1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 /* 30 * Fragmentation score check interval for proactive compaction purposes. 31 */ 32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500) 33 34 static inline void count_compact_event(enum vm_event_item item) 35 { 36 count_vm_event(item); 37 } 38 39 static inline void count_compact_events(enum vm_event_item item, long delta) 40 { 41 count_vm_events(item, delta); 42 } 43 #else 44 #define count_compact_event(item) do { } while (0) 45 #define count_compact_events(item, delta) do { } while (0) 46 #endif 47 48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/compaction.h> 52 53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 55 56 /* 57 * Page order with-respect-to which proactive compaction 58 * calculates external fragmentation, which is used as 59 * the "fragmentation score" of a node/zone. 60 */ 61 #if defined CONFIG_TRANSPARENT_HUGEPAGE 62 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 63 #elif defined CONFIG_HUGETLBFS 64 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 65 #else 66 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 67 #endif 68 69 static unsigned long release_freepages(struct list_head *freelist) 70 { 71 struct page *page, *next; 72 unsigned long high_pfn = 0; 73 74 list_for_each_entry_safe(page, next, freelist, lru) { 75 unsigned long pfn = page_to_pfn(page); 76 list_del(&page->lru); 77 __free_page(page); 78 if (pfn > high_pfn) 79 high_pfn = pfn; 80 } 81 82 return high_pfn; 83 } 84 85 static void split_map_pages(struct list_head *list) 86 { 87 unsigned int i, order, nr_pages; 88 struct page *page, *next; 89 LIST_HEAD(tmp_list); 90 91 list_for_each_entry_safe(page, next, list, lru) { 92 list_del(&page->lru); 93 94 order = page_private(page); 95 nr_pages = 1 << order; 96 97 post_alloc_hook(page, order, __GFP_MOVABLE); 98 if (order) 99 split_page(page, order); 100 101 for (i = 0; i < nr_pages; i++) { 102 list_add(&page->lru, &tmp_list); 103 page++; 104 } 105 } 106 107 list_splice(&tmp_list, list); 108 } 109 110 #ifdef CONFIG_COMPACTION 111 bool PageMovable(struct page *page) 112 { 113 const struct movable_operations *mops; 114 115 VM_BUG_ON_PAGE(!PageLocked(page), page); 116 if (!__PageMovable(page)) 117 return false; 118 119 mops = page_movable_ops(page); 120 if (mops) 121 return true; 122 123 return false; 124 } 125 126 void __SetPageMovable(struct page *page, const struct movable_operations *mops) 127 { 128 VM_BUG_ON_PAGE(!PageLocked(page), page); 129 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page); 130 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE); 131 } 132 EXPORT_SYMBOL(__SetPageMovable); 133 134 void __ClearPageMovable(struct page *page) 135 { 136 VM_BUG_ON_PAGE(!PageMovable(page), page); 137 /* 138 * This page still has the type of a movable page, but it's 139 * actually not movable any more. 140 */ 141 page->mapping = (void *)PAGE_MAPPING_MOVABLE; 142 } 143 EXPORT_SYMBOL(__ClearPageMovable); 144 145 /* Do not skip compaction more than 64 times */ 146 #define COMPACT_MAX_DEFER_SHIFT 6 147 148 /* 149 * Compaction is deferred when compaction fails to result in a page 150 * allocation success. 1 << compact_defer_shift, compactions are skipped up 151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 152 */ 153 static void defer_compaction(struct zone *zone, int order) 154 { 155 zone->compact_considered = 0; 156 zone->compact_defer_shift++; 157 158 if (order < zone->compact_order_failed) 159 zone->compact_order_failed = order; 160 161 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 162 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 163 164 trace_mm_compaction_defer_compaction(zone, order); 165 } 166 167 /* Returns true if compaction should be skipped this time */ 168 static bool compaction_deferred(struct zone *zone, int order) 169 { 170 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 171 172 if (order < zone->compact_order_failed) 173 return false; 174 175 /* Avoid possible overflow */ 176 if (++zone->compact_considered >= defer_limit) { 177 zone->compact_considered = defer_limit; 178 return false; 179 } 180 181 trace_mm_compaction_deferred(zone, order); 182 183 return true; 184 } 185 186 /* 187 * Update defer tracking counters after successful compaction of given order, 188 * which means an allocation either succeeded (alloc_success == true) or is 189 * expected to succeed. 190 */ 191 void compaction_defer_reset(struct zone *zone, int order, 192 bool alloc_success) 193 { 194 if (alloc_success) { 195 zone->compact_considered = 0; 196 zone->compact_defer_shift = 0; 197 } 198 if (order >= zone->compact_order_failed) 199 zone->compact_order_failed = order + 1; 200 201 trace_mm_compaction_defer_reset(zone, order); 202 } 203 204 /* Returns true if restarting compaction after many failures */ 205 static bool compaction_restarting(struct zone *zone, int order) 206 { 207 if (order < zone->compact_order_failed) 208 return false; 209 210 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 211 zone->compact_considered >= 1UL << zone->compact_defer_shift; 212 } 213 214 /* Returns true if the pageblock should be scanned for pages to isolate. */ 215 static inline bool isolation_suitable(struct compact_control *cc, 216 struct page *page) 217 { 218 if (cc->ignore_skip_hint) 219 return true; 220 221 return !get_pageblock_skip(page); 222 } 223 224 static void reset_cached_positions(struct zone *zone) 225 { 226 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 227 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 228 zone->compact_cached_free_pfn = 229 pageblock_start_pfn(zone_end_pfn(zone) - 1); 230 } 231 232 /* 233 * Compound pages of >= pageblock_order should consistently be skipped until 234 * released. It is always pointless to compact pages of such order (if they are 235 * migratable), and the pageblocks they occupy cannot contain any free pages. 236 */ 237 static bool pageblock_skip_persistent(struct page *page) 238 { 239 if (!PageCompound(page)) 240 return false; 241 242 page = compound_head(page); 243 244 if (compound_order(page) >= pageblock_order) 245 return true; 246 247 return false; 248 } 249 250 static bool 251 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 252 bool check_target) 253 { 254 struct page *page = pfn_to_online_page(pfn); 255 struct page *block_page; 256 struct page *end_page; 257 unsigned long block_pfn; 258 259 if (!page) 260 return false; 261 if (zone != page_zone(page)) 262 return false; 263 if (pageblock_skip_persistent(page)) 264 return false; 265 266 /* 267 * If skip is already cleared do no further checking once the 268 * restart points have been set. 269 */ 270 if (check_source && check_target && !get_pageblock_skip(page)) 271 return true; 272 273 /* 274 * If clearing skip for the target scanner, do not select a 275 * non-movable pageblock as the starting point. 276 */ 277 if (!check_source && check_target && 278 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 279 return false; 280 281 /* Ensure the start of the pageblock or zone is online and valid */ 282 block_pfn = pageblock_start_pfn(pfn); 283 block_pfn = max(block_pfn, zone->zone_start_pfn); 284 block_page = pfn_to_online_page(block_pfn); 285 if (block_page) { 286 page = block_page; 287 pfn = block_pfn; 288 } 289 290 /* Ensure the end of the pageblock or zone is online and valid */ 291 block_pfn = pageblock_end_pfn(pfn) - 1; 292 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 293 end_page = pfn_to_online_page(block_pfn); 294 if (!end_page) 295 return false; 296 297 /* 298 * Only clear the hint if a sample indicates there is either a 299 * free page or an LRU page in the block. One or other condition 300 * is necessary for the block to be a migration source/target. 301 */ 302 do { 303 if (check_source && PageLRU(page)) { 304 clear_pageblock_skip(page); 305 return true; 306 } 307 308 if (check_target && PageBuddy(page)) { 309 clear_pageblock_skip(page); 310 return true; 311 } 312 313 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 314 } while (page <= end_page); 315 316 return false; 317 } 318 319 /* 320 * This function is called to clear all cached information on pageblocks that 321 * should be skipped for page isolation when the migrate and free page scanner 322 * meet. 323 */ 324 static void __reset_isolation_suitable(struct zone *zone) 325 { 326 unsigned long migrate_pfn = zone->zone_start_pfn; 327 unsigned long free_pfn = zone_end_pfn(zone) - 1; 328 unsigned long reset_migrate = free_pfn; 329 unsigned long reset_free = migrate_pfn; 330 bool source_set = false; 331 bool free_set = false; 332 333 if (!zone->compact_blockskip_flush) 334 return; 335 336 zone->compact_blockskip_flush = false; 337 338 /* 339 * Walk the zone and update pageblock skip information. Source looks 340 * for PageLRU while target looks for PageBuddy. When the scanner 341 * is found, both PageBuddy and PageLRU are checked as the pageblock 342 * is suitable as both source and target. 343 */ 344 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 345 free_pfn -= pageblock_nr_pages) { 346 cond_resched(); 347 348 /* Update the migrate PFN */ 349 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 350 migrate_pfn < reset_migrate) { 351 source_set = true; 352 reset_migrate = migrate_pfn; 353 zone->compact_init_migrate_pfn = reset_migrate; 354 zone->compact_cached_migrate_pfn[0] = reset_migrate; 355 zone->compact_cached_migrate_pfn[1] = reset_migrate; 356 } 357 358 /* Update the free PFN */ 359 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 360 free_pfn > reset_free) { 361 free_set = true; 362 reset_free = free_pfn; 363 zone->compact_init_free_pfn = reset_free; 364 zone->compact_cached_free_pfn = reset_free; 365 } 366 } 367 368 /* Leave no distance if no suitable block was reset */ 369 if (reset_migrate >= reset_free) { 370 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 371 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 372 zone->compact_cached_free_pfn = free_pfn; 373 } 374 } 375 376 void reset_isolation_suitable(pg_data_t *pgdat) 377 { 378 int zoneid; 379 380 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 381 struct zone *zone = &pgdat->node_zones[zoneid]; 382 if (!populated_zone(zone)) 383 continue; 384 385 /* Only flush if a full compaction finished recently */ 386 if (zone->compact_blockskip_flush) 387 __reset_isolation_suitable(zone); 388 } 389 } 390 391 /* 392 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 393 * locks are not required for read/writers. Returns true if it was already set. 394 */ 395 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 396 unsigned long pfn) 397 { 398 bool skip; 399 400 /* Do no update if skip hint is being ignored */ 401 if (cc->ignore_skip_hint) 402 return false; 403 404 if (!pageblock_aligned(pfn)) 405 return false; 406 407 skip = get_pageblock_skip(page); 408 if (!skip && !cc->no_set_skip_hint) 409 set_pageblock_skip(page); 410 411 return skip; 412 } 413 414 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 415 { 416 struct zone *zone = cc->zone; 417 418 pfn = pageblock_end_pfn(pfn); 419 420 /* Set for isolation rather than compaction */ 421 if (cc->no_set_skip_hint) 422 return; 423 424 if (pfn > zone->compact_cached_migrate_pfn[0]) 425 zone->compact_cached_migrate_pfn[0] = pfn; 426 if (cc->mode != MIGRATE_ASYNC && 427 pfn > zone->compact_cached_migrate_pfn[1]) 428 zone->compact_cached_migrate_pfn[1] = pfn; 429 } 430 431 /* 432 * If no pages were isolated then mark this pageblock to be skipped in the 433 * future. The information is later cleared by __reset_isolation_suitable(). 434 */ 435 static void update_pageblock_skip(struct compact_control *cc, 436 struct page *page, unsigned long pfn) 437 { 438 struct zone *zone = cc->zone; 439 440 if (cc->no_set_skip_hint) 441 return; 442 443 if (!page) 444 return; 445 446 set_pageblock_skip(page); 447 448 /* Update where async and sync compaction should restart */ 449 if (pfn < zone->compact_cached_free_pfn) 450 zone->compact_cached_free_pfn = pfn; 451 } 452 #else 453 static inline bool isolation_suitable(struct compact_control *cc, 454 struct page *page) 455 { 456 return true; 457 } 458 459 static inline bool pageblock_skip_persistent(struct page *page) 460 { 461 return false; 462 } 463 464 static inline void update_pageblock_skip(struct compact_control *cc, 465 struct page *page, unsigned long pfn) 466 { 467 } 468 469 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 470 { 471 } 472 473 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 474 unsigned long pfn) 475 { 476 return false; 477 } 478 #endif /* CONFIG_COMPACTION */ 479 480 /* 481 * Compaction requires the taking of some coarse locks that are potentially 482 * very heavily contended. For async compaction, trylock and record if the 483 * lock is contended. The lock will still be acquired but compaction will 484 * abort when the current block is finished regardless of success rate. 485 * Sync compaction acquires the lock. 486 * 487 * Always returns true which makes it easier to track lock state in callers. 488 */ 489 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 490 struct compact_control *cc) 491 __acquires(lock) 492 { 493 /* Track if the lock is contended in async mode */ 494 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 495 if (spin_trylock_irqsave(lock, *flags)) 496 return true; 497 498 cc->contended = true; 499 } 500 501 spin_lock_irqsave(lock, *flags); 502 return true; 503 } 504 505 /* 506 * Compaction requires the taking of some coarse locks that are potentially 507 * very heavily contended. The lock should be periodically unlocked to avoid 508 * having disabled IRQs for a long time, even when there is nobody waiting on 509 * the lock. It might also be that allowing the IRQs will result in 510 * need_resched() becoming true. If scheduling is needed, compaction schedules. 511 * Either compaction type will also abort if a fatal signal is pending. 512 * In either case if the lock was locked, it is dropped and not regained. 513 * 514 * Returns true if compaction should abort due to fatal signal pending. 515 * Returns false when compaction can continue. 516 */ 517 static bool compact_unlock_should_abort(spinlock_t *lock, 518 unsigned long flags, bool *locked, struct compact_control *cc) 519 { 520 if (*locked) { 521 spin_unlock_irqrestore(lock, flags); 522 *locked = false; 523 } 524 525 if (fatal_signal_pending(current)) { 526 cc->contended = true; 527 return true; 528 } 529 530 cond_resched(); 531 532 return false; 533 } 534 535 /* 536 * Isolate free pages onto a private freelist. If @strict is true, will abort 537 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 538 * (even though it may still end up isolating some pages). 539 */ 540 static unsigned long isolate_freepages_block(struct compact_control *cc, 541 unsigned long *start_pfn, 542 unsigned long end_pfn, 543 struct list_head *freelist, 544 unsigned int stride, 545 bool strict) 546 { 547 int nr_scanned = 0, total_isolated = 0; 548 struct page *cursor; 549 unsigned long flags = 0; 550 bool locked = false; 551 unsigned long blockpfn = *start_pfn; 552 unsigned int order; 553 554 /* Strict mode is for isolation, speed is secondary */ 555 if (strict) 556 stride = 1; 557 558 cursor = pfn_to_page(blockpfn); 559 560 /* Isolate free pages. */ 561 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 562 int isolated; 563 struct page *page = cursor; 564 565 /* 566 * Periodically drop the lock (if held) regardless of its 567 * contention, to give chance to IRQs. Abort if fatal signal 568 * pending. 569 */ 570 if (!(blockpfn % COMPACT_CLUSTER_MAX) 571 && compact_unlock_should_abort(&cc->zone->lock, flags, 572 &locked, cc)) 573 break; 574 575 nr_scanned++; 576 577 /* 578 * For compound pages such as THP and hugetlbfs, we can save 579 * potentially a lot of iterations if we skip them at once. 580 * The check is racy, but we can consider only valid values 581 * and the only danger is skipping too much. 582 */ 583 if (PageCompound(page)) { 584 const unsigned int order = compound_order(page); 585 586 if (likely(order <= MAX_ORDER)) { 587 blockpfn += (1UL << order) - 1; 588 cursor += (1UL << order) - 1; 589 nr_scanned += (1UL << order) - 1; 590 } 591 goto isolate_fail; 592 } 593 594 if (!PageBuddy(page)) 595 goto isolate_fail; 596 597 /* If we already hold the lock, we can skip some rechecking. */ 598 if (!locked) { 599 locked = compact_lock_irqsave(&cc->zone->lock, 600 &flags, cc); 601 602 /* Recheck this is a buddy page under lock */ 603 if (!PageBuddy(page)) 604 goto isolate_fail; 605 } 606 607 /* Found a free page, will break it into order-0 pages */ 608 order = buddy_order(page); 609 isolated = __isolate_free_page(page, order); 610 if (!isolated) 611 break; 612 set_page_private(page, order); 613 614 nr_scanned += isolated - 1; 615 total_isolated += isolated; 616 cc->nr_freepages += isolated; 617 list_add_tail(&page->lru, freelist); 618 619 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 620 blockpfn += isolated; 621 break; 622 } 623 /* Advance to the end of split page */ 624 blockpfn += isolated - 1; 625 cursor += isolated - 1; 626 continue; 627 628 isolate_fail: 629 if (strict) 630 break; 631 else 632 continue; 633 634 } 635 636 if (locked) 637 spin_unlock_irqrestore(&cc->zone->lock, flags); 638 639 /* 640 * There is a tiny chance that we have read bogus compound_order(), 641 * so be careful to not go outside of the pageblock. 642 */ 643 if (unlikely(blockpfn > end_pfn)) 644 blockpfn = end_pfn; 645 646 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 647 nr_scanned, total_isolated); 648 649 /* Record how far we have got within the block */ 650 *start_pfn = blockpfn; 651 652 /* 653 * If strict isolation is requested by CMA then check that all the 654 * pages requested were isolated. If there were any failures, 0 is 655 * returned and CMA will fail. 656 */ 657 if (strict && blockpfn < end_pfn) 658 total_isolated = 0; 659 660 cc->total_free_scanned += nr_scanned; 661 if (total_isolated) 662 count_compact_events(COMPACTISOLATED, total_isolated); 663 return total_isolated; 664 } 665 666 /** 667 * isolate_freepages_range() - isolate free pages. 668 * @cc: Compaction control structure. 669 * @start_pfn: The first PFN to start isolating. 670 * @end_pfn: The one-past-last PFN. 671 * 672 * Non-free pages, invalid PFNs, or zone boundaries within the 673 * [start_pfn, end_pfn) range are considered errors, cause function to 674 * undo its actions and return zero. 675 * 676 * Otherwise, function returns one-past-the-last PFN of isolated page 677 * (which may be greater then end_pfn if end fell in a middle of 678 * a free page). 679 */ 680 unsigned long 681 isolate_freepages_range(struct compact_control *cc, 682 unsigned long start_pfn, unsigned long end_pfn) 683 { 684 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 685 LIST_HEAD(freelist); 686 687 pfn = start_pfn; 688 block_start_pfn = pageblock_start_pfn(pfn); 689 if (block_start_pfn < cc->zone->zone_start_pfn) 690 block_start_pfn = cc->zone->zone_start_pfn; 691 block_end_pfn = pageblock_end_pfn(pfn); 692 693 for (; pfn < end_pfn; pfn += isolated, 694 block_start_pfn = block_end_pfn, 695 block_end_pfn += pageblock_nr_pages) { 696 /* Protect pfn from changing by isolate_freepages_block */ 697 unsigned long isolate_start_pfn = pfn; 698 699 block_end_pfn = min(block_end_pfn, end_pfn); 700 701 /* 702 * pfn could pass the block_end_pfn if isolated freepage 703 * is more than pageblock order. In this case, we adjust 704 * scanning range to right one. 705 */ 706 if (pfn >= block_end_pfn) { 707 block_start_pfn = pageblock_start_pfn(pfn); 708 block_end_pfn = pageblock_end_pfn(pfn); 709 block_end_pfn = min(block_end_pfn, end_pfn); 710 } 711 712 if (!pageblock_pfn_to_page(block_start_pfn, 713 block_end_pfn, cc->zone)) 714 break; 715 716 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 717 block_end_pfn, &freelist, 0, true); 718 719 /* 720 * In strict mode, isolate_freepages_block() returns 0 if 721 * there are any holes in the block (ie. invalid PFNs or 722 * non-free pages). 723 */ 724 if (!isolated) 725 break; 726 727 /* 728 * If we managed to isolate pages, it is always (1 << n) * 729 * pageblock_nr_pages for some non-negative n. (Max order 730 * page may span two pageblocks). 731 */ 732 } 733 734 /* __isolate_free_page() does not map the pages */ 735 split_map_pages(&freelist); 736 737 if (pfn < end_pfn) { 738 /* Loop terminated early, cleanup. */ 739 release_freepages(&freelist); 740 return 0; 741 } 742 743 /* We don't use freelists for anything. */ 744 return pfn; 745 } 746 747 /* Similar to reclaim, but different enough that they don't share logic */ 748 static bool too_many_isolated(pg_data_t *pgdat) 749 { 750 bool too_many; 751 752 unsigned long active, inactive, isolated; 753 754 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 755 node_page_state(pgdat, NR_INACTIVE_ANON); 756 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 757 node_page_state(pgdat, NR_ACTIVE_ANON); 758 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 759 node_page_state(pgdat, NR_ISOLATED_ANON); 760 761 too_many = isolated > (inactive + active) / 2; 762 if (!too_many) 763 wake_throttle_isolated(pgdat); 764 765 return too_many; 766 } 767 768 /** 769 * isolate_migratepages_block() - isolate all migrate-able pages within 770 * a single pageblock 771 * @cc: Compaction control structure. 772 * @low_pfn: The first PFN to isolate 773 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 774 * @mode: Isolation mode to be used. 775 * 776 * Isolate all pages that can be migrated from the range specified by 777 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 778 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion, 779 * -ENOMEM in case we could not allocate a page, or 0. 780 * cc->migrate_pfn will contain the next pfn to scan. 781 * 782 * The pages are isolated on cc->migratepages list (not required to be empty), 783 * and cc->nr_migratepages is updated accordingly. 784 */ 785 static int 786 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 787 unsigned long end_pfn, isolate_mode_t mode) 788 { 789 pg_data_t *pgdat = cc->zone->zone_pgdat; 790 unsigned long nr_scanned = 0, nr_isolated = 0; 791 struct lruvec *lruvec; 792 unsigned long flags = 0; 793 struct lruvec *locked = NULL; 794 struct page *page = NULL, *valid_page = NULL; 795 struct address_space *mapping; 796 unsigned long start_pfn = low_pfn; 797 bool skip_on_failure = false; 798 unsigned long next_skip_pfn = 0; 799 bool skip_updated = false; 800 int ret = 0; 801 802 cc->migrate_pfn = low_pfn; 803 804 /* 805 * Ensure that there are not too many pages isolated from the LRU 806 * list by either parallel reclaimers or compaction. If there are, 807 * delay for some time until fewer pages are isolated 808 */ 809 while (unlikely(too_many_isolated(pgdat))) { 810 /* stop isolation if there are still pages not migrated */ 811 if (cc->nr_migratepages) 812 return -EAGAIN; 813 814 /* async migration should just abort */ 815 if (cc->mode == MIGRATE_ASYNC) 816 return -EAGAIN; 817 818 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 819 820 if (fatal_signal_pending(current)) 821 return -EINTR; 822 } 823 824 cond_resched(); 825 826 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 827 skip_on_failure = true; 828 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 829 } 830 831 /* Time to isolate some pages for migration */ 832 for (; low_pfn < end_pfn; low_pfn++) { 833 834 if (skip_on_failure && low_pfn >= next_skip_pfn) { 835 /* 836 * We have isolated all migration candidates in the 837 * previous order-aligned block, and did not skip it due 838 * to failure. We should migrate the pages now and 839 * hopefully succeed compaction. 840 */ 841 if (nr_isolated) 842 break; 843 844 /* 845 * We failed to isolate in the previous order-aligned 846 * block. Set the new boundary to the end of the 847 * current block. Note we can't simply increase 848 * next_skip_pfn by 1 << order, as low_pfn might have 849 * been incremented by a higher number due to skipping 850 * a compound or a high-order buddy page in the 851 * previous loop iteration. 852 */ 853 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 854 } 855 856 /* 857 * Periodically drop the lock (if held) regardless of its 858 * contention, to give chance to IRQs. Abort completely if 859 * a fatal signal is pending. 860 */ 861 if (!(low_pfn % COMPACT_CLUSTER_MAX)) { 862 if (locked) { 863 unlock_page_lruvec_irqrestore(locked, flags); 864 locked = NULL; 865 } 866 867 if (fatal_signal_pending(current)) { 868 cc->contended = true; 869 ret = -EINTR; 870 871 goto fatal_pending; 872 } 873 874 cond_resched(); 875 } 876 877 nr_scanned++; 878 879 page = pfn_to_page(low_pfn); 880 881 /* 882 * Check if the pageblock has already been marked skipped. 883 * Only the aligned PFN is checked as the caller isolates 884 * COMPACT_CLUSTER_MAX at a time so the second call must 885 * not falsely conclude that the block should be skipped. 886 */ 887 if (!valid_page && pageblock_aligned(low_pfn)) { 888 if (!isolation_suitable(cc, page)) { 889 low_pfn = end_pfn; 890 page = NULL; 891 goto isolate_abort; 892 } 893 valid_page = page; 894 } 895 896 if (PageHuge(page) && cc->alloc_contig) { 897 if (locked) { 898 unlock_page_lruvec_irqrestore(locked, flags); 899 locked = NULL; 900 } 901 902 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages); 903 904 /* 905 * Fail isolation in case isolate_or_dissolve_huge_page() 906 * reports an error. In case of -ENOMEM, abort right away. 907 */ 908 if (ret < 0) { 909 /* Do not report -EBUSY down the chain */ 910 if (ret == -EBUSY) 911 ret = 0; 912 low_pfn += compound_nr(page) - 1; 913 nr_scanned += compound_nr(page) - 1; 914 goto isolate_fail; 915 } 916 917 if (PageHuge(page)) { 918 /* 919 * Hugepage was successfully isolated and placed 920 * on the cc->migratepages list. 921 */ 922 low_pfn += compound_nr(page) - 1; 923 goto isolate_success_no_list; 924 } 925 926 /* 927 * Ok, the hugepage was dissolved. Now these pages are 928 * Buddy and cannot be re-allocated because they are 929 * isolated. Fall-through as the check below handles 930 * Buddy pages. 931 */ 932 } 933 934 /* 935 * Skip if free. We read page order here without zone lock 936 * which is generally unsafe, but the race window is small and 937 * the worst thing that can happen is that we skip some 938 * potential isolation targets. 939 */ 940 if (PageBuddy(page)) { 941 unsigned long freepage_order = buddy_order_unsafe(page); 942 943 /* 944 * Without lock, we cannot be sure that what we got is 945 * a valid page order. Consider only values in the 946 * valid order range to prevent low_pfn overflow. 947 */ 948 if (freepage_order > 0 && freepage_order <= MAX_ORDER) { 949 low_pfn += (1UL << freepage_order) - 1; 950 nr_scanned += (1UL << freepage_order) - 1; 951 } 952 continue; 953 } 954 955 /* 956 * Regardless of being on LRU, compound pages such as THP and 957 * hugetlbfs are not to be compacted unless we are attempting 958 * an allocation much larger than the huge page size (eg CMA). 959 * We can potentially save a lot of iterations if we skip them 960 * at once. The check is racy, but we can consider only valid 961 * values and the only danger is skipping too much. 962 */ 963 if (PageCompound(page) && !cc->alloc_contig) { 964 const unsigned int order = compound_order(page); 965 966 if (likely(order <= MAX_ORDER)) { 967 low_pfn += (1UL << order) - 1; 968 nr_scanned += (1UL << order) - 1; 969 } 970 goto isolate_fail; 971 } 972 973 /* 974 * Check may be lockless but that's ok as we recheck later. 975 * It's possible to migrate LRU and non-lru movable pages. 976 * Skip any other type of page 977 */ 978 if (!PageLRU(page)) { 979 /* 980 * __PageMovable can return false positive so we need 981 * to verify it under page_lock. 982 */ 983 if (unlikely(__PageMovable(page)) && 984 !PageIsolated(page)) { 985 if (locked) { 986 unlock_page_lruvec_irqrestore(locked, flags); 987 locked = NULL; 988 } 989 990 if (isolate_movable_page(page, mode)) 991 goto isolate_success; 992 } 993 994 goto isolate_fail; 995 } 996 997 /* 998 * Be careful not to clear PageLRU until after we're 999 * sure the page is not being freed elsewhere -- the 1000 * page release code relies on it. 1001 */ 1002 if (unlikely(!get_page_unless_zero(page))) 1003 goto isolate_fail; 1004 1005 /* 1006 * Migration will fail if an anonymous page is pinned in memory, 1007 * so avoid taking lru_lock and isolating it unnecessarily in an 1008 * admittedly racy check. 1009 */ 1010 mapping = page_mapping(page); 1011 if (!mapping && (page_count(page) - 1) > total_mapcount(page)) 1012 goto isolate_fail_put; 1013 1014 /* 1015 * Only allow to migrate anonymous pages in GFP_NOFS context 1016 * because those do not depend on fs locks. 1017 */ 1018 if (!(cc->gfp_mask & __GFP_FS) && mapping) 1019 goto isolate_fail_put; 1020 1021 /* Only take pages on LRU: a check now makes later tests safe */ 1022 if (!PageLRU(page)) 1023 goto isolate_fail_put; 1024 1025 /* Compaction might skip unevictable pages but CMA takes them */ 1026 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page)) 1027 goto isolate_fail_put; 1028 1029 /* 1030 * To minimise LRU disruption, the caller can indicate with 1031 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages 1032 * it will be able to migrate without blocking - clean pages 1033 * for the most part. PageWriteback would require blocking. 1034 */ 1035 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page)) 1036 goto isolate_fail_put; 1037 1038 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) { 1039 bool migrate_dirty; 1040 1041 /* 1042 * Only pages without mappings or that have a 1043 * ->migrate_folio callback are possible to migrate 1044 * without blocking. However, we can be racing with 1045 * truncation so it's necessary to lock the page 1046 * to stabilise the mapping as truncation holds 1047 * the page lock until after the page is removed 1048 * from the page cache. 1049 */ 1050 if (!trylock_page(page)) 1051 goto isolate_fail_put; 1052 1053 mapping = page_mapping(page); 1054 migrate_dirty = !mapping || 1055 mapping->a_ops->migrate_folio; 1056 unlock_page(page); 1057 if (!migrate_dirty) 1058 goto isolate_fail_put; 1059 } 1060 1061 /* Try isolate the page */ 1062 if (!TestClearPageLRU(page)) 1063 goto isolate_fail_put; 1064 1065 lruvec = folio_lruvec(page_folio(page)); 1066 1067 /* If we already hold the lock, we can skip some rechecking */ 1068 if (lruvec != locked) { 1069 if (locked) 1070 unlock_page_lruvec_irqrestore(locked, flags); 1071 1072 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); 1073 locked = lruvec; 1074 1075 lruvec_memcg_debug(lruvec, page_folio(page)); 1076 1077 /* Try get exclusive access under lock */ 1078 if (!skip_updated) { 1079 skip_updated = true; 1080 if (test_and_set_skip(cc, page, low_pfn)) 1081 goto isolate_abort; 1082 } 1083 1084 /* 1085 * Page become compound since the non-locked check, 1086 * and it's on LRU. It can only be a THP so the order 1087 * is safe to read and it's 0 for tail pages. 1088 */ 1089 if (unlikely(PageCompound(page) && !cc->alloc_contig)) { 1090 low_pfn += compound_nr(page) - 1; 1091 nr_scanned += compound_nr(page) - 1; 1092 SetPageLRU(page); 1093 goto isolate_fail_put; 1094 } 1095 } 1096 1097 /* The whole page is taken off the LRU; skip the tail pages. */ 1098 if (PageCompound(page)) 1099 low_pfn += compound_nr(page) - 1; 1100 1101 /* Successfully isolated */ 1102 del_page_from_lru_list(page, lruvec); 1103 mod_node_page_state(page_pgdat(page), 1104 NR_ISOLATED_ANON + page_is_file_lru(page), 1105 thp_nr_pages(page)); 1106 1107 isolate_success: 1108 list_add(&page->lru, &cc->migratepages); 1109 isolate_success_no_list: 1110 cc->nr_migratepages += compound_nr(page); 1111 nr_isolated += compound_nr(page); 1112 nr_scanned += compound_nr(page) - 1; 1113 1114 /* 1115 * Avoid isolating too much unless this block is being 1116 * fully scanned (e.g. dirty/writeback pages, parallel allocation) 1117 * or a lock is contended. For contention, isolate quickly to 1118 * potentially remove one source of contention. 1119 */ 1120 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1121 !cc->finish_pageblock && !cc->contended) { 1122 ++low_pfn; 1123 break; 1124 } 1125 1126 continue; 1127 1128 isolate_fail_put: 1129 /* Avoid potential deadlock in freeing page under lru_lock */ 1130 if (locked) { 1131 unlock_page_lruvec_irqrestore(locked, flags); 1132 locked = NULL; 1133 } 1134 put_page(page); 1135 1136 isolate_fail: 1137 if (!skip_on_failure && ret != -ENOMEM) 1138 continue; 1139 1140 /* 1141 * We have isolated some pages, but then failed. Release them 1142 * instead of migrating, as we cannot form the cc->order buddy 1143 * page anyway. 1144 */ 1145 if (nr_isolated) { 1146 if (locked) { 1147 unlock_page_lruvec_irqrestore(locked, flags); 1148 locked = NULL; 1149 } 1150 putback_movable_pages(&cc->migratepages); 1151 cc->nr_migratepages = 0; 1152 nr_isolated = 0; 1153 } 1154 1155 if (low_pfn < next_skip_pfn) { 1156 low_pfn = next_skip_pfn - 1; 1157 /* 1158 * The check near the loop beginning would have updated 1159 * next_skip_pfn too, but this is a bit simpler. 1160 */ 1161 next_skip_pfn += 1UL << cc->order; 1162 } 1163 1164 if (ret == -ENOMEM) 1165 break; 1166 } 1167 1168 /* 1169 * The PageBuddy() check could have potentially brought us outside 1170 * the range to be scanned. 1171 */ 1172 if (unlikely(low_pfn > end_pfn)) 1173 low_pfn = end_pfn; 1174 1175 page = NULL; 1176 1177 isolate_abort: 1178 if (locked) 1179 unlock_page_lruvec_irqrestore(locked, flags); 1180 if (page) { 1181 SetPageLRU(page); 1182 put_page(page); 1183 } 1184 1185 /* 1186 * Update the cached scanner pfn once the pageblock has been scanned. 1187 * Pages will either be migrated in which case there is no point 1188 * scanning in the near future or migration failed in which case the 1189 * failure reason may persist. The block is marked for skipping if 1190 * there were no pages isolated in the block or if the block is 1191 * rescanned twice in a row. 1192 */ 1193 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) { 1194 if (valid_page && !skip_updated) 1195 set_pageblock_skip(valid_page); 1196 update_cached_migrate(cc, low_pfn); 1197 } 1198 1199 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1200 nr_scanned, nr_isolated); 1201 1202 fatal_pending: 1203 cc->total_migrate_scanned += nr_scanned; 1204 if (nr_isolated) 1205 count_compact_events(COMPACTISOLATED, nr_isolated); 1206 1207 cc->migrate_pfn = low_pfn; 1208 1209 return ret; 1210 } 1211 1212 /** 1213 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1214 * @cc: Compaction control structure. 1215 * @start_pfn: The first PFN to start isolating. 1216 * @end_pfn: The one-past-last PFN. 1217 * 1218 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM 1219 * in case we could not allocate a page, or 0. 1220 */ 1221 int 1222 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1223 unsigned long end_pfn) 1224 { 1225 unsigned long pfn, block_start_pfn, block_end_pfn; 1226 int ret = 0; 1227 1228 /* Scan block by block. First and last block may be incomplete */ 1229 pfn = start_pfn; 1230 block_start_pfn = pageblock_start_pfn(pfn); 1231 if (block_start_pfn < cc->zone->zone_start_pfn) 1232 block_start_pfn = cc->zone->zone_start_pfn; 1233 block_end_pfn = pageblock_end_pfn(pfn); 1234 1235 for (; pfn < end_pfn; pfn = block_end_pfn, 1236 block_start_pfn = block_end_pfn, 1237 block_end_pfn += pageblock_nr_pages) { 1238 1239 block_end_pfn = min(block_end_pfn, end_pfn); 1240 1241 if (!pageblock_pfn_to_page(block_start_pfn, 1242 block_end_pfn, cc->zone)) 1243 continue; 1244 1245 ret = isolate_migratepages_block(cc, pfn, block_end_pfn, 1246 ISOLATE_UNEVICTABLE); 1247 1248 if (ret) 1249 break; 1250 1251 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1252 break; 1253 } 1254 1255 return ret; 1256 } 1257 1258 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1259 #ifdef CONFIG_COMPACTION 1260 1261 static bool suitable_migration_source(struct compact_control *cc, 1262 struct page *page) 1263 { 1264 int block_mt; 1265 1266 if (pageblock_skip_persistent(page)) 1267 return false; 1268 1269 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1270 return true; 1271 1272 block_mt = get_pageblock_migratetype(page); 1273 1274 if (cc->migratetype == MIGRATE_MOVABLE) 1275 return is_migrate_movable(block_mt); 1276 else 1277 return block_mt == cc->migratetype; 1278 } 1279 1280 /* Returns true if the page is within a block suitable for migration to */ 1281 static bool suitable_migration_target(struct compact_control *cc, 1282 struct page *page) 1283 { 1284 /* If the page is a large free page, then disallow migration */ 1285 if (PageBuddy(page)) { 1286 /* 1287 * We are checking page_order without zone->lock taken. But 1288 * the only small danger is that we skip a potentially suitable 1289 * pageblock, so it's not worth to check order for valid range. 1290 */ 1291 if (buddy_order_unsafe(page) >= pageblock_order) 1292 return false; 1293 } 1294 1295 if (cc->ignore_block_suitable) 1296 return true; 1297 1298 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1299 if (is_migrate_movable(get_pageblock_migratetype(page))) 1300 return true; 1301 1302 /* Otherwise skip the block */ 1303 return false; 1304 } 1305 1306 static inline unsigned int 1307 freelist_scan_limit(struct compact_control *cc) 1308 { 1309 unsigned short shift = BITS_PER_LONG - 1; 1310 1311 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1312 } 1313 1314 /* 1315 * Test whether the free scanner has reached the same or lower pageblock than 1316 * the migration scanner, and compaction should thus terminate. 1317 */ 1318 static inline bool compact_scanners_met(struct compact_control *cc) 1319 { 1320 return (cc->free_pfn >> pageblock_order) 1321 <= (cc->migrate_pfn >> pageblock_order); 1322 } 1323 1324 /* 1325 * Used when scanning for a suitable migration target which scans freelists 1326 * in reverse. Reorders the list such as the unscanned pages are scanned 1327 * first on the next iteration of the free scanner 1328 */ 1329 static void 1330 move_freelist_head(struct list_head *freelist, struct page *freepage) 1331 { 1332 LIST_HEAD(sublist); 1333 1334 if (!list_is_last(freelist, &freepage->lru)) { 1335 list_cut_before(&sublist, freelist, &freepage->lru); 1336 list_splice_tail(&sublist, freelist); 1337 } 1338 } 1339 1340 /* 1341 * Similar to move_freelist_head except used by the migration scanner 1342 * when scanning forward. It's possible for these list operations to 1343 * move against each other if they search the free list exactly in 1344 * lockstep. 1345 */ 1346 static void 1347 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1348 { 1349 LIST_HEAD(sublist); 1350 1351 if (!list_is_first(freelist, &freepage->lru)) { 1352 list_cut_position(&sublist, freelist, &freepage->lru); 1353 list_splice_tail(&sublist, freelist); 1354 } 1355 } 1356 1357 static void 1358 fast_isolate_around(struct compact_control *cc, unsigned long pfn) 1359 { 1360 unsigned long start_pfn, end_pfn; 1361 struct page *page; 1362 1363 /* Do not search around if there are enough pages already */ 1364 if (cc->nr_freepages >= cc->nr_migratepages) 1365 return; 1366 1367 /* Minimise scanning during async compaction */ 1368 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1369 return; 1370 1371 /* Pageblock boundaries */ 1372 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn); 1373 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)); 1374 1375 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone); 1376 if (!page) 1377 return; 1378 1379 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1380 1381 /* Skip this pageblock in the future as it's full or nearly full */ 1382 if (cc->nr_freepages < cc->nr_migratepages) 1383 set_pageblock_skip(page); 1384 1385 return; 1386 } 1387 1388 /* Search orders in round-robin fashion */ 1389 static int next_search_order(struct compact_control *cc, int order) 1390 { 1391 order--; 1392 if (order < 0) 1393 order = cc->order - 1; 1394 1395 /* Search wrapped around? */ 1396 if (order == cc->search_order) { 1397 cc->search_order--; 1398 if (cc->search_order < 0) 1399 cc->search_order = cc->order - 1; 1400 return -1; 1401 } 1402 1403 return order; 1404 } 1405 1406 static unsigned long 1407 fast_isolate_freepages(struct compact_control *cc) 1408 { 1409 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1); 1410 unsigned int nr_scanned = 0; 1411 unsigned long low_pfn, min_pfn, highest = 0; 1412 unsigned long nr_isolated = 0; 1413 unsigned long distance; 1414 struct page *page = NULL; 1415 bool scan_start = false; 1416 int order; 1417 1418 /* Full compaction passes in a negative order */ 1419 if (cc->order <= 0) 1420 return cc->free_pfn; 1421 1422 /* 1423 * If starting the scan, use a deeper search and use the highest 1424 * PFN found if a suitable one is not found. 1425 */ 1426 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1427 limit = pageblock_nr_pages >> 1; 1428 scan_start = true; 1429 } 1430 1431 /* 1432 * Preferred point is in the top quarter of the scan space but take 1433 * a pfn from the top half if the search is problematic. 1434 */ 1435 distance = (cc->free_pfn - cc->migrate_pfn); 1436 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1437 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1438 1439 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1440 low_pfn = min_pfn; 1441 1442 /* 1443 * Search starts from the last successful isolation order or the next 1444 * order to search after a previous failure 1445 */ 1446 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1447 1448 for (order = cc->search_order; 1449 !page && order >= 0; 1450 order = next_search_order(cc, order)) { 1451 struct free_area *area = &cc->zone->free_area[order]; 1452 struct list_head *freelist; 1453 struct page *freepage; 1454 unsigned long flags; 1455 unsigned int order_scanned = 0; 1456 unsigned long high_pfn = 0; 1457 1458 if (!area->nr_free) 1459 continue; 1460 1461 spin_lock_irqsave(&cc->zone->lock, flags); 1462 freelist = &area->free_list[MIGRATE_MOVABLE]; 1463 list_for_each_entry_reverse(freepage, freelist, lru) { 1464 unsigned long pfn; 1465 1466 order_scanned++; 1467 nr_scanned++; 1468 pfn = page_to_pfn(freepage); 1469 1470 if (pfn >= highest) 1471 highest = max(pageblock_start_pfn(pfn), 1472 cc->zone->zone_start_pfn); 1473 1474 if (pfn >= low_pfn) { 1475 cc->fast_search_fail = 0; 1476 cc->search_order = order; 1477 page = freepage; 1478 break; 1479 } 1480 1481 if (pfn >= min_pfn && pfn > high_pfn) { 1482 high_pfn = pfn; 1483 1484 /* Shorten the scan if a candidate is found */ 1485 limit >>= 1; 1486 } 1487 1488 if (order_scanned >= limit) 1489 break; 1490 } 1491 1492 /* Use a minimum pfn if a preferred one was not found */ 1493 if (!page && high_pfn) { 1494 page = pfn_to_page(high_pfn); 1495 1496 /* Update freepage for the list reorder below */ 1497 freepage = page; 1498 } 1499 1500 /* Reorder to so a future search skips recent pages */ 1501 move_freelist_head(freelist, freepage); 1502 1503 /* Isolate the page if available */ 1504 if (page) { 1505 if (__isolate_free_page(page, order)) { 1506 set_page_private(page, order); 1507 nr_isolated = 1 << order; 1508 nr_scanned += nr_isolated - 1; 1509 cc->nr_freepages += nr_isolated; 1510 list_add_tail(&page->lru, &cc->freepages); 1511 count_compact_events(COMPACTISOLATED, nr_isolated); 1512 } else { 1513 /* If isolation fails, abort the search */ 1514 order = cc->search_order + 1; 1515 page = NULL; 1516 } 1517 } 1518 1519 spin_unlock_irqrestore(&cc->zone->lock, flags); 1520 1521 /* 1522 * Smaller scan on next order so the total scan is related 1523 * to freelist_scan_limit. 1524 */ 1525 if (order_scanned >= limit) 1526 limit = max(1U, limit >> 1); 1527 } 1528 1529 if (!page) { 1530 cc->fast_search_fail++; 1531 if (scan_start) { 1532 /* 1533 * Use the highest PFN found above min. If one was 1534 * not found, be pessimistic for direct compaction 1535 * and use the min mark. 1536 */ 1537 if (highest >= min_pfn) { 1538 page = pfn_to_page(highest); 1539 cc->free_pfn = highest; 1540 } else { 1541 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1542 page = pageblock_pfn_to_page(min_pfn, 1543 min(pageblock_end_pfn(min_pfn), 1544 zone_end_pfn(cc->zone)), 1545 cc->zone); 1546 cc->free_pfn = min_pfn; 1547 } 1548 } 1549 } 1550 } 1551 1552 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1553 highest -= pageblock_nr_pages; 1554 cc->zone->compact_cached_free_pfn = highest; 1555 } 1556 1557 cc->total_free_scanned += nr_scanned; 1558 if (!page) 1559 return cc->free_pfn; 1560 1561 low_pfn = page_to_pfn(page); 1562 fast_isolate_around(cc, low_pfn); 1563 return low_pfn; 1564 } 1565 1566 /* 1567 * Based on information in the current compact_control, find blocks 1568 * suitable for isolating free pages from and then isolate them. 1569 */ 1570 static void isolate_freepages(struct compact_control *cc) 1571 { 1572 struct zone *zone = cc->zone; 1573 struct page *page; 1574 unsigned long block_start_pfn; /* start of current pageblock */ 1575 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1576 unsigned long block_end_pfn; /* end of current pageblock */ 1577 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1578 struct list_head *freelist = &cc->freepages; 1579 unsigned int stride; 1580 1581 /* Try a small search of the free lists for a candidate */ 1582 fast_isolate_freepages(cc); 1583 if (cc->nr_freepages) 1584 goto splitmap; 1585 1586 /* 1587 * Initialise the free scanner. The starting point is where we last 1588 * successfully isolated from, zone-cached value, or the end of the 1589 * zone when isolating for the first time. For looping we also need 1590 * this pfn aligned down to the pageblock boundary, because we do 1591 * block_start_pfn -= pageblock_nr_pages in the for loop. 1592 * For ending point, take care when isolating in last pageblock of a 1593 * zone which ends in the middle of a pageblock. 1594 * The low boundary is the end of the pageblock the migration scanner 1595 * is using. 1596 */ 1597 isolate_start_pfn = cc->free_pfn; 1598 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1599 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1600 zone_end_pfn(zone)); 1601 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1602 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1603 1604 /* 1605 * Isolate free pages until enough are available to migrate the 1606 * pages on cc->migratepages. We stop searching if the migrate 1607 * and free page scanners meet or enough free pages are isolated. 1608 */ 1609 for (; block_start_pfn >= low_pfn; 1610 block_end_pfn = block_start_pfn, 1611 block_start_pfn -= pageblock_nr_pages, 1612 isolate_start_pfn = block_start_pfn) { 1613 unsigned long nr_isolated; 1614 1615 /* 1616 * This can iterate a massively long zone without finding any 1617 * suitable migration targets, so periodically check resched. 1618 */ 1619 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1620 cond_resched(); 1621 1622 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1623 zone); 1624 if (!page) 1625 continue; 1626 1627 /* Check the block is suitable for migration */ 1628 if (!suitable_migration_target(cc, page)) 1629 continue; 1630 1631 /* If isolation recently failed, do not retry */ 1632 if (!isolation_suitable(cc, page)) 1633 continue; 1634 1635 /* Found a block suitable for isolating free pages from. */ 1636 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1637 block_end_pfn, freelist, stride, false); 1638 1639 /* Update the skip hint if the full pageblock was scanned */ 1640 if (isolate_start_pfn == block_end_pfn) 1641 update_pageblock_skip(cc, page, block_start_pfn); 1642 1643 /* Are enough freepages isolated? */ 1644 if (cc->nr_freepages >= cc->nr_migratepages) { 1645 if (isolate_start_pfn >= block_end_pfn) { 1646 /* 1647 * Restart at previous pageblock if more 1648 * freepages can be isolated next time. 1649 */ 1650 isolate_start_pfn = 1651 block_start_pfn - pageblock_nr_pages; 1652 } 1653 break; 1654 } else if (isolate_start_pfn < block_end_pfn) { 1655 /* 1656 * If isolation failed early, do not continue 1657 * needlessly. 1658 */ 1659 break; 1660 } 1661 1662 /* Adjust stride depending on isolation */ 1663 if (nr_isolated) { 1664 stride = 1; 1665 continue; 1666 } 1667 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1668 } 1669 1670 /* 1671 * Record where the free scanner will restart next time. Either we 1672 * broke from the loop and set isolate_start_pfn based on the last 1673 * call to isolate_freepages_block(), or we met the migration scanner 1674 * and the loop terminated due to isolate_start_pfn < low_pfn 1675 */ 1676 cc->free_pfn = isolate_start_pfn; 1677 1678 splitmap: 1679 /* __isolate_free_page() does not map the pages */ 1680 split_map_pages(freelist); 1681 } 1682 1683 /* 1684 * This is a migrate-callback that "allocates" freepages by taking pages 1685 * from the isolated freelists in the block we are migrating to. 1686 */ 1687 static struct page *compaction_alloc(struct page *migratepage, 1688 unsigned long data) 1689 { 1690 struct compact_control *cc = (struct compact_control *)data; 1691 struct page *freepage; 1692 1693 if (list_empty(&cc->freepages)) { 1694 isolate_freepages(cc); 1695 1696 if (list_empty(&cc->freepages)) 1697 return NULL; 1698 } 1699 1700 freepage = list_entry(cc->freepages.next, struct page, lru); 1701 list_del(&freepage->lru); 1702 cc->nr_freepages--; 1703 1704 return freepage; 1705 } 1706 1707 /* 1708 * This is a migrate-callback that "frees" freepages back to the isolated 1709 * freelist. All pages on the freelist are from the same zone, so there is no 1710 * special handling needed for NUMA. 1711 */ 1712 static void compaction_free(struct page *page, unsigned long data) 1713 { 1714 struct compact_control *cc = (struct compact_control *)data; 1715 1716 list_add(&page->lru, &cc->freepages); 1717 cc->nr_freepages++; 1718 } 1719 1720 /* possible outcome of isolate_migratepages */ 1721 typedef enum { 1722 ISOLATE_ABORT, /* Abort compaction now */ 1723 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1724 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1725 } isolate_migrate_t; 1726 1727 /* 1728 * Allow userspace to control policy on scanning the unevictable LRU for 1729 * compactable pages. 1730 */ 1731 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT; 1732 /* 1733 * Tunable for proactive compaction. It determines how 1734 * aggressively the kernel should compact memory in the 1735 * background. It takes values in the range [0, 100]. 1736 */ 1737 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 1738 static int sysctl_extfrag_threshold = 500; 1739 1740 static inline void 1741 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1742 { 1743 if (cc->fast_start_pfn == ULONG_MAX) 1744 return; 1745 1746 if (!cc->fast_start_pfn) 1747 cc->fast_start_pfn = pfn; 1748 1749 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1750 } 1751 1752 static inline unsigned long 1753 reinit_migrate_pfn(struct compact_control *cc) 1754 { 1755 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1756 return cc->migrate_pfn; 1757 1758 cc->migrate_pfn = cc->fast_start_pfn; 1759 cc->fast_start_pfn = ULONG_MAX; 1760 1761 return cc->migrate_pfn; 1762 } 1763 1764 /* 1765 * Briefly search the free lists for a migration source that already has 1766 * some free pages to reduce the number of pages that need migration 1767 * before a pageblock is free. 1768 */ 1769 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1770 { 1771 unsigned int limit = freelist_scan_limit(cc); 1772 unsigned int nr_scanned = 0; 1773 unsigned long distance; 1774 unsigned long pfn = cc->migrate_pfn; 1775 unsigned long high_pfn; 1776 int order; 1777 bool found_block = false; 1778 1779 /* Skip hints are relied on to avoid repeats on the fast search */ 1780 if (cc->ignore_skip_hint) 1781 return pfn; 1782 1783 /* 1784 * If the pageblock should be finished then do not select a different 1785 * pageblock. 1786 */ 1787 if (cc->finish_pageblock) 1788 return pfn; 1789 1790 /* 1791 * If the migrate_pfn is not at the start of a zone or the start 1792 * of a pageblock then assume this is a continuation of a previous 1793 * scan restarted due to COMPACT_CLUSTER_MAX. 1794 */ 1795 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1796 return pfn; 1797 1798 /* 1799 * For smaller orders, just linearly scan as the number of pages 1800 * to migrate should be relatively small and does not necessarily 1801 * justify freeing up a large block for a small allocation. 1802 */ 1803 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1804 return pfn; 1805 1806 /* 1807 * Only allow kcompactd and direct requests for movable pages to 1808 * quickly clear out a MOVABLE pageblock for allocation. This 1809 * reduces the risk that a large movable pageblock is freed for 1810 * an unmovable/reclaimable small allocation. 1811 */ 1812 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1813 return pfn; 1814 1815 /* 1816 * When starting the migration scanner, pick any pageblock within the 1817 * first half of the search space. Otherwise try and pick a pageblock 1818 * within the first eighth to reduce the chances that a migration 1819 * target later becomes a source. 1820 */ 1821 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1822 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1823 distance >>= 2; 1824 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1825 1826 for (order = cc->order - 1; 1827 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit; 1828 order--) { 1829 struct free_area *area = &cc->zone->free_area[order]; 1830 struct list_head *freelist; 1831 unsigned long flags; 1832 struct page *freepage; 1833 1834 if (!area->nr_free) 1835 continue; 1836 1837 spin_lock_irqsave(&cc->zone->lock, flags); 1838 freelist = &area->free_list[MIGRATE_MOVABLE]; 1839 list_for_each_entry(freepage, freelist, lru) { 1840 unsigned long free_pfn; 1841 1842 if (nr_scanned++ >= limit) { 1843 move_freelist_tail(freelist, freepage); 1844 break; 1845 } 1846 1847 free_pfn = page_to_pfn(freepage); 1848 if (free_pfn < high_pfn) { 1849 /* 1850 * Avoid if skipped recently. Ideally it would 1851 * move to the tail but even safe iteration of 1852 * the list assumes an entry is deleted, not 1853 * reordered. 1854 */ 1855 if (get_pageblock_skip(freepage)) 1856 continue; 1857 1858 /* Reorder to so a future search skips recent pages */ 1859 move_freelist_tail(freelist, freepage); 1860 1861 update_fast_start_pfn(cc, free_pfn); 1862 pfn = pageblock_start_pfn(free_pfn); 1863 if (pfn < cc->zone->zone_start_pfn) 1864 pfn = cc->zone->zone_start_pfn; 1865 cc->fast_search_fail = 0; 1866 found_block = true; 1867 set_pageblock_skip(freepage); 1868 break; 1869 } 1870 } 1871 spin_unlock_irqrestore(&cc->zone->lock, flags); 1872 } 1873 1874 cc->total_migrate_scanned += nr_scanned; 1875 1876 /* 1877 * If fast scanning failed then use a cached entry for a page block 1878 * that had free pages as the basis for starting a linear scan. 1879 */ 1880 if (!found_block) { 1881 cc->fast_search_fail++; 1882 pfn = reinit_migrate_pfn(cc); 1883 } 1884 return pfn; 1885 } 1886 1887 /* 1888 * Isolate all pages that can be migrated from the first suitable block, 1889 * starting at the block pointed to by the migrate scanner pfn within 1890 * compact_control. 1891 */ 1892 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1893 { 1894 unsigned long block_start_pfn; 1895 unsigned long block_end_pfn; 1896 unsigned long low_pfn; 1897 struct page *page; 1898 const isolate_mode_t isolate_mode = 1899 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1900 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1901 bool fast_find_block; 1902 1903 /* 1904 * Start at where we last stopped, or beginning of the zone as 1905 * initialized by compact_zone(). The first failure will use 1906 * the lowest PFN as the starting point for linear scanning. 1907 */ 1908 low_pfn = fast_find_migrateblock(cc); 1909 block_start_pfn = pageblock_start_pfn(low_pfn); 1910 if (block_start_pfn < cc->zone->zone_start_pfn) 1911 block_start_pfn = cc->zone->zone_start_pfn; 1912 1913 /* 1914 * fast_find_migrateblock marks a pageblock skipped so to avoid 1915 * the isolation_suitable check below, check whether the fast 1916 * search was successful. 1917 */ 1918 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1919 1920 /* Only scan within a pageblock boundary */ 1921 block_end_pfn = pageblock_end_pfn(low_pfn); 1922 1923 /* 1924 * Iterate over whole pageblocks until we find the first suitable. 1925 * Do not cross the free scanner. 1926 */ 1927 for (; block_end_pfn <= cc->free_pfn; 1928 fast_find_block = false, 1929 cc->migrate_pfn = low_pfn = block_end_pfn, 1930 block_start_pfn = block_end_pfn, 1931 block_end_pfn += pageblock_nr_pages) { 1932 1933 /* 1934 * This can potentially iterate a massively long zone with 1935 * many pageblocks unsuitable, so periodically check if we 1936 * need to schedule. 1937 */ 1938 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1939 cond_resched(); 1940 1941 page = pageblock_pfn_to_page(block_start_pfn, 1942 block_end_pfn, cc->zone); 1943 if (!page) 1944 continue; 1945 1946 /* 1947 * If isolation recently failed, do not retry. Only check the 1948 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1949 * to be visited multiple times. Assume skip was checked 1950 * before making it "skip" so other compaction instances do 1951 * not scan the same block. 1952 */ 1953 if (pageblock_aligned(low_pfn) && 1954 !fast_find_block && !isolation_suitable(cc, page)) 1955 continue; 1956 1957 /* 1958 * For async direct compaction, only scan the pageblocks of the 1959 * same migratetype without huge pages. Async direct compaction 1960 * is optimistic to see if the minimum amount of work satisfies 1961 * the allocation. The cached PFN is updated as it's possible 1962 * that all remaining blocks between source and target are 1963 * unsuitable and the compaction scanners fail to meet. 1964 */ 1965 if (!suitable_migration_source(cc, page)) { 1966 update_cached_migrate(cc, block_end_pfn); 1967 continue; 1968 } 1969 1970 /* Perform the isolation */ 1971 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn, 1972 isolate_mode)) 1973 return ISOLATE_ABORT; 1974 1975 /* 1976 * Either we isolated something and proceed with migration. Or 1977 * we failed and compact_zone should decide if we should 1978 * continue or not. 1979 */ 1980 break; 1981 } 1982 1983 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1984 } 1985 1986 /* 1987 * order == -1 is expected when compacting via 1988 * /proc/sys/vm/compact_memory 1989 */ 1990 static inline bool is_via_compact_memory(int order) 1991 { 1992 return order == -1; 1993 } 1994 1995 /* 1996 * Determine whether kswapd is (or recently was!) running on this node. 1997 * 1998 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't 1999 * zero it. 2000 */ 2001 static bool kswapd_is_running(pg_data_t *pgdat) 2002 { 2003 bool running; 2004 2005 pgdat_kswapd_lock(pgdat); 2006 running = pgdat->kswapd && task_is_running(pgdat->kswapd); 2007 pgdat_kswapd_unlock(pgdat); 2008 2009 return running; 2010 } 2011 2012 /* 2013 * A zone's fragmentation score is the external fragmentation wrt to the 2014 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100]. 2015 */ 2016 static unsigned int fragmentation_score_zone(struct zone *zone) 2017 { 2018 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 2019 } 2020 2021 /* 2022 * A weighted zone's fragmentation score is the external fragmentation 2023 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It 2024 * returns a value in the range [0, 100]. 2025 * 2026 * The scaling factor ensures that proactive compaction focuses on larger 2027 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 2028 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 2029 * and thus never exceeds the high threshold for proactive compaction. 2030 */ 2031 static unsigned int fragmentation_score_zone_weighted(struct zone *zone) 2032 { 2033 unsigned long score; 2034 2035 score = zone->present_pages * fragmentation_score_zone(zone); 2036 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 2037 } 2038 2039 /* 2040 * The per-node proactive (background) compaction process is started by its 2041 * corresponding kcompactd thread when the node's fragmentation score 2042 * exceeds the high threshold. The compaction process remains active till 2043 * the node's score falls below the low threshold, or one of the back-off 2044 * conditions is met. 2045 */ 2046 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 2047 { 2048 unsigned int score = 0; 2049 int zoneid; 2050 2051 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2052 struct zone *zone; 2053 2054 zone = &pgdat->node_zones[zoneid]; 2055 if (!populated_zone(zone)) 2056 continue; 2057 score += fragmentation_score_zone_weighted(zone); 2058 } 2059 2060 return score; 2061 } 2062 2063 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low) 2064 { 2065 unsigned int wmark_low; 2066 2067 /* 2068 * Cap the low watermark to avoid excessive compaction 2069 * activity in case a user sets the proactiveness tunable 2070 * close to 100 (maximum). 2071 */ 2072 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 2073 return low ? wmark_low : min(wmark_low + 10, 100U); 2074 } 2075 2076 static bool should_proactive_compact_node(pg_data_t *pgdat) 2077 { 2078 int wmark_high; 2079 2080 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 2081 return false; 2082 2083 wmark_high = fragmentation_score_wmark(pgdat, false); 2084 return fragmentation_score_node(pgdat) > wmark_high; 2085 } 2086 2087 static enum compact_result __compact_finished(struct compact_control *cc) 2088 { 2089 unsigned int order; 2090 const int migratetype = cc->migratetype; 2091 int ret; 2092 2093 /* Compaction run completes if the migrate and free scanner meet */ 2094 if (compact_scanners_met(cc)) { 2095 /* Let the next compaction start anew. */ 2096 reset_cached_positions(cc->zone); 2097 2098 /* 2099 * Mark that the PG_migrate_skip information should be cleared 2100 * by kswapd when it goes to sleep. kcompactd does not set the 2101 * flag itself as the decision to be clear should be directly 2102 * based on an allocation request. 2103 */ 2104 if (cc->direct_compaction) 2105 cc->zone->compact_blockskip_flush = true; 2106 2107 if (cc->whole_zone) 2108 return COMPACT_COMPLETE; 2109 else 2110 return COMPACT_PARTIAL_SKIPPED; 2111 } 2112 2113 if (cc->proactive_compaction) { 2114 int score, wmark_low; 2115 pg_data_t *pgdat; 2116 2117 pgdat = cc->zone->zone_pgdat; 2118 if (kswapd_is_running(pgdat)) 2119 return COMPACT_PARTIAL_SKIPPED; 2120 2121 score = fragmentation_score_zone(cc->zone); 2122 wmark_low = fragmentation_score_wmark(pgdat, true); 2123 2124 if (score > wmark_low) 2125 ret = COMPACT_CONTINUE; 2126 else 2127 ret = COMPACT_SUCCESS; 2128 2129 goto out; 2130 } 2131 2132 if (is_via_compact_memory(cc->order)) 2133 return COMPACT_CONTINUE; 2134 2135 /* 2136 * Always finish scanning a pageblock to reduce the possibility of 2137 * fallbacks in the future. This is particularly important when 2138 * migration source is unmovable/reclaimable but it's not worth 2139 * special casing. 2140 */ 2141 if (!pageblock_aligned(cc->migrate_pfn)) 2142 return COMPACT_CONTINUE; 2143 2144 /* Direct compactor: Is a suitable page free? */ 2145 ret = COMPACT_NO_SUITABLE_PAGE; 2146 for (order = cc->order; order <= MAX_ORDER; order++) { 2147 struct free_area *area = &cc->zone->free_area[order]; 2148 bool can_steal; 2149 2150 /* Job done if page is free of the right migratetype */ 2151 if (!free_area_empty(area, migratetype)) 2152 return COMPACT_SUCCESS; 2153 2154 #ifdef CONFIG_CMA 2155 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2156 if (migratetype == MIGRATE_MOVABLE && 2157 !free_area_empty(area, MIGRATE_CMA)) 2158 return COMPACT_SUCCESS; 2159 #endif 2160 /* 2161 * Job done if allocation would steal freepages from 2162 * other migratetype buddy lists. 2163 */ 2164 if (find_suitable_fallback(area, order, migratetype, 2165 true, &can_steal) != -1) 2166 /* 2167 * Movable pages are OK in any pageblock. If we are 2168 * stealing for a non-movable allocation, make sure 2169 * we finish compacting the current pageblock first 2170 * (which is assured by the above migrate_pfn align 2171 * check) so it is as free as possible and we won't 2172 * have to steal another one soon. 2173 */ 2174 return COMPACT_SUCCESS; 2175 } 2176 2177 out: 2178 if (cc->contended || fatal_signal_pending(current)) 2179 ret = COMPACT_CONTENDED; 2180 2181 return ret; 2182 } 2183 2184 static enum compact_result compact_finished(struct compact_control *cc) 2185 { 2186 int ret; 2187 2188 ret = __compact_finished(cc); 2189 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2190 if (ret == COMPACT_NO_SUITABLE_PAGE) 2191 ret = COMPACT_CONTINUE; 2192 2193 return ret; 2194 } 2195 2196 static enum compact_result __compaction_suitable(struct zone *zone, int order, 2197 unsigned int alloc_flags, 2198 int highest_zoneidx, 2199 unsigned long wmark_target) 2200 { 2201 unsigned long watermark; 2202 2203 if (is_via_compact_memory(order)) 2204 return COMPACT_CONTINUE; 2205 2206 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 2207 /* 2208 * If watermarks for high-order allocation are already met, there 2209 * should be no need for compaction at all. 2210 */ 2211 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, 2212 alloc_flags)) 2213 return COMPACT_SUCCESS; 2214 2215 /* 2216 * Watermarks for order-0 must be met for compaction to be able to 2217 * isolate free pages for migration targets. This means that the 2218 * watermark and alloc_flags have to match, or be more pessimistic than 2219 * the check in __isolate_free_page(). We don't use the direct 2220 * compactor's alloc_flags, as they are not relevant for freepage 2221 * isolation. We however do use the direct compactor's highest_zoneidx 2222 * to skip over zones where lowmem reserves would prevent allocation 2223 * even if compaction succeeds. 2224 * For costly orders, we require low watermark instead of min for 2225 * compaction to proceed to increase its chances. 2226 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2227 * suitable migration targets 2228 */ 2229 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2230 low_wmark_pages(zone) : min_wmark_pages(zone); 2231 watermark += compact_gap(order); 2232 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2233 ALLOC_CMA, wmark_target)) 2234 return COMPACT_SKIPPED; 2235 2236 return COMPACT_CONTINUE; 2237 } 2238 2239 /* 2240 * compaction_suitable: Is this suitable to run compaction on this zone now? 2241 * Returns 2242 * COMPACT_SKIPPED - If there are too few free pages for compaction 2243 * COMPACT_SUCCESS - If the allocation would succeed without compaction 2244 * COMPACT_CONTINUE - If compaction should run now 2245 */ 2246 enum compact_result compaction_suitable(struct zone *zone, int order, 2247 unsigned int alloc_flags, 2248 int highest_zoneidx) 2249 { 2250 enum compact_result ret; 2251 int fragindex; 2252 2253 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx, 2254 zone_page_state(zone, NR_FREE_PAGES)); 2255 /* 2256 * fragmentation index determines if allocation failures are due to 2257 * low memory or external fragmentation 2258 * 2259 * index of -1000 would imply allocations might succeed depending on 2260 * watermarks, but we already failed the high-order watermark check 2261 * index towards 0 implies failure is due to lack of memory 2262 * index towards 1000 implies failure is due to fragmentation 2263 * 2264 * Only compact if a failure would be due to fragmentation. Also 2265 * ignore fragindex for non-costly orders where the alternative to 2266 * a successful reclaim/compaction is OOM. Fragindex and the 2267 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2268 * excessive compaction for costly orders, but it should not be at the 2269 * expense of system stability. 2270 */ 2271 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2272 fragindex = fragmentation_index(zone, order); 2273 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2274 ret = COMPACT_NOT_SUITABLE_ZONE; 2275 } 2276 2277 trace_mm_compaction_suitable(zone, order, ret); 2278 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2279 ret = COMPACT_SKIPPED; 2280 2281 return ret; 2282 } 2283 2284 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2285 int alloc_flags) 2286 { 2287 struct zone *zone; 2288 struct zoneref *z; 2289 2290 /* 2291 * Make sure at least one zone would pass __compaction_suitable if we continue 2292 * retrying the reclaim. 2293 */ 2294 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2295 ac->highest_zoneidx, ac->nodemask) { 2296 unsigned long available; 2297 enum compact_result compact_result; 2298 2299 /* 2300 * Do not consider all the reclaimable memory because we do not 2301 * want to trash just for a single high order allocation which 2302 * is even not guaranteed to appear even if __compaction_suitable 2303 * is happy about the watermark check. 2304 */ 2305 available = zone_reclaimable_pages(zone) / order; 2306 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2307 compact_result = __compaction_suitable(zone, order, alloc_flags, 2308 ac->highest_zoneidx, available); 2309 if (compact_result == COMPACT_CONTINUE) 2310 return true; 2311 } 2312 2313 return false; 2314 } 2315 2316 static enum compact_result 2317 compact_zone(struct compact_control *cc, struct capture_control *capc) 2318 { 2319 enum compact_result ret; 2320 unsigned long start_pfn = cc->zone->zone_start_pfn; 2321 unsigned long end_pfn = zone_end_pfn(cc->zone); 2322 unsigned long last_migrated_pfn; 2323 const bool sync = cc->mode != MIGRATE_ASYNC; 2324 bool update_cached; 2325 unsigned int nr_succeeded = 0; 2326 2327 /* 2328 * These counters track activities during zone compaction. Initialize 2329 * them before compacting a new zone. 2330 */ 2331 cc->total_migrate_scanned = 0; 2332 cc->total_free_scanned = 0; 2333 cc->nr_migratepages = 0; 2334 cc->nr_freepages = 0; 2335 INIT_LIST_HEAD(&cc->freepages); 2336 INIT_LIST_HEAD(&cc->migratepages); 2337 2338 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2339 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2340 cc->highest_zoneidx); 2341 /* Compaction is likely to fail */ 2342 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2343 return ret; 2344 2345 /* 2346 * Clear pageblock skip if there were failures recently and compaction 2347 * is about to be retried after being deferred. 2348 */ 2349 if (compaction_restarting(cc->zone, cc->order)) 2350 __reset_isolation_suitable(cc->zone); 2351 2352 /* 2353 * Setup to move all movable pages to the end of the zone. Used cached 2354 * information on where the scanners should start (unless we explicitly 2355 * want to compact the whole zone), but check that it is initialised 2356 * by ensuring the values are within zone boundaries. 2357 */ 2358 cc->fast_start_pfn = 0; 2359 if (cc->whole_zone) { 2360 cc->migrate_pfn = start_pfn; 2361 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2362 } else { 2363 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2364 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2365 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2366 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2367 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2368 } 2369 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2370 cc->migrate_pfn = start_pfn; 2371 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2372 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2373 } 2374 2375 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2376 cc->whole_zone = true; 2377 } 2378 2379 last_migrated_pfn = 0; 2380 2381 /* 2382 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2383 * the basis that some migrations will fail in ASYNC mode. However, 2384 * if the cached PFNs match and pageblocks are skipped due to having 2385 * no isolation candidates, then the sync state does not matter. 2386 * Until a pageblock with isolation candidates is found, keep the 2387 * cached PFNs in sync to avoid revisiting the same blocks. 2388 */ 2389 update_cached = !sync && 2390 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2391 2392 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync); 2393 2394 /* lru_add_drain_all could be expensive with involving other CPUs */ 2395 lru_add_drain(); 2396 2397 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2398 int err; 2399 unsigned long iteration_start_pfn = cc->migrate_pfn; 2400 2401 /* 2402 * Avoid multiple rescans of the same pageblock which can 2403 * happen if a page cannot be isolated (dirty/writeback in 2404 * async mode) or if the migrated pages are being allocated 2405 * before the pageblock is cleared. The first rescan will 2406 * capture the entire pageblock for migration. If it fails, 2407 * it'll be marked skip and scanning will proceed as normal. 2408 */ 2409 cc->finish_pageblock = false; 2410 if (pageblock_start_pfn(last_migrated_pfn) == 2411 pageblock_start_pfn(iteration_start_pfn)) { 2412 cc->finish_pageblock = true; 2413 } 2414 2415 rescan: 2416 switch (isolate_migratepages(cc)) { 2417 case ISOLATE_ABORT: 2418 ret = COMPACT_CONTENDED; 2419 putback_movable_pages(&cc->migratepages); 2420 cc->nr_migratepages = 0; 2421 goto out; 2422 case ISOLATE_NONE: 2423 if (update_cached) { 2424 cc->zone->compact_cached_migrate_pfn[1] = 2425 cc->zone->compact_cached_migrate_pfn[0]; 2426 } 2427 2428 /* 2429 * We haven't isolated and migrated anything, but 2430 * there might still be unflushed migrations from 2431 * previous cc->order aligned block. 2432 */ 2433 goto check_drain; 2434 case ISOLATE_SUCCESS: 2435 update_cached = false; 2436 last_migrated_pfn = iteration_start_pfn; 2437 } 2438 2439 err = migrate_pages(&cc->migratepages, compaction_alloc, 2440 compaction_free, (unsigned long)cc, cc->mode, 2441 MR_COMPACTION, &nr_succeeded); 2442 2443 trace_mm_compaction_migratepages(cc, nr_succeeded); 2444 2445 /* All pages were either migrated or will be released */ 2446 cc->nr_migratepages = 0; 2447 if (err) { 2448 putback_movable_pages(&cc->migratepages); 2449 /* 2450 * migrate_pages() may return -ENOMEM when scanners meet 2451 * and we want compact_finished() to detect it 2452 */ 2453 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2454 ret = COMPACT_CONTENDED; 2455 goto out; 2456 } 2457 /* 2458 * If an ASYNC or SYNC_LIGHT fails to migrate a page 2459 * within the current order-aligned block, scan the 2460 * remainder of the pageblock. This will mark the 2461 * pageblock "skip" to avoid rescanning in the near 2462 * future. This will isolate more pages than necessary 2463 * for the request but avoid loops due to 2464 * fast_find_migrateblock revisiting blocks that were 2465 * recently partially scanned. 2466 */ 2467 if (cc->direct_compaction && !cc->finish_pageblock && 2468 (cc->mode < MIGRATE_SYNC)) { 2469 cc->finish_pageblock = true; 2470 2471 /* 2472 * Draining pcplists does not help THP if 2473 * any page failed to migrate. Even after 2474 * drain, the pageblock will not be free. 2475 */ 2476 if (cc->order == COMPACTION_HPAGE_ORDER) 2477 last_migrated_pfn = 0; 2478 2479 goto rescan; 2480 } 2481 } 2482 2483 /* Stop if a page has been captured */ 2484 if (capc && capc->page) { 2485 ret = COMPACT_SUCCESS; 2486 break; 2487 } 2488 2489 check_drain: 2490 /* 2491 * Has the migration scanner moved away from the previous 2492 * cc->order aligned block where we migrated from? If yes, 2493 * flush the pages that were freed, so that they can merge and 2494 * compact_finished() can detect immediately if allocation 2495 * would succeed. 2496 */ 2497 if (cc->order > 0 && last_migrated_pfn) { 2498 unsigned long current_block_start = 2499 block_start_pfn(cc->migrate_pfn, cc->order); 2500 2501 if (last_migrated_pfn < current_block_start) { 2502 lru_add_drain_cpu_zone(cc->zone); 2503 /* No more flushing until we migrate again */ 2504 last_migrated_pfn = 0; 2505 } 2506 } 2507 } 2508 2509 out: 2510 /* 2511 * Release free pages and update where the free scanner should restart, 2512 * so we don't leave any returned pages behind in the next attempt. 2513 */ 2514 if (cc->nr_freepages > 0) { 2515 unsigned long free_pfn = release_freepages(&cc->freepages); 2516 2517 cc->nr_freepages = 0; 2518 VM_BUG_ON(free_pfn == 0); 2519 /* The cached pfn is always the first in a pageblock */ 2520 free_pfn = pageblock_start_pfn(free_pfn); 2521 /* 2522 * Only go back, not forward. The cached pfn might have been 2523 * already reset to zone end in compact_finished() 2524 */ 2525 if (free_pfn > cc->zone->compact_cached_free_pfn) 2526 cc->zone->compact_cached_free_pfn = free_pfn; 2527 } 2528 2529 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2530 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2531 2532 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret); 2533 2534 VM_BUG_ON(!list_empty(&cc->freepages)); 2535 VM_BUG_ON(!list_empty(&cc->migratepages)); 2536 2537 return ret; 2538 } 2539 2540 static enum compact_result compact_zone_order(struct zone *zone, int order, 2541 gfp_t gfp_mask, enum compact_priority prio, 2542 unsigned int alloc_flags, int highest_zoneidx, 2543 struct page **capture) 2544 { 2545 enum compact_result ret; 2546 struct compact_control cc = { 2547 .order = order, 2548 .search_order = order, 2549 .gfp_mask = gfp_mask, 2550 .zone = zone, 2551 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2552 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2553 .alloc_flags = alloc_flags, 2554 .highest_zoneidx = highest_zoneidx, 2555 .direct_compaction = true, 2556 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2557 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2558 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2559 }; 2560 struct capture_control capc = { 2561 .cc = &cc, 2562 .page = NULL, 2563 }; 2564 2565 /* 2566 * Make sure the structs are really initialized before we expose the 2567 * capture control, in case we are interrupted and the interrupt handler 2568 * frees a page. 2569 */ 2570 barrier(); 2571 WRITE_ONCE(current->capture_control, &capc); 2572 2573 ret = compact_zone(&cc, &capc); 2574 2575 /* 2576 * Make sure we hide capture control first before we read the captured 2577 * page pointer, otherwise an interrupt could free and capture a page 2578 * and we would leak it. 2579 */ 2580 WRITE_ONCE(current->capture_control, NULL); 2581 *capture = READ_ONCE(capc.page); 2582 /* 2583 * Technically, it is also possible that compaction is skipped but 2584 * the page is still captured out of luck(IRQ came and freed the page). 2585 * Returning COMPACT_SUCCESS in such cases helps in properly accounting 2586 * the COMPACT[STALL|FAIL] when compaction is skipped. 2587 */ 2588 if (*capture) 2589 ret = COMPACT_SUCCESS; 2590 2591 return ret; 2592 } 2593 2594 /** 2595 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2596 * @gfp_mask: The GFP mask of the current allocation 2597 * @order: The order of the current allocation 2598 * @alloc_flags: The allocation flags of the current allocation 2599 * @ac: The context of current allocation 2600 * @prio: Determines how hard direct compaction should try to succeed 2601 * @capture: Pointer to free page created by compaction will be stored here 2602 * 2603 * This is the main entry point for direct page compaction. 2604 */ 2605 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2606 unsigned int alloc_flags, const struct alloc_context *ac, 2607 enum compact_priority prio, struct page **capture) 2608 { 2609 int may_perform_io = (__force int)(gfp_mask & __GFP_IO); 2610 struct zoneref *z; 2611 struct zone *zone; 2612 enum compact_result rc = COMPACT_SKIPPED; 2613 2614 /* 2615 * Check if the GFP flags allow compaction - GFP_NOIO is really 2616 * tricky context because the migration might require IO 2617 */ 2618 if (!may_perform_io) 2619 return COMPACT_SKIPPED; 2620 2621 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2622 2623 /* Compact each zone in the list */ 2624 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2625 ac->highest_zoneidx, ac->nodemask) { 2626 enum compact_result status; 2627 2628 if (prio > MIN_COMPACT_PRIORITY 2629 && compaction_deferred(zone, order)) { 2630 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2631 continue; 2632 } 2633 2634 status = compact_zone_order(zone, order, gfp_mask, prio, 2635 alloc_flags, ac->highest_zoneidx, capture); 2636 rc = max(status, rc); 2637 2638 /* The allocation should succeed, stop compacting */ 2639 if (status == COMPACT_SUCCESS) { 2640 /* 2641 * We think the allocation will succeed in this zone, 2642 * but it is not certain, hence the false. The caller 2643 * will repeat this with true if allocation indeed 2644 * succeeds in this zone. 2645 */ 2646 compaction_defer_reset(zone, order, false); 2647 2648 break; 2649 } 2650 2651 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2652 status == COMPACT_PARTIAL_SKIPPED)) 2653 /* 2654 * We think that allocation won't succeed in this zone 2655 * so we defer compaction there. If it ends up 2656 * succeeding after all, it will be reset. 2657 */ 2658 defer_compaction(zone, order); 2659 2660 /* 2661 * We might have stopped compacting due to need_resched() in 2662 * async compaction, or due to a fatal signal detected. In that 2663 * case do not try further zones 2664 */ 2665 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2666 || fatal_signal_pending(current)) 2667 break; 2668 } 2669 2670 return rc; 2671 } 2672 2673 /* 2674 * Compact all zones within a node till each zone's fragmentation score 2675 * reaches within proactive compaction thresholds (as determined by the 2676 * proactiveness tunable). 2677 * 2678 * It is possible that the function returns before reaching score targets 2679 * due to various back-off conditions, such as, contention on per-node or 2680 * per-zone locks. 2681 */ 2682 static void proactive_compact_node(pg_data_t *pgdat) 2683 { 2684 int zoneid; 2685 struct zone *zone; 2686 struct compact_control cc = { 2687 .order = -1, 2688 .mode = MIGRATE_SYNC_LIGHT, 2689 .ignore_skip_hint = true, 2690 .whole_zone = true, 2691 .gfp_mask = GFP_KERNEL, 2692 .proactive_compaction = true, 2693 }; 2694 2695 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2696 zone = &pgdat->node_zones[zoneid]; 2697 if (!populated_zone(zone)) 2698 continue; 2699 2700 cc.zone = zone; 2701 2702 compact_zone(&cc, NULL); 2703 2704 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2705 cc.total_migrate_scanned); 2706 count_compact_events(KCOMPACTD_FREE_SCANNED, 2707 cc.total_free_scanned); 2708 } 2709 } 2710 2711 /* Compact all zones within a node */ 2712 static void compact_node(int nid) 2713 { 2714 pg_data_t *pgdat = NODE_DATA(nid); 2715 int zoneid; 2716 struct zone *zone; 2717 struct compact_control cc = { 2718 .order = -1, 2719 .mode = MIGRATE_SYNC, 2720 .ignore_skip_hint = true, 2721 .whole_zone = true, 2722 .gfp_mask = GFP_KERNEL, 2723 }; 2724 2725 2726 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2727 2728 zone = &pgdat->node_zones[zoneid]; 2729 if (!populated_zone(zone)) 2730 continue; 2731 2732 cc.zone = zone; 2733 2734 compact_zone(&cc, NULL); 2735 } 2736 } 2737 2738 /* Compact all nodes in the system */ 2739 static void compact_nodes(void) 2740 { 2741 int nid; 2742 2743 /* Flush pending updates to the LRU lists */ 2744 lru_add_drain_all(); 2745 2746 for_each_online_node(nid) 2747 compact_node(nid); 2748 } 2749 2750 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write, 2751 void *buffer, size_t *length, loff_t *ppos) 2752 { 2753 int rc, nid; 2754 2755 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 2756 if (rc) 2757 return rc; 2758 2759 if (write && sysctl_compaction_proactiveness) { 2760 for_each_online_node(nid) { 2761 pg_data_t *pgdat = NODE_DATA(nid); 2762 2763 if (pgdat->proactive_compact_trigger) 2764 continue; 2765 2766 pgdat->proactive_compact_trigger = true; 2767 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1, 2768 pgdat->nr_zones - 1); 2769 wake_up_interruptible(&pgdat->kcompactd_wait); 2770 } 2771 } 2772 2773 return 0; 2774 } 2775 2776 /* 2777 * This is the entry point for compacting all nodes via 2778 * /proc/sys/vm/compact_memory 2779 */ 2780 static int sysctl_compaction_handler(struct ctl_table *table, int write, 2781 void *buffer, size_t *length, loff_t *ppos) 2782 { 2783 if (write) 2784 compact_nodes(); 2785 2786 return 0; 2787 } 2788 2789 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2790 static ssize_t compact_store(struct device *dev, 2791 struct device_attribute *attr, 2792 const char *buf, size_t count) 2793 { 2794 int nid = dev->id; 2795 2796 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2797 /* Flush pending updates to the LRU lists */ 2798 lru_add_drain_all(); 2799 2800 compact_node(nid); 2801 } 2802 2803 return count; 2804 } 2805 static DEVICE_ATTR_WO(compact); 2806 2807 int compaction_register_node(struct node *node) 2808 { 2809 return device_create_file(&node->dev, &dev_attr_compact); 2810 } 2811 2812 void compaction_unregister_node(struct node *node) 2813 { 2814 return device_remove_file(&node->dev, &dev_attr_compact); 2815 } 2816 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2817 2818 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2819 { 2820 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() || 2821 pgdat->proactive_compact_trigger; 2822 } 2823 2824 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2825 { 2826 int zoneid; 2827 struct zone *zone; 2828 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 2829 2830 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 2831 zone = &pgdat->node_zones[zoneid]; 2832 2833 if (!populated_zone(zone)) 2834 continue; 2835 2836 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2837 highest_zoneidx) == COMPACT_CONTINUE) 2838 return true; 2839 } 2840 2841 return false; 2842 } 2843 2844 static void kcompactd_do_work(pg_data_t *pgdat) 2845 { 2846 /* 2847 * With no special task, compact all zones so that a page of requested 2848 * order is allocatable. 2849 */ 2850 int zoneid; 2851 struct zone *zone; 2852 struct compact_control cc = { 2853 .order = pgdat->kcompactd_max_order, 2854 .search_order = pgdat->kcompactd_max_order, 2855 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 2856 .mode = MIGRATE_SYNC_LIGHT, 2857 .ignore_skip_hint = false, 2858 .gfp_mask = GFP_KERNEL, 2859 }; 2860 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2861 cc.highest_zoneidx); 2862 count_compact_event(KCOMPACTD_WAKE); 2863 2864 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 2865 int status; 2866 2867 zone = &pgdat->node_zones[zoneid]; 2868 if (!populated_zone(zone)) 2869 continue; 2870 2871 if (compaction_deferred(zone, cc.order)) 2872 continue; 2873 2874 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2875 COMPACT_CONTINUE) 2876 continue; 2877 2878 if (kthread_should_stop()) 2879 return; 2880 2881 cc.zone = zone; 2882 status = compact_zone(&cc, NULL); 2883 2884 if (status == COMPACT_SUCCESS) { 2885 compaction_defer_reset(zone, cc.order, false); 2886 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2887 /* 2888 * Buddy pages may become stranded on pcps that could 2889 * otherwise coalesce on the zone's free area for 2890 * order >= cc.order. This is ratelimited by the 2891 * upcoming deferral. 2892 */ 2893 drain_all_pages(zone); 2894 2895 /* 2896 * We use sync migration mode here, so we defer like 2897 * sync direct compaction does. 2898 */ 2899 defer_compaction(zone, cc.order); 2900 } 2901 2902 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2903 cc.total_migrate_scanned); 2904 count_compact_events(KCOMPACTD_FREE_SCANNED, 2905 cc.total_free_scanned); 2906 } 2907 2908 /* 2909 * Regardless of success, we are done until woken up next. But remember 2910 * the requested order/highest_zoneidx in case it was higher/tighter 2911 * than our current ones 2912 */ 2913 if (pgdat->kcompactd_max_order <= cc.order) 2914 pgdat->kcompactd_max_order = 0; 2915 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 2916 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2917 } 2918 2919 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 2920 { 2921 if (!order) 2922 return; 2923 2924 if (pgdat->kcompactd_max_order < order) 2925 pgdat->kcompactd_max_order = order; 2926 2927 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 2928 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 2929 2930 /* 2931 * Pairs with implicit barrier in wait_event_freezable() 2932 * such that wakeups are not missed. 2933 */ 2934 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2935 return; 2936 2937 if (!kcompactd_node_suitable(pgdat)) 2938 return; 2939 2940 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2941 highest_zoneidx); 2942 wake_up_interruptible(&pgdat->kcompactd_wait); 2943 } 2944 2945 /* 2946 * The background compaction daemon, started as a kernel thread 2947 * from the init process. 2948 */ 2949 static int kcompactd(void *p) 2950 { 2951 pg_data_t *pgdat = (pg_data_t *)p; 2952 struct task_struct *tsk = current; 2953 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC); 2954 long timeout = default_timeout; 2955 2956 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2957 2958 if (!cpumask_empty(cpumask)) 2959 set_cpus_allowed_ptr(tsk, cpumask); 2960 2961 set_freezable(); 2962 2963 pgdat->kcompactd_max_order = 0; 2964 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2965 2966 while (!kthread_should_stop()) { 2967 unsigned long pflags; 2968 2969 /* 2970 * Avoid the unnecessary wakeup for proactive compaction 2971 * when it is disabled. 2972 */ 2973 if (!sysctl_compaction_proactiveness) 2974 timeout = MAX_SCHEDULE_TIMEOUT; 2975 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2976 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 2977 kcompactd_work_requested(pgdat), timeout) && 2978 !pgdat->proactive_compact_trigger) { 2979 2980 psi_memstall_enter(&pflags); 2981 kcompactd_do_work(pgdat); 2982 psi_memstall_leave(&pflags); 2983 /* 2984 * Reset the timeout value. The defer timeout from 2985 * proactive compaction is lost here but that is fine 2986 * as the condition of the zone changing substantionally 2987 * then carrying on with the previous defer interval is 2988 * not useful. 2989 */ 2990 timeout = default_timeout; 2991 continue; 2992 } 2993 2994 /* 2995 * Start the proactive work with default timeout. Based 2996 * on the fragmentation score, this timeout is updated. 2997 */ 2998 timeout = default_timeout; 2999 if (should_proactive_compact_node(pgdat)) { 3000 unsigned int prev_score, score; 3001 3002 prev_score = fragmentation_score_node(pgdat); 3003 proactive_compact_node(pgdat); 3004 score = fragmentation_score_node(pgdat); 3005 /* 3006 * Defer proactive compaction if the fragmentation 3007 * score did not go down i.e. no progress made. 3008 */ 3009 if (unlikely(score >= prev_score)) 3010 timeout = 3011 default_timeout << COMPACT_MAX_DEFER_SHIFT; 3012 } 3013 if (unlikely(pgdat->proactive_compact_trigger)) 3014 pgdat->proactive_compact_trigger = false; 3015 } 3016 3017 return 0; 3018 } 3019 3020 /* 3021 * This kcompactd start function will be called by init and node-hot-add. 3022 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 3023 */ 3024 void kcompactd_run(int nid) 3025 { 3026 pg_data_t *pgdat = NODE_DATA(nid); 3027 3028 if (pgdat->kcompactd) 3029 return; 3030 3031 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 3032 if (IS_ERR(pgdat->kcompactd)) { 3033 pr_err("Failed to start kcompactd on node %d\n", nid); 3034 pgdat->kcompactd = NULL; 3035 } 3036 } 3037 3038 /* 3039 * Called by memory hotplug when all memory in a node is offlined. Caller must 3040 * be holding mem_hotplug_begin/done(). 3041 */ 3042 void kcompactd_stop(int nid) 3043 { 3044 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 3045 3046 if (kcompactd) { 3047 kthread_stop(kcompactd); 3048 NODE_DATA(nid)->kcompactd = NULL; 3049 } 3050 } 3051 3052 /* 3053 * It's optimal to keep kcompactd on the same CPUs as their memory, but 3054 * not required for correctness. So if the last cpu in a node goes 3055 * away, we get changed to run anywhere: as the first one comes back, 3056 * restore their cpu bindings. 3057 */ 3058 static int kcompactd_cpu_online(unsigned int cpu) 3059 { 3060 int nid; 3061 3062 for_each_node_state(nid, N_MEMORY) { 3063 pg_data_t *pgdat = NODE_DATA(nid); 3064 const struct cpumask *mask; 3065 3066 mask = cpumask_of_node(pgdat->node_id); 3067 3068 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3069 /* One of our CPUs online: restore mask */ 3070 if (pgdat->kcompactd) 3071 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 3072 } 3073 return 0; 3074 } 3075 3076 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table, 3077 int write, void *buffer, size_t *lenp, loff_t *ppos) 3078 { 3079 int ret, old; 3080 3081 if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write) 3082 return proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3083 3084 old = *(int *)table->data; 3085 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 3086 if (ret) 3087 return ret; 3088 if (old != *(int *)table->data) 3089 pr_warn_once("sysctl attribute %s changed by %s[%d]\n", 3090 table->procname, current->comm, 3091 task_pid_nr(current)); 3092 return ret; 3093 } 3094 3095 static struct ctl_table vm_compaction[] = { 3096 { 3097 .procname = "compact_memory", 3098 .data = NULL, 3099 .maxlen = sizeof(int), 3100 .mode = 0200, 3101 .proc_handler = sysctl_compaction_handler, 3102 }, 3103 { 3104 .procname = "compaction_proactiveness", 3105 .data = &sysctl_compaction_proactiveness, 3106 .maxlen = sizeof(sysctl_compaction_proactiveness), 3107 .mode = 0644, 3108 .proc_handler = compaction_proactiveness_sysctl_handler, 3109 .extra1 = SYSCTL_ZERO, 3110 .extra2 = SYSCTL_ONE_HUNDRED, 3111 }, 3112 { 3113 .procname = "extfrag_threshold", 3114 .data = &sysctl_extfrag_threshold, 3115 .maxlen = sizeof(int), 3116 .mode = 0644, 3117 .proc_handler = proc_dointvec_minmax, 3118 .extra1 = SYSCTL_ZERO, 3119 .extra2 = SYSCTL_ONE_THOUSAND, 3120 }, 3121 { 3122 .procname = "compact_unevictable_allowed", 3123 .data = &sysctl_compact_unevictable_allowed, 3124 .maxlen = sizeof(int), 3125 .mode = 0644, 3126 .proc_handler = proc_dointvec_minmax_warn_RT_change, 3127 .extra1 = SYSCTL_ZERO, 3128 .extra2 = SYSCTL_ONE, 3129 }, 3130 { } 3131 }; 3132 3133 static int __init kcompactd_init(void) 3134 { 3135 int nid; 3136 int ret; 3137 3138 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3139 "mm/compaction:online", 3140 kcompactd_cpu_online, NULL); 3141 if (ret < 0) { 3142 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 3143 return ret; 3144 } 3145 3146 for_each_node_state(nid, N_MEMORY) 3147 kcompactd_run(nid); 3148 register_sysctl_init("vm", vm_compaction); 3149 return 0; 3150 } 3151 subsys_initcall(kcompactd_init) 3152 3153 #endif /* CONFIG_COMPACTION */ 3154