xref: /openbmc/linux/mm/compaction.c (revision 6dfcd296)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/backing-dev.h>
16 #include <linux/sysctl.h>
17 #include <linux/sysfs.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include <linux/kthread.h>
21 #include <linux/freezer.h>
22 #include <linux/page_owner.h>
23 #include "internal.h"
24 
25 #ifdef CONFIG_COMPACTION
26 static inline void count_compact_event(enum vm_event_item item)
27 {
28 	count_vm_event(item);
29 }
30 
31 static inline void count_compact_events(enum vm_event_item item, long delta)
32 {
33 	count_vm_events(item, delta);
34 }
35 #else
36 #define count_compact_event(item) do { } while (0)
37 #define count_compact_events(item, delta) do { } while (0)
38 #endif
39 
40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/compaction.h>
44 
45 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
46 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
47 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
48 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
49 
50 static unsigned long release_freepages(struct list_head *freelist)
51 {
52 	struct page *page, *next;
53 	unsigned long high_pfn = 0;
54 
55 	list_for_each_entry_safe(page, next, freelist, lru) {
56 		unsigned long pfn = page_to_pfn(page);
57 		list_del(&page->lru);
58 		__free_page(page);
59 		if (pfn > high_pfn)
60 			high_pfn = pfn;
61 	}
62 
63 	return high_pfn;
64 }
65 
66 static void map_pages(struct list_head *list)
67 {
68 	unsigned int i, order, nr_pages;
69 	struct page *page, *next;
70 	LIST_HEAD(tmp_list);
71 
72 	list_for_each_entry_safe(page, next, list, lru) {
73 		list_del(&page->lru);
74 
75 		order = page_private(page);
76 		nr_pages = 1 << order;
77 
78 		post_alloc_hook(page, order, __GFP_MOVABLE);
79 		if (order)
80 			split_page(page, order);
81 
82 		for (i = 0; i < nr_pages; i++) {
83 			list_add(&page->lru, &tmp_list);
84 			page++;
85 		}
86 	}
87 
88 	list_splice(&tmp_list, list);
89 }
90 
91 static inline bool migrate_async_suitable(int migratetype)
92 {
93 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
94 }
95 
96 #ifdef CONFIG_COMPACTION
97 
98 int PageMovable(struct page *page)
99 {
100 	struct address_space *mapping;
101 
102 	VM_BUG_ON_PAGE(!PageLocked(page), page);
103 	if (!__PageMovable(page))
104 		return 0;
105 
106 	mapping = page_mapping(page);
107 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
108 		return 1;
109 
110 	return 0;
111 }
112 EXPORT_SYMBOL(PageMovable);
113 
114 void __SetPageMovable(struct page *page, struct address_space *mapping)
115 {
116 	VM_BUG_ON_PAGE(!PageLocked(page), page);
117 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
118 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
119 }
120 EXPORT_SYMBOL(__SetPageMovable);
121 
122 void __ClearPageMovable(struct page *page)
123 {
124 	VM_BUG_ON_PAGE(!PageLocked(page), page);
125 	VM_BUG_ON_PAGE(!PageMovable(page), page);
126 	/*
127 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
128 	 * flag so that VM can catch up released page by driver after isolation.
129 	 * With it, VM migration doesn't try to put it back.
130 	 */
131 	page->mapping = (void *)((unsigned long)page->mapping &
132 				PAGE_MAPPING_MOVABLE);
133 }
134 EXPORT_SYMBOL(__ClearPageMovable);
135 
136 /* Do not skip compaction more than 64 times */
137 #define COMPACT_MAX_DEFER_SHIFT 6
138 
139 /*
140  * Compaction is deferred when compaction fails to result in a page
141  * allocation success. 1 << compact_defer_limit compactions are skipped up
142  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
143  */
144 void defer_compaction(struct zone *zone, int order)
145 {
146 	zone->compact_considered = 0;
147 	zone->compact_defer_shift++;
148 
149 	if (order < zone->compact_order_failed)
150 		zone->compact_order_failed = order;
151 
152 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
153 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
154 
155 	trace_mm_compaction_defer_compaction(zone, order);
156 }
157 
158 /* Returns true if compaction should be skipped this time */
159 bool compaction_deferred(struct zone *zone, int order)
160 {
161 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
162 
163 	if (order < zone->compact_order_failed)
164 		return false;
165 
166 	/* Avoid possible overflow */
167 	if (++zone->compact_considered > defer_limit)
168 		zone->compact_considered = defer_limit;
169 
170 	if (zone->compact_considered >= defer_limit)
171 		return false;
172 
173 	trace_mm_compaction_deferred(zone, order);
174 
175 	return true;
176 }
177 
178 /*
179  * Update defer tracking counters after successful compaction of given order,
180  * which means an allocation either succeeded (alloc_success == true) or is
181  * expected to succeed.
182  */
183 void compaction_defer_reset(struct zone *zone, int order,
184 		bool alloc_success)
185 {
186 	if (alloc_success) {
187 		zone->compact_considered = 0;
188 		zone->compact_defer_shift = 0;
189 	}
190 	if (order >= zone->compact_order_failed)
191 		zone->compact_order_failed = order + 1;
192 
193 	trace_mm_compaction_defer_reset(zone, order);
194 }
195 
196 /* Returns true if restarting compaction after many failures */
197 bool compaction_restarting(struct zone *zone, int order)
198 {
199 	if (order < zone->compact_order_failed)
200 		return false;
201 
202 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
203 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
204 }
205 
206 /* Returns true if the pageblock should be scanned for pages to isolate. */
207 static inline bool isolation_suitable(struct compact_control *cc,
208 					struct page *page)
209 {
210 	if (cc->ignore_skip_hint)
211 		return true;
212 
213 	return !get_pageblock_skip(page);
214 }
215 
216 static void reset_cached_positions(struct zone *zone)
217 {
218 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
219 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
220 	zone->compact_cached_free_pfn =
221 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
222 }
223 
224 /*
225  * This function is called to clear all cached information on pageblocks that
226  * should be skipped for page isolation when the migrate and free page scanner
227  * meet.
228  */
229 static void __reset_isolation_suitable(struct zone *zone)
230 {
231 	unsigned long start_pfn = zone->zone_start_pfn;
232 	unsigned long end_pfn = zone_end_pfn(zone);
233 	unsigned long pfn;
234 
235 	zone->compact_blockskip_flush = false;
236 
237 	/* Walk the zone and mark every pageblock as suitable for isolation */
238 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
239 		struct page *page;
240 
241 		cond_resched();
242 
243 		if (!pfn_valid(pfn))
244 			continue;
245 
246 		page = pfn_to_page(pfn);
247 		if (zone != page_zone(page))
248 			continue;
249 
250 		clear_pageblock_skip(page);
251 	}
252 
253 	reset_cached_positions(zone);
254 }
255 
256 void reset_isolation_suitable(pg_data_t *pgdat)
257 {
258 	int zoneid;
259 
260 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
261 		struct zone *zone = &pgdat->node_zones[zoneid];
262 		if (!populated_zone(zone))
263 			continue;
264 
265 		/* Only flush if a full compaction finished recently */
266 		if (zone->compact_blockskip_flush)
267 			__reset_isolation_suitable(zone);
268 	}
269 }
270 
271 /*
272  * If no pages were isolated then mark this pageblock to be skipped in the
273  * future. The information is later cleared by __reset_isolation_suitable().
274  */
275 static void update_pageblock_skip(struct compact_control *cc,
276 			struct page *page, unsigned long nr_isolated,
277 			bool migrate_scanner)
278 {
279 	struct zone *zone = cc->zone;
280 	unsigned long pfn;
281 
282 	if (cc->ignore_skip_hint)
283 		return;
284 
285 	if (!page)
286 		return;
287 
288 	if (nr_isolated)
289 		return;
290 
291 	set_pageblock_skip(page);
292 
293 	pfn = page_to_pfn(page);
294 
295 	/* Update where async and sync compaction should restart */
296 	if (migrate_scanner) {
297 		if (pfn > zone->compact_cached_migrate_pfn[0])
298 			zone->compact_cached_migrate_pfn[0] = pfn;
299 		if (cc->mode != MIGRATE_ASYNC &&
300 		    pfn > zone->compact_cached_migrate_pfn[1])
301 			zone->compact_cached_migrate_pfn[1] = pfn;
302 	} else {
303 		if (pfn < zone->compact_cached_free_pfn)
304 			zone->compact_cached_free_pfn = pfn;
305 	}
306 }
307 #else
308 static inline bool isolation_suitable(struct compact_control *cc,
309 					struct page *page)
310 {
311 	return true;
312 }
313 
314 static void update_pageblock_skip(struct compact_control *cc,
315 			struct page *page, unsigned long nr_isolated,
316 			bool migrate_scanner)
317 {
318 }
319 #endif /* CONFIG_COMPACTION */
320 
321 /*
322  * Compaction requires the taking of some coarse locks that are potentially
323  * very heavily contended. For async compaction, back out if the lock cannot
324  * be taken immediately. For sync compaction, spin on the lock if needed.
325  *
326  * Returns true if the lock is held
327  * Returns false if the lock is not held and compaction should abort
328  */
329 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
330 						struct compact_control *cc)
331 {
332 	if (cc->mode == MIGRATE_ASYNC) {
333 		if (!spin_trylock_irqsave(lock, *flags)) {
334 			cc->contended = true;
335 			return false;
336 		}
337 	} else {
338 		spin_lock_irqsave(lock, *flags);
339 	}
340 
341 	return true;
342 }
343 
344 /*
345  * Compaction requires the taking of some coarse locks that are potentially
346  * very heavily contended. The lock should be periodically unlocked to avoid
347  * having disabled IRQs for a long time, even when there is nobody waiting on
348  * the lock. It might also be that allowing the IRQs will result in
349  * need_resched() becoming true. If scheduling is needed, async compaction
350  * aborts. Sync compaction schedules.
351  * Either compaction type will also abort if a fatal signal is pending.
352  * In either case if the lock was locked, it is dropped and not regained.
353  *
354  * Returns true if compaction should abort due to fatal signal pending, or
355  *		async compaction due to need_resched()
356  * Returns false when compaction can continue (sync compaction might have
357  *		scheduled)
358  */
359 static bool compact_unlock_should_abort(spinlock_t *lock,
360 		unsigned long flags, bool *locked, struct compact_control *cc)
361 {
362 	if (*locked) {
363 		spin_unlock_irqrestore(lock, flags);
364 		*locked = false;
365 	}
366 
367 	if (fatal_signal_pending(current)) {
368 		cc->contended = true;
369 		return true;
370 	}
371 
372 	if (need_resched()) {
373 		if (cc->mode == MIGRATE_ASYNC) {
374 			cc->contended = true;
375 			return true;
376 		}
377 		cond_resched();
378 	}
379 
380 	return false;
381 }
382 
383 /*
384  * Aside from avoiding lock contention, compaction also periodically checks
385  * need_resched() and either schedules in sync compaction or aborts async
386  * compaction. This is similar to what compact_unlock_should_abort() does, but
387  * is used where no lock is concerned.
388  *
389  * Returns false when no scheduling was needed, or sync compaction scheduled.
390  * Returns true when async compaction should abort.
391  */
392 static inline bool compact_should_abort(struct compact_control *cc)
393 {
394 	/* async compaction aborts if contended */
395 	if (need_resched()) {
396 		if (cc->mode == MIGRATE_ASYNC) {
397 			cc->contended = true;
398 			return true;
399 		}
400 
401 		cond_resched();
402 	}
403 
404 	return false;
405 }
406 
407 /*
408  * Isolate free pages onto a private freelist. If @strict is true, will abort
409  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
410  * (even though it may still end up isolating some pages).
411  */
412 static unsigned long isolate_freepages_block(struct compact_control *cc,
413 				unsigned long *start_pfn,
414 				unsigned long end_pfn,
415 				struct list_head *freelist,
416 				bool strict)
417 {
418 	int nr_scanned = 0, total_isolated = 0;
419 	struct page *cursor, *valid_page = NULL;
420 	unsigned long flags = 0;
421 	bool locked = false;
422 	unsigned long blockpfn = *start_pfn;
423 	unsigned int order;
424 
425 	cursor = pfn_to_page(blockpfn);
426 
427 	/* Isolate free pages. */
428 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
429 		int isolated;
430 		struct page *page = cursor;
431 
432 		/*
433 		 * Periodically drop the lock (if held) regardless of its
434 		 * contention, to give chance to IRQs. Abort if fatal signal
435 		 * pending or async compaction detects need_resched()
436 		 */
437 		if (!(blockpfn % SWAP_CLUSTER_MAX)
438 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
439 								&locked, cc))
440 			break;
441 
442 		nr_scanned++;
443 		if (!pfn_valid_within(blockpfn))
444 			goto isolate_fail;
445 
446 		if (!valid_page)
447 			valid_page = page;
448 
449 		/*
450 		 * For compound pages such as THP and hugetlbfs, we can save
451 		 * potentially a lot of iterations if we skip them at once.
452 		 * The check is racy, but we can consider only valid values
453 		 * and the only danger is skipping too much.
454 		 */
455 		if (PageCompound(page)) {
456 			unsigned int comp_order = compound_order(page);
457 
458 			if (likely(comp_order < MAX_ORDER)) {
459 				blockpfn += (1UL << comp_order) - 1;
460 				cursor += (1UL << comp_order) - 1;
461 			}
462 
463 			goto isolate_fail;
464 		}
465 
466 		if (!PageBuddy(page))
467 			goto isolate_fail;
468 
469 		/*
470 		 * If we already hold the lock, we can skip some rechecking.
471 		 * Note that if we hold the lock now, checked_pageblock was
472 		 * already set in some previous iteration (or strict is true),
473 		 * so it is correct to skip the suitable migration target
474 		 * recheck as well.
475 		 */
476 		if (!locked) {
477 			/*
478 			 * The zone lock must be held to isolate freepages.
479 			 * Unfortunately this is a very coarse lock and can be
480 			 * heavily contended if there are parallel allocations
481 			 * or parallel compactions. For async compaction do not
482 			 * spin on the lock and we acquire the lock as late as
483 			 * possible.
484 			 */
485 			locked = compact_trylock_irqsave(&cc->zone->lock,
486 								&flags, cc);
487 			if (!locked)
488 				break;
489 
490 			/* Recheck this is a buddy page under lock */
491 			if (!PageBuddy(page))
492 				goto isolate_fail;
493 		}
494 
495 		/* Found a free page, will break it into order-0 pages */
496 		order = page_order(page);
497 		isolated = __isolate_free_page(page, order);
498 		if (!isolated)
499 			break;
500 		set_page_private(page, order);
501 
502 		total_isolated += isolated;
503 		cc->nr_freepages += isolated;
504 		list_add_tail(&page->lru, freelist);
505 
506 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
507 			blockpfn += isolated;
508 			break;
509 		}
510 		/* Advance to the end of split page */
511 		blockpfn += isolated - 1;
512 		cursor += isolated - 1;
513 		continue;
514 
515 isolate_fail:
516 		if (strict)
517 			break;
518 		else
519 			continue;
520 
521 	}
522 
523 	if (locked)
524 		spin_unlock_irqrestore(&cc->zone->lock, flags);
525 
526 	/*
527 	 * There is a tiny chance that we have read bogus compound_order(),
528 	 * so be careful to not go outside of the pageblock.
529 	 */
530 	if (unlikely(blockpfn > end_pfn))
531 		blockpfn = end_pfn;
532 
533 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
534 					nr_scanned, total_isolated);
535 
536 	/* Record how far we have got within the block */
537 	*start_pfn = blockpfn;
538 
539 	/*
540 	 * If strict isolation is requested by CMA then check that all the
541 	 * pages requested were isolated. If there were any failures, 0 is
542 	 * returned and CMA will fail.
543 	 */
544 	if (strict && blockpfn < end_pfn)
545 		total_isolated = 0;
546 
547 	/* Update the pageblock-skip if the whole pageblock was scanned */
548 	if (blockpfn == end_pfn)
549 		update_pageblock_skip(cc, valid_page, total_isolated, false);
550 
551 	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
552 	if (total_isolated)
553 		count_compact_events(COMPACTISOLATED, total_isolated);
554 	return total_isolated;
555 }
556 
557 /**
558  * isolate_freepages_range() - isolate free pages.
559  * @start_pfn: The first PFN to start isolating.
560  * @end_pfn:   The one-past-last PFN.
561  *
562  * Non-free pages, invalid PFNs, or zone boundaries within the
563  * [start_pfn, end_pfn) range are considered errors, cause function to
564  * undo its actions and return zero.
565  *
566  * Otherwise, function returns one-past-the-last PFN of isolated page
567  * (which may be greater then end_pfn if end fell in a middle of
568  * a free page).
569  */
570 unsigned long
571 isolate_freepages_range(struct compact_control *cc,
572 			unsigned long start_pfn, unsigned long end_pfn)
573 {
574 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
575 	LIST_HEAD(freelist);
576 
577 	pfn = start_pfn;
578 	block_start_pfn = pageblock_start_pfn(pfn);
579 	if (block_start_pfn < cc->zone->zone_start_pfn)
580 		block_start_pfn = cc->zone->zone_start_pfn;
581 	block_end_pfn = pageblock_end_pfn(pfn);
582 
583 	for (; pfn < end_pfn; pfn += isolated,
584 				block_start_pfn = block_end_pfn,
585 				block_end_pfn += pageblock_nr_pages) {
586 		/* Protect pfn from changing by isolate_freepages_block */
587 		unsigned long isolate_start_pfn = pfn;
588 
589 		block_end_pfn = min(block_end_pfn, end_pfn);
590 
591 		/*
592 		 * pfn could pass the block_end_pfn if isolated freepage
593 		 * is more than pageblock order. In this case, we adjust
594 		 * scanning range to right one.
595 		 */
596 		if (pfn >= block_end_pfn) {
597 			block_start_pfn = pageblock_start_pfn(pfn);
598 			block_end_pfn = pageblock_end_pfn(pfn);
599 			block_end_pfn = min(block_end_pfn, end_pfn);
600 		}
601 
602 		if (!pageblock_pfn_to_page(block_start_pfn,
603 					block_end_pfn, cc->zone))
604 			break;
605 
606 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
607 						block_end_pfn, &freelist, true);
608 
609 		/*
610 		 * In strict mode, isolate_freepages_block() returns 0 if
611 		 * there are any holes in the block (ie. invalid PFNs or
612 		 * non-free pages).
613 		 */
614 		if (!isolated)
615 			break;
616 
617 		/*
618 		 * If we managed to isolate pages, it is always (1 << n) *
619 		 * pageblock_nr_pages for some non-negative n.  (Max order
620 		 * page may span two pageblocks).
621 		 */
622 	}
623 
624 	/* __isolate_free_page() does not map the pages */
625 	map_pages(&freelist);
626 
627 	if (pfn < end_pfn) {
628 		/* Loop terminated early, cleanup. */
629 		release_freepages(&freelist);
630 		return 0;
631 	}
632 
633 	/* We don't use freelists for anything. */
634 	return pfn;
635 }
636 
637 /* Update the number of anon and file isolated pages in the zone */
638 static void acct_isolated(struct zone *zone, struct compact_control *cc)
639 {
640 	struct page *page;
641 	unsigned int count[2] = { 0, };
642 
643 	if (list_empty(&cc->migratepages))
644 		return;
645 
646 	list_for_each_entry(page, &cc->migratepages, lru)
647 		count[!!page_is_file_cache(page)]++;
648 
649 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, count[0]);
650 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, count[1]);
651 }
652 
653 /* Similar to reclaim, but different enough that they don't share logic */
654 static bool too_many_isolated(struct zone *zone)
655 {
656 	unsigned long active, inactive, isolated;
657 
658 	inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
659 			node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
660 	active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
661 			node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
662 	isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
663 			node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
664 
665 	return isolated > (inactive + active) / 2;
666 }
667 
668 /**
669  * isolate_migratepages_block() - isolate all migrate-able pages within
670  *				  a single pageblock
671  * @cc:		Compaction control structure.
672  * @low_pfn:	The first PFN to isolate
673  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
674  * @isolate_mode: Isolation mode to be used.
675  *
676  * Isolate all pages that can be migrated from the range specified by
677  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
678  * Returns zero if there is a fatal signal pending, otherwise PFN of the
679  * first page that was not scanned (which may be both less, equal to or more
680  * than end_pfn).
681  *
682  * The pages are isolated on cc->migratepages list (not required to be empty),
683  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
684  * is neither read nor updated.
685  */
686 static unsigned long
687 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
688 			unsigned long end_pfn, isolate_mode_t isolate_mode)
689 {
690 	struct zone *zone = cc->zone;
691 	unsigned long nr_scanned = 0, nr_isolated = 0;
692 	struct lruvec *lruvec;
693 	unsigned long flags = 0;
694 	bool locked = false;
695 	struct page *page = NULL, *valid_page = NULL;
696 	unsigned long start_pfn = low_pfn;
697 	bool skip_on_failure = false;
698 	unsigned long next_skip_pfn = 0;
699 
700 	/*
701 	 * Ensure that there are not too many pages isolated from the LRU
702 	 * list by either parallel reclaimers or compaction. If there are,
703 	 * delay for some time until fewer pages are isolated
704 	 */
705 	while (unlikely(too_many_isolated(zone))) {
706 		/* async migration should just abort */
707 		if (cc->mode == MIGRATE_ASYNC)
708 			return 0;
709 
710 		congestion_wait(BLK_RW_ASYNC, HZ/10);
711 
712 		if (fatal_signal_pending(current))
713 			return 0;
714 	}
715 
716 	if (compact_should_abort(cc))
717 		return 0;
718 
719 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
720 		skip_on_failure = true;
721 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
722 	}
723 
724 	/* Time to isolate some pages for migration */
725 	for (; low_pfn < end_pfn; low_pfn++) {
726 
727 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
728 			/*
729 			 * We have isolated all migration candidates in the
730 			 * previous order-aligned block, and did not skip it due
731 			 * to failure. We should migrate the pages now and
732 			 * hopefully succeed compaction.
733 			 */
734 			if (nr_isolated)
735 				break;
736 
737 			/*
738 			 * We failed to isolate in the previous order-aligned
739 			 * block. Set the new boundary to the end of the
740 			 * current block. Note we can't simply increase
741 			 * next_skip_pfn by 1 << order, as low_pfn might have
742 			 * been incremented by a higher number due to skipping
743 			 * a compound or a high-order buddy page in the
744 			 * previous loop iteration.
745 			 */
746 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
747 		}
748 
749 		/*
750 		 * Periodically drop the lock (if held) regardless of its
751 		 * contention, to give chance to IRQs. Abort async compaction
752 		 * if contended.
753 		 */
754 		if (!(low_pfn % SWAP_CLUSTER_MAX)
755 		    && compact_unlock_should_abort(zone_lru_lock(zone), flags,
756 								&locked, cc))
757 			break;
758 
759 		if (!pfn_valid_within(low_pfn))
760 			goto isolate_fail;
761 		nr_scanned++;
762 
763 		page = pfn_to_page(low_pfn);
764 
765 		if (!valid_page)
766 			valid_page = page;
767 
768 		/*
769 		 * Skip if free. We read page order here without zone lock
770 		 * which is generally unsafe, but the race window is small and
771 		 * the worst thing that can happen is that we skip some
772 		 * potential isolation targets.
773 		 */
774 		if (PageBuddy(page)) {
775 			unsigned long freepage_order = page_order_unsafe(page);
776 
777 			/*
778 			 * Without lock, we cannot be sure that what we got is
779 			 * a valid page order. Consider only values in the
780 			 * valid order range to prevent low_pfn overflow.
781 			 */
782 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
783 				low_pfn += (1UL << freepage_order) - 1;
784 			continue;
785 		}
786 
787 		/*
788 		 * Regardless of being on LRU, compound pages such as THP and
789 		 * hugetlbfs are not to be compacted. We can potentially save
790 		 * a lot of iterations if we skip them at once. The check is
791 		 * racy, but we can consider only valid values and the only
792 		 * danger is skipping too much.
793 		 */
794 		if (PageCompound(page)) {
795 			unsigned int comp_order = compound_order(page);
796 
797 			if (likely(comp_order < MAX_ORDER))
798 				low_pfn += (1UL << comp_order) - 1;
799 
800 			goto isolate_fail;
801 		}
802 
803 		/*
804 		 * Check may be lockless but that's ok as we recheck later.
805 		 * It's possible to migrate LRU and non-lru movable pages.
806 		 * Skip any other type of page
807 		 */
808 		if (!PageLRU(page)) {
809 			/*
810 			 * __PageMovable can return false positive so we need
811 			 * to verify it under page_lock.
812 			 */
813 			if (unlikely(__PageMovable(page)) &&
814 					!PageIsolated(page)) {
815 				if (locked) {
816 					spin_unlock_irqrestore(zone_lru_lock(zone),
817 									flags);
818 					locked = false;
819 				}
820 
821 				if (isolate_movable_page(page, isolate_mode))
822 					goto isolate_success;
823 			}
824 
825 			goto isolate_fail;
826 		}
827 
828 		/*
829 		 * Migration will fail if an anonymous page is pinned in memory,
830 		 * so avoid taking lru_lock and isolating it unnecessarily in an
831 		 * admittedly racy check.
832 		 */
833 		if (!page_mapping(page) &&
834 		    page_count(page) > page_mapcount(page))
835 			goto isolate_fail;
836 
837 		/* If we already hold the lock, we can skip some rechecking */
838 		if (!locked) {
839 			locked = compact_trylock_irqsave(zone_lru_lock(zone),
840 								&flags, cc);
841 			if (!locked)
842 				break;
843 
844 			/* Recheck PageLRU and PageCompound under lock */
845 			if (!PageLRU(page))
846 				goto isolate_fail;
847 
848 			/*
849 			 * Page become compound since the non-locked check,
850 			 * and it's on LRU. It can only be a THP so the order
851 			 * is safe to read and it's 0 for tail pages.
852 			 */
853 			if (unlikely(PageCompound(page))) {
854 				low_pfn += (1UL << compound_order(page)) - 1;
855 				goto isolate_fail;
856 			}
857 		}
858 
859 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
860 
861 		/* Try isolate the page */
862 		if (__isolate_lru_page(page, isolate_mode) != 0)
863 			goto isolate_fail;
864 
865 		VM_BUG_ON_PAGE(PageCompound(page), page);
866 
867 		/* Successfully isolated */
868 		del_page_from_lru_list(page, lruvec, page_lru(page));
869 
870 isolate_success:
871 		list_add(&page->lru, &cc->migratepages);
872 		cc->nr_migratepages++;
873 		nr_isolated++;
874 
875 		/*
876 		 * Record where we could have freed pages by migration and not
877 		 * yet flushed them to buddy allocator.
878 		 * - this is the lowest page that was isolated and likely be
879 		 * then freed by migration.
880 		 */
881 		if (!cc->last_migrated_pfn)
882 			cc->last_migrated_pfn = low_pfn;
883 
884 		/* Avoid isolating too much */
885 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
886 			++low_pfn;
887 			break;
888 		}
889 
890 		continue;
891 isolate_fail:
892 		if (!skip_on_failure)
893 			continue;
894 
895 		/*
896 		 * We have isolated some pages, but then failed. Release them
897 		 * instead of migrating, as we cannot form the cc->order buddy
898 		 * page anyway.
899 		 */
900 		if (nr_isolated) {
901 			if (locked) {
902 				spin_unlock_irqrestore(zone_lru_lock(zone), flags);
903 				locked = false;
904 			}
905 			acct_isolated(zone, cc);
906 			putback_movable_pages(&cc->migratepages);
907 			cc->nr_migratepages = 0;
908 			cc->last_migrated_pfn = 0;
909 			nr_isolated = 0;
910 		}
911 
912 		if (low_pfn < next_skip_pfn) {
913 			low_pfn = next_skip_pfn - 1;
914 			/*
915 			 * The check near the loop beginning would have updated
916 			 * next_skip_pfn too, but this is a bit simpler.
917 			 */
918 			next_skip_pfn += 1UL << cc->order;
919 		}
920 	}
921 
922 	/*
923 	 * The PageBuddy() check could have potentially brought us outside
924 	 * the range to be scanned.
925 	 */
926 	if (unlikely(low_pfn > end_pfn))
927 		low_pfn = end_pfn;
928 
929 	if (locked)
930 		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
931 
932 	/*
933 	 * Update the pageblock-skip information and cached scanner pfn,
934 	 * if the whole pageblock was scanned without isolating any page.
935 	 */
936 	if (low_pfn == end_pfn)
937 		update_pageblock_skip(cc, valid_page, nr_isolated, true);
938 
939 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
940 						nr_scanned, nr_isolated);
941 
942 	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
943 	if (nr_isolated)
944 		count_compact_events(COMPACTISOLATED, nr_isolated);
945 
946 	return low_pfn;
947 }
948 
949 /**
950  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
951  * @cc:        Compaction control structure.
952  * @start_pfn: The first PFN to start isolating.
953  * @end_pfn:   The one-past-last PFN.
954  *
955  * Returns zero if isolation fails fatally due to e.g. pending signal.
956  * Otherwise, function returns one-past-the-last PFN of isolated page
957  * (which may be greater than end_pfn if end fell in a middle of a THP page).
958  */
959 unsigned long
960 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
961 							unsigned long end_pfn)
962 {
963 	unsigned long pfn, block_start_pfn, block_end_pfn;
964 
965 	/* Scan block by block. First and last block may be incomplete */
966 	pfn = start_pfn;
967 	block_start_pfn = pageblock_start_pfn(pfn);
968 	if (block_start_pfn < cc->zone->zone_start_pfn)
969 		block_start_pfn = cc->zone->zone_start_pfn;
970 	block_end_pfn = pageblock_end_pfn(pfn);
971 
972 	for (; pfn < end_pfn; pfn = block_end_pfn,
973 				block_start_pfn = block_end_pfn,
974 				block_end_pfn += pageblock_nr_pages) {
975 
976 		block_end_pfn = min(block_end_pfn, end_pfn);
977 
978 		if (!pageblock_pfn_to_page(block_start_pfn,
979 					block_end_pfn, cc->zone))
980 			continue;
981 
982 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
983 							ISOLATE_UNEVICTABLE);
984 
985 		if (!pfn)
986 			break;
987 
988 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
989 			break;
990 	}
991 	acct_isolated(cc->zone, cc);
992 
993 	return pfn;
994 }
995 
996 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
997 #ifdef CONFIG_COMPACTION
998 
999 /* Returns true if the page is within a block suitable for migration to */
1000 static bool suitable_migration_target(struct compact_control *cc,
1001 							struct page *page)
1002 {
1003 	if (cc->ignore_block_suitable)
1004 		return true;
1005 
1006 	/* If the page is a large free page, then disallow migration */
1007 	if (PageBuddy(page)) {
1008 		/*
1009 		 * We are checking page_order without zone->lock taken. But
1010 		 * the only small danger is that we skip a potentially suitable
1011 		 * pageblock, so it's not worth to check order for valid range.
1012 		 */
1013 		if (page_order_unsafe(page) >= pageblock_order)
1014 			return false;
1015 	}
1016 
1017 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1018 	if (migrate_async_suitable(get_pageblock_migratetype(page)))
1019 		return true;
1020 
1021 	/* Otherwise skip the block */
1022 	return false;
1023 }
1024 
1025 /*
1026  * Test whether the free scanner has reached the same or lower pageblock than
1027  * the migration scanner, and compaction should thus terminate.
1028  */
1029 static inline bool compact_scanners_met(struct compact_control *cc)
1030 {
1031 	return (cc->free_pfn >> pageblock_order)
1032 		<= (cc->migrate_pfn >> pageblock_order);
1033 }
1034 
1035 /*
1036  * Based on information in the current compact_control, find blocks
1037  * suitable for isolating free pages from and then isolate them.
1038  */
1039 static void isolate_freepages(struct compact_control *cc)
1040 {
1041 	struct zone *zone = cc->zone;
1042 	struct page *page;
1043 	unsigned long block_start_pfn;	/* start of current pageblock */
1044 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1045 	unsigned long block_end_pfn;	/* end of current pageblock */
1046 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1047 	struct list_head *freelist = &cc->freepages;
1048 
1049 	/*
1050 	 * Initialise the free scanner. The starting point is where we last
1051 	 * successfully isolated from, zone-cached value, or the end of the
1052 	 * zone when isolating for the first time. For looping we also need
1053 	 * this pfn aligned down to the pageblock boundary, because we do
1054 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1055 	 * For ending point, take care when isolating in last pageblock of a
1056 	 * a zone which ends in the middle of a pageblock.
1057 	 * The low boundary is the end of the pageblock the migration scanner
1058 	 * is using.
1059 	 */
1060 	isolate_start_pfn = cc->free_pfn;
1061 	block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1062 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1063 						zone_end_pfn(zone));
1064 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1065 
1066 	/*
1067 	 * Isolate free pages until enough are available to migrate the
1068 	 * pages on cc->migratepages. We stop searching if the migrate
1069 	 * and free page scanners meet or enough free pages are isolated.
1070 	 */
1071 	for (; block_start_pfn >= low_pfn;
1072 				block_end_pfn = block_start_pfn,
1073 				block_start_pfn -= pageblock_nr_pages,
1074 				isolate_start_pfn = block_start_pfn) {
1075 		/*
1076 		 * This can iterate a massively long zone without finding any
1077 		 * suitable migration targets, so periodically check if we need
1078 		 * to schedule, or even abort async compaction.
1079 		 */
1080 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1081 						&& compact_should_abort(cc))
1082 			break;
1083 
1084 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1085 									zone);
1086 		if (!page)
1087 			continue;
1088 
1089 		/* Check the block is suitable for migration */
1090 		if (!suitable_migration_target(cc, page))
1091 			continue;
1092 
1093 		/* If isolation recently failed, do not retry */
1094 		if (!isolation_suitable(cc, page))
1095 			continue;
1096 
1097 		/* Found a block suitable for isolating free pages from. */
1098 		isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1099 					freelist, false);
1100 
1101 		/*
1102 		 * If we isolated enough freepages, or aborted due to lock
1103 		 * contention, terminate.
1104 		 */
1105 		if ((cc->nr_freepages >= cc->nr_migratepages)
1106 							|| cc->contended) {
1107 			if (isolate_start_pfn >= block_end_pfn) {
1108 				/*
1109 				 * Restart at previous pageblock if more
1110 				 * freepages can be isolated next time.
1111 				 */
1112 				isolate_start_pfn =
1113 					block_start_pfn - pageblock_nr_pages;
1114 			}
1115 			break;
1116 		} else if (isolate_start_pfn < block_end_pfn) {
1117 			/*
1118 			 * If isolation failed early, do not continue
1119 			 * needlessly.
1120 			 */
1121 			break;
1122 		}
1123 	}
1124 
1125 	/* __isolate_free_page() does not map the pages */
1126 	map_pages(freelist);
1127 
1128 	/*
1129 	 * Record where the free scanner will restart next time. Either we
1130 	 * broke from the loop and set isolate_start_pfn based on the last
1131 	 * call to isolate_freepages_block(), or we met the migration scanner
1132 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1133 	 */
1134 	cc->free_pfn = isolate_start_pfn;
1135 }
1136 
1137 /*
1138  * This is a migrate-callback that "allocates" freepages by taking pages
1139  * from the isolated freelists in the block we are migrating to.
1140  */
1141 static struct page *compaction_alloc(struct page *migratepage,
1142 					unsigned long data,
1143 					int **result)
1144 {
1145 	struct compact_control *cc = (struct compact_control *)data;
1146 	struct page *freepage;
1147 
1148 	/*
1149 	 * Isolate free pages if necessary, and if we are not aborting due to
1150 	 * contention.
1151 	 */
1152 	if (list_empty(&cc->freepages)) {
1153 		if (!cc->contended)
1154 			isolate_freepages(cc);
1155 
1156 		if (list_empty(&cc->freepages))
1157 			return NULL;
1158 	}
1159 
1160 	freepage = list_entry(cc->freepages.next, struct page, lru);
1161 	list_del(&freepage->lru);
1162 	cc->nr_freepages--;
1163 
1164 	return freepage;
1165 }
1166 
1167 /*
1168  * This is a migrate-callback that "frees" freepages back to the isolated
1169  * freelist.  All pages on the freelist are from the same zone, so there is no
1170  * special handling needed for NUMA.
1171  */
1172 static void compaction_free(struct page *page, unsigned long data)
1173 {
1174 	struct compact_control *cc = (struct compact_control *)data;
1175 
1176 	list_add(&page->lru, &cc->freepages);
1177 	cc->nr_freepages++;
1178 }
1179 
1180 /* possible outcome of isolate_migratepages */
1181 typedef enum {
1182 	ISOLATE_ABORT,		/* Abort compaction now */
1183 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1184 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1185 } isolate_migrate_t;
1186 
1187 /*
1188  * Allow userspace to control policy on scanning the unevictable LRU for
1189  * compactable pages.
1190  */
1191 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1192 
1193 /*
1194  * Isolate all pages that can be migrated from the first suitable block,
1195  * starting at the block pointed to by the migrate scanner pfn within
1196  * compact_control.
1197  */
1198 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1199 					struct compact_control *cc)
1200 {
1201 	unsigned long block_start_pfn;
1202 	unsigned long block_end_pfn;
1203 	unsigned long low_pfn;
1204 	struct page *page;
1205 	const isolate_mode_t isolate_mode =
1206 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1207 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1208 
1209 	/*
1210 	 * Start at where we last stopped, or beginning of the zone as
1211 	 * initialized by compact_zone()
1212 	 */
1213 	low_pfn = cc->migrate_pfn;
1214 	block_start_pfn = pageblock_start_pfn(low_pfn);
1215 	if (block_start_pfn < zone->zone_start_pfn)
1216 		block_start_pfn = zone->zone_start_pfn;
1217 
1218 	/* Only scan within a pageblock boundary */
1219 	block_end_pfn = pageblock_end_pfn(low_pfn);
1220 
1221 	/*
1222 	 * Iterate over whole pageblocks until we find the first suitable.
1223 	 * Do not cross the free scanner.
1224 	 */
1225 	for (; block_end_pfn <= cc->free_pfn;
1226 			low_pfn = block_end_pfn,
1227 			block_start_pfn = block_end_pfn,
1228 			block_end_pfn += pageblock_nr_pages) {
1229 
1230 		/*
1231 		 * This can potentially iterate a massively long zone with
1232 		 * many pageblocks unsuitable, so periodically check if we
1233 		 * need to schedule, or even abort async compaction.
1234 		 */
1235 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1236 						&& compact_should_abort(cc))
1237 			break;
1238 
1239 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1240 									zone);
1241 		if (!page)
1242 			continue;
1243 
1244 		/* If isolation recently failed, do not retry */
1245 		if (!isolation_suitable(cc, page))
1246 			continue;
1247 
1248 		/*
1249 		 * For async compaction, also only scan in MOVABLE blocks.
1250 		 * Async compaction is optimistic to see if the minimum amount
1251 		 * of work satisfies the allocation.
1252 		 */
1253 		if (cc->mode == MIGRATE_ASYNC &&
1254 		    !migrate_async_suitable(get_pageblock_migratetype(page)))
1255 			continue;
1256 
1257 		/* Perform the isolation */
1258 		low_pfn = isolate_migratepages_block(cc, low_pfn,
1259 						block_end_pfn, isolate_mode);
1260 
1261 		if (!low_pfn || cc->contended) {
1262 			acct_isolated(zone, cc);
1263 			return ISOLATE_ABORT;
1264 		}
1265 
1266 		/*
1267 		 * Either we isolated something and proceed with migration. Or
1268 		 * we failed and compact_zone should decide if we should
1269 		 * continue or not.
1270 		 */
1271 		break;
1272 	}
1273 
1274 	acct_isolated(zone, cc);
1275 	/* Record where migration scanner will be restarted. */
1276 	cc->migrate_pfn = low_pfn;
1277 
1278 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1279 }
1280 
1281 /*
1282  * order == -1 is expected when compacting via
1283  * /proc/sys/vm/compact_memory
1284  */
1285 static inline bool is_via_compact_memory(int order)
1286 {
1287 	return order == -1;
1288 }
1289 
1290 static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1291 			    const int migratetype)
1292 {
1293 	unsigned int order;
1294 	unsigned long watermark;
1295 
1296 	if (cc->contended || fatal_signal_pending(current))
1297 		return COMPACT_CONTENDED;
1298 
1299 	/* Compaction run completes if the migrate and free scanner meet */
1300 	if (compact_scanners_met(cc)) {
1301 		/* Let the next compaction start anew. */
1302 		reset_cached_positions(zone);
1303 
1304 		/*
1305 		 * Mark that the PG_migrate_skip information should be cleared
1306 		 * by kswapd when it goes to sleep. kcompactd does not set the
1307 		 * flag itself as the decision to be clear should be directly
1308 		 * based on an allocation request.
1309 		 */
1310 		if (cc->direct_compaction)
1311 			zone->compact_blockskip_flush = true;
1312 
1313 		if (cc->whole_zone)
1314 			return COMPACT_COMPLETE;
1315 		else
1316 			return COMPACT_PARTIAL_SKIPPED;
1317 	}
1318 
1319 	if (is_via_compact_memory(cc->order))
1320 		return COMPACT_CONTINUE;
1321 
1322 	/* Compaction run is not finished if the watermark is not met */
1323 	watermark = zone->watermark[cc->alloc_flags & ALLOC_WMARK_MASK];
1324 
1325 	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1326 							cc->alloc_flags))
1327 		return COMPACT_CONTINUE;
1328 
1329 	/* Direct compactor: Is a suitable page free? */
1330 	for (order = cc->order; order < MAX_ORDER; order++) {
1331 		struct free_area *area = &zone->free_area[order];
1332 		bool can_steal;
1333 
1334 		/* Job done if page is free of the right migratetype */
1335 		if (!list_empty(&area->free_list[migratetype]))
1336 			return COMPACT_SUCCESS;
1337 
1338 #ifdef CONFIG_CMA
1339 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1340 		if (migratetype == MIGRATE_MOVABLE &&
1341 			!list_empty(&area->free_list[MIGRATE_CMA]))
1342 			return COMPACT_SUCCESS;
1343 #endif
1344 		/*
1345 		 * Job done if allocation would steal freepages from
1346 		 * other migratetype buddy lists.
1347 		 */
1348 		if (find_suitable_fallback(area, order, migratetype,
1349 						true, &can_steal) != -1)
1350 			return COMPACT_SUCCESS;
1351 	}
1352 
1353 	return COMPACT_NO_SUITABLE_PAGE;
1354 }
1355 
1356 static enum compact_result compact_finished(struct zone *zone,
1357 			struct compact_control *cc,
1358 			const int migratetype)
1359 {
1360 	int ret;
1361 
1362 	ret = __compact_finished(zone, cc, migratetype);
1363 	trace_mm_compaction_finished(zone, cc->order, ret);
1364 	if (ret == COMPACT_NO_SUITABLE_PAGE)
1365 		ret = COMPACT_CONTINUE;
1366 
1367 	return ret;
1368 }
1369 
1370 /*
1371  * compaction_suitable: Is this suitable to run compaction on this zone now?
1372  * Returns
1373  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1374  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1375  *   COMPACT_CONTINUE - If compaction should run now
1376  */
1377 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1378 					unsigned int alloc_flags,
1379 					int classzone_idx,
1380 					unsigned long wmark_target)
1381 {
1382 	unsigned long watermark;
1383 
1384 	if (is_via_compact_memory(order))
1385 		return COMPACT_CONTINUE;
1386 
1387 	watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1388 	/*
1389 	 * If watermarks for high-order allocation are already met, there
1390 	 * should be no need for compaction at all.
1391 	 */
1392 	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1393 								alloc_flags))
1394 		return COMPACT_SUCCESS;
1395 
1396 	/*
1397 	 * Watermarks for order-0 must be met for compaction to be able to
1398 	 * isolate free pages for migration targets. This means that the
1399 	 * watermark and alloc_flags have to match, or be more pessimistic than
1400 	 * the check in __isolate_free_page(). We don't use the direct
1401 	 * compactor's alloc_flags, as they are not relevant for freepage
1402 	 * isolation. We however do use the direct compactor's classzone_idx to
1403 	 * skip over zones where lowmem reserves would prevent allocation even
1404 	 * if compaction succeeds.
1405 	 * For costly orders, we require low watermark instead of min for
1406 	 * compaction to proceed to increase its chances.
1407 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1408 	 * suitable migration targets
1409 	 */
1410 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1411 				low_wmark_pages(zone) : min_wmark_pages(zone);
1412 	watermark += compact_gap(order);
1413 	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1414 						ALLOC_CMA, wmark_target))
1415 		return COMPACT_SKIPPED;
1416 
1417 	return COMPACT_CONTINUE;
1418 }
1419 
1420 enum compact_result compaction_suitable(struct zone *zone, int order,
1421 					unsigned int alloc_flags,
1422 					int classzone_idx)
1423 {
1424 	enum compact_result ret;
1425 	int fragindex;
1426 
1427 	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1428 				    zone_page_state(zone, NR_FREE_PAGES));
1429 	/*
1430 	 * fragmentation index determines if allocation failures are due to
1431 	 * low memory or external fragmentation
1432 	 *
1433 	 * index of -1000 would imply allocations might succeed depending on
1434 	 * watermarks, but we already failed the high-order watermark check
1435 	 * index towards 0 implies failure is due to lack of memory
1436 	 * index towards 1000 implies failure is due to fragmentation
1437 	 *
1438 	 * Only compact if a failure would be due to fragmentation. Also
1439 	 * ignore fragindex for non-costly orders where the alternative to
1440 	 * a successful reclaim/compaction is OOM. Fragindex and the
1441 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1442 	 * excessive compaction for costly orders, but it should not be at the
1443 	 * expense of system stability.
1444 	 */
1445 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1446 		fragindex = fragmentation_index(zone, order);
1447 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1448 			ret = COMPACT_NOT_SUITABLE_ZONE;
1449 	}
1450 
1451 	trace_mm_compaction_suitable(zone, order, ret);
1452 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
1453 		ret = COMPACT_SKIPPED;
1454 
1455 	return ret;
1456 }
1457 
1458 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1459 		int alloc_flags)
1460 {
1461 	struct zone *zone;
1462 	struct zoneref *z;
1463 
1464 	/*
1465 	 * Make sure at least one zone would pass __compaction_suitable if we continue
1466 	 * retrying the reclaim.
1467 	 */
1468 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1469 					ac->nodemask) {
1470 		unsigned long available;
1471 		enum compact_result compact_result;
1472 
1473 		/*
1474 		 * Do not consider all the reclaimable memory because we do not
1475 		 * want to trash just for a single high order allocation which
1476 		 * is even not guaranteed to appear even if __compaction_suitable
1477 		 * is happy about the watermark check.
1478 		 */
1479 		available = zone_reclaimable_pages(zone) / order;
1480 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1481 		compact_result = __compaction_suitable(zone, order, alloc_flags,
1482 				ac_classzone_idx(ac), available);
1483 		if (compact_result != COMPACT_SKIPPED)
1484 			return true;
1485 	}
1486 
1487 	return false;
1488 }
1489 
1490 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1491 {
1492 	enum compact_result ret;
1493 	unsigned long start_pfn = zone->zone_start_pfn;
1494 	unsigned long end_pfn = zone_end_pfn(zone);
1495 	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1496 	const bool sync = cc->mode != MIGRATE_ASYNC;
1497 
1498 	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1499 							cc->classzone_idx);
1500 	/* Compaction is likely to fail */
1501 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1502 		return ret;
1503 
1504 	/* huh, compaction_suitable is returning something unexpected */
1505 	VM_BUG_ON(ret != COMPACT_CONTINUE);
1506 
1507 	/*
1508 	 * Clear pageblock skip if there were failures recently and compaction
1509 	 * is about to be retried after being deferred.
1510 	 */
1511 	if (compaction_restarting(zone, cc->order))
1512 		__reset_isolation_suitable(zone);
1513 
1514 	/*
1515 	 * Setup to move all movable pages to the end of the zone. Used cached
1516 	 * information on where the scanners should start (unless we explicitly
1517 	 * want to compact the whole zone), but check that it is initialised
1518 	 * by ensuring the values are within zone boundaries.
1519 	 */
1520 	if (cc->whole_zone) {
1521 		cc->migrate_pfn = start_pfn;
1522 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1523 	} else {
1524 		cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1525 		cc->free_pfn = zone->compact_cached_free_pfn;
1526 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1527 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1528 			zone->compact_cached_free_pfn = cc->free_pfn;
1529 		}
1530 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1531 			cc->migrate_pfn = start_pfn;
1532 			zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1533 			zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1534 		}
1535 
1536 		if (cc->migrate_pfn == start_pfn)
1537 			cc->whole_zone = true;
1538 	}
1539 
1540 	cc->last_migrated_pfn = 0;
1541 
1542 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1543 				cc->free_pfn, end_pfn, sync);
1544 
1545 	migrate_prep_local();
1546 
1547 	while ((ret = compact_finished(zone, cc, migratetype)) ==
1548 						COMPACT_CONTINUE) {
1549 		int err;
1550 
1551 		switch (isolate_migratepages(zone, cc)) {
1552 		case ISOLATE_ABORT:
1553 			ret = COMPACT_CONTENDED;
1554 			putback_movable_pages(&cc->migratepages);
1555 			cc->nr_migratepages = 0;
1556 			goto out;
1557 		case ISOLATE_NONE:
1558 			/*
1559 			 * We haven't isolated and migrated anything, but
1560 			 * there might still be unflushed migrations from
1561 			 * previous cc->order aligned block.
1562 			 */
1563 			goto check_drain;
1564 		case ISOLATE_SUCCESS:
1565 			;
1566 		}
1567 
1568 		err = migrate_pages(&cc->migratepages, compaction_alloc,
1569 				compaction_free, (unsigned long)cc, cc->mode,
1570 				MR_COMPACTION);
1571 
1572 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1573 							&cc->migratepages);
1574 
1575 		/* All pages were either migrated or will be released */
1576 		cc->nr_migratepages = 0;
1577 		if (err) {
1578 			putback_movable_pages(&cc->migratepages);
1579 			/*
1580 			 * migrate_pages() may return -ENOMEM when scanners meet
1581 			 * and we want compact_finished() to detect it
1582 			 */
1583 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1584 				ret = COMPACT_CONTENDED;
1585 				goto out;
1586 			}
1587 			/*
1588 			 * We failed to migrate at least one page in the current
1589 			 * order-aligned block, so skip the rest of it.
1590 			 */
1591 			if (cc->direct_compaction &&
1592 						(cc->mode == MIGRATE_ASYNC)) {
1593 				cc->migrate_pfn = block_end_pfn(
1594 						cc->migrate_pfn - 1, cc->order);
1595 				/* Draining pcplists is useless in this case */
1596 				cc->last_migrated_pfn = 0;
1597 
1598 			}
1599 		}
1600 
1601 check_drain:
1602 		/*
1603 		 * Has the migration scanner moved away from the previous
1604 		 * cc->order aligned block where we migrated from? If yes,
1605 		 * flush the pages that were freed, so that they can merge and
1606 		 * compact_finished() can detect immediately if allocation
1607 		 * would succeed.
1608 		 */
1609 		if (cc->order > 0 && cc->last_migrated_pfn) {
1610 			int cpu;
1611 			unsigned long current_block_start =
1612 				block_start_pfn(cc->migrate_pfn, cc->order);
1613 
1614 			if (cc->last_migrated_pfn < current_block_start) {
1615 				cpu = get_cpu();
1616 				lru_add_drain_cpu(cpu);
1617 				drain_local_pages(zone);
1618 				put_cpu();
1619 				/* No more flushing until we migrate again */
1620 				cc->last_migrated_pfn = 0;
1621 			}
1622 		}
1623 
1624 	}
1625 
1626 out:
1627 	/*
1628 	 * Release free pages and update where the free scanner should restart,
1629 	 * so we don't leave any returned pages behind in the next attempt.
1630 	 */
1631 	if (cc->nr_freepages > 0) {
1632 		unsigned long free_pfn = release_freepages(&cc->freepages);
1633 
1634 		cc->nr_freepages = 0;
1635 		VM_BUG_ON(free_pfn == 0);
1636 		/* The cached pfn is always the first in a pageblock */
1637 		free_pfn = pageblock_start_pfn(free_pfn);
1638 		/*
1639 		 * Only go back, not forward. The cached pfn might have been
1640 		 * already reset to zone end in compact_finished()
1641 		 */
1642 		if (free_pfn > zone->compact_cached_free_pfn)
1643 			zone->compact_cached_free_pfn = free_pfn;
1644 	}
1645 
1646 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1647 				cc->free_pfn, end_pfn, sync, ret);
1648 
1649 	return ret;
1650 }
1651 
1652 static enum compact_result compact_zone_order(struct zone *zone, int order,
1653 		gfp_t gfp_mask, enum compact_priority prio,
1654 		unsigned int alloc_flags, int classzone_idx)
1655 {
1656 	enum compact_result ret;
1657 	struct compact_control cc = {
1658 		.nr_freepages = 0,
1659 		.nr_migratepages = 0,
1660 		.order = order,
1661 		.gfp_mask = gfp_mask,
1662 		.zone = zone,
1663 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
1664 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
1665 		.alloc_flags = alloc_flags,
1666 		.classzone_idx = classzone_idx,
1667 		.direct_compaction = true,
1668 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
1669 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1670 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1671 	};
1672 	INIT_LIST_HEAD(&cc.freepages);
1673 	INIT_LIST_HEAD(&cc.migratepages);
1674 
1675 	ret = compact_zone(zone, &cc);
1676 
1677 	VM_BUG_ON(!list_empty(&cc.freepages));
1678 	VM_BUG_ON(!list_empty(&cc.migratepages));
1679 
1680 	return ret;
1681 }
1682 
1683 int sysctl_extfrag_threshold = 500;
1684 
1685 /**
1686  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1687  * @gfp_mask: The GFP mask of the current allocation
1688  * @order: The order of the current allocation
1689  * @alloc_flags: The allocation flags of the current allocation
1690  * @ac: The context of current allocation
1691  * @mode: The migration mode for async, sync light, or sync migration
1692  *
1693  * This is the main entry point for direct page compaction.
1694  */
1695 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1696 		unsigned int alloc_flags, const struct alloc_context *ac,
1697 		enum compact_priority prio)
1698 {
1699 	int may_enter_fs = gfp_mask & __GFP_FS;
1700 	int may_perform_io = gfp_mask & __GFP_IO;
1701 	struct zoneref *z;
1702 	struct zone *zone;
1703 	enum compact_result rc = COMPACT_SKIPPED;
1704 
1705 	/* Check if the GFP flags allow compaction */
1706 	if (!may_enter_fs || !may_perform_io)
1707 		return COMPACT_SKIPPED;
1708 
1709 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1710 
1711 	/* Compact each zone in the list */
1712 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1713 								ac->nodemask) {
1714 		enum compact_result status;
1715 
1716 		if (prio > MIN_COMPACT_PRIORITY
1717 					&& compaction_deferred(zone, order)) {
1718 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1719 			continue;
1720 		}
1721 
1722 		status = compact_zone_order(zone, order, gfp_mask, prio,
1723 					alloc_flags, ac_classzone_idx(ac));
1724 		rc = max(status, rc);
1725 
1726 		/* The allocation should succeed, stop compacting */
1727 		if (status == COMPACT_SUCCESS) {
1728 			/*
1729 			 * We think the allocation will succeed in this zone,
1730 			 * but it is not certain, hence the false. The caller
1731 			 * will repeat this with true if allocation indeed
1732 			 * succeeds in this zone.
1733 			 */
1734 			compaction_defer_reset(zone, order, false);
1735 
1736 			break;
1737 		}
1738 
1739 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1740 					status == COMPACT_PARTIAL_SKIPPED))
1741 			/*
1742 			 * We think that allocation won't succeed in this zone
1743 			 * so we defer compaction there. If it ends up
1744 			 * succeeding after all, it will be reset.
1745 			 */
1746 			defer_compaction(zone, order);
1747 
1748 		/*
1749 		 * We might have stopped compacting due to need_resched() in
1750 		 * async compaction, or due to a fatal signal detected. In that
1751 		 * case do not try further zones
1752 		 */
1753 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1754 					|| fatal_signal_pending(current))
1755 			break;
1756 	}
1757 
1758 	return rc;
1759 }
1760 
1761 
1762 /* Compact all zones within a node */
1763 static void compact_node(int nid)
1764 {
1765 	pg_data_t *pgdat = NODE_DATA(nid);
1766 	int zoneid;
1767 	struct zone *zone;
1768 	struct compact_control cc = {
1769 		.order = -1,
1770 		.mode = MIGRATE_SYNC,
1771 		.ignore_skip_hint = true,
1772 		.whole_zone = true,
1773 	};
1774 
1775 
1776 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1777 
1778 		zone = &pgdat->node_zones[zoneid];
1779 		if (!populated_zone(zone))
1780 			continue;
1781 
1782 		cc.nr_freepages = 0;
1783 		cc.nr_migratepages = 0;
1784 		cc.zone = zone;
1785 		INIT_LIST_HEAD(&cc.freepages);
1786 		INIT_LIST_HEAD(&cc.migratepages);
1787 
1788 		compact_zone(zone, &cc);
1789 
1790 		VM_BUG_ON(!list_empty(&cc.freepages));
1791 		VM_BUG_ON(!list_empty(&cc.migratepages));
1792 	}
1793 }
1794 
1795 /* Compact all nodes in the system */
1796 static void compact_nodes(void)
1797 {
1798 	int nid;
1799 
1800 	/* Flush pending updates to the LRU lists */
1801 	lru_add_drain_all();
1802 
1803 	for_each_online_node(nid)
1804 		compact_node(nid);
1805 }
1806 
1807 /* The written value is actually unused, all memory is compacted */
1808 int sysctl_compact_memory;
1809 
1810 /*
1811  * This is the entry point for compacting all nodes via
1812  * /proc/sys/vm/compact_memory
1813  */
1814 int sysctl_compaction_handler(struct ctl_table *table, int write,
1815 			void __user *buffer, size_t *length, loff_t *ppos)
1816 {
1817 	if (write)
1818 		compact_nodes();
1819 
1820 	return 0;
1821 }
1822 
1823 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1824 			void __user *buffer, size_t *length, loff_t *ppos)
1825 {
1826 	proc_dointvec_minmax(table, write, buffer, length, ppos);
1827 
1828 	return 0;
1829 }
1830 
1831 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1832 static ssize_t sysfs_compact_node(struct device *dev,
1833 			struct device_attribute *attr,
1834 			const char *buf, size_t count)
1835 {
1836 	int nid = dev->id;
1837 
1838 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1839 		/* Flush pending updates to the LRU lists */
1840 		lru_add_drain_all();
1841 
1842 		compact_node(nid);
1843 	}
1844 
1845 	return count;
1846 }
1847 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1848 
1849 int compaction_register_node(struct node *node)
1850 {
1851 	return device_create_file(&node->dev, &dev_attr_compact);
1852 }
1853 
1854 void compaction_unregister_node(struct node *node)
1855 {
1856 	return device_remove_file(&node->dev, &dev_attr_compact);
1857 }
1858 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1859 
1860 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1861 {
1862 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1863 }
1864 
1865 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1866 {
1867 	int zoneid;
1868 	struct zone *zone;
1869 	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1870 
1871 	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1872 		zone = &pgdat->node_zones[zoneid];
1873 
1874 		if (!populated_zone(zone))
1875 			continue;
1876 
1877 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1878 					classzone_idx) == COMPACT_CONTINUE)
1879 			return true;
1880 	}
1881 
1882 	return false;
1883 }
1884 
1885 static void kcompactd_do_work(pg_data_t *pgdat)
1886 {
1887 	/*
1888 	 * With no special task, compact all zones so that a page of requested
1889 	 * order is allocatable.
1890 	 */
1891 	int zoneid;
1892 	struct zone *zone;
1893 	struct compact_control cc = {
1894 		.order = pgdat->kcompactd_max_order,
1895 		.classzone_idx = pgdat->kcompactd_classzone_idx,
1896 		.mode = MIGRATE_SYNC_LIGHT,
1897 		.ignore_skip_hint = true,
1898 
1899 	};
1900 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1901 							cc.classzone_idx);
1902 	count_vm_event(KCOMPACTD_WAKE);
1903 
1904 	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1905 		int status;
1906 
1907 		zone = &pgdat->node_zones[zoneid];
1908 		if (!populated_zone(zone))
1909 			continue;
1910 
1911 		if (compaction_deferred(zone, cc.order))
1912 			continue;
1913 
1914 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1915 							COMPACT_CONTINUE)
1916 			continue;
1917 
1918 		cc.nr_freepages = 0;
1919 		cc.nr_migratepages = 0;
1920 		cc.zone = zone;
1921 		INIT_LIST_HEAD(&cc.freepages);
1922 		INIT_LIST_HEAD(&cc.migratepages);
1923 
1924 		if (kthread_should_stop())
1925 			return;
1926 		status = compact_zone(zone, &cc);
1927 
1928 		if (status == COMPACT_SUCCESS) {
1929 			compaction_defer_reset(zone, cc.order, false);
1930 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1931 			/*
1932 			 * We use sync migration mode here, so we defer like
1933 			 * sync direct compaction does.
1934 			 */
1935 			defer_compaction(zone, cc.order);
1936 		}
1937 
1938 		VM_BUG_ON(!list_empty(&cc.freepages));
1939 		VM_BUG_ON(!list_empty(&cc.migratepages));
1940 	}
1941 
1942 	/*
1943 	 * Regardless of success, we are done until woken up next. But remember
1944 	 * the requested order/classzone_idx in case it was higher/tighter than
1945 	 * our current ones
1946 	 */
1947 	if (pgdat->kcompactd_max_order <= cc.order)
1948 		pgdat->kcompactd_max_order = 0;
1949 	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1950 		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1951 }
1952 
1953 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1954 {
1955 	if (!order)
1956 		return;
1957 
1958 	if (pgdat->kcompactd_max_order < order)
1959 		pgdat->kcompactd_max_order = order;
1960 
1961 	if (pgdat->kcompactd_classzone_idx > classzone_idx)
1962 		pgdat->kcompactd_classzone_idx = classzone_idx;
1963 
1964 	if (!waitqueue_active(&pgdat->kcompactd_wait))
1965 		return;
1966 
1967 	if (!kcompactd_node_suitable(pgdat))
1968 		return;
1969 
1970 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1971 							classzone_idx);
1972 	wake_up_interruptible(&pgdat->kcompactd_wait);
1973 }
1974 
1975 /*
1976  * The background compaction daemon, started as a kernel thread
1977  * from the init process.
1978  */
1979 static int kcompactd(void *p)
1980 {
1981 	pg_data_t *pgdat = (pg_data_t*)p;
1982 	struct task_struct *tsk = current;
1983 
1984 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1985 
1986 	if (!cpumask_empty(cpumask))
1987 		set_cpus_allowed_ptr(tsk, cpumask);
1988 
1989 	set_freezable();
1990 
1991 	pgdat->kcompactd_max_order = 0;
1992 	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1993 
1994 	while (!kthread_should_stop()) {
1995 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
1996 		wait_event_freezable(pgdat->kcompactd_wait,
1997 				kcompactd_work_requested(pgdat));
1998 
1999 		kcompactd_do_work(pgdat);
2000 	}
2001 
2002 	return 0;
2003 }
2004 
2005 /*
2006  * This kcompactd start function will be called by init and node-hot-add.
2007  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2008  */
2009 int kcompactd_run(int nid)
2010 {
2011 	pg_data_t *pgdat = NODE_DATA(nid);
2012 	int ret = 0;
2013 
2014 	if (pgdat->kcompactd)
2015 		return 0;
2016 
2017 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2018 	if (IS_ERR(pgdat->kcompactd)) {
2019 		pr_err("Failed to start kcompactd on node %d\n", nid);
2020 		ret = PTR_ERR(pgdat->kcompactd);
2021 		pgdat->kcompactd = NULL;
2022 	}
2023 	return ret;
2024 }
2025 
2026 /*
2027  * Called by memory hotplug when all memory in a node is offlined. Caller must
2028  * hold mem_hotplug_begin/end().
2029  */
2030 void kcompactd_stop(int nid)
2031 {
2032 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2033 
2034 	if (kcompactd) {
2035 		kthread_stop(kcompactd);
2036 		NODE_DATA(nid)->kcompactd = NULL;
2037 	}
2038 }
2039 
2040 /*
2041  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2042  * not required for correctness. So if the last cpu in a node goes
2043  * away, we get changed to run anywhere: as the first one comes back,
2044  * restore their cpu bindings.
2045  */
2046 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
2047 			void *hcpu)
2048 {
2049 	int nid;
2050 
2051 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2052 		for_each_node_state(nid, N_MEMORY) {
2053 			pg_data_t *pgdat = NODE_DATA(nid);
2054 			const struct cpumask *mask;
2055 
2056 			mask = cpumask_of_node(pgdat->node_id);
2057 
2058 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2059 				/* One of our CPUs online: restore mask */
2060 				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2061 		}
2062 	}
2063 	return NOTIFY_OK;
2064 }
2065 
2066 static int __init kcompactd_init(void)
2067 {
2068 	int nid;
2069 
2070 	for_each_node_state(nid, N_MEMORY)
2071 		kcompactd_run(nid);
2072 	hotcpu_notifier(cpu_callback, 0);
2073 	return 0;
2074 }
2075 subsys_initcall(kcompactd_init)
2076 
2077 #endif /* CONFIG_COMPACTION */
2078