1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/swap.h> 11 #include <linux/migrate.h> 12 #include <linux/compaction.h> 13 #include <linux/mm_inline.h> 14 #include <linux/backing-dev.h> 15 #include <linux/sysctl.h> 16 #include <linux/sysfs.h> 17 #include "internal.h" 18 19 #define CREATE_TRACE_POINTS 20 #include <trace/events/compaction.h> 21 22 /* 23 * compact_control is used to track pages being migrated and the free pages 24 * they are being migrated to during memory compaction. The free_pfn starts 25 * at the end of a zone and migrate_pfn begins at the start. Movable pages 26 * are moved to the end of a zone during a compaction run and the run 27 * completes when free_pfn <= migrate_pfn 28 */ 29 struct compact_control { 30 struct list_head freepages; /* List of free pages to migrate to */ 31 struct list_head migratepages; /* List of pages being migrated */ 32 unsigned long nr_freepages; /* Number of isolated free pages */ 33 unsigned long nr_migratepages; /* Number of pages to migrate */ 34 unsigned long free_pfn; /* isolate_freepages search base */ 35 unsigned long migrate_pfn; /* isolate_migratepages search base */ 36 bool sync; /* Synchronous migration */ 37 38 int order; /* order a direct compactor needs */ 39 int migratetype; /* MOVABLE, RECLAIMABLE etc */ 40 struct zone *zone; 41 }; 42 43 static unsigned long release_freepages(struct list_head *freelist) 44 { 45 struct page *page, *next; 46 unsigned long count = 0; 47 48 list_for_each_entry_safe(page, next, freelist, lru) { 49 list_del(&page->lru); 50 __free_page(page); 51 count++; 52 } 53 54 return count; 55 } 56 57 /* Isolate free pages onto a private freelist. Must hold zone->lock */ 58 static unsigned long isolate_freepages_block(struct zone *zone, 59 unsigned long blockpfn, 60 struct list_head *freelist) 61 { 62 unsigned long zone_end_pfn, end_pfn; 63 int nr_scanned = 0, total_isolated = 0; 64 struct page *cursor; 65 66 /* Get the last PFN we should scan for free pages at */ 67 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages; 68 end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn); 69 70 /* Find the first usable PFN in the block to initialse page cursor */ 71 for (; blockpfn < end_pfn; blockpfn++) { 72 if (pfn_valid_within(blockpfn)) 73 break; 74 } 75 cursor = pfn_to_page(blockpfn); 76 77 /* Isolate free pages. This assumes the block is valid */ 78 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 79 int isolated, i; 80 struct page *page = cursor; 81 82 if (!pfn_valid_within(blockpfn)) 83 continue; 84 nr_scanned++; 85 86 if (!PageBuddy(page)) 87 continue; 88 89 /* Found a free page, break it into order-0 pages */ 90 isolated = split_free_page(page); 91 total_isolated += isolated; 92 for (i = 0; i < isolated; i++) { 93 list_add(&page->lru, freelist); 94 page++; 95 } 96 97 /* If a page was split, advance to the end of it */ 98 if (isolated) { 99 blockpfn += isolated - 1; 100 cursor += isolated - 1; 101 } 102 } 103 104 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated); 105 return total_isolated; 106 } 107 108 /* Returns true if the page is within a block suitable for migration to */ 109 static bool suitable_migration_target(struct page *page) 110 { 111 112 int migratetype = get_pageblock_migratetype(page); 113 114 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */ 115 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE) 116 return false; 117 118 /* If the page is a large free page, then allow migration */ 119 if (PageBuddy(page) && page_order(page) >= pageblock_order) 120 return true; 121 122 /* If the block is MIGRATE_MOVABLE, allow migration */ 123 if (migratetype == MIGRATE_MOVABLE) 124 return true; 125 126 /* Otherwise skip the block */ 127 return false; 128 } 129 130 /* 131 * Based on information in the current compact_control, find blocks 132 * suitable for isolating free pages from and then isolate them. 133 */ 134 static void isolate_freepages(struct zone *zone, 135 struct compact_control *cc) 136 { 137 struct page *page; 138 unsigned long high_pfn, low_pfn, pfn; 139 unsigned long flags; 140 int nr_freepages = cc->nr_freepages; 141 struct list_head *freelist = &cc->freepages; 142 143 /* 144 * Initialise the free scanner. The starting point is where we last 145 * scanned from (or the end of the zone if starting). The low point 146 * is the end of the pageblock the migration scanner is using. 147 */ 148 pfn = cc->free_pfn; 149 low_pfn = cc->migrate_pfn + pageblock_nr_pages; 150 151 /* 152 * Take care that if the migration scanner is at the end of the zone 153 * that the free scanner does not accidentally move to the next zone 154 * in the next isolation cycle. 155 */ 156 high_pfn = min(low_pfn, pfn); 157 158 /* 159 * Isolate free pages until enough are available to migrate the 160 * pages on cc->migratepages. We stop searching if the migrate 161 * and free page scanners meet or enough free pages are isolated. 162 */ 163 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages; 164 pfn -= pageblock_nr_pages) { 165 unsigned long isolated; 166 167 if (!pfn_valid(pfn)) 168 continue; 169 170 /* 171 * Check for overlapping nodes/zones. It's possible on some 172 * configurations to have a setup like 173 * node0 node1 node0 174 * i.e. it's possible that all pages within a zones range of 175 * pages do not belong to a single zone. 176 */ 177 page = pfn_to_page(pfn); 178 if (page_zone(page) != zone) 179 continue; 180 181 /* Check the block is suitable for migration */ 182 if (!suitable_migration_target(page)) 183 continue; 184 185 /* 186 * Found a block suitable for isolating free pages from. Now 187 * we disabled interrupts, double check things are ok and 188 * isolate the pages. This is to minimise the time IRQs 189 * are disabled 190 */ 191 isolated = 0; 192 spin_lock_irqsave(&zone->lock, flags); 193 if (suitable_migration_target(page)) { 194 isolated = isolate_freepages_block(zone, pfn, freelist); 195 nr_freepages += isolated; 196 } 197 spin_unlock_irqrestore(&zone->lock, flags); 198 199 /* 200 * Record the highest PFN we isolated pages from. When next 201 * looking for free pages, the search will restart here as 202 * page migration may have returned some pages to the allocator 203 */ 204 if (isolated) 205 high_pfn = max(high_pfn, pfn); 206 } 207 208 /* split_free_page does not map the pages */ 209 list_for_each_entry(page, freelist, lru) { 210 arch_alloc_page(page, 0); 211 kernel_map_pages(page, 1, 1); 212 } 213 214 cc->free_pfn = high_pfn; 215 cc->nr_freepages = nr_freepages; 216 } 217 218 /* Update the number of anon and file isolated pages in the zone */ 219 static void acct_isolated(struct zone *zone, struct compact_control *cc) 220 { 221 struct page *page; 222 unsigned int count[2] = { 0, }; 223 224 list_for_each_entry(page, &cc->migratepages, lru) 225 count[!!page_is_file_cache(page)]++; 226 227 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 228 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 229 } 230 231 /* Similar to reclaim, but different enough that they don't share logic */ 232 static bool too_many_isolated(struct zone *zone) 233 { 234 unsigned long active, inactive, isolated; 235 236 inactive = zone_page_state(zone, NR_INACTIVE_FILE) + 237 zone_page_state(zone, NR_INACTIVE_ANON); 238 active = zone_page_state(zone, NR_ACTIVE_FILE) + 239 zone_page_state(zone, NR_ACTIVE_ANON); 240 isolated = zone_page_state(zone, NR_ISOLATED_FILE) + 241 zone_page_state(zone, NR_ISOLATED_ANON); 242 243 return isolated > (inactive + active) / 2; 244 } 245 246 /* possible outcome of isolate_migratepages */ 247 typedef enum { 248 ISOLATE_ABORT, /* Abort compaction now */ 249 ISOLATE_NONE, /* No pages isolated, continue scanning */ 250 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 251 } isolate_migrate_t; 252 253 /* 254 * Isolate all pages that can be migrated from the block pointed to by 255 * the migrate scanner within compact_control. 256 */ 257 static isolate_migrate_t isolate_migratepages(struct zone *zone, 258 struct compact_control *cc) 259 { 260 unsigned long low_pfn, end_pfn; 261 unsigned long last_pageblock_nr = 0, pageblock_nr; 262 unsigned long nr_scanned = 0, nr_isolated = 0; 263 struct list_head *migratelist = &cc->migratepages; 264 isolate_mode_t mode = ISOLATE_ACTIVE|ISOLATE_INACTIVE; 265 266 /* Do not scan outside zone boundaries */ 267 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn); 268 269 /* Only scan within a pageblock boundary */ 270 end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages); 271 272 /* Do not cross the free scanner or scan within a memory hole */ 273 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) { 274 cc->migrate_pfn = end_pfn; 275 return ISOLATE_NONE; 276 } 277 278 /* 279 * Ensure that there are not too many pages isolated from the LRU 280 * list by either parallel reclaimers or compaction. If there are, 281 * delay for some time until fewer pages are isolated 282 */ 283 while (unlikely(too_many_isolated(zone))) { 284 /* async migration should just abort */ 285 if (!cc->sync) 286 return ISOLATE_ABORT; 287 288 congestion_wait(BLK_RW_ASYNC, HZ/10); 289 290 if (fatal_signal_pending(current)) 291 return ISOLATE_ABORT; 292 } 293 294 /* Time to isolate some pages for migration */ 295 cond_resched(); 296 spin_lock_irq(&zone->lru_lock); 297 for (; low_pfn < end_pfn; low_pfn++) { 298 struct page *page; 299 bool locked = true; 300 301 /* give a chance to irqs before checking need_resched() */ 302 if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) { 303 spin_unlock_irq(&zone->lru_lock); 304 locked = false; 305 } 306 if (need_resched() || spin_is_contended(&zone->lru_lock)) { 307 if (locked) 308 spin_unlock_irq(&zone->lru_lock); 309 cond_resched(); 310 spin_lock_irq(&zone->lru_lock); 311 if (fatal_signal_pending(current)) 312 break; 313 } else if (!locked) 314 spin_lock_irq(&zone->lru_lock); 315 316 /* 317 * migrate_pfn does not necessarily start aligned to a 318 * pageblock. Ensure that pfn_valid is called when moving 319 * into a new MAX_ORDER_NR_PAGES range in case of large 320 * memory holes within the zone 321 */ 322 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { 323 if (!pfn_valid(low_pfn)) { 324 low_pfn += MAX_ORDER_NR_PAGES - 1; 325 continue; 326 } 327 } 328 329 if (!pfn_valid_within(low_pfn)) 330 continue; 331 nr_scanned++; 332 333 /* 334 * Get the page and ensure the page is within the same zone. 335 * See the comment in isolate_freepages about overlapping 336 * nodes. It is deliberate that the new zone lock is not taken 337 * as memory compaction should not move pages between nodes. 338 */ 339 page = pfn_to_page(low_pfn); 340 if (page_zone(page) != zone) 341 continue; 342 343 /* Skip if free */ 344 if (PageBuddy(page)) 345 continue; 346 347 /* 348 * For async migration, also only scan in MOVABLE blocks. Async 349 * migration is optimistic to see if the minimum amount of work 350 * satisfies the allocation 351 */ 352 pageblock_nr = low_pfn >> pageblock_order; 353 if (!cc->sync && last_pageblock_nr != pageblock_nr && 354 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) { 355 low_pfn += pageblock_nr_pages; 356 low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1; 357 last_pageblock_nr = pageblock_nr; 358 continue; 359 } 360 361 if (!PageLRU(page)) 362 continue; 363 364 /* 365 * PageLRU is set, and lru_lock excludes isolation, 366 * splitting and collapsing (collapsing has already 367 * happened if PageLRU is set). 368 */ 369 if (PageTransHuge(page)) { 370 low_pfn += (1 << compound_order(page)) - 1; 371 continue; 372 } 373 374 if (!cc->sync) 375 mode |= ISOLATE_ASYNC_MIGRATE; 376 377 /* Try isolate the page */ 378 if (__isolate_lru_page(page, mode, 0) != 0) 379 continue; 380 381 VM_BUG_ON(PageTransCompound(page)); 382 383 /* Successfully isolated */ 384 del_page_from_lru_list(zone, page, page_lru(page)); 385 list_add(&page->lru, migratelist); 386 cc->nr_migratepages++; 387 nr_isolated++; 388 389 /* Avoid isolating too much */ 390 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 391 ++low_pfn; 392 break; 393 } 394 } 395 396 acct_isolated(zone, cc); 397 398 spin_unlock_irq(&zone->lru_lock); 399 cc->migrate_pfn = low_pfn; 400 401 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated); 402 403 return ISOLATE_SUCCESS; 404 } 405 406 /* 407 * This is a migrate-callback that "allocates" freepages by taking pages 408 * from the isolated freelists in the block we are migrating to. 409 */ 410 static struct page *compaction_alloc(struct page *migratepage, 411 unsigned long data, 412 int **result) 413 { 414 struct compact_control *cc = (struct compact_control *)data; 415 struct page *freepage; 416 417 /* Isolate free pages if necessary */ 418 if (list_empty(&cc->freepages)) { 419 isolate_freepages(cc->zone, cc); 420 421 if (list_empty(&cc->freepages)) 422 return NULL; 423 } 424 425 freepage = list_entry(cc->freepages.next, struct page, lru); 426 list_del(&freepage->lru); 427 cc->nr_freepages--; 428 429 return freepage; 430 } 431 432 /* 433 * We cannot control nr_migratepages and nr_freepages fully when migration is 434 * running as migrate_pages() has no knowledge of compact_control. When 435 * migration is complete, we count the number of pages on the lists by hand. 436 */ 437 static void update_nr_listpages(struct compact_control *cc) 438 { 439 int nr_migratepages = 0; 440 int nr_freepages = 0; 441 struct page *page; 442 443 list_for_each_entry(page, &cc->migratepages, lru) 444 nr_migratepages++; 445 list_for_each_entry(page, &cc->freepages, lru) 446 nr_freepages++; 447 448 cc->nr_migratepages = nr_migratepages; 449 cc->nr_freepages = nr_freepages; 450 } 451 452 static int compact_finished(struct zone *zone, 453 struct compact_control *cc) 454 { 455 unsigned int order; 456 unsigned long watermark; 457 458 if (fatal_signal_pending(current)) 459 return COMPACT_PARTIAL; 460 461 /* Compaction run completes if the migrate and free scanner meet */ 462 if (cc->free_pfn <= cc->migrate_pfn) 463 return COMPACT_COMPLETE; 464 465 /* 466 * order == -1 is expected when compacting via 467 * /proc/sys/vm/compact_memory 468 */ 469 if (cc->order == -1) 470 return COMPACT_CONTINUE; 471 472 /* Compaction run is not finished if the watermark is not met */ 473 watermark = low_wmark_pages(zone); 474 watermark += (1 << cc->order); 475 476 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0)) 477 return COMPACT_CONTINUE; 478 479 /* Direct compactor: Is a suitable page free? */ 480 for (order = cc->order; order < MAX_ORDER; order++) { 481 /* Job done if page is free of the right migratetype */ 482 if (!list_empty(&zone->free_area[order].free_list[cc->migratetype])) 483 return COMPACT_PARTIAL; 484 485 /* Job done if allocation would set block type */ 486 if (order >= pageblock_order && zone->free_area[order].nr_free) 487 return COMPACT_PARTIAL; 488 } 489 490 return COMPACT_CONTINUE; 491 } 492 493 /* 494 * compaction_suitable: Is this suitable to run compaction on this zone now? 495 * Returns 496 * COMPACT_SKIPPED - If there are too few free pages for compaction 497 * COMPACT_PARTIAL - If the allocation would succeed without compaction 498 * COMPACT_CONTINUE - If compaction should run now 499 */ 500 unsigned long compaction_suitable(struct zone *zone, int order) 501 { 502 int fragindex; 503 unsigned long watermark; 504 505 /* 506 * order == -1 is expected when compacting via 507 * /proc/sys/vm/compact_memory 508 */ 509 if (order == -1) 510 return COMPACT_CONTINUE; 511 512 /* 513 * Watermarks for order-0 must be met for compaction. Note the 2UL. 514 * This is because during migration, copies of pages need to be 515 * allocated and for a short time, the footprint is higher 516 */ 517 watermark = low_wmark_pages(zone) + (2UL << order); 518 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 519 return COMPACT_SKIPPED; 520 521 /* 522 * fragmentation index determines if allocation failures are due to 523 * low memory or external fragmentation 524 * 525 * index of -1000 implies allocations might succeed depending on 526 * watermarks 527 * index towards 0 implies failure is due to lack of memory 528 * index towards 1000 implies failure is due to fragmentation 529 * 530 * Only compact if a failure would be due to fragmentation. 531 */ 532 fragindex = fragmentation_index(zone, order); 533 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 534 return COMPACT_SKIPPED; 535 536 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark, 537 0, 0)) 538 return COMPACT_PARTIAL; 539 540 return COMPACT_CONTINUE; 541 } 542 543 static int compact_zone(struct zone *zone, struct compact_control *cc) 544 { 545 int ret; 546 547 ret = compaction_suitable(zone, cc->order); 548 switch (ret) { 549 case COMPACT_PARTIAL: 550 case COMPACT_SKIPPED: 551 /* Compaction is likely to fail */ 552 return ret; 553 case COMPACT_CONTINUE: 554 /* Fall through to compaction */ 555 ; 556 } 557 558 /* Setup to move all movable pages to the end of the zone */ 559 cc->migrate_pfn = zone->zone_start_pfn; 560 cc->free_pfn = cc->migrate_pfn + zone->spanned_pages; 561 cc->free_pfn &= ~(pageblock_nr_pages-1); 562 563 migrate_prep_local(); 564 565 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { 566 unsigned long nr_migrate, nr_remaining; 567 int err; 568 569 switch (isolate_migratepages(zone, cc)) { 570 case ISOLATE_ABORT: 571 ret = COMPACT_PARTIAL; 572 goto out; 573 case ISOLATE_NONE: 574 continue; 575 case ISOLATE_SUCCESS: 576 ; 577 } 578 579 nr_migrate = cc->nr_migratepages; 580 err = migrate_pages(&cc->migratepages, compaction_alloc, 581 (unsigned long)cc, false, 582 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC); 583 update_nr_listpages(cc); 584 nr_remaining = cc->nr_migratepages; 585 586 count_vm_event(COMPACTBLOCKS); 587 count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining); 588 if (nr_remaining) 589 count_vm_events(COMPACTPAGEFAILED, nr_remaining); 590 trace_mm_compaction_migratepages(nr_migrate - nr_remaining, 591 nr_remaining); 592 593 /* Release LRU pages not migrated */ 594 if (err) { 595 putback_lru_pages(&cc->migratepages); 596 cc->nr_migratepages = 0; 597 } 598 599 } 600 601 out: 602 /* Release free pages and check accounting */ 603 cc->nr_freepages -= release_freepages(&cc->freepages); 604 VM_BUG_ON(cc->nr_freepages != 0); 605 606 return ret; 607 } 608 609 static unsigned long compact_zone_order(struct zone *zone, 610 int order, gfp_t gfp_mask, 611 bool sync) 612 { 613 struct compact_control cc = { 614 .nr_freepages = 0, 615 .nr_migratepages = 0, 616 .order = order, 617 .migratetype = allocflags_to_migratetype(gfp_mask), 618 .zone = zone, 619 .sync = sync, 620 }; 621 INIT_LIST_HEAD(&cc.freepages); 622 INIT_LIST_HEAD(&cc.migratepages); 623 624 return compact_zone(zone, &cc); 625 } 626 627 int sysctl_extfrag_threshold = 500; 628 629 /** 630 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 631 * @zonelist: The zonelist used for the current allocation 632 * @order: The order of the current allocation 633 * @gfp_mask: The GFP mask of the current allocation 634 * @nodemask: The allowed nodes to allocate from 635 * @sync: Whether migration is synchronous or not 636 * 637 * This is the main entry point for direct page compaction. 638 */ 639 unsigned long try_to_compact_pages(struct zonelist *zonelist, 640 int order, gfp_t gfp_mask, nodemask_t *nodemask, 641 bool sync) 642 { 643 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 644 int may_enter_fs = gfp_mask & __GFP_FS; 645 int may_perform_io = gfp_mask & __GFP_IO; 646 struct zoneref *z; 647 struct zone *zone; 648 int rc = COMPACT_SKIPPED; 649 650 /* 651 * Check whether it is worth even starting compaction. The order check is 652 * made because an assumption is made that the page allocator can satisfy 653 * the "cheaper" orders without taking special steps 654 */ 655 if (!order || !may_enter_fs || !may_perform_io) 656 return rc; 657 658 count_vm_event(COMPACTSTALL); 659 660 /* Compact each zone in the list */ 661 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 662 nodemask) { 663 int status; 664 665 status = compact_zone_order(zone, order, gfp_mask, sync); 666 rc = max(status, rc); 667 668 /* If a normal allocation would succeed, stop compacting */ 669 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0)) 670 break; 671 } 672 673 return rc; 674 } 675 676 677 /* Compact all zones within a node */ 678 static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) 679 { 680 int zoneid; 681 struct zone *zone; 682 683 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 684 685 zone = &pgdat->node_zones[zoneid]; 686 if (!populated_zone(zone)) 687 continue; 688 689 cc->nr_freepages = 0; 690 cc->nr_migratepages = 0; 691 cc->zone = zone; 692 INIT_LIST_HEAD(&cc->freepages); 693 INIT_LIST_HEAD(&cc->migratepages); 694 695 if (cc->order == -1 || !compaction_deferred(zone, cc->order)) 696 compact_zone(zone, cc); 697 698 if (cc->order > 0) { 699 int ok = zone_watermark_ok(zone, cc->order, 700 low_wmark_pages(zone), 0, 0); 701 if (ok && cc->order > zone->compact_order_failed) 702 zone->compact_order_failed = cc->order + 1; 703 /* Currently async compaction is never deferred. */ 704 else if (!ok && cc->sync) 705 defer_compaction(zone, cc->order); 706 } 707 708 VM_BUG_ON(!list_empty(&cc->freepages)); 709 VM_BUG_ON(!list_empty(&cc->migratepages)); 710 } 711 712 return 0; 713 } 714 715 int compact_pgdat(pg_data_t *pgdat, int order) 716 { 717 struct compact_control cc = { 718 .order = order, 719 .sync = false, 720 }; 721 722 return __compact_pgdat(pgdat, &cc); 723 } 724 725 static int compact_node(int nid) 726 { 727 struct compact_control cc = { 728 .order = -1, 729 .sync = true, 730 }; 731 732 return __compact_pgdat(NODE_DATA(nid), &cc); 733 } 734 735 /* Compact all nodes in the system */ 736 static int compact_nodes(void) 737 { 738 int nid; 739 740 /* Flush pending updates to the LRU lists */ 741 lru_add_drain_all(); 742 743 for_each_online_node(nid) 744 compact_node(nid); 745 746 return COMPACT_COMPLETE; 747 } 748 749 /* The written value is actually unused, all memory is compacted */ 750 int sysctl_compact_memory; 751 752 /* This is the entry point for compacting all nodes via /proc/sys/vm */ 753 int sysctl_compaction_handler(struct ctl_table *table, int write, 754 void __user *buffer, size_t *length, loff_t *ppos) 755 { 756 if (write) 757 return compact_nodes(); 758 759 return 0; 760 } 761 762 int sysctl_extfrag_handler(struct ctl_table *table, int write, 763 void __user *buffer, size_t *length, loff_t *ppos) 764 { 765 proc_dointvec_minmax(table, write, buffer, length, ppos); 766 767 return 0; 768 } 769 770 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 771 ssize_t sysfs_compact_node(struct device *dev, 772 struct device_attribute *attr, 773 const char *buf, size_t count) 774 { 775 int nid = dev->id; 776 777 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 778 /* Flush pending updates to the LRU lists */ 779 lru_add_drain_all(); 780 781 compact_node(nid); 782 } 783 784 return count; 785 } 786 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 787 788 int compaction_register_node(struct node *node) 789 { 790 return device_create_file(&node->dev, &dev_attr_compact); 791 } 792 793 void compaction_unregister_node(struct node *node) 794 { 795 return device_remove_file(&node->dev, &dev_attr_compact); 796 } 797 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 798