xref: /openbmc/linux/mm/compaction.c (revision 6b5fc336)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/sched/signal.h>
16 #include <linux/backing-dev.h>
17 #include <linux/sysctl.h>
18 #include <linux/sysfs.h>
19 #include <linux/page-isolation.h>
20 #include <linux/kasan.h>
21 #include <linux/kthread.h>
22 #include <linux/freezer.h>
23 #include <linux/page_owner.h>
24 #include "internal.h"
25 
26 #ifdef CONFIG_COMPACTION
27 static inline void count_compact_event(enum vm_event_item item)
28 {
29 	count_vm_event(item);
30 }
31 
32 static inline void count_compact_events(enum vm_event_item item, long delta)
33 {
34 	count_vm_events(item, delta);
35 }
36 #else
37 #define count_compact_event(item) do { } while (0)
38 #define count_compact_events(item, delta) do { } while (0)
39 #endif
40 
41 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/compaction.h>
45 
46 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
47 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
48 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
49 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
50 
51 static unsigned long release_freepages(struct list_head *freelist)
52 {
53 	struct page *page, *next;
54 	unsigned long high_pfn = 0;
55 
56 	list_for_each_entry_safe(page, next, freelist, lru) {
57 		unsigned long pfn = page_to_pfn(page);
58 		list_del(&page->lru);
59 		__free_page(page);
60 		if (pfn > high_pfn)
61 			high_pfn = pfn;
62 	}
63 
64 	return high_pfn;
65 }
66 
67 static void map_pages(struct list_head *list)
68 {
69 	unsigned int i, order, nr_pages;
70 	struct page *page, *next;
71 	LIST_HEAD(tmp_list);
72 
73 	list_for_each_entry_safe(page, next, list, lru) {
74 		list_del(&page->lru);
75 
76 		order = page_private(page);
77 		nr_pages = 1 << order;
78 
79 		post_alloc_hook(page, order, __GFP_MOVABLE);
80 		if (order)
81 			split_page(page, order);
82 
83 		for (i = 0; i < nr_pages; i++) {
84 			list_add(&page->lru, &tmp_list);
85 			page++;
86 		}
87 	}
88 
89 	list_splice(&tmp_list, list);
90 }
91 
92 #ifdef CONFIG_COMPACTION
93 
94 int PageMovable(struct page *page)
95 {
96 	struct address_space *mapping;
97 
98 	VM_BUG_ON_PAGE(!PageLocked(page), page);
99 	if (!__PageMovable(page))
100 		return 0;
101 
102 	mapping = page_mapping(page);
103 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
104 		return 1;
105 
106 	return 0;
107 }
108 EXPORT_SYMBOL(PageMovable);
109 
110 void __SetPageMovable(struct page *page, struct address_space *mapping)
111 {
112 	VM_BUG_ON_PAGE(!PageLocked(page), page);
113 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
114 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
115 }
116 EXPORT_SYMBOL(__SetPageMovable);
117 
118 void __ClearPageMovable(struct page *page)
119 {
120 	VM_BUG_ON_PAGE(!PageLocked(page), page);
121 	VM_BUG_ON_PAGE(!PageMovable(page), page);
122 	/*
123 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
124 	 * flag so that VM can catch up released page by driver after isolation.
125 	 * With it, VM migration doesn't try to put it back.
126 	 */
127 	page->mapping = (void *)((unsigned long)page->mapping &
128 				PAGE_MAPPING_MOVABLE);
129 }
130 EXPORT_SYMBOL(__ClearPageMovable);
131 
132 /* Do not skip compaction more than 64 times */
133 #define COMPACT_MAX_DEFER_SHIFT 6
134 
135 /*
136  * Compaction is deferred when compaction fails to result in a page
137  * allocation success. 1 << compact_defer_limit compactions are skipped up
138  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
139  */
140 void defer_compaction(struct zone *zone, int order)
141 {
142 	zone->compact_considered = 0;
143 	zone->compact_defer_shift++;
144 
145 	if (order < zone->compact_order_failed)
146 		zone->compact_order_failed = order;
147 
148 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
149 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
150 
151 	trace_mm_compaction_defer_compaction(zone, order);
152 }
153 
154 /* Returns true if compaction should be skipped this time */
155 bool compaction_deferred(struct zone *zone, int order)
156 {
157 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
158 
159 	if (order < zone->compact_order_failed)
160 		return false;
161 
162 	/* Avoid possible overflow */
163 	if (++zone->compact_considered > defer_limit)
164 		zone->compact_considered = defer_limit;
165 
166 	if (zone->compact_considered >= defer_limit)
167 		return false;
168 
169 	trace_mm_compaction_deferred(zone, order);
170 
171 	return true;
172 }
173 
174 /*
175  * Update defer tracking counters after successful compaction of given order,
176  * which means an allocation either succeeded (alloc_success == true) or is
177  * expected to succeed.
178  */
179 void compaction_defer_reset(struct zone *zone, int order,
180 		bool alloc_success)
181 {
182 	if (alloc_success) {
183 		zone->compact_considered = 0;
184 		zone->compact_defer_shift = 0;
185 	}
186 	if (order >= zone->compact_order_failed)
187 		zone->compact_order_failed = order + 1;
188 
189 	trace_mm_compaction_defer_reset(zone, order);
190 }
191 
192 /* Returns true if restarting compaction after many failures */
193 bool compaction_restarting(struct zone *zone, int order)
194 {
195 	if (order < zone->compact_order_failed)
196 		return false;
197 
198 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
199 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
200 }
201 
202 /* Returns true if the pageblock should be scanned for pages to isolate. */
203 static inline bool isolation_suitable(struct compact_control *cc,
204 					struct page *page)
205 {
206 	if (cc->ignore_skip_hint)
207 		return true;
208 
209 	return !get_pageblock_skip(page);
210 }
211 
212 static void reset_cached_positions(struct zone *zone)
213 {
214 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
215 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
216 	zone->compact_cached_free_pfn =
217 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
218 }
219 
220 /*
221  * This function is called to clear all cached information on pageblocks that
222  * should be skipped for page isolation when the migrate and free page scanner
223  * meet.
224  */
225 static void __reset_isolation_suitable(struct zone *zone)
226 {
227 	unsigned long start_pfn = zone->zone_start_pfn;
228 	unsigned long end_pfn = zone_end_pfn(zone);
229 	unsigned long pfn;
230 
231 	zone->compact_blockskip_flush = false;
232 
233 	/* Walk the zone and mark every pageblock as suitable for isolation */
234 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
235 		struct page *page;
236 
237 		cond_resched();
238 
239 		page = pfn_to_online_page(pfn);
240 		if (!page)
241 			continue;
242 		if (zone != page_zone(page))
243 			continue;
244 
245 		clear_pageblock_skip(page);
246 	}
247 
248 	reset_cached_positions(zone);
249 }
250 
251 void reset_isolation_suitable(pg_data_t *pgdat)
252 {
253 	int zoneid;
254 
255 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
256 		struct zone *zone = &pgdat->node_zones[zoneid];
257 		if (!populated_zone(zone))
258 			continue;
259 
260 		/* Only flush if a full compaction finished recently */
261 		if (zone->compact_blockskip_flush)
262 			__reset_isolation_suitable(zone);
263 	}
264 }
265 
266 /*
267  * If no pages were isolated then mark this pageblock to be skipped in the
268  * future. The information is later cleared by __reset_isolation_suitable().
269  */
270 static void update_pageblock_skip(struct compact_control *cc,
271 			struct page *page, unsigned long nr_isolated,
272 			bool migrate_scanner)
273 {
274 	struct zone *zone = cc->zone;
275 	unsigned long pfn;
276 
277 	if (cc->ignore_skip_hint)
278 		return;
279 
280 	if (!page)
281 		return;
282 
283 	if (nr_isolated)
284 		return;
285 
286 	set_pageblock_skip(page);
287 
288 	pfn = page_to_pfn(page);
289 
290 	/* Update where async and sync compaction should restart */
291 	if (migrate_scanner) {
292 		if (pfn > zone->compact_cached_migrate_pfn[0])
293 			zone->compact_cached_migrate_pfn[0] = pfn;
294 		if (cc->mode != MIGRATE_ASYNC &&
295 		    pfn > zone->compact_cached_migrate_pfn[1])
296 			zone->compact_cached_migrate_pfn[1] = pfn;
297 	} else {
298 		if (pfn < zone->compact_cached_free_pfn)
299 			zone->compact_cached_free_pfn = pfn;
300 	}
301 }
302 #else
303 static inline bool isolation_suitable(struct compact_control *cc,
304 					struct page *page)
305 {
306 	return true;
307 }
308 
309 static void update_pageblock_skip(struct compact_control *cc,
310 			struct page *page, unsigned long nr_isolated,
311 			bool migrate_scanner)
312 {
313 }
314 #endif /* CONFIG_COMPACTION */
315 
316 /*
317  * Compaction requires the taking of some coarse locks that are potentially
318  * very heavily contended. For async compaction, back out if the lock cannot
319  * be taken immediately. For sync compaction, spin on the lock if needed.
320  *
321  * Returns true if the lock is held
322  * Returns false if the lock is not held and compaction should abort
323  */
324 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
325 						struct compact_control *cc)
326 {
327 	if (cc->mode == MIGRATE_ASYNC) {
328 		if (!spin_trylock_irqsave(lock, *flags)) {
329 			cc->contended = true;
330 			return false;
331 		}
332 	} else {
333 		spin_lock_irqsave(lock, *flags);
334 	}
335 
336 	return true;
337 }
338 
339 /*
340  * Compaction requires the taking of some coarse locks that are potentially
341  * very heavily contended. The lock should be periodically unlocked to avoid
342  * having disabled IRQs for a long time, even when there is nobody waiting on
343  * the lock. It might also be that allowing the IRQs will result in
344  * need_resched() becoming true. If scheduling is needed, async compaction
345  * aborts. Sync compaction schedules.
346  * Either compaction type will also abort if a fatal signal is pending.
347  * In either case if the lock was locked, it is dropped and not regained.
348  *
349  * Returns true if compaction should abort due to fatal signal pending, or
350  *		async compaction due to need_resched()
351  * Returns false when compaction can continue (sync compaction might have
352  *		scheduled)
353  */
354 static bool compact_unlock_should_abort(spinlock_t *lock,
355 		unsigned long flags, bool *locked, struct compact_control *cc)
356 {
357 	if (*locked) {
358 		spin_unlock_irqrestore(lock, flags);
359 		*locked = false;
360 	}
361 
362 	if (fatal_signal_pending(current)) {
363 		cc->contended = true;
364 		return true;
365 	}
366 
367 	if (need_resched()) {
368 		if (cc->mode == MIGRATE_ASYNC) {
369 			cc->contended = true;
370 			return true;
371 		}
372 		cond_resched();
373 	}
374 
375 	return false;
376 }
377 
378 /*
379  * Aside from avoiding lock contention, compaction also periodically checks
380  * need_resched() and either schedules in sync compaction or aborts async
381  * compaction. This is similar to what compact_unlock_should_abort() does, but
382  * is used where no lock is concerned.
383  *
384  * Returns false when no scheduling was needed, or sync compaction scheduled.
385  * Returns true when async compaction should abort.
386  */
387 static inline bool compact_should_abort(struct compact_control *cc)
388 {
389 	/* async compaction aborts if contended */
390 	if (need_resched()) {
391 		if (cc->mode == MIGRATE_ASYNC) {
392 			cc->contended = true;
393 			return true;
394 		}
395 
396 		cond_resched();
397 	}
398 
399 	return false;
400 }
401 
402 /*
403  * Isolate free pages onto a private freelist. If @strict is true, will abort
404  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
405  * (even though it may still end up isolating some pages).
406  */
407 static unsigned long isolate_freepages_block(struct compact_control *cc,
408 				unsigned long *start_pfn,
409 				unsigned long end_pfn,
410 				struct list_head *freelist,
411 				bool strict)
412 {
413 	int nr_scanned = 0, total_isolated = 0;
414 	struct page *cursor, *valid_page = NULL;
415 	unsigned long flags = 0;
416 	bool locked = false;
417 	unsigned long blockpfn = *start_pfn;
418 	unsigned int order;
419 
420 	cursor = pfn_to_page(blockpfn);
421 
422 	/* Isolate free pages. */
423 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
424 		int isolated;
425 		struct page *page = cursor;
426 
427 		/*
428 		 * Periodically drop the lock (if held) regardless of its
429 		 * contention, to give chance to IRQs. Abort if fatal signal
430 		 * pending or async compaction detects need_resched()
431 		 */
432 		if (!(blockpfn % SWAP_CLUSTER_MAX)
433 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
434 								&locked, cc))
435 			break;
436 
437 		nr_scanned++;
438 		if (!pfn_valid_within(blockpfn))
439 			goto isolate_fail;
440 
441 		if (!valid_page)
442 			valid_page = page;
443 
444 		/*
445 		 * For compound pages such as THP and hugetlbfs, we can save
446 		 * potentially a lot of iterations if we skip them at once.
447 		 * The check is racy, but we can consider only valid values
448 		 * and the only danger is skipping too much.
449 		 */
450 		if (PageCompound(page)) {
451 			unsigned int comp_order = compound_order(page);
452 
453 			if (likely(comp_order < MAX_ORDER)) {
454 				blockpfn += (1UL << comp_order) - 1;
455 				cursor += (1UL << comp_order) - 1;
456 			}
457 
458 			goto isolate_fail;
459 		}
460 
461 		if (!PageBuddy(page))
462 			goto isolate_fail;
463 
464 		/*
465 		 * If we already hold the lock, we can skip some rechecking.
466 		 * Note that if we hold the lock now, checked_pageblock was
467 		 * already set in some previous iteration (or strict is true),
468 		 * so it is correct to skip the suitable migration target
469 		 * recheck as well.
470 		 */
471 		if (!locked) {
472 			/*
473 			 * The zone lock must be held to isolate freepages.
474 			 * Unfortunately this is a very coarse lock and can be
475 			 * heavily contended if there are parallel allocations
476 			 * or parallel compactions. For async compaction do not
477 			 * spin on the lock and we acquire the lock as late as
478 			 * possible.
479 			 */
480 			locked = compact_trylock_irqsave(&cc->zone->lock,
481 								&flags, cc);
482 			if (!locked)
483 				break;
484 
485 			/* Recheck this is a buddy page under lock */
486 			if (!PageBuddy(page))
487 				goto isolate_fail;
488 		}
489 
490 		/* Found a free page, will break it into order-0 pages */
491 		order = page_order(page);
492 		isolated = __isolate_free_page(page, order);
493 		if (!isolated)
494 			break;
495 		set_page_private(page, order);
496 
497 		total_isolated += isolated;
498 		cc->nr_freepages += isolated;
499 		list_add_tail(&page->lru, freelist);
500 
501 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
502 			blockpfn += isolated;
503 			break;
504 		}
505 		/* Advance to the end of split page */
506 		blockpfn += isolated - 1;
507 		cursor += isolated - 1;
508 		continue;
509 
510 isolate_fail:
511 		if (strict)
512 			break;
513 		else
514 			continue;
515 
516 	}
517 
518 	if (locked)
519 		spin_unlock_irqrestore(&cc->zone->lock, flags);
520 
521 	/*
522 	 * There is a tiny chance that we have read bogus compound_order(),
523 	 * so be careful to not go outside of the pageblock.
524 	 */
525 	if (unlikely(blockpfn > end_pfn))
526 		blockpfn = end_pfn;
527 
528 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
529 					nr_scanned, total_isolated);
530 
531 	/* Record how far we have got within the block */
532 	*start_pfn = blockpfn;
533 
534 	/*
535 	 * If strict isolation is requested by CMA then check that all the
536 	 * pages requested were isolated. If there were any failures, 0 is
537 	 * returned and CMA will fail.
538 	 */
539 	if (strict && blockpfn < end_pfn)
540 		total_isolated = 0;
541 
542 	/* Update the pageblock-skip if the whole pageblock was scanned */
543 	if (blockpfn == end_pfn)
544 		update_pageblock_skip(cc, valid_page, total_isolated, false);
545 
546 	cc->total_free_scanned += nr_scanned;
547 	if (total_isolated)
548 		count_compact_events(COMPACTISOLATED, total_isolated);
549 	return total_isolated;
550 }
551 
552 /**
553  * isolate_freepages_range() - isolate free pages.
554  * @start_pfn: The first PFN to start isolating.
555  * @end_pfn:   The one-past-last PFN.
556  *
557  * Non-free pages, invalid PFNs, or zone boundaries within the
558  * [start_pfn, end_pfn) range are considered errors, cause function to
559  * undo its actions and return zero.
560  *
561  * Otherwise, function returns one-past-the-last PFN of isolated page
562  * (which may be greater then end_pfn if end fell in a middle of
563  * a free page).
564  */
565 unsigned long
566 isolate_freepages_range(struct compact_control *cc,
567 			unsigned long start_pfn, unsigned long end_pfn)
568 {
569 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
570 	LIST_HEAD(freelist);
571 
572 	pfn = start_pfn;
573 	block_start_pfn = pageblock_start_pfn(pfn);
574 	if (block_start_pfn < cc->zone->zone_start_pfn)
575 		block_start_pfn = cc->zone->zone_start_pfn;
576 	block_end_pfn = pageblock_end_pfn(pfn);
577 
578 	for (; pfn < end_pfn; pfn += isolated,
579 				block_start_pfn = block_end_pfn,
580 				block_end_pfn += pageblock_nr_pages) {
581 		/* Protect pfn from changing by isolate_freepages_block */
582 		unsigned long isolate_start_pfn = pfn;
583 
584 		block_end_pfn = min(block_end_pfn, end_pfn);
585 
586 		/*
587 		 * pfn could pass the block_end_pfn if isolated freepage
588 		 * is more than pageblock order. In this case, we adjust
589 		 * scanning range to right one.
590 		 */
591 		if (pfn >= block_end_pfn) {
592 			block_start_pfn = pageblock_start_pfn(pfn);
593 			block_end_pfn = pageblock_end_pfn(pfn);
594 			block_end_pfn = min(block_end_pfn, end_pfn);
595 		}
596 
597 		if (!pageblock_pfn_to_page(block_start_pfn,
598 					block_end_pfn, cc->zone))
599 			break;
600 
601 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
602 						block_end_pfn, &freelist, true);
603 
604 		/*
605 		 * In strict mode, isolate_freepages_block() returns 0 if
606 		 * there are any holes in the block (ie. invalid PFNs or
607 		 * non-free pages).
608 		 */
609 		if (!isolated)
610 			break;
611 
612 		/*
613 		 * If we managed to isolate pages, it is always (1 << n) *
614 		 * pageblock_nr_pages for some non-negative n.  (Max order
615 		 * page may span two pageblocks).
616 		 */
617 	}
618 
619 	/* __isolate_free_page() does not map the pages */
620 	map_pages(&freelist);
621 
622 	if (pfn < end_pfn) {
623 		/* Loop terminated early, cleanup. */
624 		release_freepages(&freelist);
625 		return 0;
626 	}
627 
628 	/* We don't use freelists for anything. */
629 	return pfn;
630 }
631 
632 /* Similar to reclaim, but different enough that they don't share logic */
633 static bool too_many_isolated(struct zone *zone)
634 {
635 	unsigned long active, inactive, isolated;
636 
637 	inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
638 			node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
639 	active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
640 			node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
641 	isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
642 			node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
643 
644 	return isolated > (inactive + active) / 2;
645 }
646 
647 /**
648  * isolate_migratepages_block() - isolate all migrate-able pages within
649  *				  a single pageblock
650  * @cc:		Compaction control structure.
651  * @low_pfn:	The first PFN to isolate
652  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
653  * @isolate_mode: Isolation mode to be used.
654  *
655  * Isolate all pages that can be migrated from the range specified by
656  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
657  * Returns zero if there is a fatal signal pending, otherwise PFN of the
658  * first page that was not scanned (which may be both less, equal to or more
659  * than end_pfn).
660  *
661  * The pages are isolated on cc->migratepages list (not required to be empty),
662  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
663  * is neither read nor updated.
664  */
665 static unsigned long
666 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
667 			unsigned long end_pfn, isolate_mode_t isolate_mode)
668 {
669 	struct zone *zone = cc->zone;
670 	unsigned long nr_scanned = 0, nr_isolated = 0;
671 	struct lruvec *lruvec;
672 	unsigned long flags = 0;
673 	bool locked = false;
674 	struct page *page = NULL, *valid_page = NULL;
675 	unsigned long start_pfn = low_pfn;
676 	bool skip_on_failure = false;
677 	unsigned long next_skip_pfn = 0;
678 
679 	/*
680 	 * Ensure that there are not too many pages isolated from the LRU
681 	 * list by either parallel reclaimers or compaction. If there are,
682 	 * delay for some time until fewer pages are isolated
683 	 */
684 	while (unlikely(too_many_isolated(zone))) {
685 		/* async migration should just abort */
686 		if (cc->mode == MIGRATE_ASYNC)
687 			return 0;
688 
689 		congestion_wait(BLK_RW_ASYNC, HZ/10);
690 
691 		if (fatal_signal_pending(current))
692 			return 0;
693 	}
694 
695 	if (compact_should_abort(cc))
696 		return 0;
697 
698 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
699 		skip_on_failure = true;
700 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
701 	}
702 
703 	/* Time to isolate some pages for migration */
704 	for (; low_pfn < end_pfn; low_pfn++) {
705 
706 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
707 			/*
708 			 * We have isolated all migration candidates in the
709 			 * previous order-aligned block, and did not skip it due
710 			 * to failure. We should migrate the pages now and
711 			 * hopefully succeed compaction.
712 			 */
713 			if (nr_isolated)
714 				break;
715 
716 			/*
717 			 * We failed to isolate in the previous order-aligned
718 			 * block. Set the new boundary to the end of the
719 			 * current block. Note we can't simply increase
720 			 * next_skip_pfn by 1 << order, as low_pfn might have
721 			 * been incremented by a higher number due to skipping
722 			 * a compound or a high-order buddy page in the
723 			 * previous loop iteration.
724 			 */
725 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
726 		}
727 
728 		/*
729 		 * Periodically drop the lock (if held) regardless of its
730 		 * contention, to give chance to IRQs. Abort async compaction
731 		 * if contended.
732 		 */
733 		if (!(low_pfn % SWAP_CLUSTER_MAX)
734 		    && compact_unlock_should_abort(zone_lru_lock(zone), flags,
735 								&locked, cc))
736 			break;
737 
738 		if (!pfn_valid_within(low_pfn))
739 			goto isolate_fail;
740 		nr_scanned++;
741 
742 		page = pfn_to_page(low_pfn);
743 
744 		if (!valid_page)
745 			valid_page = page;
746 
747 		/*
748 		 * Skip if free. We read page order here without zone lock
749 		 * which is generally unsafe, but the race window is small and
750 		 * the worst thing that can happen is that we skip some
751 		 * potential isolation targets.
752 		 */
753 		if (PageBuddy(page)) {
754 			unsigned long freepage_order = page_order_unsafe(page);
755 
756 			/*
757 			 * Without lock, we cannot be sure that what we got is
758 			 * a valid page order. Consider only values in the
759 			 * valid order range to prevent low_pfn overflow.
760 			 */
761 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
762 				low_pfn += (1UL << freepage_order) - 1;
763 			continue;
764 		}
765 
766 		/*
767 		 * Regardless of being on LRU, compound pages such as THP and
768 		 * hugetlbfs are not to be compacted. We can potentially save
769 		 * a lot of iterations if we skip them at once. The check is
770 		 * racy, but we can consider only valid values and the only
771 		 * danger is skipping too much.
772 		 */
773 		if (PageCompound(page)) {
774 			unsigned int comp_order = compound_order(page);
775 
776 			if (likely(comp_order < MAX_ORDER))
777 				low_pfn += (1UL << comp_order) - 1;
778 
779 			goto isolate_fail;
780 		}
781 
782 		/*
783 		 * Check may be lockless but that's ok as we recheck later.
784 		 * It's possible to migrate LRU and non-lru movable pages.
785 		 * Skip any other type of page
786 		 */
787 		if (!PageLRU(page)) {
788 			/*
789 			 * __PageMovable can return false positive so we need
790 			 * to verify it under page_lock.
791 			 */
792 			if (unlikely(__PageMovable(page)) &&
793 					!PageIsolated(page)) {
794 				if (locked) {
795 					spin_unlock_irqrestore(zone_lru_lock(zone),
796 									flags);
797 					locked = false;
798 				}
799 
800 				if (!isolate_movable_page(page, isolate_mode))
801 					goto isolate_success;
802 			}
803 
804 			goto isolate_fail;
805 		}
806 
807 		/*
808 		 * Migration will fail if an anonymous page is pinned in memory,
809 		 * so avoid taking lru_lock and isolating it unnecessarily in an
810 		 * admittedly racy check.
811 		 */
812 		if (!page_mapping(page) &&
813 		    page_count(page) > page_mapcount(page))
814 			goto isolate_fail;
815 
816 		/*
817 		 * Only allow to migrate anonymous pages in GFP_NOFS context
818 		 * because those do not depend on fs locks.
819 		 */
820 		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
821 			goto isolate_fail;
822 
823 		/* If we already hold the lock, we can skip some rechecking */
824 		if (!locked) {
825 			locked = compact_trylock_irqsave(zone_lru_lock(zone),
826 								&flags, cc);
827 			if (!locked)
828 				break;
829 
830 			/* Recheck PageLRU and PageCompound under lock */
831 			if (!PageLRU(page))
832 				goto isolate_fail;
833 
834 			/*
835 			 * Page become compound since the non-locked check,
836 			 * and it's on LRU. It can only be a THP so the order
837 			 * is safe to read and it's 0 for tail pages.
838 			 */
839 			if (unlikely(PageCompound(page))) {
840 				low_pfn += (1UL << compound_order(page)) - 1;
841 				goto isolate_fail;
842 			}
843 		}
844 
845 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
846 
847 		/* Try isolate the page */
848 		if (__isolate_lru_page(page, isolate_mode) != 0)
849 			goto isolate_fail;
850 
851 		VM_BUG_ON_PAGE(PageCompound(page), page);
852 
853 		/* Successfully isolated */
854 		del_page_from_lru_list(page, lruvec, page_lru(page));
855 		inc_node_page_state(page,
856 				NR_ISOLATED_ANON + page_is_file_cache(page));
857 
858 isolate_success:
859 		list_add(&page->lru, &cc->migratepages);
860 		cc->nr_migratepages++;
861 		nr_isolated++;
862 
863 		/*
864 		 * Record where we could have freed pages by migration and not
865 		 * yet flushed them to buddy allocator.
866 		 * - this is the lowest page that was isolated and likely be
867 		 * then freed by migration.
868 		 */
869 		if (!cc->last_migrated_pfn)
870 			cc->last_migrated_pfn = low_pfn;
871 
872 		/* Avoid isolating too much */
873 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
874 			++low_pfn;
875 			break;
876 		}
877 
878 		continue;
879 isolate_fail:
880 		if (!skip_on_failure)
881 			continue;
882 
883 		/*
884 		 * We have isolated some pages, but then failed. Release them
885 		 * instead of migrating, as we cannot form the cc->order buddy
886 		 * page anyway.
887 		 */
888 		if (nr_isolated) {
889 			if (locked) {
890 				spin_unlock_irqrestore(zone_lru_lock(zone), flags);
891 				locked = false;
892 			}
893 			putback_movable_pages(&cc->migratepages);
894 			cc->nr_migratepages = 0;
895 			cc->last_migrated_pfn = 0;
896 			nr_isolated = 0;
897 		}
898 
899 		if (low_pfn < next_skip_pfn) {
900 			low_pfn = next_skip_pfn - 1;
901 			/*
902 			 * The check near the loop beginning would have updated
903 			 * next_skip_pfn too, but this is a bit simpler.
904 			 */
905 			next_skip_pfn += 1UL << cc->order;
906 		}
907 	}
908 
909 	/*
910 	 * The PageBuddy() check could have potentially brought us outside
911 	 * the range to be scanned.
912 	 */
913 	if (unlikely(low_pfn > end_pfn))
914 		low_pfn = end_pfn;
915 
916 	if (locked)
917 		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
918 
919 	/*
920 	 * Update the pageblock-skip information and cached scanner pfn,
921 	 * if the whole pageblock was scanned without isolating any page.
922 	 */
923 	if (low_pfn == end_pfn)
924 		update_pageblock_skip(cc, valid_page, nr_isolated, true);
925 
926 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
927 						nr_scanned, nr_isolated);
928 
929 	cc->total_migrate_scanned += nr_scanned;
930 	if (nr_isolated)
931 		count_compact_events(COMPACTISOLATED, nr_isolated);
932 
933 	return low_pfn;
934 }
935 
936 /**
937  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
938  * @cc:        Compaction control structure.
939  * @start_pfn: The first PFN to start isolating.
940  * @end_pfn:   The one-past-last PFN.
941  *
942  * Returns zero if isolation fails fatally due to e.g. pending signal.
943  * Otherwise, function returns one-past-the-last PFN of isolated page
944  * (which may be greater than end_pfn if end fell in a middle of a THP page).
945  */
946 unsigned long
947 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
948 							unsigned long end_pfn)
949 {
950 	unsigned long pfn, block_start_pfn, block_end_pfn;
951 
952 	/* Scan block by block. First and last block may be incomplete */
953 	pfn = start_pfn;
954 	block_start_pfn = pageblock_start_pfn(pfn);
955 	if (block_start_pfn < cc->zone->zone_start_pfn)
956 		block_start_pfn = cc->zone->zone_start_pfn;
957 	block_end_pfn = pageblock_end_pfn(pfn);
958 
959 	for (; pfn < end_pfn; pfn = block_end_pfn,
960 				block_start_pfn = block_end_pfn,
961 				block_end_pfn += pageblock_nr_pages) {
962 
963 		block_end_pfn = min(block_end_pfn, end_pfn);
964 
965 		if (!pageblock_pfn_to_page(block_start_pfn,
966 					block_end_pfn, cc->zone))
967 			continue;
968 
969 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
970 							ISOLATE_UNEVICTABLE);
971 
972 		if (!pfn)
973 			break;
974 
975 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
976 			break;
977 	}
978 
979 	return pfn;
980 }
981 
982 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
983 #ifdef CONFIG_COMPACTION
984 
985 static bool suitable_migration_source(struct compact_control *cc,
986 							struct page *page)
987 {
988 	int block_mt;
989 
990 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
991 		return true;
992 
993 	block_mt = get_pageblock_migratetype(page);
994 
995 	if (cc->migratetype == MIGRATE_MOVABLE)
996 		return is_migrate_movable(block_mt);
997 	else
998 		return block_mt == cc->migratetype;
999 }
1000 
1001 /* Returns true if the page is within a block suitable for migration to */
1002 static bool suitable_migration_target(struct compact_control *cc,
1003 							struct page *page)
1004 {
1005 	/* If the page is a large free page, then disallow migration */
1006 	if (PageBuddy(page)) {
1007 		/*
1008 		 * We are checking page_order without zone->lock taken. But
1009 		 * the only small danger is that we skip a potentially suitable
1010 		 * pageblock, so it's not worth to check order for valid range.
1011 		 */
1012 		if (page_order_unsafe(page) >= pageblock_order)
1013 			return false;
1014 	}
1015 
1016 	if (cc->ignore_block_suitable)
1017 		return true;
1018 
1019 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1020 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1021 		return true;
1022 
1023 	/* Otherwise skip the block */
1024 	return false;
1025 }
1026 
1027 /*
1028  * Test whether the free scanner has reached the same or lower pageblock than
1029  * the migration scanner, and compaction should thus terminate.
1030  */
1031 static inline bool compact_scanners_met(struct compact_control *cc)
1032 {
1033 	return (cc->free_pfn >> pageblock_order)
1034 		<= (cc->migrate_pfn >> pageblock_order);
1035 }
1036 
1037 /*
1038  * Based on information in the current compact_control, find blocks
1039  * suitable for isolating free pages from and then isolate them.
1040  */
1041 static void isolate_freepages(struct compact_control *cc)
1042 {
1043 	struct zone *zone = cc->zone;
1044 	struct page *page;
1045 	unsigned long block_start_pfn;	/* start of current pageblock */
1046 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1047 	unsigned long block_end_pfn;	/* end of current pageblock */
1048 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1049 	struct list_head *freelist = &cc->freepages;
1050 
1051 	/*
1052 	 * Initialise the free scanner. The starting point is where we last
1053 	 * successfully isolated from, zone-cached value, or the end of the
1054 	 * zone when isolating for the first time. For looping we also need
1055 	 * this pfn aligned down to the pageblock boundary, because we do
1056 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1057 	 * For ending point, take care when isolating in last pageblock of a
1058 	 * a zone which ends in the middle of a pageblock.
1059 	 * The low boundary is the end of the pageblock the migration scanner
1060 	 * is using.
1061 	 */
1062 	isolate_start_pfn = cc->free_pfn;
1063 	block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1064 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1065 						zone_end_pfn(zone));
1066 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1067 
1068 	/*
1069 	 * Isolate free pages until enough are available to migrate the
1070 	 * pages on cc->migratepages. We stop searching if the migrate
1071 	 * and free page scanners meet or enough free pages are isolated.
1072 	 */
1073 	for (; block_start_pfn >= low_pfn;
1074 				block_end_pfn = block_start_pfn,
1075 				block_start_pfn -= pageblock_nr_pages,
1076 				isolate_start_pfn = block_start_pfn) {
1077 		/*
1078 		 * This can iterate a massively long zone without finding any
1079 		 * suitable migration targets, so periodically check if we need
1080 		 * to schedule, or even abort async compaction.
1081 		 */
1082 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1083 						&& compact_should_abort(cc))
1084 			break;
1085 
1086 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1087 									zone);
1088 		if (!page)
1089 			continue;
1090 
1091 		/* Check the block is suitable for migration */
1092 		if (!suitable_migration_target(cc, page))
1093 			continue;
1094 
1095 		/* If isolation recently failed, do not retry */
1096 		if (!isolation_suitable(cc, page))
1097 			continue;
1098 
1099 		/* Found a block suitable for isolating free pages from. */
1100 		isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1101 					freelist, false);
1102 
1103 		/*
1104 		 * If we isolated enough freepages, or aborted due to lock
1105 		 * contention, terminate.
1106 		 */
1107 		if ((cc->nr_freepages >= cc->nr_migratepages)
1108 							|| cc->contended) {
1109 			if (isolate_start_pfn >= block_end_pfn) {
1110 				/*
1111 				 * Restart at previous pageblock if more
1112 				 * freepages can be isolated next time.
1113 				 */
1114 				isolate_start_pfn =
1115 					block_start_pfn - pageblock_nr_pages;
1116 			}
1117 			break;
1118 		} else if (isolate_start_pfn < block_end_pfn) {
1119 			/*
1120 			 * If isolation failed early, do not continue
1121 			 * needlessly.
1122 			 */
1123 			break;
1124 		}
1125 	}
1126 
1127 	/* __isolate_free_page() does not map the pages */
1128 	map_pages(freelist);
1129 
1130 	/*
1131 	 * Record where the free scanner will restart next time. Either we
1132 	 * broke from the loop and set isolate_start_pfn based on the last
1133 	 * call to isolate_freepages_block(), or we met the migration scanner
1134 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1135 	 */
1136 	cc->free_pfn = isolate_start_pfn;
1137 }
1138 
1139 /*
1140  * This is a migrate-callback that "allocates" freepages by taking pages
1141  * from the isolated freelists in the block we are migrating to.
1142  */
1143 static struct page *compaction_alloc(struct page *migratepage,
1144 					unsigned long data,
1145 					int **result)
1146 {
1147 	struct compact_control *cc = (struct compact_control *)data;
1148 	struct page *freepage;
1149 
1150 	/*
1151 	 * Isolate free pages if necessary, and if we are not aborting due to
1152 	 * contention.
1153 	 */
1154 	if (list_empty(&cc->freepages)) {
1155 		if (!cc->contended)
1156 			isolate_freepages(cc);
1157 
1158 		if (list_empty(&cc->freepages))
1159 			return NULL;
1160 	}
1161 
1162 	freepage = list_entry(cc->freepages.next, struct page, lru);
1163 	list_del(&freepage->lru);
1164 	cc->nr_freepages--;
1165 
1166 	return freepage;
1167 }
1168 
1169 /*
1170  * This is a migrate-callback that "frees" freepages back to the isolated
1171  * freelist.  All pages on the freelist are from the same zone, so there is no
1172  * special handling needed for NUMA.
1173  */
1174 static void compaction_free(struct page *page, unsigned long data)
1175 {
1176 	struct compact_control *cc = (struct compact_control *)data;
1177 
1178 	list_add(&page->lru, &cc->freepages);
1179 	cc->nr_freepages++;
1180 }
1181 
1182 /* possible outcome of isolate_migratepages */
1183 typedef enum {
1184 	ISOLATE_ABORT,		/* Abort compaction now */
1185 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1186 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1187 } isolate_migrate_t;
1188 
1189 /*
1190  * Allow userspace to control policy on scanning the unevictable LRU for
1191  * compactable pages.
1192  */
1193 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1194 
1195 /*
1196  * Isolate all pages that can be migrated from the first suitable block,
1197  * starting at the block pointed to by the migrate scanner pfn within
1198  * compact_control.
1199  */
1200 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1201 					struct compact_control *cc)
1202 {
1203 	unsigned long block_start_pfn;
1204 	unsigned long block_end_pfn;
1205 	unsigned long low_pfn;
1206 	struct page *page;
1207 	const isolate_mode_t isolate_mode =
1208 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1209 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1210 
1211 	/*
1212 	 * Start at where we last stopped, or beginning of the zone as
1213 	 * initialized by compact_zone()
1214 	 */
1215 	low_pfn = cc->migrate_pfn;
1216 	block_start_pfn = pageblock_start_pfn(low_pfn);
1217 	if (block_start_pfn < zone->zone_start_pfn)
1218 		block_start_pfn = zone->zone_start_pfn;
1219 
1220 	/* Only scan within a pageblock boundary */
1221 	block_end_pfn = pageblock_end_pfn(low_pfn);
1222 
1223 	/*
1224 	 * Iterate over whole pageblocks until we find the first suitable.
1225 	 * Do not cross the free scanner.
1226 	 */
1227 	for (; block_end_pfn <= cc->free_pfn;
1228 			low_pfn = block_end_pfn,
1229 			block_start_pfn = block_end_pfn,
1230 			block_end_pfn += pageblock_nr_pages) {
1231 
1232 		/*
1233 		 * This can potentially iterate a massively long zone with
1234 		 * many pageblocks unsuitable, so periodically check if we
1235 		 * need to schedule, or even abort async compaction.
1236 		 */
1237 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1238 						&& compact_should_abort(cc))
1239 			break;
1240 
1241 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1242 									zone);
1243 		if (!page)
1244 			continue;
1245 
1246 		/* If isolation recently failed, do not retry */
1247 		if (!isolation_suitable(cc, page))
1248 			continue;
1249 
1250 		/*
1251 		 * For async compaction, also only scan in MOVABLE blocks.
1252 		 * Async compaction is optimistic to see if the minimum amount
1253 		 * of work satisfies the allocation.
1254 		 */
1255 		if (!suitable_migration_source(cc, page))
1256 			continue;
1257 
1258 		/* Perform the isolation */
1259 		low_pfn = isolate_migratepages_block(cc, low_pfn,
1260 						block_end_pfn, isolate_mode);
1261 
1262 		if (!low_pfn || cc->contended)
1263 			return ISOLATE_ABORT;
1264 
1265 		/*
1266 		 * Either we isolated something and proceed with migration. Or
1267 		 * we failed and compact_zone should decide if we should
1268 		 * continue or not.
1269 		 */
1270 		break;
1271 	}
1272 
1273 	/* Record where migration scanner will be restarted. */
1274 	cc->migrate_pfn = low_pfn;
1275 
1276 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1277 }
1278 
1279 /*
1280  * order == -1 is expected when compacting via
1281  * /proc/sys/vm/compact_memory
1282  */
1283 static inline bool is_via_compact_memory(int order)
1284 {
1285 	return order == -1;
1286 }
1287 
1288 static enum compact_result __compact_finished(struct zone *zone,
1289 						struct compact_control *cc)
1290 {
1291 	unsigned int order;
1292 	const int migratetype = cc->migratetype;
1293 
1294 	if (cc->contended || fatal_signal_pending(current))
1295 		return COMPACT_CONTENDED;
1296 
1297 	/* Compaction run completes if the migrate and free scanner meet */
1298 	if (compact_scanners_met(cc)) {
1299 		/* Let the next compaction start anew. */
1300 		reset_cached_positions(zone);
1301 
1302 		/*
1303 		 * Mark that the PG_migrate_skip information should be cleared
1304 		 * by kswapd when it goes to sleep. kcompactd does not set the
1305 		 * flag itself as the decision to be clear should be directly
1306 		 * based on an allocation request.
1307 		 */
1308 		if (cc->direct_compaction)
1309 			zone->compact_blockskip_flush = true;
1310 
1311 		if (cc->whole_zone)
1312 			return COMPACT_COMPLETE;
1313 		else
1314 			return COMPACT_PARTIAL_SKIPPED;
1315 	}
1316 
1317 	if (is_via_compact_memory(cc->order))
1318 		return COMPACT_CONTINUE;
1319 
1320 	if (cc->finishing_block) {
1321 		/*
1322 		 * We have finished the pageblock, but better check again that
1323 		 * we really succeeded.
1324 		 */
1325 		if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1326 			cc->finishing_block = false;
1327 		else
1328 			return COMPACT_CONTINUE;
1329 	}
1330 
1331 	/* Direct compactor: Is a suitable page free? */
1332 	for (order = cc->order; order < MAX_ORDER; order++) {
1333 		struct free_area *area = &zone->free_area[order];
1334 		bool can_steal;
1335 
1336 		/* Job done if page is free of the right migratetype */
1337 		if (!list_empty(&area->free_list[migratetype]))
1338 			return COMPACT_SUCCESS;
1339 
1340 #ifdef CONFIG_CMA
1341 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1342 		if (migratetype == MIGRATE_MOVABLE &&
1343 			!list_empty(&area->free_list[MIGRATE_CMA]))
1344 			return COMPACT_SUCCESS;
1345 #endif
1346 		/*
1347 		 * Job done if allocation would steal freepages from
1348 		 * other migratetype buddy lists.
1349 		 */
1350 		if (find_suitable_fallback(area, order, migratetype,
1351 						true, &can_steal) != -1) {
1352 
1353 			/* movable pages are OK in any pageblock */
1354 			if (migratetype == MIGRATE_MOVABLE)
1355 				return COMPACT_SUCCESS;
1356 
1357 			/*
1358 			 * We are stealing for a non-movable allocation. Make
1359 			 * sure we finish compacting the current pageblock
1360 			 * first so it is as free as possible and we won't
1361 			 * have to steal another one soon. This only applies
1362 			 * to sync compaction, as async compaction operates
1363 			 * on pageblocks of the same migratetype.
1364 			 */
1365 			if (cc->mode == MIGRATE_ASYNC ||
1366 					IS_ALIGNED(cc->migrate_pfn,
1367 							pageblock_nr_pages)) {
1368 				return COMPACT_SUCCESS;
1369 			}
1370 
1371 			cc->finishing_block = true;
1372 			return COMPACT_CONTINUE;
1373 		}
1374 	}
1375 
1376 	return COMPACT_NO_SUITABLE_PAGE;
1377 }
1378 
1379 static enum compact_result compact_finished(struct zone *zone,
1380 			struct compact_control *cc)
1381 {
1382 	int ret;
1383 
1384 	ret = __compact_finished(zone, cc);
1385 	trace_mm_compaction_finished(zone, cc->order, ret);
1386 	if (ret == COMPACT_NO_SUITABLE_PAGE)
1387 		ret = COMPACT_CONTINUE;
1388 
1389 	return ret;
1390 }
1391 
1392 /*
1393  * compaction_suitable: Is this suitable to run compaction on this zone now?
1394  * Returns
1395  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1396  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1397  *   COMPACT_CONTINUE - If compaction should run now
1398  */
1399 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1400 					unsigned int alloc_flags,
1401 					int classzone_idx,
1402 					unsigned long wmark_target)
1403 {
1404 	unsigned long watermark;
1405 
1406 	if (is_via_compact_memory(order))
1407 		return COMPACT_CONTINUE;
1408 
1409 	watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1410 	/*
1411 	 * If watermarks for high-order allocation are already met, there
1412 	 * should be no need for compaction at all.
1413 	 */
1414 	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1415 								alloc_flags))
1416 		return COMPACT_SUCCESS;
1417 
1418 	/*
1419 	 * Watermarks for order-0 must be met for compaction to be able to
1420 	 * isolate free pages for migration targets. This means that the
1421 	 * watermark and alloc_flags have to match, or be more pessimistic than
1422 	 * the check in __isolate_free_page(). We don't use the direct
1423 	 * compactor's alloc_flags, as they are not relevant for freepage
1424 	 * isolation. We however do use the direct compactor's classzone_idx to
1425 	 * skip over zones where lowmem reserves would prevent allocation even
1426 	 * if compaction succeeds.
1427 	 * For costly orders, we require low watermark instead of min for
1428 	 * compaction to proceed to increase its chances.
1429 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1430 	 * suitable migration targets
1431 	 */
1432 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1433 				low_wmark_pages(zone) : min_wmark_pages(zone);
1434 	watermark += compact_gap(order);
1435 	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1436 						ALLOC_CMA, wmark_target))
1437 		return COMPACT_SKIPPED;
1438 
1439 	return COMPACT_CONTINUE;
1440 }
1441 
1442 enum compact_result compaction_suitable(struct zone *zone, int order,
1443 					unsigned int alloc_flags,
1444 					int classzone_idx)
1445 {
1446 	enum compact_result ret;
1447 	int fragindex;
1448 
1449 	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1450 				    zone_page_state(zone, NR_FREE_PAGES));
1451 	/*
1452 	 * fragmentation index determines if allocation failures are due to
1453 	 * low memory or external fragmentation
1454 	 *
1455 	 * index of -1000 would imply allocations might succeed depending on
1456 	 * watermarks, but we already failed the high-order watermark check
1457 	 * index towards 0 implies failure is due to lack of memory
1458 	 * index towards 1000 implies failure is due to fragmentation
1459 	 *
1460 	 * Only compact if a failure would be due to fragmentation. Also
1461 	 * ignore fragindex for non-costly orders where the alternative to
1462 	 * a successful reclaim/compaction is OOM. Fragindex and the
1463 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1464 	 * excessive compaction for costly orders, but it should not be at the
1465 	 * expense of system stability.
1466 	 */
1467 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1468 		fragindex = fragmentation_index(zone, order);
1469 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1470 			ret = COMPACT_NOT_SUITABLE_ZONE;
1471 	}
1472 
1473 	trace_mm_compaction_suitable(zone, order, ret);
1474 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
1475 		ret = COMPACT_SKIPPED;
1476 
1477 	return ret;
1478 }
1479 
1480 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1481 		int alloc_flags)
1482 {
1483 	struct zone *zone;
1484 	struct zoneref *z;
1485 
1486 	/*
1487 	 * Make sure at least one zone would pass __compaction_suitable if we continue
1488 	 * retrying the reclaim.
1489 	 */
1490 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1491 					ac->nodemask) {
1492 		unsigned long available;
1493 		enum compact_result compact_result;
1494 
1495 		/*
1496 		 * Do not consider all the reclaimable memory because we do not
1497 		 * want to trash just for a single high order allocation which
1498 		 * is even not guaranteed to appear even if __compaction_suitable
1499 		 * is happy about the watermark check.
1500 		 */
1501 		available = zone_reclaimable_pages(zone) / order;
1502 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1503 		compact_result = __compaction_suitable(zone, order, alloc_flags,
1504 				ac_classzone_idx(ac), available);
1505 		if (compact_result != COMPACT_SKIPPED)
1506 			return true;
1507 	}
1508 
1509 	return false;
1510 }
1511 
1512 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1513 {
1514 	enum compact_result ret;
1515 	unsigned long start_pfn = zone->zone_start_pfn;
1516 	unsigned long end_pfn = zone_end_pfn(zone);
1517 	const bool sync = cc->mode != MIGRATE_ASYNC;
1518 
1519 	cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1520 	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1521 							cc->classzone_idx);
1522 	/* Compaction is likely to fail */
1523 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1524 		return ret;
1525 
1526 	/* huh, compaction_suitable is returning something unexpected */
1527 	VM_BUG_ON(ret != COMPACT_CONTINUE);
1528 
1529 	/*
1530 	 * Clear pageblock skip if there were failures recently and compaction
1531 	 * is about to be retried after being deferred.
1532 	 */
1533 	if (compaction_restarting(zone, cc->order))
1534 		__reset_isolation_suitable(zone);
1535 
1536 	/*
1537 	 * Setup to move all movable pages to the end of the zone. Used cached
1538 	 * information on where the scanners should start (unless we explicitly
1539 	 * want to compact the whole zone), but check that it is initialised
1540 	 * by ensuring the values are within zone boundaries.
1541 	 */
1542 	if (cc->whole_zone) {
1543 		cc->migrate_pfn = start_pfn;
1544 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1545 	} else {
1546 		cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1547 		cc->free_pfn = zone->compact_cached_free_pfn;
1548 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1549 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1550 			zone->compact_cached_free_pfn = cc->free_pfn;
1551 		}
1552 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1553 			cc->migrate_pfn = start_pfn;
1554 			zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1555 			zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1556 		}
1557 
1558 		if (cc->migrate_pfn == start_pfn)
1559 			cc->whole_zone = true;
1560 	}
1561 
1562 	cc->last_migrated_pfn = 0;
1563 
1564 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1565 				cc->free_pfn, end_pfn, sync);
1566 
1567 	migrate_prep_local();
1568 
1569 	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1570 		int err;
1571 
1572 		switch (isolate_migratepages(zone, cc)) {
1573 		case ISOLATE_ABORT:
1574 			ret = COMPACT_CONTENDED;
1575 			putback_movable_pages(&cc->migratepages);
1576 			cc->nr_migratepages = 0;
1577 			goto out;
1578 		case ISOLATE_NONE:
1579 			/*
1580 			 * We haven't isolated and migrated anything, but
1581 			 * there might still be unflushed migrations from
1582 			 * previous cc->order aligned block.
1583 			 */
1584 			goto check_drain;
1585 		case ISOLATE_SUCCESS:
1586 			;
1587 		}
1588 
1589 		err = migrate_pages(&cc->migratepages, compaction_alloc,
1590 				compaction_free, (unsigned long)cc, cc->mode,
1591 				MR_COMPACTION);
1592 
1593 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1594 							&cc->migratepages);
1595 
1596 		/* All pages were either migrated or will be released */
1597 		cc->nr_migratepages = 0;
1598 		if (err) {
1599 			putback_movable_pages(&cc->migratepages);
1600 			/*
1601 			 * migrate_pages() may return -ENOMEM when scanners meet
1602 			 * and we want compact_finished() to detect it
1603 			 */
1604 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1605 				ret = COMPACT_CONTENDED;
1606 				goto out;
1607 			}
1608 			/*
1609 			 * We failed to migrate at least one page in the current
1610 			 * order-aligned block, so skip the rest of it.
1611 			 */
1612 			if (cc->direct_compaction &&
1613 						(cc->mode == MIGRATE_ASYNC)) {
1614 				cc->migrate_pfn = block_end_pfn(
1615 						cc->migrate_pfn - 1, cc->order);
1616 				/* Draining pcplists is useless in this case */
1617 				cc->last_migrated_pfn = 0;
1618 
1619 			}
1620 		}
1621 
1622 check_drain:
1623 		/*
1624 		 * Has the migration scanner moved away from the previous
1625 		 * cc->order aligned block where we migrated from? If yes,
1626 		 * flush the pages that were freed, so that they can merge and
1627 		 * compact_finished() can detect immediately if allocation
1628 		 * would succeed.
1629 		 */
1630 		if (cc->order > 0 && cc->last_migrated_pfn) {
1631 			int cpu;
1632 			unsigned long current_block_start =
1633 				block_start_pfn(cc->migrate_pfn, cc->order);
1634 
1635 			if (cc->last_migrated_pfn < current_block_start) {
1636 				cpu = get_cpu();
1637 				lru_add_drain_cpu(cpu);
1638 				drain_local_pages(zone);
1639 				put_cpu();
1640 				/* No more flushing until we migrate again */
1641 				cc->last_migrated_pfn = 0;
1642 			}
1643 		}
1644 
1645 	}
1646 
1647 out:
1648 	/*
1649 	 * Release free pages and update where the free scanner should restart,
1650 	 * so we don't leave any returned pages behind in the next attempt.
1651 	 */
1652 	if (cc->nr_freepages > 0) {
1653 		unsigned long free_pfn = release_freepages(&cc->freepages);
1654 
1655 		cc->nr_freepages = 0;
1656 		VM_BUG_ON(free_pfn == 0);
1657 		/* The cached pfn is always the first in a pageblock */
1658 		free_pfn = pageblock_start_pfn(free_pfn);
1659 		/*
1660 		 * Only go back, not forward. The cached pfn might have been
1661 		 * already reset to zone end in compact_finished()
1662 		 */
1663 		if (free_pfn > zone->compact_cached_free_pfn)
1664 			zone->compact_cached_free_pfn = free_pfn;
1665 	}
1666 
1667 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
1668 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
1669 
1670 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1671 				cc->free_pfn, end_pfn, sync, ret);
1672 
1673 	return ret;
1674 }
1675 
1676 static enum compact_result compact_zone_order(struct zone *zone, int order,
1677 		gfp_t gfp_mask, enum compact_priority prio,
1678 		unsigned int alloc_flags, int classzone_idx)
1679 {
1680 	enum compact_result ret;
1681 	struct compact_control cc = {
1682 		.nr_freepages = 0,
1683 		.nr_migratepages = 0,
1684 		.total_migrate_scanned = 0,
1685 		.total_free_scanned = 0,
1686 		.order = order,
1687 		.gfp_mask = gfp_mask,
1688 		.zone = zone,
1689 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
1690 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
1691 		.alloc_flags = alloc_flags,
1692 		.classzone_idx = classzone_idx,
1693 		.direct_compaction = true,
1694 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
1695 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1696 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1697 	};
1698 	INIT_LIST_HEAD(&cc.freepages);
1699 	INIT_LIST_HEAD(&cc.migratepages);
1700 
1701 	ret = compact_zone(zone, &cc);
1702 
1703 	VM_BUG_ON(!list_empty(&cc.freepages));
1704 	VM_BUG_ON(!list_empty(&cc.migratepages));
1705 
1706 	return ret;
1707 }
1708 
1709 int sysctl_extfrag_threshold = 500;
1710 
1711 /**
1712  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1713  * @gfp_mask: The GFP mask of the current allocation
1714  * @order: The order of the current allocation
1715  * @alloc_flags: The allocation flags of the current allocation
1716  * @ac: The context of current allocation
1717  * @mode: The migration mode for async, sync light, or sync migration
1718  *
1719  * This is the main entry point for direct page compaction.
1720  */
1721 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1722 		unsigned int alloc_flags, const struct alloc_context *ac,
1723 		enum compact_priority prio)
1724 {
1725 	int may_perform_io = gfp_mask & __GFP_IO;
1726 	struct zoneref *z;
1727 	struct zone *zone;
1728 	enum compact_result rc = COMPACT_SKIPPED;
1729 
1730 	/*
1731 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
1732 	 * tricky context because the migration might require IO
1733 	 */
1734 	if (!may_perform_io)
1735 		return COMPACT_SKIPPED;
1736 
1737 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1738 
1739 	/* Compact each zone in the list */
1740 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1741 								ac->nodemask) {
1742 		enum compact_result status;
1743 
1744 		if (prio > MIN_COMPACT_PRIORITY
1745 					&& compaction_deferred(zone, order)) {
1746 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1747 			continue;
1748 		}
1749 
1750 		status = compact_zone_order(zone, order, gfp_mask, prio,
1751 					alloc_flags, ac_classzone_idx(ac));
1752 		rc = max(status, rc);
1753 
1754 		/* The allocation should succeed, stop compacting */
1755 		if (status == COMPACT_SUCCESS) {
1756 			/*
1757 			 * We think the allocation will succeed in this zone,
1758 			 * but it is not certain, hence the false. The caller
1759 			 * will repeat this with true if allocation indeed
1760 			 * succeeds in this zone.
1761 			 */
1762 			compaction_defer_reset(zone, order, false);
1763 
1764 			break;
1765 		}
1766 
1767 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1768 					status == COMPACT_PARTIAL_SKIPPED))
1769 			/*
1770 			 * We think that allocation won't succeed in this zone
1771 			 * so we defer compaction there. If it ends up
1772 			 * succeeding after all, it will be reset.
1773 			 */
1774 			defer_compaction(zone, order);
1775 
1776 		/*
1777 		 * We might have stopped compacting due to need_resched() in
1778 		 * async compaction, or due to a fatal signal detected. In that
1779 		 * case do not try further zones
1780 		 */
1781 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1782 					|| fatal_signal_pending(current))
1783 			break;
1784 	}
1785 
1786 	return rc;
1787 }
1788 
1789 
1790 /* Compact all zones within a node */
1791 static void compact_node(int nid)
1792 {
1793 	pg_data_t *pgdat = NODE_DATA(nid);
1794 	int zoneid;
1795 	struct zone *zone;
1796 	struct compact_control cc = {
1797 		.order = -1,
1798 		.total_migrate_scanned = 0,
1799 		.total_free_scanned = 0,
1800 		.mode = MIGRATE_SYNC,
1801 		.ignore_skip_hint = true,
1802 		.whole_zone = true,
1803 		.gfp_mask = GFP_KERNEL,
1804 	};
1805 
1806 
1807 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1808 
1809 		zone = &pgdat->node_zones[zoneid];
1810 		if (!populated_zone(zone))
1811 			continue;
1812 
1813 		cc.nr_freepages = 0;
1814 		cc.nr_migratepages = 0;
1815 		cc.zone = zone;
1816 		INIT_LIST_HEAD(&cc.freepages);
1817 		INIT_LIST_HEAD(&cc.migratepages);
1818 
1819 		compact_zone(zone, &cc);
1820 
1821 		VM_BUG_ON(!list_empty(&cc.freepages));
1822 		VM_BUG_ON(!list_empty(&cc.migratepages));
1823 	}
1824 }
1825 
1826 /* Compact all nodes in the system */
1827 static void compact_nodes(void)
1828 {
1829 	int nid;
1830 
1831 	/* Flush pending updates to the LRU lists */
1832 	lru_add_drain_all();
1833 
1834 	for_each_online_node(nid)
1835 		compact_node(nid);
1836 }
1837 
1838 /* The written value is actually unused, all memory is compacted */
1839 int sysctl_compact_memory;
1840 
1841 /*
1842  * This is the entry point for compacting all nodes via
1843  * /proc/sys/vm/compact_memory
1844  */
1845 int sysctl_compaction_handler(struct ctl_table *table, int write,
1846 			void __user *buffer, size_t *length, loff_t *ppos)
1847 {
1848 	if (write)
1849 		compact_nodes();
1850 
1851 	return 0;
1852 }
1853 
1854 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1855 			void __user *buffer, size_t *length, loff_t *ppos)
1856 {
1857 	proc_dointvec_minmax(table, write, buffer, length, ppos);
1858 
1859 	return 0;
1860 }
1861 
1862 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1863 static ssize_t sysfs_compact_node(struct device *dev,
1864 			struct device_attribute *attr,
1865 			const char *buf, size_t count)
1866 {
1867 	int nid = dev->id;
1868 
1869 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1870 		/* Flush pending updates to the LRU lists */
1871 		lru_add_drain_all();
1872 
1873 		compact_node(nid);
1874 	}
1875 
1876 	return count;
1877 }
1878 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1879 
1880 int compaction_register_node(struct node *node)
1881 {
1882 	return device_create_file(&node->dev, &dev_attr_compact);
1883 }
1884 
1885 void compaction_unregister_node(struct node *node)
1886 {
1887 	return device_remove_file(&node->dev, &dev_attr_compact);
1888 }
1889 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1890 
1891 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1892 {
1893 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1894 }
1895 
1896 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1897 {
1898 	int zoneid;
1899 	struct zone *zone;
1900 	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1901 
1902 	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1903 		zone = &pgdat->node_zones[zoneid];
1904 
1905 		if (!populated_zone(zone))
1906 			continue;
1907 
1908 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1909 					classzone_idx) == COMPACT_CONTINUE)
1910 			return true;
1911 	}
1912 
1913 	return false;
1914 }
1915 
1916 static void kcompactd_do_work(pg_data_t *pgdat)
1917 {
1918 	/*
1919 	 * With no special task, compact all zones so that a page of requested
1920 	 * order is allocatable.
1921 	 */
1922 	int zoneid;
1923 	struct zone *zone;
1924 	struct compact_control cc = {
1925 		.order = pgdat->kcompactd_max_order,
1926 		.total_migrate_scanned = 0,
1927 		.total_free_scanned = 0,
1928 		.classzone_idx = pgdat->kcompactd_classzone_idx,
1929 		.mode = MIGRATE_SYNC_LIGHT,
1930 		.ignore_skip_hint = true,
1931 		.gfp_mask = GFP_KERNEL,
1932 
1933 	};
1934 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1935 							cc.classzone_idx);
1936 	count_compact_event(KCOMPACTD_WAKE);
1937 
1938 	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1939 		int status;
1940 
1941 		zone = &pgdat->node_zones[zoneid];
1942 		if (!populated_zone(zone))
1943 			continue;
1944 
1945 		if (compaction_deferred(zone, cc.order))
1946 			continue;
1947 
1948 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1949 							COMPACT_CONTINUE)
1950 			continue;
1951 
1952 		cc.nr_freepages = 0;
1953 		cc.nr_migratepages = 0;
1954 		cc.total_migrate_scanned = 0;
1955 		cc.total_free_scanned = 0;
1956 		cc.zone = zone;
1957 		INIT_LIST_HEAD(&cc.freepages);
1958 		INIT_LIST_HEAD(&cc.migratepages);
1959 
1960 		if (kthread_should_stop())
1961 			return;
1962 		status = compact_zone(zone, &cc);
1963 
1964 		if (status == COMPACT_SUCCESS) {
1965 			compaction_defer_reset(zone, cc.order, false);
1966 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1967 			/*
1968 			 * We use sync migration mode here, so we defer like
1969 			 * sync direct compaction does.
1970 			 */
1971 			defer_compaction(zone, cc.order);
1972 		}
1973 
1974 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
1975 				     cc.total_migrate_scanned);
1976 		count_compact_events(KCOMPACTD_FREE_SCANNED,
1977 				     cc.total_free_scanned);
1978 
1979 		VM_BUG_ON(!list_empty(&cc.freepages));
1980 		VM_BUG_ON(!list_empty(&cc.migratepages));
1981 	}
1982 
1983 	/*
1984 	 * Regardless of success, we are done until woken up next. But remember
1985 	 * the requested order/classzone_idx in case it was higher/tighter than
1986 	 * our current ones
1987 	 */
1988 	if (pgdat->kcompactd_max_order <= cc.order)
1989 		pgdat->kcompactd_max_order = 0;
1990 	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1991 		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1992 }
1993 
1994 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1995 {
1996 	if (!order)
1997 		return;
1998 
1999 	if (pgdat->kcompactd_max_order < order)
2000 		pgdat->kcompactd_max_order = order;
2001 
2002 	/*
2003 	 * Pairs with implicit barrier in wait_event_freezable()
2004 	 * such that wakeups are not missed in the lockless
2005 	 * waitqueue_active() call.
2006 	 */
2007 	smp_acquire__after_ctrl_dep();
2008 
2009 	if (pgdat->kcompactd_classzone_idx > classzone_idx)
2010 		pgdat->kcompactd_classzone_idx = classzone_idx;
2011 
2012 	if (!waitqueue_active(&pgdat->kcompactd_wait))
2013 		return;
2014 
2015 	if (!kcompactd_node_suitable(pgdat))
2016 		return;
2017 
2018 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2019 							classzone_idx);
2020 	wake_up_interruptible(&pgdat->kcompactd_wait);
2021 }
2022 
2023 /*
2024  * The background compaction daemon, started as a kernel thread
2025  * from the init process.
2026  */
2027 static int kcompactd(void *p)
2028 {
2029 	pg_data_t *pgdat = (pg_data_t*)p;
2030 	struct task_struct *tsk = current;
2031 
2032 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2033 
2034 	if (!cpumask_empty(cpumask))
2035 		set_cpus_allowed_ptr(tsk, cpumask);
2036 
2037 	set_freezable();
2038 
2039 	pgdat->kcompactd_max_order = 0;
2040 	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2041 
2042 	while (!kthread_should_stop()) {
2043 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2044 		wait_event_freezable(pgdat->kcompactd_wait,
2045 				kcompactd_work_requested(pgdat));
2046 
2047 		kcompactd_do_work(pgdat);
2048 	}
2049 
2050 	return 0;
2051 }
2052 
2053 /*
2054  * This kcompactd start function will be called by init and node-hot-add.
2055  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2056  */
2057 int kcompactd_run(int nid)
2058 {
2059 	pg_data_t *pgdat = NODE_DATA(nid);
2060 	int ret = 0;
2061 
2062 	if (pgdat->kcompactd)
2063 		return 0;
2064 
2065 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2066 	if (IS_ERR(pgdat->kcompactd)) {
2067 		pr_err("Failed to start kcompactd on node %d\n", nid);
2068 		ret = PTR_ERR(pgdat->kcompactd);
2069 		pgdat->kcompactd = NULL;
2070 	}
2071 	return ret;
2072 }
2073 
2074 /*
2075  * Called by memory hotplug when all memory in a node is offlined. Caller must
2076  * hold mem_hotplug_begin/end().
2077  */
2078 void kcompactd_stop(int nid)
2079 {
2080 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2081 
2082 	if (kcompactd) {
2083 		kthread_stop(kcompactd);
2084 		NODE_DATA(nid)->kcompactd = NULL;
2085 	}
2086 }
2087 
2088 /*
2089  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2090  * not required for correctness. So if the last cpu in a node goes
2091  * away, we get changed to run anywhere: as the first one comes back,
2092  * restore their cpu bindings.
2093  */
2094 static int kcompactd_cpu_online(unsigned int cpu)
2095 {
2096 	int nid;
2097 
2098 	for_each_node_state(nid, N_MEMORY) {
2099 		pg_data_t *pgdat = NODE_DATA(nid);
2100 		const struct cpumask *mask;
2101 
2102 		mask = cpumask_of_node(pgdat->node_id);
2103 
2104 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2105 			/* One of our CPUs online: restore mask */
2106 			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2107 	}
2108 	return 0;
2109 }
2110 
2111 static int __init kcompactd_init(void)
2112 {
2113 	int nid;
2114 	int ret;
2115 
2116 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2117 					"mm/compaction:online",
2118 					kcompactd_cpu_online, NULL);
2119 	if (ret < 0) {
2120 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
2121 		return ret;
2122 	}
2123 
2124 	for_each_node_state(nid, N_MEMORY)
2125 		kcompactd_run(nid);
2126 	return 0;
2127 }
2128 subsys_initcall(kcompactd_init)
2129 
2130 #endif /* CONFIG_COMPACTION */
2131