order-0 pages */ 443 isolated = split_free_page(page); 444 total_isolated += isolated; 445 for (i = 0; i < isolated; i++) { 446 list_add(&page->lru, freelist); 447 page++; 448 } 449 450 /* If a page was split, advance to the end of it */ 451 if (isolated) { 452 cc->nr_freepages += isolated; 453 if (!strict && 454 cc->nr_migratepages <= cc->nr_freepages) { 455 blockpfn += isolated; 456 break; 457 } 458 459 blockpfn += isolated - 1; 460 cursor += isolated - 1; 461 continue; 462 } 463 464 isolate_fail: 465 if (strict) 466 break; 467 else 468 continue; 469 470 } 471 472 /* 473 * There is a tiny chance that we have read bogus compound_order(), 474 * so be careful to not go outside of the pageblock. 475 */ 476 if (unlikely(blockpfn > end_pfn)) 477 blockpfn = end_pfn; 478 479 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 480 nr_scanned, total_isolated); 481 482 /* Record how far we have got within the block */ 483 *start_pfn = blockpfn; 484 485 /* 486 * If strict isolation is requested by CMA then check that all the 487 * pages requested were isolated. If there were any failures, 0 is 488 * returned and CMA will fail. 489 */ 490 if (strict && blockpfn < end_pfn) 491 total_isolated = 0; 492 493 if (locked) 494 spin_unlock_irqrestore(&cc->zone->lock, flags); 495 496 /* Update the pageblock-skip if the whole pageblock was scanned */ 497 if (blockpfn == end_pfn) 498 update_pageblock_skip(cc, valid_page, total_isolated, false); 499 500 count_compact_events(COMPACTFREE_SCANNED, nr_scanned); 501 if (total_isolated) 502 count_compact_events(COMPACTISOLATED, total_isolated); 503 return total_isolated; 504 } 505 506 /** 507 * isolate_freepages_range() - isolate free pages. 508 * @start_pfn: The first PFN to start isolating. 509 * @end_pfn: The one-past-last PFN. 510 * 511 * Non-free pages, invalid PFNs, or zone boundaries within the 512 * [start_pfn, end_pfn) range are considered errors, cause function to 513 * undo its actions and return zero. 514 * 515 * Otherwise, function returns one-past-the-last PFN of isolated page 516 * (which may be greater then end_pfn if end fell in a middle of 517 * a free page). 518 */ 519 unsigned long 520 isolate_freepages_range(struct compact_control *cc, 521 unsigned long start_pfn, unsigned long end_pfn) 522 { 523 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 524 LIST_HEAD(freelist); 525 526 pfn = start_pfn; 527 block_start_pfn = pageblock_start_pfn(pfn); 528 if (block_start_pfn < cc->zone->zone_start_pfn) 529 block_start_pfn = cc->zone->zone_start_pfn; 530 block_end_pfn = pageblock_end_pfn(pfn); 531 532 for (; pfn < end_pfn; pfn += isolated, 533 block_start_pfn = block_end_pfn, 534 block_end_pfn += pageblock_nr_pages) { 535 /* Protect pfn from changing by isolate_freepages_block */ 536 unsigned long isolate_start_pfn = pfn; 537 538 block_end_pfn = min(block_end_pfn, end_pfn); 539 540 /* 541 * pfn could pass the block_end_pfn if isolated freepage 542 * is more than pageblock order. In this case, we adjust 543 * scanning range to right one. 544 */ 545 if (pfn >= block_end_pfn) { 546 block_start_pfn = pageblock_start_pfn(pfn); 547 block_end_pfn = pageblock_end_pfn(pfn); 548 block_end_pfn = min(block_end_pfn, end_pfn); 549 } 550 551 if (!pageblock_pfn_to_page(block_start_pfn, 552 block_end_pfn, cc->zone)) 553 break; 554 555 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 556 block_end_pfn, &freelist, true); 557 558 /* 559 * In strict mode, isolate_freepages_block() returns 0 if 560 * there are any holes in the block (ie. invalid PFNs or 561 * non-free pages). 562 */ 563 if (!isolated) 564 break; 565 566 /* 567 * If we managed to isolate pages, it is always (1 << n) * 568 * pageblock_nr_pages for some non-negative n. (Max order 569 * page may span two pageblocks). 570 */ 571 } 572 573 /* split_free_page does not map the pages */ 574 map_pages(&freelist); 575 576 if (pfn < end_pfn) { 577 /* Loop terminated early, cleanup. */ 578 release_freepages(&freelist); 579 return 0; 580 } 581 582 /* We don't use freelists for anything. */ 583 return pfn; 584 } 585 586 /* Update the number of anon and file isolated pages in the zone */ 587 static void acct_isolated(struct zone *zone, struct compact_control *cc) 588 { 589 struct page *page; 590 unsigned int count[2] = { 0, }; 591 592 if (list_empty(&cc->migratepages)) 593 return; 594 595 list_for_each_entry(page, &cc->migratepages, lru) 596 count[!!page_is_file_cache(page)]++; 597 598 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 599 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 600 } 601 602 /* Similar to reclaim, but different enough that they don't share logic */ 603 static bool too_many_isolated(struct zone *zone) 604 { 605 unsigned long active, inactive, isolated; 606 607 inactive = zone_page_state(zone, NR_INACTIVE_FILE) + 608 zone_page_state(zone, NR_INACTIVE_ANON); 609 active = zone_page_state(zone, NR_ACTIVE_FILE) + 610 zone_page_state(zone, NR_ACTIVE_ANON); 611 isolated = zone_page_state(zone, NR_ISOLATED_FILE) + 612 zone_page_state(zone, NR_ISOLATED_ANON); 613 614 return isolated > (inactive + active) / 2; 615 } 616 617 /** 618 * isolate_migratepages_block() - isolate all migrate-able pages within 619 * a single pageblock 620 * @cc: Compaction control structure. 621 * @low_pfn: The first PFN to isolate 622 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 623 * @isolate_mode: Isolation mode to be used. 624 * 625 * Isolate all pages that can be migrated from the range specified by 626 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 627 * Returns zero if there is a fatal signal pending, otherwise PFN of the 628 * first page that was not scanned (which may be both less, equal to or more 629 * than end_pfn). 630 * 631 * The pages are isolated on cc->migratepages list (not required to be empty), 632 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 633 * is neither read nor updated. 634 */ 635 static unsigned long 636 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 637 unsigned long end_pfn, isolate_mode_t isolate_mode) 638 { 639 struct zone *zone = cc->zone; 640 unsigned long nr_scanned = 0, nr_isolated = 0; 641 struct lruvec *lruvec; 642 unsigned long flags = 0; 643 bool locked = false; 644 struct page *page = NULL, *valid_page = NULL; 645 unsigned long start_pfn = low_pfn; 646 bool skip_on_failure = false; 647 unsigned long next_skip_pfn = 0; 648 649 /* 650 * Ensure that there are not too many pages isolated from the LRU 651 * list by either parallel reclaimers or compaction. If there are, 652 * delay for some time until fewer pages are isolated 653 */ 654 while (unlikely(too_many_isolated(zone))) { 655 /* async migration should just abort */ 656 if (cc->mode == MIGRATE_ASYNC) 657 return 0; 658 659 congestion_wait(BLK_RW_ASYNC, HZ/10); 660 661 if (fatal_signal_pending(current)) 662 return 0; 663 } 664 665 if (compact_should_abort(cc)) 666 return 0; 667 668 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 669 skip_on_failure = true; 670 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 671 } 672 673 /* Time to isolate some pages for migration */ 674 for (; low_pfn < end_pfn; low_pfn++) { 675 bool is_lru; 676 677 if (skip_on_failure && low_pfn >= next_skip_pfn) { 678 /* 679 * We have isolated all migration candidates in the 680 * previous order-aligned block, and did not skip it due 681 * to failure. We should migrate the pages now and 682 * hopefully succeed compaction. 683 */ 684 if (nr_isolated) 685 break; 686 687 /* 688 * We failed to isolate in the previous order-aligned 689 * block. Set the new boundary to the end of the 690 * current block. Note we can't simply increase 691 * next_skip_pfn by 1 << order, as low_pfn might have 692 * been incremented by a higher number due to skipping 693 * a compound or a high-order buddy page in the 694 * previous loop iteration. 695 */ 696 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 697 } 698 699 /* 700 * Periodically drop the lock (if held) regardless of its 701 * contention, to give chance to IRQs. Abort async compaction 702 * if contended. 703 */ 704 if (!(low_pfn % SWAP_CLUSTER_MAX) 705 && compact_unlock_should_abort(&zone->lru_lock, flags, 706 &locked, cc)) 707 break; 708 709 if (!pfn_valid_within(low_pfn)) 710 goto isolate_fail; 711 nr_scanned++; 712 713 page = pfn_to_page(low_pfn); 714 715 if (!valid_page) 716 valid_page = page; 717 718 /* 719 * Skip if free. We read page order here without zone lock 720 * which is generally unsafe, but the race window is small and 721 * the worst thing that can happen is that we skip some 722 * potential isolation targets. 723 */ 724 if (PageBuddy(page)) { 725 unsigned long freepage_order = page_order_unsafe(page); 726 727 /* 728 * Without lock, we cannot be sure that what we got is 729 * a valid page order. Consider only values in the 730 * valid order range to prevent low_pfn overflow. 731 */ 732 if (freepage_order > 0 && freepage_order < MAX_ORDER) 733 low_pfn += (1UL << freepage_order) - 1; 734 continue; 735 } 736 737 /* 738 * Check may be lockless but that's ok as we recheck later. 739 * It's possible to migrate LRU pages and balloon pages 740 * Skip any other type of page 741 */ 742 is_lru = PageLRU(page); 743 if (!is_lru) { 744 if (unlikely(balloon_page_movable(page))) { 745 if (balloon_page_isolate(page)) { 746 /* Successfully isolated */ 747 goto isolate_success; 748 } 749 } 750 } 751 752 /* 753 * Regardless of being on LRU, compound pages such as THP and 754 * hugetlbfs are not to be compacted. We can potentially save 755 * a lot of iterations if we skip them at once. The check is 756 * racy, but we can consider only valid values and the only 757 * danger is skipping too much. 758 */ 759 if (PageCompound(page)) { 760 unsigned int comp_order = compound_order(page); 761 762 if (likely(comp_order < MAX_ORDER)) 763 low_pfn += (1UL << comp_order) - 1; 764 765 goto isolate_fail; 766 } 767 768 if (!is_lru) 769 goto isolate_fail; 770 771 /* 772 * Migration will fail if an anonymous page is pinned in memory, 773 * so avoid taking lru_lock and isolating it unnecessarily in an 774 * admittedly racy check. 775 */ 776 if (!page_mapping(page) && 777 page_count(page) > page_mapcount(page)) 778 goto isolate_fail; 779 780 /* If we already hold the lock, we can skip some rechecking */ 781 if (!locked) { 782 locked = compact_trylock_irqsave(&zone->lru_lock, 783 &flags, cc); 784 if (!locked) 785 break; 786 787 /* Recheck PageLRU and PageCompound under lock */ 788 if (!PageLRU(page)) 789 goto isolate_fail; 790 791 /* 792 * Page become compound since the non-locked check, 793 * and it's on LRU. It can only be a THP so the order 794 * is safe to read and it's 0 for tail pages. 795 */ 796 if (unlikely(PageCompound(page))) { 797 low_pfn += (1UL << compound_order(page)) - 1; 798 goto isolate_fail; 799 } 800 } 801 802 lruvec = mem_cgroup_page_lruvec(page, zone); 803 804 /* Try isolate the page */ 805 if (__isolate_lru_page(page, isolate_mode) != 0) 806 goto isolate_fail; 807 808 VM_BUG_ON_PAGE(PageCompound(page), page); 809 810 /* Successfully isolated */ 811 del_page_from_lru_list(page, lruvec, page_lru(page)); 812 813 isolate_success: 814 list_add(&page->lru, &cc->migratepages); 815 cc->nr_migratepages++; 816 nr_isolated++; 817 818 /* 819 * Record where we could have freed pages by migration and not 820 * yet flushed them to buddy allocator. 821 * - this is the lowest page that was isolated and likely be 822 * then freed by migration. 823 */ 824 if (!cc->last_migrated_pfn) 825 cc->last_migrated_pfn = low_pfn; 826 827 /* Avoid isolating too much */ 828 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 829 ++low_pfn; 830 break; 831 } 832 833 continue; 834 isolate_fail: 835 if (!skip_on_failure) 836 continue; 837 838 /* 839 * We have isolated some pages, but then failed. Release them 840 * instead of migrating, as we cannot form the cc->order buddy 841 * page anyway. 842 */ 843 if (nr_isolated) { 844 if (locked) { 845 spin_unlock_irqrestore(&zone->lru_lock, flags); 846 locked = false; 847 } 848 acct_isolated(zone, cc); 849 putback_movable_pages(&cc->migratepages); 850 cc->nr_migratepages = 0; 851 cc->last_migrated_pfn = 0; 852 nr_isolated = 0; 853 } 854 855 if (low_pfn < next_skip_pfn) { 856 low_pfn = next_skip_pfn - 1; 857 /* 858 * The check near the loop beginning would have updated 859 * next_skip_pfn too, but this is a bit simpler. 860 */ 861 next_skip_pfn += 1UL << cc->order; 862 } 863 } 864 865 /* 866 * The PageBuddy() check could have potentially brought us outside 867 * the range to be scanned. 868 */ 869 if (unlikely(low_pfn > end_pfn)) 870 low_pfn = end_pfn; 871 872 if (locked) 873 spin_unlock_irqrestore(&zone->lru_lock, flags); 874 875 /* 876 * Update the pageblock-skip information and cached scanner pfn, 877 * if the whole pageblock was scanned without isolating any page. 878 */ 879 if (low_pfn == end_pfn) 880 update_pageblock_skip(cc, valid_page, nr_isolated, true); 881 882 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 883 nr_scanned, nr_isolated); 884 885 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned); 886 if (nr_isolated) 887 count_compact_events(COMPACTISOLATED, nr_isolated); 888 889 return low_pfn; 890 } 891 892 /** 893 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 894 * @cc: Compaction control structure. 895 * @start_pfn: The first PFN to start isolating. 896 * @end_pfn: The one-past-last PFN. 897 * 898 * Returns zero if isolation fails fatally due to e.g. pending signal. 899 * Otherwise, function returns one-past-the-last PFN of isolated page 900 * (which may be greater than end_pfn if end fell in a middle of a THP page). 901 */ 902 unsigned long 903 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 904 unsigned long end_pfn) 905 { 906 unsigned long pfn, block_start_pfn, block_end_pfn; 907 908 /* Scan block by block. First and last block may be incomplete */ 909 pfn = start_pfn; 910 block_start_pfn = pageblock_start_pfn(pfn); 911 if (block_start_pfn < cc->zone->zone_start_pfn) 912 block_start_pfn = cc->zone->zone_start_pfn; 913 block_end_pfn = pageblock_end_pfn(pfn); 914 915 for (; pfn < end_pfn; pfn = block_end_pfn, 916 block_start_pfn = block_end_pfn, 917 block_end_pfn += pageblock_nr_pages) { 918 919 block_end_pfn = min(block_end_pfn, end_pfn); 920 921 if (!pageblock_pfn_to_page(block_start_pfn, 922 block_end_pfn, cc->zone)) 923 continue; 924 925 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 926 ISOLATE_UNEVICTABLE); 927 928 if (!pfn) 929 break; 930 931 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 932 break; 933 } 934 acct_isolated(cc->zone, cc); 935 936 return pfn; 937 } 938 939 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 940 #ifdef CONFIG_COMPACTION 941 942 /* Returns true if the page is within a block suitable for migration to */ 943 static bool suitable_migration_target(struct page *page) 944 { 945 /* If the page is a large free page, then disallow migration */ 946 if (PageBuddy(page)) { 947 /* 948 * We are checking page_order without zone->lock taken. But 949 * the only small danger is that we skip a potentially suitable 950 * pageblock, so it's not worth to check order for valid range. 951 */ 952 if (page_order_unsafe(page) >= pageblock_order) 953 return false; 954 } 955 956 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 957 if (migrate_async_suitable(get_pageblock_migratetype(page))) 958 return true; 959 960 /* Otherwise skip the block */ 961 return false; 962 } 963 964 /* 965 * Test whether the free scanner has reached the same or lower pageblock than 966 * the migration scanner, and compaction should thus terminate. 967 */ 968 static inline bool compact_scanners_met(struct compact_control *cc) 969 { 970 return (cc->free_pfn >> pageblock_order) 971 <= (cc->migrate_pfn >> pageblock_order); 972 } 973 974 /* 975 * Based on information in the current compact_control, find blocks 976 * suitable for isolating free pages from and then isolate them. 977 */ 978 static void isolate_freepages(struct compact_control *cc) 979 { 980 struct zone *zone = cc->zone; 981 struct page *page; 982 unsigned long block_start_pfn; /* start of current pageblock */ 983 unsigned long isolate_start_pfn; /* exact pfn we start at */ 984 unsigned long block_end_pfn; /* end of current pageblock */ 985 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 986 struct list_head *freelist = &cc->freepages; 987 988 /* 989 * Initialise the free scanner. The starting point is where we last 990 * successfully isolated from, zone-cached value, or the end of the 991 * zone when isolating for the first time. For looping we also need 992 * this pfn aligned down to the pageblock boundary, because we do 993 * block_start_pfn -= pageblock_nr_pages in the for loop. 994 * For ending point, take care when isolating in last pageblock of a 995 * a zone which ends in the middle of a pageblock. 996 * The low boundary is the end of the pageblock the migration scanner 997 * is using. 998 */ 999 isolate_start_pfn = cc->free_pfn; 1000 block_start_pfn = pageblock_start_pfn(cc->free_pfn); 1001 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1002 zone_end_pfn(zone)); 1003 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1004 1005 /* 1006 * Isolate free pages until enough are available to migrate the 1007 * pages on cc->migratepages. We stop searching if the migrate 1008 * and free page scanners meet or enough free pages are isolated. 1009 */ 1010 for (; block_start_pfn >= low_pfn; 1011 block_end_pfn = block_start_pfn, 1012 block_start_pfn -= pageblock_nr_pages, 1013 isolate_start_pfn = block_start_pfn) { 1014 1015 /* 1016 * This can iterate a massively long zone without finding any 1017 * suitable migration targets, so periodically check if we need 1018 * to schedule, or even abort async compaction. 1019 */ 1020 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 1021 && compact_should_abort(cc)) 1022 break; 1023 1024 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1025 zone); 1026 if (!page) 1027 continue; 1028 1029 /* Check the block is suitable for migration */ 1030 if (!suitable_migration_target(page)) 1031 continue; 1032 1033 /* If isolation recently failed, do not retry */ 1034 if (!isolation_suitable(cc, page)) 1035 continue; 1036 1037 /* Found a block suitable for isolating free pages from. */ 1038 isolate_freepages_block(cc, &isolate_start_pfn, 1039 block_end_pfn, freelist, false); 1040 1041 /* 1042 * If we isolated enough freepages, or aborted due to async 1043 * compaction being contended, terminate the loop. 1044 * Remember where the free scanner should restart next time, 1045 * which is where isolate_freepages_block() left off. 1046 * But if it scanned the whole pageblock, isolate_start_pfn 1047 * now points at block_end_pfn, which is the start of the next 1048 * pageblock. 1049 * In that case we will however want to restart at the start 1050 * of the previous pageblock. 1051 */ 1052 if ((cc->nr_freepages >= cc->nr_migratepages) 1053 || cc->contended) { 1054 if (isolate_start_pfn >= block_end_pfn) 1055 isolate_start_pfn = 1056 block_start_pfn - pageblock_nr_pages; 1057 break; 1058 } else { 1059 /* 1060 * isolate_freepages_block() should not terminate 1061 * prematurely unless contended, or isolated enough 1062 */ 1063 VM_BUG_ON(isolate_start_pfn < block_end_pfn); 1064 } 1065 } 1066 1067 /* split_free_page does not map the pages */ 1068 map_pages(freelist); 1069 1070 /* 1071 * Record where the free scanner will restart next time. Either we 1072 * broke from the loop and set isolate_start_pfn based on the last 1073 * call to isolate_freepages_block(), or we met the migration scanner 1074 * and the loop terminated due to isolate_start_pfn < low_pfn 1075 */ 1076 cc->free_pfn = isolate_start_pfn; 1077 } 1078 1079 /* 1080 * This is a migrate-callback that "allocates" freepages by taking pages 1081 * from the isolated freelists in the block we are migrating to. 1082 */ 1083 static struct page *compaction_alloc(struct page *migratepage, 1084 unsigned long data, 1085 int **result) 1086 { 1087 struct compact_control *cc = (struct compact_control *)data; 1088 struct page *freepage; 1089 1090 /* 1091 * Isolate free pages if necessary, and if we are not aborting due to 1092 * contention. 1093 */ 1094 if (list_empty(&cc->freepages)) { 1095 if (!cc->contended) 1096 isolate_freepages(cc); 1097 1098 if (list_empty(&cc->freepages)) 1099 return NULL; 1100 } 1101 1102 freepage = list_entry(cc->freepages.next, struct page, lru); 1103 list_del(&freepage->lru); 1104 cc->nr_freepages--; 1105 1106 return freepage; 1107 } 1108 1109 /* 1110 * This is a migrate-callback that "frees" freepages back to the isolated 1111 * freelist. All pages on the freelist are from the same zone, so there is no 1112 * special handling needed for NUMA. 1113 */ 1114 static void compaction_free(struct page *page, unsigned long data) 1115 { 1116 struct compact_control *cc = (struct compact_control *)data; 1117 1118 list_add(&page->lru, &cc->freepages); 1119 cc->nr_freepages++; 1120 } 1121 1122 /* possible outcome of isolate_migratepages */ 1123 typedef enum { 1124 ISOLATE_ABORT, /* Abort compaction now */ 1125 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1126 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1127 } isolate_migrate_t; 1128 1129 /* 1130 * Allow userspace to control policy on scanning the unevictable LRU for 1131 * compactable pages. 1132 */ 1133 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1134 1135 /* 1136 * Isolate all pages that can be migrated from the first suitable block, 1137 * starting at the block pointed to by the migrate scanner pfn within 1138 * compact_control. 1139 */ 1140 static isolate_migrate_t isolate_migratepages(struct zone *zone, 1141 struct compact_control *cc) 1142 { 1143 unsigned long block_start_pfn; 1144 unsigned long block_end_pfn; 1145 unsigned long low_pfn; 1146 struct page *page; 1147 const isolate_mode_t isolate_mode = 1148 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1149 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1150 1151 /* 1152 * Start at where we last stopped, or beginning of the zone as 1153 * initialized by compact_zone() 1154 */ 1155 low_pfn = cc->migrate_pfn; 1156 block_start_pfn = pageblock_start_pfn(low_pfn); 1157 if (block_start_pfn < zone->zone_start_pfn) 1158 block_start_pfn = zone->zone_start_pfn; 1159 1160 /* Only scan within a pageblock boundary */ 1161 block_end_pfn = pageblock_end_pfn(low_pfn); 1162 1163 /* 1164 * Iterate over whole pageblocks until we find the first suitable. 1165 * Do not cross the free scanner. 1166 */ 1167 for (; block_end_pfn <= cc->free_pfn; 1168 low_pfn = block_end_pfn, 1169 block_start_pfn = block_end_pfn, 1170 block_end_pfn += pageblock_nr_pages) { 1171 1172 /* 1173 * This can potentially iterate a massively long zone with 1174 * many pageblocks unsuitable, so periodically check if we 1175 * need to schedule, or even abort async compaction. 1176 */ 1177 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 1178 && compact_should_abort(cc)) 1179 break; 1180 1181 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1182 zone); 1183 if (!page) 1184 continue; 1185 1186 /* If isolation recently failed, do not retry */ 1187 if (!isolation_suitable(cc, page)) 1188 continue; 1189 1190 /* 1191 * For async compaction, also only scan in MOVABLE blocks. 1192 * Async compaction is optimistic to see if the minimum amount 1193 * of work satisfies the allocation. 1194 */ 1195 if (cc->mode == MIGRATE_ASYNC && 1196 !migrate_async_suitable(get_pageblock_migratetype(page))) 1197 continue; 1198 1199 /* Perform the isolation */ 1200 low_pfn = isolate_migratepages_block(cc, low_pfn, 1201 block_end_pfn, isolate_mode); 1202 1203 if (!low_pfn || cc->contended) { 1204 acct_isolated(zone, cc); 1205 return ISOLATE_ABORT; 1206 } 1207 1208 /* 1209 * Either we isolated something and proceed with migration. Or 1210 * we failed and compact_zone should decide if we should 1211 * continue or not. 1212 */ 1213 break; 1214 } 1215 1216 acct_isolated(zone, cc); 1217 /* Record where migration scanner will be restarted. */ 1218 cc->migrate_pfn = low_pfn; 1219 1220 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1221 } 1222 1223 /* 1224 * order == -1 is expected when compacting via 1225 * /proc/sys/vm/compact_memory 1226 */ 1227 static inline bool is_via_compact_memory(int order) 1228 { 1229 return order == -1; 1230 } 1231 1232 static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc, 1233 const int migratetype) 1234 { 1235 unsigned int order; 1236 unsigned long watermark; 1237 1238 if (cc->contended || fatal_signal_pending(current)) 1239 return COMPACT_CONTENDED; 1240 1241 /* Compaction run completes if the migrate and free scanner meet */ 1242 if (compact_scanners_met(cc)) { 1243 /* Let the next compaction start anew. */ 1244 reset_cached_positions(zone); 1245 1246 /* 1247 * Mark that the PG_migrate_skip information should be cleared 1248 * by kswapd when it goes to sleep. kcompactd does not set the 1249 * flag itself as the decision to be clear should be directly 1250 * based on an allocation request. 1251 */ 1252 if (cc->direct_compaction) 1253 zone->compact_blockskip_flush = true; 1254 1255 if (cc->whole_zone) 1256 return COMPACT_COMPLETE; 1257 else 1258 return COMPACT_PARTIAL_SKIPPED; 1259 } 1260 1261 if (is_via_compact_memory(cc->order)) 1262 return COMPACT_CONTINUE; 1263 1264 /* Compaction run is not finished if the watermark is not met */ 1265 watermark = low_wmark_pages(zone); 1266 1267 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx, 1268 cc->alloc_flags)) 1269 return COMPACT_CONTINUE; 1270 1271 /* Direct compactor: Is a suitable page free? */ 1272 for (order = cc->order; order < MAX_ORDER; order++) { 1273 struct free_area *area = &zone->free_area[order]; 1274 bool can_steal; 1275 1276 /* Job done if page is free of the right migratetype */ 1277 if (!list_empty(&area->free_list[migratetype])) 1278 return COMPACT_PARTIAL; 1279 1280 #ifdef CONFIG_CMA 1281 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 1282 if (migratetype == MIGRATE_MOVABLE && 1283 !list_empty(&area->free_list[MIGRATE_CMA])) 1284 return COMPACT_PARTIAL; 1285 #endif 1286 /* 1287 * Job done if allocation would steal freepages from 1288 * other migratetype buddy lists. 1289 */ 1290 if (find_suitable_fallback(area, order, migratetype, 1291 true, &can_steal) != -1) 1292 return COMPACT_PARTIAL; 1293 } 1294 1295 return COMPACT_NO_SUITABLE_PAGE; 1296 } 1297 1298 static enum compact_result compact_finished(struct zone *zone, 1299 struct compact_control *cc, 1300 const int migratetype) 1301 { 1302 int ret; 1303 1304 ret = __compact_finished(zone, cc, migratetype); 1305 trace_mm_compaction_finished(zone, cc->order, ret); 1306 if (ret == COMPACT_NO_SUITABLE_PAGE) 1307 ret = COMPACT_CONTINUE; 1308 1309 return ret; 1310 } 1311 1312 /* 1313 * compaction_suitable: Is this suitable to run compaction on this zone now? 1314 * Returns 1315 * COMPACT_SKIPPED - If there are too few free pages for compaction 1316 * COMPACT_PARTIAL - If the allocation would succeed without compaction 1317 * COMPACT_CONTINUE - If compaction should run now 1318 */ 1319 static enum compact_result __compaction_suitable(struct zone *zone, int order, 1320 unsigned int alloc_flags, 1321 int classzone_idx, 1322 unsigned long wmark_target) 1323 { 1324 int fragindex; 1325 unsigned long watermark; 1326 1327 if (is_via_compact_memory(order)) 1328 return COMPACT_CONTINUE; 1329 1330 watermark = low_wmark_pages(zone); 1331 /* 1332 * If watermarks for high-order allocation are already met, there 1333 * should be no need for compaction at all. 1334 */ 1335 if (zone_watermark_ok(zone, order, watermark, classzone_idx, 1336 alloc_flags)) 1337 return COMPACT_PARTIAL; 1338 1339 /* 1340 * Watermarks for order-0 must be met for compaction. Note the 2UL. 1341 * This is because during migration, copies of pages need to be 1342 * allocated and for a short time, the footprint is higher 1343 */ 1344 watermark += (2UL << order); 1345 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx, 1346 alloc_flags, wmark_target)) 1347 return COMPACT_SKIPPED; 1348 1349 /* 1350 * fragmentation index determines if allocation failures are due to 1351 * low memory or external fragmentation 1352 * 1353 * index of -1000 would imply allocations might succeed depending on 1354 * watermarks, but we already failed the high-order watermark check 1355 * index towards 0 implies failure is due to lack of memory 1356 * index towards 1000 implies failure is due to fragmentation 1357 * 1358 * Only compact if a failure would be due to fragmentation. 1359 */ 1360 fragindex = fragmentation_index(zone, order); 1361 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 1362 return COMPACT_NOT_SUITABLE_ZONE; 1363 1364 return COMPACT_CONTINUE; 1365 } 1366 1367 enum compact_result compaction_suitable(struct zone *zone, int order, 1368 unsigned int alloc_flags, 1369 int classzone_idx) 1370 { 1371 enum compact_result ret; 1372 1373 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx, 1374 zone_page_state(zone, NR_FREE_PAGES)); 1375 trace_mm_compaction_suitable(zone, order, ret); 1376 if (ret == COMPACT_NOT_SUITABLE_ZONE) 1377 ret = COMPACT_SKIPPED; 1378 1379 return ret; 1380 } 1381 1382 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 1383 int alloc_flags) 1384 { 1385 struct zone *zone; 1386 struct zoneref *z; 1387 1388 /* 1389 * Make sure at least one zone would pass __compaction_suitable if we continue 1390 * retrying the reclaim. 1391 */ 1392 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 1393 ac->nodemask) { 1394 unsigned long available; 1395 enum compact_result compact_result; 1396 1397 /* 1398 * Do not consider all the reclaimable memory because we do not 1399 * want to trash just for a single high order allocation which 1400 * is even not guaranteed to appear even if __compaction_suitable 1401 * is happy about the watermark check. 1402 */ 1403 available = zone_reclaimable_pages(zone) / order; 1404 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 1405 compact_result = __compaction_suitable(zone, order, alloc_flags, 1406 ac_classzone_idx(ac), available); 1407 if (compact_result != COMPACT_SKIPPED && 1408 compact_result != COMPACT_NOT_SUITABLE_ZONE) 1409 return true; 1410 } 1411 1412 return false; 1413 } 1414 1415 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc) 1416 { 1417 enum compact_result ret; 1418 unsigned long start_pfn = zone->zone_start_pfn; 1419 unsigned long end_pfn = zone_end_pfn(zone); 1420 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask); 1421 const bool sync = cc->mode != MIGRATE_ASYNC; 1422 1423 ret = compaction_suitable(zone, cc->order, cc->alloc_flags, 1424 cc->classzone_idx); 1425 /* Compaction is likely to fail */ 1426 if (ret == COMPACT_PARTIAL || ret == COMPACT_SKIPPED) 1427 return ret; 1428 1429 /* huh, compaction_suitable is returning something unexpected */ 1430 VM_BUG_ON(ret != COMPACT_CONTINUE); 1431 1432 /* 1433 * Clear pageblock skip if there were failures recently and compaction 1434 * is about to be retried after being deferred. 1435 */ 1436 if (compaction_restarting(zone, cc->order)) 1437 __reset_isolation_suitable(zone); 1438 1439 /* 1440 * Setup to move all movable pages to the end of the zone. Used cached 1441 * information on where the scanners should start but check that it 1442 * is initialised by ensuring the values are within zone boundaries. 1443 */ 1444 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync]; 1445 cc->free_pfn = zone->compact_cached_free_pfn; 1446 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 1447 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 1448 zone->compact_cached_free_pfn = cc->free_pfn; 1449 } 1450 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 1451 cc->migrate_pfn = start_pfn; 1452 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 1453 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 1454 } 1455 1456 if (cc->migrate_pfn == start_pfn) 1457 cc->whole_zone = true; 1458 1459 cc->last_migrated_pfn = 0; 1460 1461 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 1462 cc->free_pfn, end_pfn, sync); 1463 1464 migrate_prep_local(); 1465 1466 while ((ret = compact_finished(zone, cc, migratetype)) == 1467 COMPACT_CONTINUE) { 1468 int err; 1469 1470 switch (isolate_migratepages(zone, cc)) { 1471 case ISOLATE_ABORT: 1472 ret = COMPACT_CONTENDED; 1473 putback_movable_pages(&cc->migratepages); 1474 cc->nr_migratepages = 0; 1475 goto out; 1476 case ISOLATE_NONE: 1477 /* 1478 * We haven't isolated and migrated anything, but 1479 * there might still be unflushed migrations from 1480 * previous cc->order aligned block. 1481 */ 1482 goto check_drain; 1483 case ISOLATE_SUCCESS: 1484 ; 1485 } 1486 1487 err = migrate_pages(&cc->migratepages, compaction_alloc, 1488 compaction_free, (unsigned long)cc, cc->mode, 1489 MR_COMPACTION); 1490 1491 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 1492 &cc->migratepages); 1493 1494 /* All pages were either migrated or will be released */ 1495 cc->nr_migratepages = 0; 1496 if (err) { 1497 putback_movable_pages(&cc->migratepages); 1498 /* 1499 * migrate_pages() may return -ENOMEM when scanners meet 1500 * and we want compact_finished() to detect it 1501 */ 1502 if (err == -ENOMEM && !compact_scanners_met(cc)) { 1503 ret = COMPACT_CONTENDED; 1504 goto out; 1505 } 1506 /* 1507 * We failed to migrate at least one page in the current 1508 * order-aligned block, so skip the rest of it. 1509 */ 1510 if (cc->direct_compaction && 1511 (cc->mode == MIGRATE_ASYNC)) { 1512 cc->migrate_pfn = block_end_pfn( 1513 cc->migrate_pfn - 1, cc->order); 1514 /* Draining pcplists is useless in this case */ 1515 cc->last_migrated_pfn = 0; 1516 1517 } 1518 } 1519 1520 check_drain: 1521 /* 1522 * Has the migration scanner moved away from the previous 1523 * cc->order aligned block where we migrated from? If yes, 1524 * flush the pages that were freed, so that they can merge and 1525 * compact_finished() can detect immediately if allocation 1526 * would succeed. 1527 */ 1528 if (cc->order > 0 && cc->last_migrated_pfn) { 1529 int cpu; 1530 unsigned long current_block_start = 1531 block_start_pfn(cc->migrate_pfn, cc->order); 1532 1533 if (cc->last_migrated_pfn < current_block_start) { 1534 cpu = get_cpu(); 1535 lru_add_drain_cpu(cpu); 1536 drain_local_pages(zone); 1537 put_cpu(); 1538 /* No more flushing until we migrate again */ 1539 cc->last_migrated_pfn = 0; 1540 } 1541 } 1542 1543 } 1544 1545 out: 1546 /* 1547 * Release free pages and update where the free scanner should restart, 1548 * so we don't leave any returned pages behind in the next attempt. 1549 */ 1550 if (cc->nr_freepages > 0) { 1551 unsigned long free_pfn = release_freepages(&cc->freepages); 1552 1553 cc->nr_freepages = 0; 1554 VM_BUG_ON(free_pfn == 0); 1555 /* The cached pfn is always the first in a pageblock */ 1556 free_pfn = pageblock_start_pfn(free_pfn); 1557 /* 1558 * Only go back, not forward. The cached pfn might have been 1559 * already reset to zone end in compact_finished() 1560 */ 1561 if (free_pfn > zone->compact_cached_free_pfn) 1562 zone->compact_cached_free_pfn = free_pfn; 1563 } 1564 1565 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 1566 cc->free_pfn, end_pfn, sync, ret); 1567 1568 if (ret == COMPACT_CONTENDED) 1569 ret = COMPACT_PARTIAL; 1570 1571 return ret; 1572 } 1573 1574 static enum compact_result compact_zone_order(struct zone *zone, int order, 1575 gfp_t gfp_mask, enum migrate_mode mode, int *contended, 1576 unsigned int alloc_flags, int classzone_idx) 1577 { 1578 enum compact_result ret; 1579 struct compact_control cc = { 1580 .nr_freepages = 0, 1581 .nr_migratepages = 0, 1582 .order = order, 1583 .gfp_mask = gfp_mask, 1584 .zone = zone, 1585 .mode = mode, 1586 .alloc_flags = alloc_flags, 1587 .classzone_idx = classzone_idx, 1588 .direct_compaction = true, 1589 }; 1590 INIT_LIST_HEAD(&cc.freepages); 1591 INIT_LIST_HEAD(&cc.migratepages); 1592 1593 ret = compact_zone(zone, &cc); 1594 1595 VM_BUG_ON(!list_empty(&cc.freepages)); 1596 VM_BUG_ON(!list_empty(&cc.migratepages)); 1597 1598 *contended = cc.contended; 1599 return ret; 1600 } 1601 1602 int sysctl_extfrag_threshold = 500; 1603 1604 /** 1605 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 1606 * @gfp_mask: The GFP mask of the current allocation 1607 * @order: The order of the current allocation 1608 * @alloc_flags: The allocation flags of the current allocation 1609 * @ac: The context of current allocation 1610 * @mode: The migration mode for async, sync light, or sync migration 1611 * @contended: Return value that determines if compaction was aborted due to 1612 * need_resched() or lock contention 1613 * 1614 * This is the main entry point for direct page compaction. 1615 */ 1616 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 1617 unsigned int alloc_flags, const struct alloc_context *ac, 1618 enum migrate_mode mode, int *contended) 1619 { 1620 int may_enter_fs = gfp_mask & __GFP_FS; 1621 int may_perform_io = gfp_mask & __GFP_IO; 1622 struct zoneref *z; 1623 struct zone *zone; 1624 enum compact_result rc = COMPACT_SKIPPED; 1625 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */ 1626 1627 *contended = COMPACT_CONTENDED_NONE; 1628 1629 /* Check if the GFP flags allow compaction */ 1630 if (!order || !may_enter_fs || !may_perform_io) 1631 return COMPACT_SKIPPED; 1632 1633 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode); 1634 1635 /* Compact each zone in the list */ 1636 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 1637 ac->nodemask) { 1638 enum compact_result status; 1639 int zone_contended; 1640 1641 if (compaction_deferred(zone, order)) { 1642 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 1643 continue; 1644 } 1645 1646 status = compact_zone_order(zone, order, gfp_mask, mode, 1647 &zone_contended, alloc_flags, 1648 ac_classzone_idx(ac)); 1649 rc = max(status, rc); 1650 /* 1651 * It takes at least one zone that wasn't lock contended 1652 * to clear all_zones_contended. 1653 */ 1654 all_zones_contended &= zone_contended; 1655 1656 /* If a normal allocation would succeed, stop compacting */ 1657 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 1658 ac_classzone_idx(ac), alloc_flags)) { 1659 /* 1660 * We think the allocation will succeed in this zone, 1661 * but it is not certain, hence the false. The caller 1662 * will repeat this with true if allocation indeed 1663 * succeeds in this zone. 1664 */ 1665 compaction_defer_reset(zone, order, false); 1666 /* 1667 * It is possible that async compaction aborted due to 1668 * need_resched() and the watermarks were ok thanks to 1669 * somebody else freeing memory. The allocation can 1670 * however still fail so we better signal the 1671 * need_resched() contention anyway (this will not 1672 * prevent the allocation attempt). 1673 */ 1674 if (zone_contended == COMPACT_CONTENDED_SCHED) 1675 *contended = COMPACT_CONTENDED_SCHED; 1676 1677 goto break_loop; 1678 } 1679 1680 if (mode != MIGRATE_ASYNC && (status == COMPACT_COMPLETE || 1681 status == COMPACT_PARTIAL_SKIPPED)) { 1682 /* 1683 * We think that allocation won't succeed in this zone 1684 * so we defer compaction there. If it ends up 1685 * succeeding after all, it will be reset. 1686 */ 1687 defer_compaction(zone, order); 1688 } 1689 1690 /* 1691 * We might have stopped compacting due to need_resched() in 1692 * async compaction, or due to a fatal signal detected. In that 1693 * case do not try further zones and signal need_resched() 1694 * contention. 1695 */ 1696 if ((zone_contended == COMPACT_CONTENDED_SCHED) 1697 || fatal_signal_pending(current)) { 1698 *contended = COMPACT_CONTENDED_SCHED; 1699 goto break_loop; 1700 } 1701 1702 continue; 1703 break_loop: 1704 /* 1705 * We might not have tried all the zones, so be conservative 1706 * and assume they are not all lock contended. 1707 */ 1708 all_zones_contended = 0; 1709 break; 1710 } 1711 1712 /* 1713 * If at least one zone wasn't deferred or skipped, we report if all 1714 * zones that were tried were lock contended. 1715 */ 1716 if (rc > COMPACT_INACTIVE && all_zones_contended) 1717 *contended = COMPACT_CONTENDED_LOCK; 1718 1719 return rc; 1720 } 1721 1722 1723 /* Compact all zones within a node */ 1724 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) 1725 { 1726 int zoneid; 1727 struct zone *zone; 1728 1729 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1730 1731 zone = &pgdat->node_zones[zoneid]; 1732 if (!populated_zone(zone)) 1733 continue; 1734 1735 cc->nr_freepages = 0; 1736 cc->nr_migratepages = 0; 1737 cc->zone = zone; 1738 INIT_LIST_HEAD(&cc->freepages); 1739 INIT_LIST_HEAD(&cc->migratepages); 1740 1741 /* 1742 * When called via /proc/sys/vm/compact_memory 1743 * this makes sure we compact the whole zone regardless of 1744 * cached scanner positions. 1745 */ 1746 if (is_via_compact_memory(cc->order)) 1747 __reset_isolation_suitable(zone); 1748 1749 if (is_via_compact_memory(cc->order) || 1750 !compaction_deferred(zone, cc->order)) 1751 compact_zone(zone, cc); 1752 1753 VM_BUG_ON(!list_empty(&cc->freepages)); 1754 VM_BUG_ON(!list_empty(&cc->migratepages)); 1755 1756 if (is_via_compact_memory(cc->order)) 1757 continue; 1758 1759 if (zone_watermark_ok(zone, cc->order, 1760 low_wmark_pages(zone), 0, 0)) 1761 compaction_defer_reset(zone, cc->order, false); 1762 } 1763 } 1764 1765 void compact_pgdat(pg_data_t *pgdat, int order) 1766 { 1767 struct compact_control cc = { 1768 .order = order, 1769 .mode = MIGRATE_ASYNC, 1770 }; 1771 1772 if (!order) 1773 return; 1774 1775 __compact_pgdat(pgdat, &cc); 1776 } 1777 1778 static void compact_node(int nid) 1779 { 1780 struct compact_control cc = { 1781 .order = -1, 1782 .mode = MIGRATE_SYNC, 1783 .ignore_skip_hint = true, 1784 }; 1785 1786 __compact_pgdat(NODE_DATA(nid), &cc); 1787 } 1788 1789 /* Compact all nodes in the system */ 1790 static void compact_nodes(void) 1791 { 1792 int nid; 1793 1794 /* Flush pending updates to the LRU lists */ 1795 lru_add_drain_all(); 1796 1797 for_each_online_node(nid) 1798 compact_node(nid); 1799 } 1800 1801 /* The written value is actually unused, all memory is compacted */ 1802 int sysctl_compact_memory; 1803 1804 /* 1805 * This is the entry point for compacting all nodes via 1806 * /proc/sys/vm/compact_memory 1807 */ 1808 int sysctl_compaction_handler(struct ctl_table *table, int write, 1809 void __user *buffer, size_t *length, loff_t *ppos) 1810 { 1811 if (write) 1812 compact_nodes(); 1813 1814 return 0; 1815 } 1816 1817 int sysctl_extfrag_handler(struct ctl_table *table, int write, 1818 void __user *buffer, size_t *length, loff_t *ppos) 1819 { 1820 proc_dointvec_minmax(table, write, buffer, length, ppos); 1821 1822 return 0; 1823 } 1824 1825 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 1826 static ssize_t sysfs_compact_node(struct device *dev, 1827 struct device_attribute *attr, 1828 const char *buf, size_t count) 1829 { 1830 int nid = dev->id; 1831 1832 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 1833 /* Flush pending updates to the LRU lists */ 1834 lru_add_drain_all(); 1835 1836 compact_node(nid); 1837 } 1838 1839 return count; 1840 } 1841 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 1842 1843 int compaction_register_node(struct node *node) 1844 { 1845 return device_create_file(&node->dev, &dev_attr_compact); 1846 } 1847 1848 void compaction_unregister_node(struct node *node) 1849 { 1850 return device_remove_file(&node->dev, &dev_attr_compact); 1851 } 1852 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 1853 1854 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 1855 { 1856 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 1857 } 1858 1859 static bool kcompactd_node_suitable(pg_data_t *pgdat) 1860 { 1861 int zoneid; 1862 struct zone *zone; 1863 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx; 1864 1865 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) { 1866 zone = &pgdat->node_zones[zoneid]; 1867 1868 if (!populated_zone(zone)) 1869 continue; 1870 1871 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 1872 classzone_idx) == COMPACT_CONTINUE) 1873 return true; 1874 } 1875 1876 return false; 1877 } 1878 1879 static void kcompactd_do_work(pg_data_t *pgdat) 1880 { 1881 /* 1882 * With no special task, compact all zones so that a page of requested 1883 * order is allocatable. 1884 */ 1885 int zoneid; 1886 struct zone *zone; 1887 struct compact_control cc = { 1888 .order = pgdat->kcompactd_max_order, 1889 .classzone_idx = pgdat->kcompactd_classzone_idx, 1890 .mode = MIGRATE_SYNC_LIGHT, 1891 .ignore_skip_hint = true, 1892 1893 }; 1894 bool success = false; 1895 1896 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 1897 cc.classzone_idx); 1898 count_vm_event(KCOMPACTD_WAKE); 1899 1900 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) { 1901 int status; 1902 1903 zone = &pgdat->node_zones[zoneid]; 1904 if (!populated_zone(zone)) 1905 continue; 1906 1907 if (compaction_deferred(zone, cc.order)) 1908 continue; 1909 1910 if (compaction_suitable(zone, cc.order, 0, zoneid) != 1911 COMPACT_CONTINUE) 1912 continue; 1913 1914 cc.nr_freepages = 0; 1915 cc.nr_migratepages = 0; 1916 cc.zone = zone; 1917 INIT_LIST_HEAD(&cc.freepages); 1918 INIT_LIST_HEAD(&cc.migratepages); 1919 1920 if (kthread_should_stop()) 1921 return; 1922 status = compact_zone(zone, &cc); 1923 1924 if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone), 1925 cc.classzone_idx, 0)) { 1926 success = true; 1927 compaction_defer_reset(zone, cc.order, false); 1928 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 1929 /* 1930 * We use sync migration mode here, so we defer like 1931 * sync direct compaction does. 1932 */ 1933 defer_compaction(zone, cc.order); 1934 } 1935 1936 VM_BUG_ON(!list_empty(&cc.freepages)); 1937 VM_BUG_ON(!list_empty(&cc.migratepages)); 1938 } 1939 1940 /* 1941 * Regardless of success, we are done until woken up next. But remember 1942 * the requested order/classzone_idx in case it was higher/tighter than 1943 * our current ones 1944 */ 1945 if (pgdat->kcompactd_max_order <= cc.order) 1946 pgdat->kcompactd_max_order = 0; 1947 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx) 1948 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 1949 } 1950 1951 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx) 1952 { 1953 if (!order) 1954 return; 1955 1956 if (pgdat->kcompactd_max_order < order) 1957 pgdat->kcompactd_max_order = order; 1958 1959 if (pgdat->kcompactd_classzone_idx > classzone_idx) 1960 pgdat->kcompactd_classzone_idx = classzone_idx; 1961 1962 if (!waitqueue_active(&pgdat->kcompactd_wait)) 1963 return; 1964 1965 if (!kcompactd_node_suitable(pgdat)) 1966 return; 1967 1968 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 1969 classzone_idx); 1970 wake_up_interruptible(&pgdat->kcompactd_wait); 1971 } 1972 1973 /* 1974 * The background compaction daemon, started as a kernel thread 1975 * from the init process. 1976 */ 1977 static int kcompactd(void *p) 1978 { 1979 pg_data_t *pgdat = (pg_data_t*)p; 1980 struct task_struct *tsk = current; 1981 1982 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1983 1984 if (!cpumask_empty(cpumask)) 1985 set_cpus_allowed_ptr(tsk, cpumask); 1986 1987 set_freezable(); 1988 1989 pgdat->kcompactd_max_order = 0; 1990 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 1991 1992 while (!kthread_should_stop()) { 1993 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 1994 wait_event_freezable(pgdat->kcompactd_wait, 1995 kcompactd_work_requested(pgdat)); 1996 1997 kcompactd_do_work(pgdat); 1998 } 1999 2000 return 0; 2001 } 2002 2003 /* 2004 * This kcompactd start function will be called by init and node-hot-add. 2005 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2006 */ 2007 int kcompactd_run(int nid) 2008 { 2009 pg_data_t *pgdat = NODE_DATA(nid); 2010 int ret = 0; 2011 2012 if (pgdat->kcompactd) 2013 return 0; 2014 2015 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2016 if (IS_ERR(pgdat->kcompactd)) { 2017 pr_err("Failed to start kcompactd on node %d\n", nid); 2018 ret = PTR_ERR(pgdat->kcompactd); 2019 pgdat->kcompactd = NULL; 2020 } 2021 return ret; 2022 } 2023 2024 /* 2025 * Called by memory hotplug when all memory in a node is offlined. Caller must 2026 * hold mem_hotplug_begin/end(). 2027 */ 2028 void kcompactd_stop(int nid) 2029 { 2030 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2031 2032 if (kcompactd) { 2033 kthread_stop(kcompactd); 2034 NODE_DATA(nid)->kcompactd = NULL; 2035 } 2036 } 2037 2038 /* 2039 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2040 * not required for correctness. So if the last cpu in a node goes 2041 * away, we get changed to run anywhere: as the first one comes back, 2042 * restore their cpu bindings. 2043 */ 2044 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 2045 void *hcpu) 2046 { 2047 int nid; 2048 2049 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 2050 for_each_node_state(nid, N_MEMORY) { 2051 pg_data_t *pgdat = NODE_DATA(nid); 2052 const struct cpumask *mask; 2053 2054 mask = cpumask_of_node(pgdat->node_id); 2055 2056 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2057 /* One of our CPUs online: restore mask */ 2058 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2059 } 2060 } 2061 return NOTIFY_OK; 2062 } 2063 2064 static int __init kcompactd_init(void) 2065 { 2066 int nid; 2067 2068 for_each_node_state(nid, N_MEMORY) 2069 kcompactd_run(nid); 2070 hotcpu_notifier(cpu_callback, 0); 2071 return 0; 2072 } 2073 subsys_initcall(kcompactd_init) 2074 2075 #endif /* CONFIG_COMPACTION */ 2076