xref: /openbmc/linux/mm/compaction.c (revision 63dc02bd)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include "internal.h"
18 
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/compaction.h>
21 
22 /*
23  * compact_control is used to track pages being migrated and the free pages
24  * they are being migrated to during memory compaction. The free_pfn starts
25  * at the end of a zone and migrate_pfn begins at the start. Movable pages
26  * are moved to the end of a zone during a compaction run and the run
27  * completes when free_pfn <= migrate_pfn
28  */
29 struct compact_control {
30 	struct list_head freepages;	/* List of free pages to migrate to */
31 	struct list_head migratepages;	/* List of pages being migrated */
32 	unsigned long nr_freepages;	/* Number of isolated free pages */
33 	unsigned long nr_migratepages;	/* Number of pages to migrate */
34 	unsigned long free_pfn;		/* isolate_freepages search base */
35 	unsigned long migrate_pfn;	/* isolate_migratepages search base */
36 	bool sync;			/* Synchronous migration */
37 
38 	int order;			/* order a direct compactor needs */
39 	int migratetype;		/* MOVABLE, RECLAIMABLE etc */
40 	struct zone *zone;
41 };
42 
43 static unsigned long release_freepages(struct list_head *freelist)
44 {
45 	struct page *page, *next;
46 	unsigned long count = 0;
47 
48 	list_for_each_entry_safe(page, next, freelist, lru) {
49 		list_del(&page->lru);
50 		__free_page(page);
51 		count++;
52 	}
53 
54 	return count;
55 }
56 
57 /* Isolate free pages onto a private freelist. Must hold zone->lock */
58 static unsigned long isolate_freepages_block(struct zone *zone,
59 				unsigned long blockpfn,
60 				struct list_head *freelist)
61 {
62 	unsigned long zone_end_pfn, end_pfn;
63 	int nr_scanned = 0, total_isolated = 0;
64 	struct page *cursor;
65 
66 	/* Get the last PFN we should scan for free pages at */
67 	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
68 	end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
69 
70 	/* Find the first usable PFN in the block to initialse page cursor */
71 	for (; blockpfn < end_pfn; blockpfn++) {
72 		if (pfn_valid_within(blockpfn))
73 			break;
74 	}
75 	cursor = pfn_to_page(blockpfn);
76 
77 	/* Isolate free pages. This assumes the block is valid */
78 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
79 		int isolated, i;
80 		struct page *page = cursor;
81 
82 		if (!pfn_valid_within(blockpfn))
83 			continue;
84 		nr_scanned++;
85 
86 		if (!PageBuddy(page))
87 			continue;
88 
89 		/* Found a free page, break it into order-0 pages */
90 		isolated = split_free_page(page);
91 		total_isolated += isolated;
92 		for (i = 0; i < isolated; i++) {
93 			list_add(&page->lru, freelist);
94 			page++;
95 		}
96 
97 		/* If a page was split, advance to the end of it */
98 		if (isolated) {
99 			blockpfn += isolated - 1;
100 			cursor += isolated - 1;
101 		}
102 	}
103 
104 	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
105 	return total_isolated;
106 }
107 
108 /* Returns true if the page is within a block suitable for migration to */
109 static bool suitable_migration_target(struct page *page)
110 {
111 
112 	int migratetype = get_pageblock_migratetype(page);
113 
114 	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
115 	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
116 		return false;
117 
118 	/* If the page is a large free page, then allow migration */
119 	if (PageBuddy(page) && page_order(page) >= pageblock_order)
120 		return true;
121 
122 	/* If the block is MIGRATE_MOVABLE, allow migration */
123 	if (migratetype == MIGRATE_MOVABLE)
124 		return true;
125 
126 	/* Otherwise skip the block */
127 	return false;
128 }
129 
130 /*
131  * Based on information in the current compact_control, find blocks
132  * suitable for isolating free pages from and then isolate them.
133  */
134 static void isolate_freepages(struct zone *zone,
135 				struct compact_control *cc)
136 {
137 	struct page *page;
138 	unsigned long high_pfn, low_pfn, pfn;
139 	unsigned long flags;
140 	int nr_freepages = cc->nr_freepages;
141 	struct list_head *freelist = &cc->freepages;
142 
143 	/*
144 	 * Initialise the free scanner. The starting point is where we last
145 	 * scanned from (or the end of the zone if starting). The low point
146 	 * is the end of the pageblock the migration scanner is using.
147 	 */
148 	pfn = cc->free_pfn;
149 	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
150 
151 	/*
152 	 * Take care that if the migration scanner is at the end of the zone
153 	 * that the free scanner does not accidentally move to the next zone
154 	 * in the next isolation cycle.
155 	 */
156 	high_pfn = min(low_pfn, pfn);
157 
158 	/*
159 	 * Isolate free pages until enough are available to migrate the
160 	 * pages on cc->migratepages. We stop searching if the migrate
161 	 * and free page scanners meet or enough free pages are isolated.
162 	 */
163 	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
164 					pfn -= pageblock_nr_pages) {
165 		unsigned long isolated;
166 
167 		if (!pfn_valid(pfn))
168 			continue;
169 
170 		/*
171 		 * Check for overlapping nodes/zones. It's possible on some
172 		 * configurations to have a setup like
173 		 * node0 node1 node0
174 		 * i.e. it's possible that all pages within a zones range of
175 		 * pages do not belong to a single zone.
176 		 */
177 		page = pfn_to_page(pfn);
178 		if (page_zone(page) != zone)
179 			continue;
180 
181 		/* Check the block is suitable for migration */
182 		if (!suitable_migration_target(page))
183 			continue;
184 
185 		/*
186 		 * Found a block suitable for isolating free pages from. Now
187 		 * we disabled interrupts, double check things are ok and
188 		 * isolate the pages. This is to minimise the time IRQs
189 		 * are disabled
190 		 */
191 		isolated = 0;
192 		spin_lock_irqsave(&zone->lock, flags);
193 		if (suitable_migration_target(page)) {
194 			isolated = isolate_freepages_block(zone, pfn, freelist);
195 			nr_freepages += isolated;
196 		}
197 		spin_unlock_irqrestore(&zone->lock, flags);
198 
199 		/*
200 		 * Record the highest PFN we isolated pages from. When next
201 		 * looking for free pages, the search will restart here as
202 		 * page migration may have returned some pages to the allocator
203 		 */
204 		if (isolated)
205 			high_pfn = max(high_pfn, pfn);
206 	}
207 
208 	/* split_free_page does not map the pages */
209 	list_for_each_entry(page, freelist, lru) {
210 		arch_alloc_page(page, 0);
211 		kernel_map_pages(page, 1, 1);
212 	}
213 
214 	cc->free_pfn = high_pfn;
215 	cc->nr_freepages = nr_freepages;
216 }
217 
218 /* Update the number of anon and file isolated pages in the zone */
219 static void acct_isolated(struct zone *zone, struct compact_control *cc)
220 {
221 	struct page *page;
222 	unsigned int count[2] = { 0, };
223 
224 	list_for_each_entry(page, &cc->migratepages, lru)
225 		count[!!page_is_file_cache(page)]++;
226 
227 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
228 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
229 }
230 
231 /* Similar to reclaim, but different enough that they don't share logic */
232 static bool too_many_isolated(struct zone *zone)
233 {
234 	unsigned long active, inactive, isolated;
235 
236 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
237 					zone_page_state(zone, NR_INACTIVE_ANON);
238 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
239 					zone_page_state(zone, NR_ACTIVE_ANON);
240 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
241 					zone_page_state(zone, NR_ISOLATED_ANON);
242 
243 	return isolated > (inactive + active) / 2;
244 }
245 
246 /* possible outcome of isolate_migratepages */
247 typedef enum {
248 	ISOLATE_ABORT,		/* Abort compaction now */
249 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
250 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
251 } isolate_migrate_t;
252 
253 /*
254  * Isolate all pages that can be migrated from the block pointed to by
255  * the migrate scanner within compact_control.
256  */
257 static isolate_migrate_t isolate_migratepages(struct zone *zone,
258 					struct compact_control *cc)
259 {
260 	unsigned long low_pfn, end_pfn;
261 	unsigned long last_pageblock_nr = 0, pageblock_nr;
262 	unsigned long nr_scanned = 0, nr_isolated = 0;
263 	struct list_head *migratelist = &cc->migratepages;
264 	isolate_mode_t mode = ISOLATE_ACTIVE|ISOLATE_INACTIVE;
265 
266 	/* Do not scan outside zone boundaries */
267 	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
268 
269 	/* Only scan within a pageblock boundary */
270 	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
271 
272 	/* Do not cross the free scanner or scan within a memory hole */
273 	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
274 		cc->migrate_pfn = end_pfn;
275 		return ISOLATE_NONE;
276 	}
277 
278 	/*
279 	 * Ensure that there are not too many pages isolated from the LRU
280 	 * list by either parallel reclaimers or compaction. If there are,
281 	 * delay for some time until fewer pages are isolated
282 	 */
283 	while (unlikely(too_many_isolated(zone))) {
284 		/* async migration should just abort */
285 		if (!cc->sync)
286 			return ISOLATE_ABORT;
287 
288 		congestion_wait(BLK_RW_ASYNC, HZ/10);
289 
290 		if (fatal_signal_pending(current))
291 			return ISOLATE_ABORT;
292 	}
293 
294 	/* Time to isolate some pages for migration */
295 	cond_resched();
296 	spin_lock_irq(&zone->lru_lock);
297 	for (; low_pfn < end_pfn; low_pfn++) {
298 		struct page *page;
299 		bool locked = true;
300 
301 		/* give a chance to irqs before checking need_resched() */
302 		if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
303 			spin_unlock_irq(&zone->lru_lock);
304 			locked = false;
305 		}
306 		if (need_resched() || spin_is_contended(&zone->lru_lock)) {
307 			if (locked)
308 				spin_unlock_irq(&zone->lru_lock);
309 			cond_resched();
310 			spin_lock_irq(&zone->lru_lock);
311 			if (fatal_signal_pending(current))
312 				break;
313 		} else if (!locked)
314 			spin_lock_irq(&zone->lru_lock);
315 
316 		/*
317 		 * migrate_pfn does not necessarily start aligned to a
318 		 * pageblock. Ensure that pfn_valid is called when moving
319 		 * into a new MAX_ORDER_NR_PAGES range in case of large
320 		 * memory holes within the zone
321 		 */
322 		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
323 			if (!pfn_valid(low_pfn)) {
324 				low_pfn += MAX_ORDER_NR_PAGES - 1;
325 				continue;
326 			}
327 		}
328 
329 		if (!pfn_valid_within(low_pfn))
330 			continue;
331 		nr_scanned++;
332 
333 		/*
334 		 * Get the page and ensure the page is within the same zone.
335 		 * See the comment in isolate_freepages about overlapping
336 		 * nodes. It is deliberate that the new zone lock is not taken
337 		 * as memory compaction should not move pages between nodes.
338 		 */
339 		page = pfn_to_page(low_pfn);
340 		if (page_zone(page) != zone)
341 			continue;
342 
343 		/* Skip if free */
344 		if (PageBuddy(page))
345 			continue;
346 
347 		/*
348 		 * For async migration, also only scan in MOVABLE blocks. Async
349 		 * migration is optimistic to see if the minimum amount of work
350 		 * satisfies the allocation
351 		 */
352 		pageblock_nr = low_pfn >> pageblock_order;
353 		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
354 				get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
355 			low_pfn += pageblock_nr_pages;
356 			low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
357 			last_pageblock_nr = pageblock_nr;
358 			continue;
359 		}
360 
361 		if (!PageLRU(page))
362 			continue;
363 
364 		/*
365 		 * PageLRU is set, and lru_lock excludes isolation,
366 		 * splitting and collapsing (collapsing has already
367 		 * happened if PageLRU is set).
368 		 */
369 		if (PageTransHuge(page)) {
370 			low_pfn += (1 << compound_order(page)) - 1;
371 			continue;
372 		}
373 
374 		if (!cc->sync)
375 			mode |= ISOLATE_ASYNC_MIGRATE;
376 
377 		/* Try isolate the page */
378 		if (__isolate_lru_page(page, mode, 0) != 0)
379 			continue;
380 
381 		VM_BUG_ON(PageTransCompound(page));
382 
383 		/* Successfully isolated */
384 		del_page_from_lru_list(zone, page, page_lru(page));
385 		list_add(&page->lru, migratelist);
386 		cc->nr_migratepages++;
387 		nr_isolated++;
388 
389 		/* Avoid isolating too much */
390 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
391 			++low_pfn;
392 			break;
393 		}
394 	}
395 
396 	acct_isolated(zone, cc);
397 
398 	spin_unlock_irq(&zone->lru_lock);
399 	cc->migrate_pfn = low_pfn;
400 
401 	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
402 
403 	return ISOLATE_SUCCESS;
404 }
405 
406 /*
407  * This is a migrate-callback that "allocates" freepages by taking pages
408  * from the isolated freelists in the block we are migrating to.
409  */
410 static struct page *compaction_alloc(struct page *migratepage,
411 					unsigned long data,
412 					int **result)
413 {
414 	struct compact_control *cc = (struct compact_control *)data;
415 	struct page *freepage;
416 
417 	/* Isolate free pages if necessary */
418 	if (list_empty(&cc->freepages)) {
419 		isolate_freepages(cc->zone, cc);
420 
421 		if (list_empty(&cc->freepages))
422 			return NULL;
423 	}
424 
425 	freepage = list_entry(cc->freepages.next, struct page, lru);
426 	list_del(&freepage->lru);
427 	cc->nr_freepages--;
428 
429 	return freepage;
430 }
431 
432 /*
433  * We cannot control nr_migratepages and nr_freepages fully when migration is
434  * running as migrate_pages() has no knowledge of compact_control. When
435  * migration is complete, we count the number of pages on the lists by hand.
436  */
437 static void update_nr_listpages(struct compact_control *cc)
438 {
439 	int nr_migratepages = 0;
440 	int nr_freepages = 0;
441 	struct page *page;
442 
443 	list_for_each_entry(page, &cc->migratepages, lru)
444 		nr_migratepages++;
445 	list_for_each_entry(page, &cc->freepages, lru)
446 		nr_freepages++;
447 
448 	cc->nr_migratepages = nr_migratepages;
449 	cc->nr_freepages = nr_freepages;
450 }
451 
452 static int compact_finished(struct zone *zone,
453 			    struct compact_control *cc)
454 {
455 	unsigned int order;
456 	unsigned long watermark;
457 
458 	if (fatal_signal_pending(current))
459 		return COMPACT_PARTIAL;
460 
461 	/* Compaction run completes if the migrate and free scanner meet */
462 	if (cc->free_pfn <= cc->migrate_pfn)
463 		return COMPACT_COMPLETE;
464 
465 	/*
466 	 * order == -1 is expected when compacting via
467 	 * /proc/sys/vm/compact_memory
468 	 */
469 	if (cc->order == -1)
470 		return COMPACT_CONTINUE;
471 
472 	/* Compaction run is not finished if the watermark is not met */
473 	watermark = low_wmark_pages(zone);
474 	watermark += (1 << cc->order);
475 
476 	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
477 		return COMPACT_CONTINUE;
478 
479 	/* Direct compactor: Is a suitable page free? */
480 	for (order = cc->order; order < MAX_ORDER; order++) {
481 		/* Job done if page is free of the right migratetype */
482 		if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
483 			return COMPACT_PARTIAL;
484 
485 		/* Job done if allocation would set block type */
486 		if (order >= pageblock_order && zone->free_area[order].nr_free)
487 			return COMPACT_PARTIAL;
488 	}
489 
490 	return COMPACT_CONTINUE;
491 }
492 
493 /*
494  * compaction_suitable: Is this suitable to run compaction on this zone now?
495  * Returns
496  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
497  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
498  *   COMPACT_CONTINUE - If compaction should run now
499  */
500 unsigned long compaction_suitable(struct zone *zone, int order)
501 {
502 	int fragindex;
503 	unsigned long watermark;
504 
505 	/*
506 	 * order == -1 is expected when compacting via
507 	 * /proc/sys/vm/compact_memory
508 	 */
509 	if (order == -1)
510 		return COMPACT_CONTINUE;
511 
512 	/*
513 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
514 	 * This is because during migration, copies of pages need to be
515 	 * allocated and for a short time, the footprint is higher
516 	 */
517 	watermark = low_wmark_pages(zone) + (2UL << order);
518 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
519 		return COMPACT_SKIPPED;
520 
521 	/*
522 	 * fragmentation index determines if allocation failures are due to
523 	 * low memory or external fragmentation
524 	 *
525 	 * index of -1000 implies allocations might succeed depending on
526 	 * watermarks
527 	 * index towards 0 implies failure is due to lack of memory
528 	 * index towards 1000 implies failure is due to fragmentation
529 	 *
530 	 * Only compact if a failure would be due to fragmentation.
531 	 */
532 	fragindex = fragmentation_index(zone, order);
533 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
534 		return COMPACT_SKIPPED;
535 
536 	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
537 	    0, 0))
538 		return COMPACT_PARTIAL;
539 
540 	return COMPACT_CONTINUE;
541 }
542 
543 static int compact_zone(struct zone *zone, struct compact_control *cc)
544 {
545 	int ret;
546 
547 	ret = compaction_suitable(zone, cc->order);
548 	switch (ret) {
549 	case COMPACT_PARTIAL:
550 	case COMPACT_SKIPPED:
551 		/* Compaction is likely to fail */
552 		return ret;
553 	case COMPACT_CONTINUE:
554 		/* Fall through to compaction */
555 		;
556 	}
557 
558 	/* Setup to move all movable pages to the end of the zone */
559 	cc->migrate_pfn = zone->zone_start_pfn;
560 	cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
561 	cc->free_pfn &= ~(pageblock_nr_pages-1);
562 
563 	migrate_prep_local();
564 
565 	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
566 		unsigned long nr_migrate, nr_remaining;
567 		int err;
568 
569 		switch (isolate_migratepages(zone, cc)) {
570 		case ISOLATE_ABORT:
571 			ret = COMPACT_PARTIAL;
572 			goto out;
573 		case ISOLATE_NONE:
574 			continue;
575 		case ISOLATE_SUCCESS:
576 			;
577 		}
578 
579 		nr_migrate = cc->nr_migratepages;
580 		err = migrate_pages(&cc->migratepages, compaction_alloc,
581 				(unsigned long)cc, false,
582 				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC);
583 		update_nr_listpages(cc);
584 		nr_remaining = cc->nr_migratepages;
585 
586 		count_vm_event(COMPACTBLOCKS);
587 		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
588 		if (nr_remaining)
589 			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
590 		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
591 						nr_remaining);
592 
593 		/* Release LRU pages not migrated */
594 		if (err) {
595 			putback_lru_pages(&cc->migratepages);
596 			cc->nr_migratepages = 0;
597 		}
598 
599 	}
600 
601 out:
602 	/* Release free pages and check accounting */
603 	cc->nr_freepages -= release_freepages(&cc->freepages);
604 	VM_BUG_ON(cc->nr_freepages != 0);
605 
606 	return ret;
607 }
608 
609 static unsigned long compact_zone_order(struct zone *zone,
610 				 int order, gfp_t gfp_mask,
611 				 bool sync)
612 {
613 	struct compact_control cc = {
614 		.nr_freepages = 0,
615 		.nr_migratepages = 0,
616 		.order = order,
617 		.migratetype = allocflags_to_migratetype(gfp_mask),
618 		.zone = zone,
619 		.sync = sync,
620 	};
621 	INIT_LIST_HEAD(&cc.freepages);
622 	INIT_LIST_HEAD(&cc.migratepages);
623 
624 	return compact_zone(zone, &cc);
625 }
626 
627 int sysctl_extfrag_threshold = 500;
628 
629 /**
630  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
631  * @zonelist: The zonelist used for the current allocation
632  * @order: The order of the current allocation
633  * @gfp_mask: The GFP mask of the current allocation
634  * @nodemask: The allowed nodes to allocate from
635  * @sync: Whether migration is synchronous or not
636  *
637  * This is the main entry point for direct page compaction.
638  */
639 unsigned long try_to_compact_pages(struct zonelist *zonelist,
640 			int order, gfp_t gfp_mask, nodemask_t *nodemask,
641 			bool sync)
642 {
643 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
644 	int may_enter_fs = gfp_mask & __GFP_FS;
645 	int may_perform_io = gfp_mask & __GFP_IO;
646 	struct zoneref *z;
647 	struct zone *zone;
648 	int rc = COMPACT_SKIPPED;
649 
650 	/*
651 	 * Check whether it is worth even starting compaction. The order check is
652 	 * made because an assumption is made that the page allocator can satisfy
653 	 * the "cheaper" orders without taking special steps
654 	 */
655 	if (!order || !may_enter_fs || !may_perform_io)
656 		return rc;
657 
658 	count_vm_event(COMPACTSTALL);
659 
660 	/* Compact each zone in the list */
661 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
662 								nodemask) {
663 		int status;
664 
665 		status = compact_zone_order(zone, order, gfp_mask, sync);
666 		rc = max(status, rc);
667 
668 		/* If a normal allocation would succeed, stop compacting */
669 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
670 			break;
671 	}
672 
673 	return rc;
674 }
675 
676 
677 /* Compact all zones within a node */
678 static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
679 {
680 	int zoneid;
681 	struct zone *zone;
682 
683 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
684 
685 		zone = &pgdat->node_zones[zoneid];
686 		if (!populated_zone(zone))
687 			continue;
688 
689 		cc->nr_freepages = 0;
690 		cc->nr_migratepages = 0;
691 		cc->zone = zone;
692 		INIT_LIST_HEAD(&cc->freepages);
693 		INIT_LIST_HEAD(&cc->migratepages);
694 
695 		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
696 			compact_zone(zone, cc);
697 
698 		if (cc->order > 0) {
699 			int ok = zone_watermark_ok(zone, cc->order,
700 						low_wmark_pages(zone), 0, 0);
701 			if (ok && cc->order > zone->compact_order_failed)
702 				zone->compact_order_failed = cc->order + 1;
703 			/* Currently async compaction is never deferred. */
704 			else if (!ok && cc->sync)
705 				defer_compaction(zone, cc->order);
706 		}
707 
708 		VM_BUG_ON(!list_empty(&cc->freepages));
709 		VM_BUG_ON(!list_empty(&cc->migratepages));
710 	}
711 
712 	return 0;
713 }
714 
715 int compact_pgdat(pg_data_t *pgdat, int order)
716 {
717 	struct compact_control cc = {
718 		.order = order,
719 		.sync = false,
720 	};
721 
722 	return __compact_pgdat(pgdat, &cc);
723 }
724 
725 static int compact_node(int nid)
726 {
727 	struct compact_control cc = {
728 		.order = -1,
729 		.sync = true,
730 	};
731 
732 	return __compact_pgdat(NODE_DATA(nid), &cc);
733 }
734 
735 /* Compact all nodes in the system */
736 static int compact_nodes(void)
737 {
738 	int nid;
739 
740 	/* Flush pending updates to the LRU lists */
741 	lru_add_drain_all();
742 
743 	for_each_online_node(nid)
744 		compact_node(nid);
745 
746 	return COMPACT_COMPLETE;
747 }
748 
749 /* The written value is actually unused, all memory is compacted */
750 int sysctl_compact_memory;
751 
752 /* This is the entry point for compacting all nodes via /proc/sys/vm */
753 int sysctl_compaction_handler(struct ctl_table *table, int write,
754 			void __user *buffer, size_t *length, loff_t *ppos)
755 {
756 	if (write)
757 		return compact_nodes();
758 
759 	return 0;
760 }
761 
762 int sysctl_extfrag_handler(struct ctl_table *table, int write,
763 			void __user *buffer, size_t *length, loff_t *ppos)
764 {
765 	proc_dointvec_minmax(table, write, buffer, length, ppos);
766 
767 	return 0;
768 }
769 
770 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
771 ssize_t sysfs_compact_node(struct device *dev,
772 			struct device_attribute *attr,
773 			const char *buf, size_t count)
774 {
775 	int nid = dev->id;
776 
777 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
778 		/* Flush pending updates to the LRU lists */
779 		lru_add_drain_all();
780 
781 		compact_node(nid);
782 	}
783 
784 	return count;
785 }
786 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
787 
788 int compaction_register_node(struct node *node)
789 {
790 	return device_create_file(&node->dev, &dev_attr_compact);
791 }
792 
793 void compaction_unregister_node(struct node *node)
794 {
795 	return device_remove_file(&node->dev, &dev_attr_compact);
796 }
797 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
798