xref: /openbmc/linux/mm/compaction.c (revision 60eb644b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
33 
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36 	count_vm_event(item);
37 }
38 
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41 	count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47 
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52 
53 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
55 
56 /*
57  * Page order with-respect-to which proactive compaction
58  * calculates external fragmentation, which is used as
59  * the "fragmentation score" of a node/zone.
60  */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
67 #endif
68 
69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71 	struct page *page, *next;
72 	unsigned long high_pfn = 0;
73 
74 	list_for_each_entry_safe(page, next, freelist, lru) {
75 		unsigned long pfn = page_to_pfn(page);
76 		list_del(&page->lru);
77 		__free_page(page);
78 		if (pfn > high_pfn)
79 			high_pfn = pfn;
80 	}
81 
82 	return high_pfn;
83 }
84 
85 static void split_map_pages(struct list_head *list)
86 {
87 	unsigned int i, order, nr_pages;
88 	struct page *page, *next;
89 	LIST_HEAD(tmp_list);
90 
91 	list_for_each_entry_safe(page, next, list, lru) {
92 		list_del(&page->lru);
93 
94 		order = page_private(page);
95 		nr_pages = 1 << order;
96 
97 		post_alloc_hook(page, order, __GFP_MOVABLE);
98 		if (order)
99 			split_page(page, order);
100 
101 		for (i = 0; i < nr_pages; i++) {
102 			list_add(&page->lru, &tmp_list);
103 			page++;
104 		}
105 	}
106 
107 	list_splice(&tmp_list, list);
108 }
109 
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
112 {
113 	const struct movable_operations *mops;
114 
115 	VM_BUG_ON_PAGE(!PageLocked(page), page);
116 	if (!__PageMovable(page))
117 		return false;
118 
119 	mops = page_movable_ops(page);
120 	if (mops)
121 		return true;
122 
123 	return false;
124 }
125 
126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127 {
128 	VM_BUG_ON_PAGE(!PageLocked(page), page);
129 	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130 	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__SetPageMovable);
133 
134 void __ClearPageMovable(struct page *page)
135 {
136 	VM_BUG_ON_PAGE(!PageMovable(page), page);
137 	/*
138 	 * This page still has the type of a movable page, but it's
139 	 * actually not movable any more.
140 	 */
141 	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142 }
143 EXPORT_SYMBOL(__ClearPageMovable);
144 
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
147 
148 /*
149  * Compaction is deferred when compaction fails to result in a page
150  * allocation success. 1 << compact_defer_shift, compactions are skipped up
151  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152  */
153 static void defer_compaction(struct zone *zone, int order)
154 {
155 	zone->compact_considered = 0;
156 	zone->compact_defer_shift++;
157 
158 	if (order < zone->compact_order_failed)
159 		zone->compact_order_failed = order;
160 
161 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163 
164 	trace_mm_compaction_defer_compaction(zone, order);
165 }
166 
167 /* Returns true if compaction should be skipped this time */
168 static bool compaction_deferred(struct zone *zone, int order)
169 {
170 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171 
172 	if (order < zone->compact_order_failed)
173 		return false;
174 
175 	/* Avoid possible overflow */
176 	if (++zone->compact_considered >= defer_limit) {
177 		zone->compact_considered = defer_limit;
178 		return false;
179 	}
180 
181 	trace_mm_compaction_deferred(zone, order);
182 
183 	return true;
184 }
185 
186 /*
187  * Update defer tracking counters after successful compaction of given order,
188  * which means an allocation either succeeded (alloc_success == true) or is
189  * expected to succeed.
190  */
191 void compaction_defer_reset(struct zone *zone, int order,
192 		bool alloc_success)
193 {
194 	if (alloc_success) {
195 		zone->compact_considered = 0;
196 		zone->compact_defer_shift = 0;
197 	}
198 	if (order >= zone->compact_order_failed)
199 		zone->compact_order_failed = order + 1;
200 
201 	trace_mm_compaction_defer_reset(zone, order);
202 }
203 
204 /* Returns true if restarting compaction after many failures */
205 static bool compaction_restarting(struct zone *zone, int order)
206 {
207 	if (order < zone->compact_order_failed)
208 		return false;
209 
210 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
212 }
213 
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
215 static inline bool isolation_suitable(struct compact_control *cc,
216 					struct page *page)
217 {
218 	if (cc->ignore_skip_hint)
219 		return true;
220 
221 	return !get_pageblock_skip(page);
222 }
223 
224 static void reset_cached_positions(struct zone *zone)
225 {
226 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228 	zone->compact_cached_free_pfn =
229 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
230 }
231 
232 /*
233  * Compound pages of >= pageblock_order should consistently be skipped until
234  * released. It is always pointless to compact pages of such order (if they are
235  * migratable), and the pageblocks they occupy cannot contain any free pages.
236  */
237 static bool pageblock_skip_persistent(struct page *page)
238 {
239 	if (!PageCompound(page))
240 		return false;
241 
242 	page = compound_head(page);
243 
244 	if (compound_order(page) >= pageblock_order)
245 		return true;
246 
247 	return false;
248 }
249 
250 static bool
251 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
252 							bool check_target)
253 {
254 	struct page *page = pfn_to_online_page(pfn);
255 	struct page *block_page;
256 	struct page *end_page;
257 	unsigned long block_pfn;
258 
259 	if (!page)
260 		return false;
261 	if (zone != page_zone(page))
262 		return false;
263 	if (pageblock_skip_persistent(page))
264 		return false;
265 
266 	/*
267 	 * If skip is already cleared do no further checking once the
268 	 * restart points have been set.
269 	 */
270 	if (check_source && check_target && !get_pageblock_skip(page))
271 		return true;
272 
273 	/*
274 	 * If clearing skip for the target scanner, do not select a
275 	 * non-movable pageblock as the starting point.
276 	 */
277 	if (!check_source && check_target &&
278 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
279 		return false;
280 
281 	/* Ensure the start of the pageblock or zone is online and valid */
282 	block_pfn = pageblock_start_pfn(pfn);
283 	block_pfn = max(block_pfn, zone->zone_start_pfn);
284 	block_page = pfn_to_online_page(block_pfn);
285 	if (block_page) {
286 		page = block_page;
287 		pfn = block_pfn;
288 	}
289 
290 	/* Ensure the end of the pageblock or zone is online and valid */
291 	block_pfn = pageblock_end_pfn(pfn) - 1;
292 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
293 	end_page = pfn_to_online_page(block_pfn);
294 	if (!end_page)
295 		return false;
296 
297 	/*
298 	 * Only clear the hint if a sample indicates there is either a
299 	 * free page or an LRU page in the block. One or other condition
300 	 * is necessary for the block to be a migration source/target.
301 	 */
302 	do {
303 		if (check_source && PageLRU(page)) {
304 			clear_pageblock_skip(page);
305 			return true;
306 		}
307 
308 		if (check_target && PageBuddy(page)) {
309 			clear_pageblock_skip(page);
310 			return true;
311 		}
312 
313 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
314 	} while (page <= end_page);
315 
316 	return false;
317 }
318 
319 /*
320  * This function is called to clear all cached information on pageblocks that
321  * should be skipped for page isolation when the migrate and free page scanner
322  * meet.
323  */
324 static void __reset_isolation_suitable(struct zone *zone)
325 {
326 	unsigned long migrate_pfn = zone->zone_start_pfn;
327 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
328 	unsigned long reset_migrate = free_pfn;
329 	unsigned long reset_free = migrate_pfn;
330 	bool source_set = false;
331 	bool free_set = false;
332 
333 	if (!zone->compact_blockskip_flush)
334 		return;
335 
336 	zone->compact_blockskip_flush = false;
337 
338 	/*
339 	 * Walk the zone and update pageblock skip information. Source looks
340 	 * for PageLRU while target looks for PageBuddy. When the scanner
341 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
342 	 * is suitable as both source and target.
343 	 */
344 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
345 					free_pfn -= pageblock_nr_pages) {
346 		cond_resched();
347 
348 		/* Update the migrate PFN */
349 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
350 		    migrate_pfn < reset_migrate) {
351 			source_set = true;
352 			reset_migrate = migrate_pfn;
353 			zone->compact_init_migrate_pfn = reset_migrate;
354 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
355 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
356 		}
357 
358 		/* Update the free PFN */
359 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
360 		    free_pfn > reset_free) {
361 			free_set = true;
362 			reset_free = free_pfn;
363 			zone->compact_init_free_pfn = reset_free;
364 			zone->compact_cached_free_pfn = reset_free;
365 		}
366 	}
367 
368 	/* Leave no distance if no suitable block was reset */
369 	if (reset_migrate >= reset_free) {
370 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
371 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
372 		zone->compact_cached_free_pfn = free_pfn;
373 	}
374 }
375 
376 void reset_isolation_suitable(pg_data_t *pgdat)
377 {
378 	int zoneid;
379 
380 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
381 		struct zone *zone = &pgdat->node_zones[zoneid];
382 		if (!populated_zone(zone))
383 			continue;
384 
385 		/* Only flush if a full compaction finished recently */
386 		if (zone->compact_blockskip_flush)
387 			__reset_isolation_suitable(zone);
388 	}
389 }
390 
391 /*
392  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
393  * locks are not required for read/writers. Returns true if it was already set.
394  */
395 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
396 {
397 	bool skip;
398 
399 	/* Do not update if skip hint is being ignored */
400 	if (cc->ignore_skip_hint)
401 		return false;
402 
403 	skip = get_pageblock_skip(page);
404 	if (!skip && !cc->no_set_skip_hint)
405 		set_pageblock_skip(page);
406 
407 	return skip;
408 }
409 
410 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
411 {
412 	struct zone *zone = cc->zone;
413 
414 	pfn = pageblock_end_pfn(pfn);
415 
416 	/* Set for isolation rather than compaction */
417 	if (cc->no_set_skip_hint)
418 		return;
419 
420 	if (pfn > zone->compact_cached_migrate_pfn[0])
421 		zone->compact_cached_migrate_pfn[0] = pfn;
422 	if (cc->mode != MIGRATE_ASYNC &&
423 	    pfn > zone->compact_cached_migrate_pfn[1])
424 		zone->compact_cached_migrate_pfn[1] = pfn;
425 }
426 
427 /*
428  * If no pages were isolated then mark this pageblock to be skipped in the
429  * future. The information is later cleared by __reset_isolation_suitable().
430  */
431 static void update_pageblock_skip(struct compact_control *cc,
432 			struct page *page, unsigned long pfn)
433 {
434 	struct zone *zone = cc->zone;
435 
436 	if (cc->no_set_skip_hint)
437 		return;
438 
439 	set_pageblock_skip(page);
440 
441 	/* Update where async and sync compaction should restart */
442 	if (pfn < zone->compact_cached_free_pfn)
443 		zone->compact_cached_free_pfn = pfn;
444 }
445 #else
446 static inline bool isolation_suitable(struct compact_control *cc,
447 					struct page *page)
448 {
449 	return true;
450 }
451 
452 static inline bool pageblock_skip_persistent(struct page *page)
453 {
454 	return false;
455 }
456 
457 static inline void update_pageblock_skip(struct compact_control *cc,
458 			struct page *page, unsigned long pfn)
459 {
460 }
461 
462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
463 {
464 }
465 
466 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
467 {
468 	return false;
469 }
470 #endif /* CONFIG_COMPACTION */
471 
472 /*
473  * Compaction requires the taking of some coarse locks that are potentially
474  * very heavily contended. For async compaction, trylock and record if the
475  * lock is contended. The lock will still be acquired but compaction will
476  * abort when the current block is finished regardless of success rate.
477  * Sync compaction acquires the lock.
478  *
479  * Always returns true which makes it easier to track lock state in callers.
480  */
481 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
482 						struct compact_control *cc)
483 	__acquires(lock)
484 {
485 	/* Track if the lock is contended in async mode */
486 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
487 		if (spin_trylock_irqsave(lock, *flags))
488 			return true;
489 
490 		cc->contended = true;
491 	}
492 
493 	spin_lock_irqsave(lock, *flags);
494 	return true;
495 }
496 
497 /*
498  * Compaction requires the taking of some coarse locks that are potentially
499  * very heavily contended. The lock should be periodically unlocked to avoid
500  * having disabled IRQs for a long time, even when there is nobody waiting on
501  * the lock. It might also be that allowing the IRQs will result in
502  * need_resched() becoming true. If scheduling is needed, compaction schedules.
503  * Either compaction type will also abort if a fatal signal is pending.
504  * In either case if the lock was locked, it is dropped and not regained.
505  *
506  * Returns true if compaction should abort due to fatal signal pending.
507  * Returns false when compaction can continue.
508  */
509 static bool compact_unlock_should_abort(spinlock_t *lock,
510 		unsigned long flags, bool *locked, struct compact_control *cc)
511 {
512 	if (*locked) {
513 		spin_unlock_irqrestore(lock, flags);
514 		*locked = false;
515 	}
516 
517 	if (fatal_signal_pending(current)) {
518 		cc->contended = true;
519 		return true;
520 	}
521 
522 	cond_resched();
523 
524 	return false;
525 }
526 
527 /*
528  * Isolate free pages onto a private freelist. If @strict is true, will abort
529  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
530  * (even though it may still end up isolating some pages).
531  */
532 static unsigned long isolate_freepages_block(struct compact_control *cc,
533 				unsigned long *start_pfn,
534 				unsigned long end_pfn,
535 				struct list_head *freelist,
536 				unsigned int stride,
537 				bool strict)
538 {
539 	int nr_scanned = 0, total_isolated = 0;
540 	struct page *cursor;
541 	unsigned long flags = 0;
542 	bool locked = false;
543 	unsigned long blockpfn = *start_pfn;
544 	unsigned int order;
545 
546 	/* Strict mode is for isolation, speed is secondary */
547 	if (strict)
548 		stride = 1;
549 
550 	cursor = pfn_to_page(blockpfn);
551 
552 	/* Isolate free pages. */
553 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
554 		int isolated;
555 		struct page *page = cursor;
556 
557 		/*
558 		 * Periodically drop the lock (if held) regardless of its
559 		 * contention, to give chance to IRQs. Abort if fatal signal
560 		 * pending.
561 		 */
562 		if (!(blockpfn % COMPACT_CLUSTER_MAX)
563 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
564 								&locked, cc))
565 			break;
566 
567 		nr_scanned++;
568 
569 		/*
570 		 * For compound pages such as THP and hugetlbfs, we can save
571 		 * potentially a lot of iterations if we skip them at once.
572 		 * The check is racy, but we can consider only valid values
573 		 * and the only danger is skipping too much.
574 		 */
575 		if (PageCompound(page)) {
576 			const unsigned int order = compound_order(page);
577 
578 			if (likely(order <= MAX_ORDER)) {
579 				blockpfn += (1UL << order) - 1;
580 				cursor += (1UL << order) - 1;
581 				nr_scanned += (1UL << order) - 1;
582 			}
583 			goto isolate_fail;
584 		}
585 
586 		if (!PageBuddy(page))
587 			goto isolate_fail;
588 
589 		/* If we already hold the lock, we can skip some rechecking. */
590 		if (!locked) {
591 			locked = compact_lock_irqsave(&cc->zone->lock,
592 								&flags, cc);
593 
594 			/* Recheck this is a buddy page under lock */
595 			if (!PageBuddy(page))
596 				goto isolate_fail;
597 		}
598 
599 		/* Found a free page, will break it into order-0 pages */
600 		order = buddy_order(page);
601 		isolated = __isolate_free_page(page, order);
602 		if (!isolated)
603 			break;
604 		set_page_private(page, order);
605 
606 		nr_scanned += isolated - 1;
607 		total_isolated += isolated;
608 		cc->nr_freepages += isolated;
609 		list_add_tail(&page->lru, freelist);
610 
611 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
612 			blockpfn += isolated;
613 			break;
614 		}
615 		/* Advance to the end of split page */
616 		blockpfn += isolated - 1;
617 		cursor += isolated - 1;
618 		continue;
619 
620 isolate_fail:
621 		if (strict)
622 			break;
623 		else
624 			continue;
625 
626 	}
627 
628 	if (locked)
629 		spin_unlock_irqrestore(&cc->zone->lock, flags);
630 
631 	/*
632 	 * There is a tiny chance that we have read bogus compound_order(),
633 	 * so be careful to not go outside of the pageblock.
634 	 */
635 	if (unlikely(blockpfn > end_pfn))
636 		blockpfn = end_pfn;
637 
638 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
639 					nr_scanned, total_isolated);
640 
641 	/* Record how far we have got within the block */
642 	*start_pfn = blockpfn;
643 
644 	/*
645 	 * If strict isolation is requested by CMA then check that all the
646 	 * pages requested were isolated. If there were any failures, 0 is
647 	 * returned and CMA will fail.
648 	 */
649 	if (strict && blockpfn < end_pfn)
650 		total_isolated = 0;
651 
652 	cc->total_free_scanned += nr_scanned;
653 	if (total_isolated)
654 		count_compact_events(COMPACTISOLATED, total_isolated);
655 	return total_isolated;
656 }
657 
658 /**
659  * isolate_freepages_range() - isolate free pages.
660  * @cc:        Compaction control structure.
661  * @start_pfn: The first PFN to start isolating.
662  * @end_pfn:   The one-past-last PFN.
663  *
664  * Non-free pages, invalid PFNs, or zone boundaries within the
665  * [start_pfn, end_pfn) range are considered errors, cause function to
666  * undo its actions and return zero.
667  *
668  * Otherwise, function returns one-past-the-last PFN of isolated page
669  * (which may be greater then end_pfn if end fell in a middle of
670  * a free page).
671  */
672 unsigned long
673 isolate_freepages_range(struct compact_control *cc,
674 			unsigned long start_pfn, unsigned long end_pfn)
675 {
676 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
677 	LIST_HEAD(freelist);
678 
679 	pfn = start_pfn;
680 	block_start_pfn = pageblock_start_pfn(pfn);
681 	if (block_start_pfn < cc->zone->zone_start_pfn)
682 		block_start_pfn = cc->zone->zone_start_pfn;
683 	block_end_pfn = pageblock_end_pfn(pfn);
684 
685 	for (; pfn < end_pfn; pfn += isolated,
686 				block_start_pfn = block_end_pfn,
687 				block_end_pfn += pageblock_nr_pages) {
688 		/* Protect pfn from changing by isolate_freepages_block */
689 		unsigned long isolate_start_pfn = pfn;
690 
691 		block_end_pfn = min(block_end_pfn, end_pfn);
692 
693 		/*
694 		 * pfn could pass the block_end_pfn if isolated freepage
695 		 * is more than pageblock order. In this case, we adjust
696 		 * scanning range to right one.
697 		 */
698 		if (pfn >= block_end_pfn) {
699 			block_start_pfn = pageblock_start_pfn(pfn);
700 			block_end_pfn = pageblock_end_pfn(pfn);
701 			block_end_pfn = min(block_end_pfn, end_pfn);
702 		}
703 
704 		if (!pageblock_pfn_to_page(block_start_pfn,
705 					block_end_pfn, cc->zone))
706 			break;
707 
708 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
709 					block_end_pfn, &freelist, 0, true);
710 
711 		/*
712 		 * In strict mode, isolate_freepages_block() returns 0 if
713 		 * there are any holes in the block (ie. invalid PFNs or
714 		 * non-free pages).
715 		 */
716 		if (!isolated)
717 			break;
718 
719 		/*
720 		 * If we managed to isolate pages, it is always (1 << n) *
721 		 * pageblock_nr_pages for some non-negative n.  (Max order
722 		 * page may span two pageblocks).
723 		 */
724 	}
725 
726 	/* __isolate_free_page() does not map the pages */
727 	split_map_pages(&freelist);
728 
729 	if (pfn < end_pfn) {
730 		/* Loop terminated early, cleanup. */
731 		release_freepages(&freelist);
732 		return 0;
733 	}
734 
735 	/* We don't use freelists for anything. */
736 	return pfn;
737 }
738 
739 /* Similar to reclaim, but different enough that they don't share logic */
740 static bool too_many_isolated(struct compact_control *cc)
741 {
742 	pg_data_t *pgdat = cc->zone->zone_pgdat;
743 	bool too_many;
744 
745 	unsigned long active, inactive, isolated;
746 
747 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
748 			node_page_state(pgdat, NR_INACTIVE_ANON);
749 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
750 			node_page_state(pgdat, NR_ACTIVE_ANON);
751 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
752 			node_page_state(pgdat, NR_ISOLATED_ANON);
753 
754 	/*
755 	 * Allow GFP_NOFS to isolate past the limit set for regular
756 	 * compaction runs. This prevents an ABBA deadlock when other
757 	 * compactors have already isolated to the limit, but are
758 	 * blocked on filesystem locks held by the GFP_NOFS thread.
759 	 */
760 	if (cc->gfp_mask & __GFP_FS) {
761 		inactive >>= 3;
762 		active >>= 3;
763 	}
764 
765 	too_many = isolated > (inactive + active) / 2;
766 	if (!too_many)
767 		wake_throttle_isolated(pgdat);
768 
769 	return too_many;
770 }
771 
772 /**
773  * isolate_migratepages_block() - isolate all migrate-able pages within
774  *				  a single pageblock
775  * @cc:		Compaction control structure.
776  * @low_pfn:	The first PFN to isolate
777  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
778  * @mode:	Isolation mode to be used.
779  *
780  * Isolate all pages that can be migrated from the range specified by
781  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
782  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
783  * -ENOMEM in case we could not allocate a page, or 0.
784  * cc->migrate_pfn will contain the next pfn to scan.
785  *
786  * The pages are isolated on cc->migratepages list (not required to be empty),
787  * and cc->nr_migratepages is updated accordingly.
788  */
789 static int
790 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
791 			unsigned long end_pfn, isolate_mode_t mode)
792 {
793 	pg_data_t *pgdat = cc->zone->zone_pgdat;
794 	unsigned long nr_scanned = 0, nr_isolated = 0;
795 	struct lruvec *lruvec;
796 	unsigned long flags = 0;
797 	struct lruvec *locked = NULL;
798 	struct page *page = NULL, *valid_page = NULL;
799 	struct address_space *mapping;
800 	unsigned long start_pfn = low_pfn;
801 	bool skip_on_failure = false;
802 	unsigned long next_skip_pfn = 0;
803 	bool skip_updated = false;
804 	int ret = 0;
805 
806 	cc->migrate_pfn = low_pfn;
807 
808 	/*
809 	 * Ensure that there are not too many pages isolated from the LRU
810 	 * list by either parallel reclaimers or compaction. If there are,
811 	 * delay for some time until fewer pages are isolated
812 	 */
813 	while (unlikely(too_many_isolated(cc))) {
814 		/* stop isolation if there are still pages not migrated */
815 		if (cc->nr_migratepages)
816 			return -EAGAIN;
817 
818 		/* async migration should just abort */
819 		if (cc->mode == MIGRATE_ASYNC)
820 			return -EAGAIN;
821 
822 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
823 
824 		if (fatal_signal_pending(current))
825 			return -EINTR;
826 	}
827 
828 	cond_resched();
829 
830 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
831 		skip_on_failure = true;
832 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
833 	}
834 
835 	/* Time to isolate some pages for migration */
836 	for (; low_pfn < end_pfn; low_pfn++) {
837 
838 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
839 			/*
840 			 * We have isolated all migration candidates in the
841 			 * previous order-aligned block, and did not skip it due
842 			 * to failure. We should migrate the pages now and
843 			 * hopefully succeed compaction.
844 			 */
845 			if (nr_isolated)
846 				break;
847 
848 			/*
849 			 * We failed to isolate in the previous order-aligned
850 			 * block. Set the new boundary to the end of the
851 			 * current block. Note we can't simply increase
852 			 * next_skip_pfn by 1 << order, as low_pfn might have
853 			 * been incremented by a higher number due to skipping
854 			 * a compound or a high-order buddy page in the
855 			 * previous loop iteration.
856 			 */
857 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
858 		}
859 
860 		/*
861 		 * Periodically drop the lock (if held) regardless of its
862 		 * contention, to give chance to IRQs. Abort completely if
863 		 * a fatal signal is pending.
864 		 */
865 		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
866 			if (locked) {
867 				unlock_page_lruvec_irqrestore(locked, flags);
868 				locked = NULL;
869 			}
870 
871 			if (fatal_signal_pending(current)) {
872 				cc->contended = true;
873 				ret = -EINTR;
874 
875 				goto fatal_pending;
876 			}
877 
878 			cond_resched();
879 		}
880 
881 		nr_scanned++;
882 
883 		page = pfn_to_page(low_pfn);
884 
885 		/*
886 		 * Check if the pageblock has already been marked skipped.
887 		 * Only the aligned PFN is checked as the caller isolates
888 		 * COMPACT_CLUSTER_MAX at a time so the second call must
889 		 * not falsely conclude that the block should be skipped.
890 		 */
891 		if (!valid_page && pageblock_aligned(low_pfn)) {
892 			if (!isolation_suitable(cc, page)) {
893 				low_pfn = end_pfn;
894 				page = NULL;
895 				goto isolate_abort;
896 			}
897 			valid_page = page;
898 		}
899 
900 		if (PageHuge(page) && cc->alloc_contig) {
901 			if (locked) {
902 				unlock_page_lruvec_irqrestore(locked, flags);
903 				locked = NULL;
904 			}
905 
906 			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
907 
908 			/*
909 			 * Fail isolation in case isolate_or_dissolve_huge_page()
910 			 * reports an error. In case of -ENOMEM, abort right away.
911 			 */
912 			if (ret < 0) {
913 				 /* Do not report -EBUSY down the chain */
914 				if (ret == -EBUSY)
915 					ret = 0;
916 				low_pfn += compound_nr(page) - 1;
917 				nr_scanned += compound_nr(page) - 1;
918 				goto isolate_fail;
919 			}
920 
921 			if (PageHuge(page)) {
922 				/*
923 				 * Hugepage was successfully isolated and placed
924 				 * on the cc->migratepages list.
925 				 */
926 				low_pfn += compound_nr(page) - 1;
927 				goto isolate_success_no_list;
928 			}
929 
930 			/*
931 			 * Ok, the hugepage was dissolved. Now these pages are
932 			 * Buddy and cannot be re-allocated because they are
933 			 * isolated. Fall-through as the check below handles
934 			 * Buddy pages.
935 			 */
936 		}
937 
938 		/*
939 		 * Skip if free. We read page order here without zone lock
940 		 * which is generally unsafe, but the race window is small and
941 		 * the worst thing that can happen is that we skip some
942 		 * potential isolation targets.
943 		 */
944 		if (PageBuddy(page)) {
945 			unsigned long freepage_order = buddy_order_unsafe(page);
946 
947 			/*
948 			 * Without lock, we cannot be sure that what we got is
949 			 * a valid page order. Consider only values in the
950 			 * valid order range to prevent low_pfn overflow.
951 			 */
952 			if (freepage_order > 0 && freepage_order <= MAX_ORDER) {
953 				low_pfn += (1UL << freepage_order) - 1;
954 				nr_scanned += (1UL << freepage_order) - 1;
955 			}
956 			continue;
957 		}
958 
959 		/*
960 		 * Regardless of being on LRU, compound pages such as THP and
961 		 * hugetlbfs are not to be compacted unless we are attempting
962 		 * an allocation much larger than the huge page size (eg CMA).
963 		 * We can potentially save a lot of iterations if we skip them
964 		 * at once. The check is racy, but we can consider only valid
965 		 * values and the only danger is skipping too much.
966 		 */
967 		if (PageCompound(page) && !cc->alloc_contig) {
968 			const unsigned int order = compound_order(page);
969 
970 			if (likely(order <= MAX_ORDER)) {
971 				low_pfn += (1UL << order) - 1;
972 				nr_scanned += (1UL << order) - 1;
973 			}
974 			goto isolate_fail;
975 		}
976 
977 		/*
978 		 * Check may be lockless but that's ok as we recheck later.
979 		 * It's possible to migrate LRU and non-lru movable pages.
980 		 * Skip any other type of page
981 		 */
982 		if (!PageLRU(page)) {
983 			/*
984 			 * __PageMovable can return false positive so we need
985 			 * to verify it under page_lock.
986 			 */
987 			if (unlikely(__PageMovable(page)) &&
988 					!PageIsolated(page)) {
989 				if (locked) {
990 					unlock_page_lruvec_irqrestore(locked, flags);
991 					locked = NULL;
992 				}
993 
994 				if (isolate_movable_page(page, mode))
995 					goto isolate_success;
996 			}
997 
998 			goto isolate_fail;
999 		}
1000 
1001 		/*
1002 		 * Be careful not to clear PageLRU until after we're
1003 		 * sure the page is not being freed elsewhere -- the
1004 		 * page release code relies on it.
1005 		 */
1006 		if (unlikely(!get_page_unless_zero(page)))
1007 			goto isolate_fail;
1008 
1009 		/*
1010 		 * Migration will fail if an anonymous page is pinned in memory,
1011 		 * so avoid taking lru_lock and isolating it unnecessarily in an
1012 		 * admittedly racy check.
1013 		 */
1014 		mapping = page_mapping(page);
1015 		if (!mapping && (page_count(page) - 1) > total_mapcount(page))
1016 			goto isolate_fail_put;
1017 
1018 		/*
1019 		 * Only allow to migrate anonymous pages in GFP_NOFS context
1020 		 * because those do not depend on fs locks.
1021 		 */
1022 		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1023 			goto isolate_fail_put;
1024 
1025 		/* Only take pages on LRU: a check now makes later tests safe */
1026 		if (!PageLRU(page))
1027 			goto isolate_fail_put;
1028 
1029 		/* Compaction might skip unevictable pages but CMA takes them */
1030 		if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1031 			goto isolate_fail_put;
1032 
1033 		/*
1034 		 * To minimise LRU disruption, the caller can indicate with
1035 		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1036 		 * it will be able to migrate without blocking - clean pages
1037 		 * for the most part.  PageWriteback would require blocking.
1038 		 */
1039 		if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1040 			goto isolate_fail_put;
1041 
1042 		if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1043 			bool migrate_dirty;
1044 
1045 			/*
1046 			 * Only pages without mappings or that have a
1047 			 * ->migrate_folio callback are possible to migrate
1048 			 * without blocking. However, we can be racing with
1049 			 * truncation so it's necessary to lock the page
1050 			 * to stabilise the mapping as truncation holds
1051 			 * the page lock until after the page is removed
1052 			 * from the page cache.
1053 			 */
1054 			if (!trylock_page(page))
1055 				goto isolate_fail_put;
1056 
1057 			mapping = page_mapping(page);
1058 			migrate_dirty = !mapping ||
1059 					mapping->a_ops->migrate_folio;
1060 			unlock_page(page);
1061 			if (!migrate_dirty)
1062 				goto isolate_fail_put;
1063 		}
1064 
1065 		/* Try isolate the page */
1066 		if (!TestClearPageLRU(page))
1067 			goto isolate_fail_put;
1068 
1069 		lruvec = folio_lruvec(page_folio(page));
1070 
1071 		/* If we already hold the lock, we can skip some rechecking */
1072 		if (lruvec != locked) {
1073 			if (locked)
1074 				unlock_page_lruvec_irqrestore(locked, flags);
1075 
1076 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1077 			locked = lruvec;
1078 
1079 			lruvec_memcg_debug(lruvec, page_folio(page));
1080 
1081 			/*
1082 			 * Try get exclusive access under lock. If marked for
1083 			 * skip, the scan is aborted unless the current context
1084 			 * is a rescan to reach the end of the pageblock.
1085 			 */
1086 			if (!skip_updated && valid_page) {
1087 				skip_updated = true;
1088 				if (test_and_set_skip(cc, valid_page) &&
1089 				    !cc->finish_pageblock) {
1090 					goto isolate_abort;
1091 				}
1092 			}
1093 
1094 			/*
1095 			 * Page become compound since the non-locked check,
1096 			 * and it's on LRU. It can only be a THP so the order
1097 			 * is safe to read and it's 0 for tail pages.
1098 			 */
1099 			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1100 				low_pfn += compound_nr(page) - 1;
1101 				nr_scanned += compound_nr(page) - 1;
1102 				SetPageLRU(page);
1103 				goto isolate_fail_put;
1104 			}
1105 		}
1106 
1107 		/* The whole page is taken off the LRU; skip the tail pages. */
1108 		if (PageCompound(page))
1109 			low_pfn += compound_nr(page) - 1;
1110 
1111 		/* Successfully isolated */
1112 		del_page_from_lru_list(page, lruvec);
1113 		mod_node_page_state(page_pgdat(page),
1114 				NR_ISOLATED_ANON + page_is_file_lru(page),
1115 				thp_nr_pages(page));
1116 
1117 isolate_success:
1118 		list_add(&page->lru, &cc->migratepages);
1119 isolate_success_no_list:
1120 		cc->nr_migratepages += compound_nr(page);
1121 		nr_isolated += compound_nr(page);
1122 		nr_scanned += compound_nr(page) - 1;
1123 
1124 		/*
1125 		 * Avoid isolating too much unless this block is being
1126 		 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1127 		 * or a lock is contended. For contention, isolate quickly to
1128 		 * potentially remove one source of contention.
1129 		 */
1130 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1131 		    !cc->finish_pageblock && !cc->contended) {
1132 			++low_pfn;
1133 			break;
1134 		}
1135 
1136 		continue;
1137 
1138 isolate_fail_put:
1139 		/* Avoid potential deadlock in freeing page under lru_lock */
1140 		if (locked) {
1141 			unlock_page_lruvec_irqrestore(locked, flags);
1142 			locked = NULL;
1143 		}
1144 		put_page(page);
1145 
1146 isolate_fail:
1147 		if (!skip_on_failure && ret != -ENOMEM)
1148 			continue;
1149 
1150 		/*
1151 		 * We have isolated some pages, but then failed. Release them
1152 		 * instead of migrating, as we cannot form the cc->order buddy
1153 		 * page anyway.
1154 		 */
1155 		if (nr_isolated) {
1156 			if (locked) {
1157 				unlock_page_lruvec_irqrestore(locked, flags);
1158 				locked = NULL;
1159 			}
1160 			putback_movable_pages(&cc->migratepages);
1161 			cc->nr_migratepages = 0;
1162 			nr_isolated = 0;
1163 		}
1164 
1165 		if (low_pfn < next_skip_pfn) {
1166 			low_pfn = next_skip_pfn - 1;
1167 			/*
1168 			 * The check near the loop beginning would have updated
1169 			 * next_skip_pfn too, but this is a bit simpler.
1170 			 */
1171 			next_skip_pfn += 1UL << cc->order;
1172 		}
1173 
1174 		if (ret == -ENOMEM)
1175 			break;
1176 	}
1177 
1178 	/*
1179 	 * The PageBuddy() check could have potentially brought us outside
1180 	 * the range to be scanned.
1181 	 */
1182 	if (unlikely(low_pfn > end_pfn))
1183 		low_pfn = end_pfn;
1184 
1185 	page = NULL;
1186 
1187 isolate_abort:
1188 	if (locked)
1189 		unlock_page_lruvec_irqrestore(locked, flags);
1190 	if (page) {
1191 		SetPageLRU(page);
1192 		put_page(page);
1193 	}
1194 
1195 	/*
1196 	 * Update the cached scanner pfn once the pageblock has been scanned.
1197 	 * Pages will either be migrated in which case there is no point
1198 	 * scanning in the near future or migration failed in which case the
1199 	 * failure reason may persist. The block is marked for skipping if
1200 	 * there were no pages isolated in the block or if the block is
1201 	 * rescanned twice in a row.
1202 	 */
1203 	if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1204 		if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1205 			set_pageblock_skip(valid_page);
1206 		update_cached_migrate(cc, low_pfn);
1207 	}
1208 
1209 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1210 						nr_scanned, nr_isolated);
1211 
1212 fatal_pending:
1213 	cc->total_migrate_scanned += nr_scanned;
1214 	if (nr_isolated)
1215 		count_compact_events(COMPACTISOLATED, nr_isolated);
1216 
1217 	cc->migrate_pfn = low_pfn;
1218 
1219 	return ret;
1220 }
1221 
1222 /**
1223  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1224  * @cc:        Compaction control structure.
1225  * @start_pfn: The first PFN to start isolating.
1226  * @end_pfn:   The one-past-last PFN.
1227  *
1228  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1229  * in case we could not allocate a page, or 0.
1230  */
1231 int
1232 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1233 							unsigned long end_pfn)
1234 {
1235 	unsigned long pfn, block_start_pfn, block_end_pfn;
1236 	int ret = 0;
1237 
1238 	/* Scan block by block. First and last block may be incomplete */
1239 	pfn = start_pfn;
1240 	block_start_pfn = pageblock_start_pfn(pfn);
1241 	if (block_start_pfn < cc->zone->zone_start_pfn)
1242 		block_start_pfn = cc->zone->zone_start_pfn;
1243 	block_end_pfn = pageblock_end_pfn(pfn);
1244 
1245 	for (; pfn < end_pfn; pfn = block_end_pfn,
1246 				block_start_pfn = block_end_pfn,
1247 				block_end_pfn += pageblock_nr_pages) {
1248 
1249 		block_end_pfn = min(block_end_pfn, end_pfn);
1250 
1251 		if (!pageblock_pfn_to_page(block_start_pfn,
1252 					block_end_pfn, cc->zone))
1253 			continue;
1254 
1255 		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1256 						 ISOLATE_UNEVICTABLE);
1257 
1258 		if (ret)
1259 			break;
1260 
1261 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1262 			break;
1263 	}
1264 
1265 	return ret;
1266 }
1267 
1268 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1269 #ifdef CONFIG_COMPACTION
1270 
1271 static bool suitable_migration_source(struct compact_control *cc,
1272 							struct page *page)
1273 {
1274 	int block_mt;
1275 
1276 	if (pageblock_skip_persistent(page))
1277 		return false;
1278 
1279 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1280 		return true;
1281 
1282 	block_mt = get_pageblock_migratetype(page);
1283 
1284 	if (cc->migratetype == MIGRATE_MOVABLE)
1285 		return is_migrate_movable(block_mt);
1286 	else
1287 		return block_mt == cc->migratetype;
1288 }
1289 
1290 /* Returns true if the page is within a block suitable for migration to */
1291 static bool suitable_migration_target(struct compact_control *cc,
1292 							struct page *page)
1293 {
1294 	/* If the page is a large free page, then disallow migration */
1295 	if (PageBuddy(page)) {
1296 		/*
1297 		 * We are checking page_order without zone->lock taken. But
1298 		 * the only small danger is that we skip a potentially suitable
1299 		 * pageblock, so it's not worth to check order for valid range.
1300 		 */
1301 		if (buddy_order_unsafe(page) >= pageblock_order)
1302 			return false;
1303 	}
1304 
1305 	if (cc->ignore_block_suitable)
1306 		return true;
1307 
1308 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1309 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1310 		return true;
1311 
1312 	/* Otherwise skip the block */
1313 	return false;
1314 }
1315 
1316 static inline unsigned int
1317 freelist_scan_limit(struct compact_control *cc)
1318 {
1319 	unsigned short shift = BITS_PER_LONG - 1;
1320 
1321 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1322 }
1323 
1324 /*
1325  * Test whether the free scanner has reached the same or lower pageblock than
1326  * the migration scanner, and compaction should thus terminate.
1327  */
1328 static inline bool compact_scanners_met(struct compact_control *cc)
1329 {
1330 	return (cc->free_pfn >> pageblock_order)
1331 		<= (cc->migrate_pfn >> pageblock_order);
1332 }
1333 
1334 /*
1335  * Used when scanning for a suitable migration target which scans freelists
1336  * in reverse. Reorders the list such as the unscanned pages are scanned
1337  * first on the next iteration of the free scanner
1338  */
1339 static void
1340 move_freelist_head(struct list_head *freelist, struct page *freepage)
1341 {
1342 	LIST_HEAD(sublist);
1343 
1344 	if (!list_is_last(freelist, &freepage->lru)) {
1345 		list_cut_before(&sublist, freelist, &freepage->lru);
1346 		list_splice_tail(&sublist, freelist);
1347 	}
1348 }
1349 
1350 /*
1351  * Similar to move_freelist_head except used by the migration scanner
1352  * when scanning forward. It's possible for these list operations to
1353  * move against each other if they search the free list exactly in
1354  * lockstep.
1355  */
1356 static void
1357 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1358 {
1359 	LIST_HEAD(sublist);
1360 
1361 	if (!list_is_first(freelist, &freepage->lru)) {
1362 		list_cut_position(&sublist, freelist, &freepage->lru);
1363 		list_splice_tail(&sublist, freelist);
1364 	}
1365 }
1366 
1367 static void
1368 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1369 {
1370 	unsigned long start_pfn, end_pfn;
1371 	struct page *page;
1372 
1373 	/* Do not search around if there are enough pages already */
1374 	if (cc->nr_freepages >= cc->nr_migratepages)
1375 		return;
1376 
1377 	/* Minimise scanning during async compaction */
1378 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1379 		return;
1380 
1381 	/* Pageblock boundaries */
1382 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1383 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1384 
1385 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1386 	if (!page)
1387 		return;
1388 
1389 	isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1390 
1391 	/* Skip this pageblock in the future as it's full or nearly full */
1392 	if (start_pfn == end_pfn)
1393 		set_pageblock_skip(page);
1394 
1395 	return;
1396 }
1397 
1398 /* Search orders in round-robin fashion */
1399 static int next_search_order(struct compact_control *cc, int order)
1400 {
1401 	order--;
1402 	if (order < 0)
1403 		order = cc->order - 1;
1404 
1405 	/* Search wrapped around? */
1406 	if (order == cc->search_order) {
1407 		cc->search_order--;
1408 		if (cc->search_order < 0)
1409 			cc->search_order = cc->order - 1;
1410 		return -1;
1411 	}
1412 
1413 	return order;
1414 }
1415 
1416 static void fast_isolate_freepages(struct compact_control *cc)
1417 {
1418 	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1419 	unsigned int nr_scanned = 0, total_isolated = 0;
1420 	unsigned long low_pfn, min_pfn, highest = 0;
1421 	unsigned long nr_isolated = 0;
1422 	unsigned long distance;
1423 	struct page *page = NULL;
1424 	bool scan_start = false;
1425 	int order;
1426 
1427 	/* Full compaction passes in a negative order */
1428 	if (cc->order <= 0)
1429 		return;
1430 
1431 	/*
1432 	 * If starting the scan, use a deeper search and use the highest
1433 	 * PFN found if a suitable one is not found.
1434 	 */
1435 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1436 		limit = pageblock_nr_pages >> 1;
1437 		scan_start = true;
1438 	}
1439 
1440 	/*
1441 	 * Preferred point is in the top quarter of the scan space but take
1442 	 * a pfn from the top half if the search is problematic.
1443 	 */
1444 	distance = (cc->free_pfn - cc->migrate_pfn);
1445 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1446 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1447 
1448 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1449 		low_pfn = min_pfn;
1450 
1451 	/*
1452 	 * Search starts from the last successful isolation order or the next
1453 	 * order to search after a previous failure
1454 	 */
1455 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1456 
1457 	for (order = cc->search_order;
1458 	     !page && order >= 0;
1459 	     order = next_search_order(cc, order)) {
1460 		struct free_area *area = &cc->zone->free_area[order];
1461 		struct list_head *freelist;
1462 		struct page *freepage;
1463 		unsigned long flags;
1464 		unsigned int order_scanned = 0;
1465 		unsigned long high_pfn = 0;
1466 
1467 		if (!area->nr_free)
1468 			continue;
1469 
1470 		spin_lock_irqsave(&cc->zone->lock, flags);
1471 		freelist = &area->free_list[MIGRATE_MOVABLE];
1472 		list_for_each_entry_reverse(freepage, freelist, lru) {
1473 			unsigned long pfn;
1474 
1475 			order_scanned++;
1476 			nr_scanned++;
1477 			pfn = page_to_pfn(freepage);
1478 
1479 			if (pfn >= highest)
1480 				highest = max(pageblock_start_pfn(pfn),
1481 					      cc->zone->zone_start_pfn);
1482 
1483 			if (pfn >= low_pfn) {
1484 				cc->fast_search_fail = 0;
1485 				cc->search_order = order;
1486 				page = freepage;
1487 				break;
1488 			}
1489 
1490 			if (pfn >= min_pfn && pfn > high_pfn) {
1491 				high_pfn = pfn;
1492 
1493 				/* Shorten the scan if a candidate is found */
1494 				limit >>= 1;
1495 			}
1496 
1497 			if (order_scanned >= limit)
1498 				break;
1499 		}
1500 
1501 		/* Use a minimum pfn if a preferred one was not found */
1502 		if (!page && high_pfn) {
1503 			page = pfn_to_page(high_pfn);
1504 
1505 			/* Update freepage for the list reorder below */
1506 			freepage = page;
1507 		}
1508 
1509 		/* Reorder to so a future search skips recent pages */
1510 		move_freelist_head(freelist, freepage);
1511 
1512 		/* Isolate the page if available */
1513 		if (page) {
1514 			if (__isolate_free_page(page, order)) {
1515 				set_page_private(page, order);
1516 				nr_isolated = 1 << order;
1517 				nr_scanned += nr_isolated - 1;
1518 				total_isolated += nr_isolated;
1519 				cc->nr_freepages += nr_isolated;
1520 				list_add_tail(&page->lru, &cc->freepages);
1521 				count_compact_events(COMPACTISOLATED, nr_isolated);
1522 			} else {
1523 				/* If isolation fails, abort the search */
1524 				order = cc->search_order + 1;
1525 				page = NULL;
1526 			}
1527 		}
1528 
1529 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1530 
1531 		/* Skip fast search if enough freepages isolated */
1532 		if (cc->nr_freepages >= cc->nr_migratepages)
1533 			break;
1534 
1535 		/*
1536 		 * Smaller scan on next order so the total scan is related
1537 		 * to freelist_scan_limit.
1538 		 */
1539 		if (order_scanned >= limit)
1540 			limit = max(1U, limit >> 1);
1541 	}
1542 
1543 	trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1544 						   nr_scanned, total_isolated);
1545 
1546 	if (!page) {
1547 		cc->fast_search_fail++;
1548 		if (scan_start) {
1549 			/*
1550 			 * Use the highest PFN found above min. If one was
1551 			 * not found, be pessimistic for direct compaction
1552 			 * and use the min mark.
1553 			 */
1554 			if (highest >= min_pfn) {
1555 				page = pfn_to_page(highest);
1556 				cc->free_pfn = highest;
1557 			} else {
1558 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1559 					page = pageblock_pfn_to_page(min_pfn,
1560 						min(pageblock_end_pfn(min_pfn),
1561 						    zone_end_pfn(cc->zone)),
1562 						cc->zone);
1563 					cc->free_pfn = min_pfn;
1564 				}
1565 			}
1566 		}
1567 	}
1568 
1569 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1570 		highest -= pageblock_nr_pages;
1571 		cc->zone->compact_cached_free_pfn = highest;
1572 	}
1573 
1574 	cc->total_free_scanned += nr_scanned;
1575 	if (!page)
1576 		return;
1577 
1578 	low_pfn = page_to_pfn(page);
1579 	fast_isolate_around(cc, low_pfn);
1580 }
1581 
1582 /*
1583  * Based on information in the current compact_control, find blocks
1584  * suitable for isolating free pages from and then isolate them.
1585  */
1586 static void isolate_freepages(struct compact_control *cc)
1587 {
1588 	struct zone *zone = cc->zone;
1589 	struct page *page;
1590 	unsigned long block_start_pfn;	/* start of current pageblock */
1591 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1592 	unsigned long block_end_pfn;	/* end of current pageblock */
1593 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1594 	struct list_head *freelist = &cc->freepages;
1595 	unsigned int stride;
1596 
1597 	/* Try a small search of the free lists for a candidate */
1598 	fast_isolate_freepages(cc);
1599 	if (cc->nr_freepages)
1600 		goto splitmap;
1601 
1602 	/*
1603 	 * Initialise the free scanner. The starting point is where we last
1604 	 * successfully isolated from, zone-cached value, or the end of the
1605 	 * zone when isolating for the first time. For looping we also need
1606 	 * this pfn aligned down to the pageblock boundary, because we do
1607 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1608 	 * For ending point, take care when isolating in last pageblock of a
1609 	 * zone which ends in the middle of a pageblock.
1610 	 * The low boundary is the end of the pageblock the migration scanner
1611 	 * is using.
1612 	 */
1613 	isolate_start_pfn = cc->free_pfn;
1614 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1615 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1616 						zone_end_pfn(zone));
1617 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1618 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1619 
1620 	/*
1621 	 * Isolate free pages until enough are available to migrate the
1622 	 * pages on cc->migratepages. We stop searching if the migrate
1623 	 * and free page scanners meet or enough free pages are isolated.
1624 	 */
1625 	for (; block_start_pfn >= low_pfn;
1626 				block_end_pfn = block_start_pfn,
1627 				block_start_pfn -= pageblock_nr_pages,
1628 				isolate_start_pfn = block_start_pfn) {
1629 		unsigned long nr_isolated;
1630 
1631 		/*
1632 		 * This can iterate a massively long zone without finding any
1633 		 * suitable migration targets, so periodically check resched.
1634 		 */
1635 		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1636 			cond_resched();
1637 
1638 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1639 									zone);
1640 		if (!page)
1641 			continue;
1642 
1643 		/* Check the block is suitable for migration */
1644 		if (!suitable_migration_target(cc, page))
1645 			continue;
1646 
1647 		/* If isolation recently failed, do not retry */
1648 		if (!isolation_suitable(cc, page))
1649 			continue;
1650 
1651 		/* Found a block suitable for isolating free pages from. */
1652 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1653 					block_end_pfn, freelist, stride, false);
1654 
1655 		/* Update the skip hint if the full pageblock was scanned */
1656 		if (isolate_start_pfn == block_end_pfn)
1657 			update_pageblock_skip(cc, page, block_start_pfn);
1658 
1659 		/* Are enough freepages isolated? */
1660 		if (cc->nr_freepages >= cc->nr_migratepages) {
1661 			if (isolate_start_pfn >= block_end_pfn) {
1662 				/*
1663 				 * Restart at previous pageblock if more
1664 				 * freepages can be isolated next time.
1665 				 */
1666 				isolate_start_pfn =
1667 					block_start_pfn - pageblock_nr_pages;
1668 			}
1669 			break;
1670 		} else if (isolate_start_pfn < block_end_pfn) {
1671 			/*
1672 			 * If isolation failed early, do not continue
1673 			 * needlessly.
1674 			 */
1675 			break;
1676 		}
1677 
1678 		/* Adjust stride depending on isolation */
1679 		if (nr_isolated) {
1680 			stride = 1;
1681 			continue;
1682 		}
1683 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1684 	}
1685 
1686 	/*
1687 	 * Record where the free scanner will restart next time. Either we
1688 	 * broke from the loop and set isolate_start_pfn based on the last
1689 	 * call to isolate_freepages_block(), or we met the migration scanner
1690 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1691 	 */
1692 	cc->free_pfn = isolate_start_pfn;
1693 
1694 splitmap:
1695 	/* __isolate_free_page() does not map the pages */
1696 	split_map_pages(freelist);
1697 }
1698 
1699 /*
1700  * This is a migrate-callback that "allocates" freepages by taking pages
1701  * from the isolated freelists in the block we are migrating to.
1702  */
1703 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1704 {
1705 	struct compact_control *cc = (struct compact_control *)data;
1706 	struct folio *dst;
1707 
1708 	if (list_empty(&cc->freepages)) {
1709 		isolate_freepages(cc);
1710 
1711 		if (list_empty(&cc->freepages))
1712 			return NULL;
1713 	}
1714 
1715 	dst = list_entry(cc->freepages.next, struct folio, lru);
1716 	list_del(&dst->lru);
1717 	cc->nr_freepages--;
1718 
1719 	return dst;
1720 }
1721 
1722 /*
1723  * This is a migrate-callback that "frees" freepages back to the isolated
1724  * freelist.  All pages on the freelist are from the same zone, so there is no
1725  * special handling needed for NUMA.
1726  */
1727 static void compaction_free(struct folio *dst, unsigned long data)
1728 {
1729 	struct compact_control *cc = (struct compact_control *)data;
1730 
1731 	list_add(&dst->lru, &cc->freepages);
1732 	cc->nr_freepages++;
1733 }
1734 
1735 /* possible outcome of isolate_migratepages */
1736 typedef enum {
1737 	ISOLATE_ABORT,		/* Abort compaction now */
1738 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1739 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1740 } isolate_migrate_t;
1741 
1742 /*
1743  * Allow userspace to control policy on scanning the unevictable LRU for
1744  * compactable pages.
1745  */
1746 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1747 /*
1748  * Tunable for proactive compaction. It determines how
1749  * aggressively the kernel should compact memory in the
1750  * background. It takes values in the range [0, 100].
1751  */
1752 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1753 static int sysctl_extfrag_threshold = 500;
1754 static int __read_mostly sysctl_compact_memory;
1755 
1756 static inline void
1757 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1758 {
1759 	if (cc->fast_start_pfn == ULONG_MAX)
1760 		return;
1761 
1762 	if (!cc->fast_start_pfn)
1763 		cc->fast_start_pfn = pfn;
1764 
1765 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1766 }
1767 
1768 static inline unsigned long
1769 reinit_migrate_pfn(struct compact_control *cc)
1770 {
1771 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1772 		return cc->migrate_pfn;
1773 
1774 	cc->migrate_pfn = cc->fast_start_pfn;
1775 	cc->fast_start_pfn = ULONG_MAX;
1776 
1777 	return cc->migrate_pfn;
1778 }
1779 
1780 /*
1781  * Briefly search the free lists for a migration source that already has
1782  * some free pages to reduce the number of pages that need migration
1783  * before a pageblock is free.
1784  */
1785 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1786 {
1787 	unsigned int limit = freelist_scan_limit(cc);
1788 	unsigned int nr_scanned = 0;
1789 	unsigned long distance;
1790 	unsigned long pfn = cc->migrate_pfn;
1791 	unsigned long high_pfn;
1792 	int order;
1793 	bool found_block = false;
1794 
1795 	/* Skip hints are relied on to avoid repeats on the fast search */
1796 	if (cc->ignore_skip_hint)
1797 		return pfn;
1798 
1799 	/*
1800 	 * If the pageblock should be finished then do not select a different
1801 	 * pageblock.
1802 	 */
1803 	if (cc->finish_pageblock)
1804 		return pfn;
1805 
1806 	/*
1807 	 * If the migrate_pfn is not at the start of a zone or the start
1808 	 * of a pageblock then assume this is a continuation of a previous
1809 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1810 	 */
1811 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1812 		return pfn;
1813 
1814 	/*
1815 	 * For smaller orders, just linearly scan as the number of pages
1816 	 * to migrate should be relatively small and does not necessarily
1817 	 * justify freeing up a large block for a small allocation.
1818 	 */
1819 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1820 		return pfn;
1821 
1822 	/*
1823 	 * Only allow kcompactd and direct requests for movable pages to
1824 	 * quickly clear out a MOVABLE pageblock for allocation. This
1825 	 * reduces the risk that a large movable pageblock is freed for
1826 	 * an unmovable/reclaimable small allocation.
1827 	 */
1828 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1829 		return pfn;
1830 
1831 	/*
1832 	 * When starting the migration scanner, pick any pageblock within the
1833 	 * first half of the search space. Otherwise try and pick a pageblock
1834 	 * within the first eighth to reduce the chances that a migration
1835 	 * target later becomes a source.
1836 	 */
1837 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1838 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1839 		distance >>= 2;
1840 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1841 
1842 	for (order = cc->order - 1;
1843 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1844 	     order--) {
1845 		struct free_area *area = &cc->zone->free_area[order];
1846 		struct list_head *freelist;
1847 		unsigned long flags;
1848 		struct page *freepage;
1849 
1850 		if (!area->nr_free)
1851 			continue;
1852 
1853 		spin_lock_irqsave(&cc->zone->lock, flags);
1854 		freelist = &area->free_list[MIGRATE_MOVABLE];
1855 		list_for_each_entry(freepage, freelist, lru) {
1856 			unsigned long free_pfn;
1857 
1858 			if (nr_scanned++ >= limit) {
1859 				move_freelist_tail(freelist, freepage);
1860 				break;
1861 			}
1862 
1863 			free_pfn = page_to_pfn(freepage);
1864 			if (free_pfn < high_pfn) {
1865 				/*
1866 				 * Avoid if skipped recently. Ideally it would
1867 				 * move to the tail but even safe iteration of
1868 				 * the list assumes an entry is deleted, not
1869 				 * reordered.
1870 				 */
1871 				if (get_pageblock_skip(freepage))
1872 					continue;
1873 
1874 				/* Reorder to so a future search skips recent pages */
1875 				move_freelist_tail(freelist, freepage);
1876 
1877 				update_fast_start_pfn(cc, free_pfn);
1878 				pfn = pageblock_start_pfn(free_pfn);
1879 				if (pfn < cc->zone->zone_start_pfn)
1880 					pfn = cc->zone->zone_start_pfn;
1881 				cc->fast_search_fail = 0;
1882 				found_block = true;
1883 				break;
1884 			}
1885 		}
1886 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1887 	}
1888 
1889 	cc->total_migrate_scanned += nr_scanned;
1890 
1891 	/*
1892 	 * If fast scanning failed then use a cached entry for a page block
1893 	 * that had free pages as the basis for starting a linear scan.
1894 	 */
1895 	if (!found_block) {
1896 		cc->fast_search_fail++;
1897 		pfn = reinit_migrate_pfn(cc);
1898 	}
1899 	return pfn;
1900 }
1901 
1902 /*
1903  * Isolate all pages that can be migrated from the first suitable block,
1904  * starting at the block pointed to by the migrate scanner pfn within
1905  * compact_control.
1906  */
1907 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1908 {
1909 	unsigned long block_start_pfn;
1910 	unsigned long block_end_pfn;
1911 	unsigned long low_pfn;
1912 	struct page *page;
1913 	const isolate_mode_t isolate_mode =
1914 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1915 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1916 	bool fast_find_block;
1917 
1918 	/*
1919 	 * Start at where we last stopped, or beginning of the zone as
1920 	 * initialized by compact_zone(). The first failure will use
1921 	 * the lowest PFN as the starting point for linear scanning.
1922 	 */
1923 	low_pfn = fast_find_migrateblock(cc);
1924 	block_start_pfn = pageblock_start_pfn(low_pfn);
1925 	if (block_start_pfn < cc->zone->zone_start_pfn)
1926 		block_start_pfn = cc->zone->zone_start_pfn;
1927 
1928 	/*
1929 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1930 	 * the isolation_suitable check below, check whether the fast
1931 	 * search was successful.
1932 	 */
1933 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1934 
1935 	/* Only scan within a pageblock boundary */
1936 	block_end_pfn = pageblock_end_pfn(low_pfn);
1937 
1938 	/*
1939 	 * Iterate over whole pageblocks until we find the first suitable.
1940 	 * Do not cross the free scanner.
1941 	 */
1942 	for (; block_end_pfn <= cc->free_pfn;
1943 			fast_find_block = false,
1944 			cc->migrate_pfn = low_pfn = block_end_pfn,
1945 			block_start_pfn = block_end_pfn,
1946 			block_end_pfn += pageblock_nr_pages) {
1947 
1948 		/*
1949 		 * This can potentially iterate a massively long zone with
1950 		 * many pageblocks unsuitable, so periodically check if we
1951 		 * need to schedule.
1952 		 */
1953 		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1954 			cond_resched();
1955 
1956 		page = pageblock_pfn_to_page(block_start_pfn,
1957 						block_end_pfn, cc->zone);
1958 		if (!page)
1959 			continue;
1960 
1961 		/*
1962 		 * If isolation recently failed, do not retry. Only check the
1963 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1964 		 * to be visited multiple times. Assume skip was checked
1965 		 * before making it "skip" so other compaction instances do
1966 		 * not scan the same block.
1967 		 */
1968 		if (pageblock_aligned(low_pfn) &&
1969 		    !fast_find_block && !isolation_suitable(cc, page))
1970 			continue;
1971 
1972 		/*
1973 		 * For async direct compaction, only scan the pageblocks of the
1974 		 * same migratetype without huge pages. Async direct compaction
1975 		 * is optimistic to see if the minimum amount of work satisfies
1976 		 * the allocation. The cached PFN is updated as it's possible
1977 		 * that all remaining blocks between source and target are
1978 		 * unsuitable and the compaction scanners fail to meet.
1979 		 */
1980 		if (!suitable_migration_source(cc, page)) {
1981 			update_cached_migrate(cc, block_end_pfn);
1982 			continue;
1983 		}
1984 
1985 		/* Perform the isolation */
1986 		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1987 						isolate_mode))
1988 			return ISOLATE_ABORT;
1989 
1990 		/*
1991 		 * Either we isolated something and proceed with migration. Or
1992 		 * we failed and compact_zone should decide if we should
1993 		 * continue or not.
1994 		 */
1995 		break;
1996 	}
1997 
1998 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1999 }
2000 
2001 /*
2002  * order == -1 is expected when compacting via
2003  * /proc/sys/vm/compact_memory
2004  */
2005 static inline bool is_via_compact_memory(int order)
2006 {
2007 	return order == -1;
2008 }
2009 
2010 /*
2011  * Determine whether kswapd is (or recently was!) running on this node.
2012  *
2013  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2014  * zero it.
2015  */
2016 static bool kswapd_is_running(pg_data_t *pgdat)
2017 {
2018 	bool running;
2019 
2020 	pgdat_kswapd_lock(pgdat);
2021 	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2022 	pgdat_kswapd_unlock(pgdat);
2023 
2024 	return running;
2025 }
2026 
2027 /*
2028  * A zone's fragmentation score is the external fragmentation wrt to the
2029  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2030  */
2031 static unsigned int fragmentation_score_zone(struct zone *zone)
2032 {
2033 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2034 }
2035 
2036 /*
2037  * A weighted zone's fragmentation score is the external fragmentation
2038  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2039  * returns a value in the range [0, 100].
2040  *
2041  * The scaling factor ensures that proactive compaction focuses on larger
2042  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2043  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2044  * and thus never exceeds the high threshold for proactive compaction.
2045  */
2046 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2047 {
2048 	unsigned long score;
2049 
2050 	score = zone->present_pages * fragmentation_score_zone(zone);
2051 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2052 }
2053 
2054 /*
2055  * The per-node proactive (background) compaction process is started by its
2056  * corresponding kcompactd thread when the node's fragmentation score
2057  * exceeds the high threshold. The compaction process remains active till
2058  * the node's score falls below the low threshold, or one of the back-off
2059  * conditions is met.
2060  */
2061 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2062 {
2063 	unsigned int score = 0;
2064 	int zoneid;
2065 
2066 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2067 		struct zone *zone;
2068 
2069 		zone = &pgdat->node_zones[zoneid];
2070 		if (!populated_zone(zone))
2071 			continue;
2072 		score += fragmentation_score_zone_weighted(zone);
2073 	}
2074 
2075 	return score;
2076 }
2077 
2078 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2079 {
2080 	unsigned int wmark_low;
2081 
2082 	/*
2083 	 * Cap the low watermark to avoid excessive compaction
2084 	 * activity in case a user sets the proactiveness tunable
2085 	 * close to 100 (maximum).
2086 	 */
2087 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2088 	return low ? wmark_low : min(wmark_low + 10, 100U);
2089 }
2090 
2091 static bool should_proactive_compact_node(pg_data_t *pgdat)
2092 {
2093 	int wmark_high;
2094 
2095 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2096 		return false;
2097 
2098 	wmark_high = fragmentation_score_wmark(pgdat, false);
2099 	return fragmentation_score_node(pgdat) > wmark_high;
2100 }
2101 
2102 static enum compact_result __compact_finished(struct compact_control *cc)
2103 {
2104 	unsigned int order;
2105 	const int migratetype = cc->migratetype;
2106 	int ret;
2107 
2108 	/* Compaction run completes if the migrate and free scanner meet */
2109 	if (compact_scanners_met(cc)) {
2110 		/* Let the next compaction start anew. */
2111 		reset_cached_positions(cc->zone);
2112 
2113 		/*
2114 		 * Mark that the PG_migrate_skip information should be cleared
2115 		 * by kswapd when it goes to sleep. kcompactd does not set the
2116 		 * flag itself as the decision to be clear should be directly
2117 		 * based on an allocation request.
2118 		 */
2119 		if (cc->direct_compaction)
2120 			cc->zone->compact_blockskip_flush = true;
2121 
2122 		if (cc->whole_zone)
2123 			return COMPACT_COMPLETE;
2124 		else
2125 			return COMPACT_PARTIAL_SKIPPED;
2126 	}
2127 
2128 	if (cc->proactive_compaction) {
2129 		int score, wmark_low;
2130 		pg_data_t *pgdat;
2131 
2132 		pgdat = cc->zone->zone_pgdat;
2133 		if (kswapd_is_running(pgdat))
2134 			return COMPACT_PARTIAL_SKIPPED;
2135 
2136 		score = fragmentation_score_zone(cc->zone);
2137 		wmark_low = fragmentation_score_wmark(pgdat, true);
2138 
2139 		if (score > wmark_low)
2140 			ret = COMPACT_CONTINUE;
2141 		else
2142 			ret = COMPACT_SUCCESS;
2143 
2144 		goto out;
2145 	}
2146 
2147 	if (is_via_compact_memory(cc->order))
2148 		return COMPACT_CONTINUE;
2149 
2150 	/*
2151 	 * Always finish scanning a pageblock to reduce the possibility of
2152 	 * fallbacks in the future. This is particularly important when
2153 	 * migration source is unmovable/reclaimable but it's not worth
2154 	 * special casing.
2155 	 */
2156 	if (!pageblock_aligned(cc->migrate_pfn))
2157 		return COMPACT_CONTINUE;
2158 
2159 	/* Direct compactor: Is a suitable page free? */
2160 	ret = COMPACT_NO_SUITABLE_PAGE;
2161 	for (order = cc->order; order <= MAX_ORDER; order++) {
2162 		struct free_area *area = &cc->zone->free_area[order];
2163 		bool can_steal;
2164 
2165 		/* Job done if page is free of the right migratetype */
2166 		if (!free_area_empty(area, migratetype))
2167 			return COMPACT_SUCCESS;
2168 
2169 #ifdef CONFIG_CMA
2170 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2171 		if (migratetype == MIGRATE_MOVABLE &&
2172 			!free_area_empty(area, MIGRATE_CMA))
2173 			return COMPACT_SUCCESS;
2174 #endif
2175 		/*
2176 		 * Job done if allocation would steal freepages from
2177 		 * other migratetype buddy lists.
2178 		 */
2179 		if (find_suitable_fallback(area, order, migratetype,
2180 						true, &can_steal) != -1)
2181 			/*
2182 			 * Movable pages are OK in any pageblock. If we are
2183 			 * stealing for a non-movable allocation, make sure
2184 			 * we finish compacting the current pageblock first
2185 			 * (which is assured by the above migrate_pfn align
2186 			 * check) so it is as free as possible and we won't
2187 			 * have to steal another one soon.
2188 			 */
2189 			return COMPACT_SUCCESS;
2190 	}
2191 
2192 out:
2193 	if (cc->contended || fatal_signal_pending(current))
2194 		ret = COMPACT_CONTENDED;
2195 
2196 	return ret;
2197 }
2198 
2199 static enum compact_result compact_finished(struct compact_control *cc)
2200 {
2201 	int ret;
2202 
2203 	ret = __compact_finished(cc);
2204 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2205 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2206 		ret = COMPACT_CONTINUE;
2207 
2208 	return ret;
2209 }
2210 
2211 static bool __compaction_suitable(struct zone *zone, int order,
2212 				  int highest_zoneidx,
2213 				  unsigned long wmark_target)
2214 {
2215 	unsigned long watermark;
2216 	/*
2217 	 * Watermarks for order-0 must be met for compaction to be able to
2218 	 * isolate free pages for migration targets. This means that the
2219 	 * watermark and alloc_flags have to match, or be more pessimistic than
2220 	 * the check in __isolate_free_page(). We don't use the direct
2221 	 * compactor's alloc_flags, as they are not relevant for freepage
2222 	 * isolation. We however do use the direct compactor's highest_zoneidx
2223 	 * to skip over zones where lowmem reserves would prevent allocation
2224 	 * even if compaction succeeds.
2225 	 * For costly orders, we require low watermark instead of min for
2226 	 * compaction to proceed to increase its chances.
2227 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2228 	 * suitable migration targets
2229 	 */
2230 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2231 				low_wmark_pages(zone) : min_wmark_pages(zone);
2232 	watermark += compact_gap(order);
2233 	return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2234 				   ALLOC_CMA, wmark_target);
2235 }
2236 
2237 /*
2238  * compaction_suitable: Is this suitable to run compaction on this zone now?
2239  */
2240 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2241 {
2242 	enum compact_result compact_result;
2243 	bool suitable;
2244 
2245 	suitable = __compaction_suitable(zone, order, highest_zoneidx,
2246 					 zone_page_state(zone, NR_FREE_PAGES));
2247 	/*
2248 	 * fragmentation index determines if allocation failures are due to
2249 	 * low memory or external fragmentation
2250 	 *
2251 	 * index of -1000 would imply allocations might succeed depending on
2252 	 * watermarks, but we already failed the high-order watermark check
2253 	 * index towards 0 implies failure is due to lack of memory
2254 	 * index towards 1000 implies failure is due to fragmentation
2255 	 *
2256 	 * Only compact if a failure would be due to fragmentation. Also
2257 	 * ignore fragindex for non-costly orders where the alternative to
2258 	 * a successful reclaim/compaction is OOM. Fragindex and the
2259 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2260 	 * excessive compaction for costly orders, but it should not be at the
2261 	 * expense of system stability.
2262 	 */
2263 	if (suitable) {
2264 		compact_result = COMPACT_CONTINUE;
2265 		if (order > PAGE_ALLOC_COSTLY_ORDER) {
2266 			int fragindex = fragmentation_index(zone, order);
2267 
2268 			if (fragindex >= 0 &&
2269 			    fragindex <= sysctl_extfrag_threshold) {
2270 				suitable = false;
2271 				compact_result = COMPACT_NOT_SUITABLE_ZONE;
2272 			}
2273 		}
2274 	} else {
2275 		compact_result = COMPACT_SKIPPED;
2276 	}
2277 
2278 	trace_mm_compaction_suitable(zone, order, compact_result);
2279 
2280 	return suitable;
2281 }
2282 
2283 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2284 		int alloc_flags)
2285 {
2286 	struct zone *zone;
2287 	struct zoneref *z;
2288 
2289 	/*
2290 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2291 	 * retrying the reclaim.
2292 	 */
2293 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2294 				ac->highest_zoneidx, ac->nodemask) {
2295 		unsigned long available;
2296 
2297 		/*
2298 		 * Do not consider all the reclaimable memory because we do not
2299 		 * want to trash just for a single high order allocation which
2300 		 * is even not guaranteed to appear even if __compaction_suitable
2301 		 * is happy about the watermark check.
2302 		 */
2303 		available = zone_reclaimable_pages(zone) / order;
2304 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2305 		if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2306 					  available))
2307 			return true;
2308 	}
2309 
2310 	return false;
2311 }
2312 
2313 static enum compact_result
2314 compact_zone(struct compact_control *cc, struct capture_control *capc)
2315 {
2316 	enum compact_result ret;
2317 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2318 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2319 	unsigned long last_migrated_pfn;
2320 	const bool sync = cc->mode != MIGRATE_ASYNC;
2321 	bool update_cached;
2322 	unsigned int nr_succeeded = 0;
2323 
2324 	/*
2325 	 * These counters track activities during zone compaction.  Initialize
2326 	 * them before compacting a new zone.
2327 	 */
2328 	cc->total_migrate_scanned = 0;
2329 	cc->total_free_scanned = 0;
2330 	cc->nr_migratepages = 0;
2331 	cc->nr_freepages = 0;
2332 	INIT_LIST_HEAD(&cc->freepages);
2333 	INIT_LIST_HEAD(&cc->migratepages);
2334 
2335 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2336 
2337 	if (!is_via_compact_memory(cc->order)) {
2338 		unsigned long watermark;
2339 
2340 		/* Allocation can already succeed, nothing to do */
2341 		watermark = wmark_pages(cc->zone,
2342 					cc->alloc_flags & ALLOC_WMARK_MASK);
2343 		if (zone_watermark_ok(cc->zone, cc->order, watermark,
2344 				      cc->highest_zoneidx, cc->alloc_flags))
2345 			return COMPACT_SUCCESS;
2346 
2347 		/* Compaction is likely to fail */
2348 		if (!compaction_suitable(cc->zone, cc->order,
2349 					 cc->highest_zoneidx))
2350 			return COMPACT_SKIPPED;
2351 	}
2352 
2353 	/*
2354 	 * Clear pageblock skip if there were failures recently and compaction
2355 	 * is about to be retried after being deferred.
2356 	 */
2357 	if (compaction_restarting(cc->zone, cc->order))
2358 		__reset_isolation_suitable(cc->zone);
2359 
2360 	/*
2361 	 * Setup to move all movable pages to the end of the zone. Used cached
2362 	 * information on where the scanners should start (unless we explicitly
2363 	 * want to compact the whole zone), but check that it is initialised
2364 	 * by ensuring the values are within zone boundaries.
2365 	 */
2366 	cc->fast_start_pfn = 0;
2367 	if (cc->whole_zone) {
2368 		cc->migrate_pfn = start_pfn;
2369 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2370 	} else {
2371 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2372 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2373 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2374 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2375 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2376 		}
2377 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2378 			cc->migrate_pfn = start_pfn;
2379 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2380 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2381 		}
2382 
2383 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2384 			cc->whole_zone = true;
2385 	}
2386 
2387 	last_migrated_pfn = 0;
2388 
2389 	/*
2390 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2391 	 * the basis that some migrations will fail in ASYNC mode. However,
2392 	 * if the cached PFNs match and pageblocks are skipped due to having
2393 	 * no isolation candidates, then the sync state does not matter.
2394 	 * Until a pageblock with isolation candidates is found, keep the
2395 	 * cached PFNs in sync to avoid revisiting the same blocks.
2396 	 */
2397 	update_cached = !sync &&
2398 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2399 
2400 	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2401 
2402 	/* lru_add_drain_all could be expensive with involving other CPUs */
2403 	lru_add_drain();
2404 
2405 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2406 		int err;
2407 		unsigned long iteration_start_pfn = cc->migrate_pfn;
2408 
2409 		/*
2410 		 * Avoid multiple rescans of the same pageblock which can
2411 		 * happen if a page cannot be isolated (dirty/writeback in
2412 		 * async mode) or if the migrated pages are being allocated
2413 		 * before the pageblock is cleared.  The first rescan will
2414 		 * capture the entire pageblock for migration. If it fails,
2415 		 * it'll be marked skip and scanning will proceed as normal.
2416 		 */
2417 		cc->finish_pageblock = false;
2418 		if (pageblock_start_pfn(last_migrated_pfn) ==
2419 		    pageblock_start_pfn(iteration_start_pfn)) {
2420 			cc->finish_pageblock = true;
2421 		}
2422 
2423 rescan:
2424 		switch (isolate_migratepages(cc)) {
2425 		case ISOLATE_ABORT:
2426 			ret = COMPACT_CONTENDED;
2427 			putback_movable_pages(&cc->migratepages);
2428 			cc->nr_migratepages = 0;
2429 			goto out;
2430 		case ISOLATE_NONE:
2431 			if (update_cached) {
2432 				cc->zone->compact_cached_migrate_pfn[1] =
2433 					cc->zone->compact_cached_migrate_pfn[0];
2434 			}
2435 
2436 			/*
2437 			 * We haven't isolated and migrated anything, but
2438 			 * there might still be unflushed migrations from
2439 			 * previous cc->order aligned block.
2440 			 */
2441 			goto check_drain;
2442 		case ISOLATE_SUCCESS:
2443 			update_cached = false;
2444 			last_migrated_pfn = iteration_start_pfn;
2445 		}
2446 
2447 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2448 				compaction_free, (unsigned long)cc, cc->mode,
2449 				MR_COMPACTION, &nr_succeeded);
2450 
2451 		trace_mm_compaction_migratepages(cc, nr_succeeded);
2452 
2453 		/* All pages were either migrated or will be released */
2454 		cc->nr_migratepages = 0;
2455 		if (err) {
2456 			putback_movable_pages(&cc->migratepages);
2457 			/*
2458 			 * migrate_pages() may return -ENOMEM when scanners meet
2459 			 * and we want compact_finished() to detect it
2460 			 */
2461 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2462 				ret = COMPACT_CONTENDED;
2463 				goto out;
2464 			}
2465 			/*
2466 			 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2467 			 * within the current order-aligned block and
2468 			 * fast_find_migrateblock may be used then scan the
2469 			 * remainder of the pageblock. This will mark the
2470 			 * pageblock "skip" to avoid rescanning in the near
2471 			 * future. This will isolate more pages than necessary
2472 			 * for the request but avoid loops due to
2473 			 * fast_find_migrateblock revisiting blocks that were
2474 			 * recently partially scanned.
2475 			 */
2476 			if (!pageblock_aligned(cc->migrate_pfn) &&
2477 			    !cc->ignore_skip_hint && !cc->finish_pageblock &&
2478 			    (cc->mode < MIGRATE_SYNC)) {
2479 				cc->finish_pageblock = true;
2480 
2481 				/*
2482 				 * Draining pcplists does not help THP if
2483 				 * any page failed to migrate. Even after
2484 				 * drain, the pageblock will not be free.
2485 				 */
2486 				if (cc->order == COMPACTION_HPAGE_ORDER)
2487 					last_migrated_pfn = 0;
2488 
2489 				goto rescan;
2490 			}
2491 		}
2492 
2493 		/* Stop if a page has been captured */
2494 		if (capc && capc->page) {
2495 			ret = COMPACT_SUCCESS;
2496 			break;
2497 		}
2498 
2499 check_drain:
2500 		/*
2501 		 * Has the migration scanner moved away from the previous
2502 		 * cc->order aligned block where we migrated from? If yes,
2503 		 * flush the pages that were freed, so that they can merge and
2504 		 * compact_finished() can detect immediately if allocation
2505 		 * would succeed.
2506 		 */
2507 		if (cc->order > 0 && last_migrated_pfn) {
2508 			unsigned long current_block_start =
2509 				block_start_pfn(cc->migrate_pfn, cc->order);
2510 
2511 			if (last_migrated_pfn < current_block_start) {
2512 				lru_add_drain_cpu_zone(cc->zone);
2513 				/* No more flushing until we migrate again */
2514 				last_migrated_pfn = 0;
2515 			}
2516 		}
2517 	}
2518 
2519 out:
2520 	/*
2521 	 * Release free pages and update where the free scanner should restart,
2522 	 * so we don't leave any returned pages behind in the next attempt.
2523 	 */
2524 	if (cc->nr_freepages > 0) {
2525 		unsigned long free_pfn = release_freepages(&cc->freepages);
2526 
2527 		cc->nr_freepages = 0;
2528 		VM_BUG_ON(free_pfn == 0);
2529 		/* The cached pfn is always the first in a pageblock */
2530 		free_pfn = pageblock_start_pfn(free_pfn);
2531 		/*
2532 		 * Only go back, not forward. The cached pfn might have been
2533 		 * already reset to zone end in compact_finished()
2534 		 */
2535 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2536 			cc->zone->compact_cached_free_pfn = free_pfn;
2537 	}
2538 
2539 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2540 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2541 
2542 	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2543 
2544 	VM_BUG_ON(!list_empty(&cc->freepages));
2545 	VM_BUG_ON(!list_empty(&cc->migratepages));
2546 
2547 	return ret;
2548 }
2549 
2550 static enum compact_result compact_zone_order(struct zone *zone, int order,
2551 		gfp_t gfp_mask, enum compact_priority prio,
2552 		unsigned int alloc_flags, int highest_zoneidx,
2553 		struct page **capture)
2554 {
2555 	enum compact_result ret;
2556 	struct compact_control cc = {
2557 		.order = order,
2558 		.search_order = order,
2559 		.gfp_mask = gfp_mask,
2560 		.zone = zone,
2561 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2562 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2563 		.alloc_flags = alloc_flags,
2564 		.highest_zoneidx = highest_zoneidx,
2565 		.direct_compaction = true,
2566 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2567 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2568 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2569 	};
2570 	struct capture_control capc = {
2571 		.cc = &cc,
2572 		.page = NULL,
2573 	};
2574 
2575 	/*
2576 	 * Make sure the structs are really initialized before we expose the
2577 	 * capture control, in case we are interrupted and the interrupt handler
2578 	 * frees a page.
2579 	 */
2580 	barrier();
2581 	WRITE_ONCE(current->capture_control, &capc);
2582 
2583 	ret = compact_zone(&cc, &capc);
2584 
2585 	/*
2586 	 * Make sure we hide capture control first before we read the captured
2587 	 * page pointer, otherwise an interrupt could free and capture a page
2588 	 * and we would leak it.
2589 	 */
2590 	WRITE_ONCE(current->capture_control, NULL);
2591 	*capture = READ_ONCE(capc.page);
2592 	/*
2593 	 * Technically, it is also possible that compaction is skipped but
2594 	 * the page is still captured out of luck(IRQ came and freed the page).
2595 	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2596 	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2597 	 */
2598 	if (*capture)
2599 		ret = COMPACT_SUCCESS;
2600 
2601 	return ret;
2602 }
2603 
2604 /**
2605  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2606  * @gfp_mask: The GFP mask of the current allocation
2607  * @order: The order of the current allocation
2608  * @alloc_flags: The allocation flags of the current allocation
2609  * @ac: The context of current allocation
2610  * @prio: Determines how hard direct compaction should try to succeed
2611  * @capture: Pointer to free page created by compaction will be stored here
2612  *
2613  * This is the main entry point for direct page compaction.
2614  */
2615 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2616 		unsigned int alloc_flags, const struct alloc_context *ac,
2617 		enum compact_priority prio, struct page **capture)
2618 {
2619 	int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2620 	struct zoneref *z;
2621 	struct zone *zone;
2622 	enum compact_result rc = COMPACT_SKIPPED;
2623 
2624 	/*
2625 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2626 	 * tricky context because the migration might require IO
2627 	 */
2628 	if (!may_perform_io)
2629 		return COMPACT_SKIPPED;
2630 
2631 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2632 
2633 	/* Compact each zone in the list */
2634 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2635 					ac->highest_zoneidx, ac->nodemask) {
2636 		enum compact_result status;
2637 
2638 		if (prio > MIN_COMPACT_PRIORITY
2639 					&& compaction_deferred(zone, order)) {
2640 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2641 			continue;
2642 		}
2643 
2644 		status = compact_zone_order(zone, order, gfp_mask, prio,
2645 				alloc_flags, ac->highest_zoneidx, capture);
2646 		rc = max(status, rc);
2647 
2648 		/* The allocation should succeed, stop compacting */
2649 		if (status == COMPACT_SUCCESS) {
2650 			/*
2651 			 * We think the allocation will succeed in this zone,
2652 			 * but it is not certain, hence the false. The caller
2653 			 * will repeat this with true if allocation indeed
2654 			 * succeeds in this zone.
2655 			 */
2656 			compaction_defer_reset(zone, order, false);
2657 
2658 			break;
2659 		}
2660 
2661 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2662 					status == COMPACT_PARTIAL_SKIPPED))
2663 			/*
2664 			 * We think that allocation won't succeed in this zone
2665 			 * so we defer compaction there. If it ends up
2666 			 * succeeding after all, it will be reset.
2667 			 */
2668 			defer_compaction(zone, order);
2669 
2670 		/*
2671 		 * We might have stopped compacting due to need_resched() in
2672 		 * async compaction, or due to a fatal signal detected. In that
2673 		 * case do not try further zones
2674 		 */
2675 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2676 					|| fatal_signal_pending(current))
2677 			break;
2678 	}
2679 
2680 	return rc;
2681 }
2682 
2683 /*
2684  * Compact all zones within a node till each zone's fragmentation score
2685  * reaches within proactive compaction thresholds (as determined by the
2686  * proactiveness tunable).
2687  *
2688  * It is possible that the function returns before reaching score targets
2689  * due to various back-off conditions, such as, contention on per-node or
2690  * per-zone locks.
2691  */
2692 static void proactive_compact_node(pg_data_t *pgdat)
2693 {
2694 	int zoneid;
2695 	struct zone *zone;
2696 	struct compact_control cc = {
2697 		.order = -1,
2698 		.mode = MIGRATE_SYNC_LIGHT,
2699 		.ignore_skip_hint = true,
2700 		.whole_zone = true,
2701 		.gfp_mask = GFP_KERNEL,
2702 		.proactive_compaction = true,
2703 	};
2704 
2705 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2706 		zone = &pgdat->node_zones[zoneid];
2707 		if (!populated_zone(zone))
2708 			continue;
2709 
2710 		cc.zone = zone;
2711 
2712 		compact_zone(&cc, NULL);
2713 
2714 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2715 				     cc.total_migrate_scanned);
2716 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2717 				     cc.total_free_scanned);
2718 	}
2719 }
2720 
2721 /* Compact all zones within a node */
2722 static void compact_node(int nid)
2723 {
2724 	pg_data_t *pgdat = NODE_DATA(nid);
2725 	int zoneid;
2726 	struct zone *zone;
2727 	struct compact_control cc = {
2728 		.order = -1,
2729 		.mode = MIGRATE_SYNC,
2730 		.ignore_skip_hint = true,
2731 		.whole_zone = true,
2732 		.gfp_mask = GFP_KERNEL,
2733 	};
2734 
2735 
2736 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2737 
2738 		zone = &pgdat->node_zones[zoneid];
2739 		if (!populated_zone(zone))
2740 			continue;
2741 
2742 		cc.zone = zone;
2743 
2744 		compact_zone(&cc, NULL);
2745 	}
2746 }
2747 
2748 /* Compact all nodes in the system */
2749 static void compact_nodes(void)
2750 {
2751 	int nid;
2752 
2753 	/* Flush pending updates to the LRU lists */
2754 	lru_add_drain_all();
2755 
2756 	for_each_online_node(nid)
2757 		compact_node(nid);
2758 }
2759 
2760 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2761 		void *buffer, size_t *length, loff_t *ppos)
2762 {
2763 	int rc, nid;
2764 
2765 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2766 	if (rc)
2767 		return rc;
2768 
2769 	if (write && sysctl_compaction_proactiveness) {
2770 		for_each_online_node(nid) {
2771 			pg_data_t *pgdat = NODE_DATA(nid);
2772 
2773 			if (pgdat->proactive_compact_trigger)
2774 				continue;
2775 
2776 			pgdat->proactive_compact_trigger = true;
2777 			trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2778 							     pgdat->nr_zones - 1);
2779 			wake_up_interruptible(&pgdat->kcompactd_wait);
2780 		}
2781 	}
2782 
2783 	return 0;
2784 }
2785 
2786 /*
2787  * This is the entry point for compacting all nodes via
2788  * /proc/sys/vm/compact_memory
2789  */
2790 static int sysctl_compaction_handler(struct ctl_table *table, int write,
2791 			void *buffer, size_t *length, loff_t *ppos)
2792 {
2793 	int ret;
2794 
2795 	ret = proc_dointvec(table, write, buffer, length, ppos);
2796 	if (ret)
2797 		return ret;
2798 
2799 	if (sysctl_compact_memory != 1)
2800 		return -EINVAL;
2801 
2802 	if (write)
2803 		compact_nodes();
2804 
2805 	return 0;
2806 }
2807 
2808 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2809 static ssize_t compact_store(struct device *dev,
2810 			     struct device_attribute *attr,
2811 			     const char *buf, size_t count)
2812 {
2813 	int nid = dev->id;
2814 
2815 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2816 		/* Flush pending updates to the LRU lists */
2817 		lru_add_drain_all();
2818 
2819 		compact_node(nid);
2820 	}
2821 
2822 	return count;
2823 }
2824 static DEVICE_ATTR_WO(compact);
2825 
2826 int compaction_register_node(struct node *node)
2827 {
2828 	return device_create_file(&node->dev, &dev_attr_compact);
2829 }
2830 
2831 void compaction_unregister_node(struct node *node)
2832 {
2833 	return device_remove_file(&node->dev, &dev_attr_compact);
2834 }
2835 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2836 
2837 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2838 {
2839 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2840 		pgdat->proactive_compact_trigger;
2841 }
2842 
2843 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2844 {
2845 	int zoneid;
2846 	struct zone *zone;
2847 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2848 
2849 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2850 		zone = &pgdat->node_zones[zoneid];
2851 
2852 		if (!populated_zone(zone))
2853 			continue;
2854 
2855 		/* Allocation can already succeed, check other zones */
2856 		if (zone_watermark_ok(zone, pgdat->kcompactd_max_order,
2857 				      min_wmark_pages(zone),
2858 				      highest_zoneidx, 0))
2859 			continue;
2860 
2861 		if (compaction_suitable(zone, pgdat->kcompactd_max_order,
2862 					highest_zoneidx))
2863 			return true;
2864 	}
2865 
2866 	return false;
2867 }
2868 
2869 static void kcompactd_do_work(pg_data_t *pgdat)
2870 {
2871 	/*
2872 	 * With no special task, compact all zones so that a page of requested
2873 	 * order is allocatable.
2874 	 */
2875 	int zoneid;
2876 	struct zone *zone;
2877 	struct compact_control cc = {
2878 		.order = pgdat->kcompactd_max_order,
2879 		.search_order = pgdat->kcompactd_max_order,
2880 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2881 		.mode = MIGRATE_SYNC_LIGHT,
2882 		.ignore_skip_hint = false,
2883 		.gfp_mask = GFP_KERNEL,
2884 	};
2885 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2886 							cc.highest_zoneidx);
2887 	count_compact_event(KCOMPACTD_WAKE);
2888 
2889 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2890 		int status;
2891 
2892 		zone = &pgdat->node_zones[zoneid];
2893 		if (!populated_zone(zone))
2894 			continue;
2895 
2896 		if (compaction_deferred(zone, cc.order))
2897 			continue;
2898 
2899 		/* Allocation can already succeed, nothing to do */
2900 		if (zone_watermark_ok(zone, cc.order,
2901 				      min_wmark_pages(zone), zoneid, 0))
2902 			continue;
2903 
2904 		if (!compaction_suitable(zone, cc.order, zoneid))
2905 			continue;
2906 
2907 		if (kthread_should_stop())
2908 			return;
2909 
2910 		cc.zone = zone;
2911 		status = compact_zone(&cc, NULL);
2912 
2913 		if (status == COMPACT_SUCCESS) {
2914 			compaction_defer_reset(zone, cc.order, false);
2915 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2916 			/*
2917 			 * Buddy pages may become stranded on pcps that could
2918 			 * otherwise coalesce on the zone's free area for
2919 			 * order >= cc.order.  This is ratelimited by the
2920 			 * upcoming deferral.
2921 			 */
2922 			drain_all_pages(zone);
2923 
2924 			/*
2925 			 * We use sync migration mode here, so we defer like
2926 			 * sync direct compaction does.
2927 			 */
2928 			defer_compaction(zone, cc.order);
2929 		}
2930 
2931 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2932 				     cc.total_migrate_scanned);
2933 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2934 				     cc.total_free_scanned);
2935 	}
2936 
2937 	/*
2938 	 * Regardless of success, we are done until woken up next. But remember
2939 	 * the requested order/highest_zoneidx in case it was higher/tighter
2940 	 * than our current ones
2941 	 */
2942 	if (pgdat->kcompactd_max_order <= cc.order)
2943 		pgdat->kcompactd_max_order = 0;
2944 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2945 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2946 }
2947 
2948 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2949 {
2950 	if (!order)
2951 		return;
2952 
2953 	if (pgdat->kcompactd_max_order < order)
2954 		pgdat->kcompactd_max_order = order;
2955 
2956 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2957 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2958 
2959 	/*
2960 	 * Pairs with implicit barrier in wait_event_freezable()
2961 	 * such that wakeups are not missed.
2962 	 */
2963 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2964 		return;
2965 
2966 	if (!kcompactd_node_suitable(pgdat))
2967 		return;
2968 
2969 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2970 							highest_zoneidx);
2971 	wake_up_interruptible(&pgdat->kcompactd_wait);
2972 }
2973 
2974 /*
2975  * The background compaction daemon, started as a kernel thread
2976  * from the init process.
2977  */
2978 static int kcompactd(void *p)
2979 {
2980 	pg_data_t *pgdat = (pg_data_t *)p;
2981 	struct task_struct *tsk = current;
2982 	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2983 	long timeout = default_timeout;
2984 
2985 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2986 
2987 	if (!cpumask_empty(cpumask))
2988 		set_cpus_allowed_ptr(tsk, cpumask);
2989 
2990 	set_freezable();
2991 
2992 	pgdat->kcompactd_max_order = 0;
2993 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2994 
2995 	while (!kthread_should_stop()) {
2996 		unsigned long pflags;
2997 
2998 		/*
2999 		 * Avoid the unnecessary wakeup for proactive compaction
3000 		 * when it is disabled.
3001 		 */
3002 		if (!sysctl_compaction_proactiveness)
3003 			timeout = MAX_SCHEDULE_TIMEOUT;
3004 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3005 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3006 			kcompactd_work_requested(pgdat), timeout) &&
3007 			!pgdat->proactive_compact_trigger) {
3008 
3009 			psi_memstall_enter(&pflags);
3010 			kcompactd_do_work(pgdat);
3011 			psi_memstall_leave(&pflags);
3012 			/*
3013 			 * Reset the timeout value. The defer timeout from
3014 			 * proactive compaction is lost here but that is fine
3015 			 * as the condition of the zone changing substantionally
3016 			 * then carrying on with the previous defer interval is
3017 			 * not useful.
3018 			 */
3019 			timeout = default_timeout;
3020 			continue;
3021 		}
3022 
3023 		/*
3024 		 * Start the proactive work with default timeout. Based
3025 		 * on the fragmentation score, this timeout is updated.
3026 		 */
3027 		timeout = default_timeout;
3028 		if (should_proactive_compact_node(pgdat)) {
3029 			unsigned int prev_score, score;
3030 
3031 			prev_score = fragmentation_score_node(pgdat);
3032 			proactive_compact_node(pgdat);
3033 			score = fragmentation_score_node(pgdat);
3034 			/*
3035 			 * Defer proactive compaction if the fragmentation
3036 			 * score did not go down i.e. no progress made.
3037 			 */
3038 			if (unlikely(score >= prev_score))
3039 				timeout =
3040 				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
3041 		}
3042 		if (unlikely(pgdat->proactive_compact_trigger))
3043 			pgdat->proactive_compact_trigger = false;
3044 	}
3045 
3046 	return 0;
3047 }
3048 
3049 /*
3050  * This kcompactd start function will be called by init and node-hot-add.
3051  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3052  */
3053 void __meminit kcompactd_run(int nid)
3054 {
3055 	pg_data_t *pgdat = NODE_DATA(nid);
3056 
3057 	if (pgdat->kcompactd)
3058 		return;
3059 
3060 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3061 	if (IS_ERR(pgdat->kcompactd)) {
3062 		pr_err("Failed to start kcompactd on node %d\n", nid);
3063 		pgdat->kcompactd = NULL;
3064 	}
3065 }
3066 
3067 /*
3068  * Called by memory hotplug when all memory in a node is offlined. Caller must
3069  * be holding mem_hotplug_begin/done().
3070  */
3071 void __meminit kcompactd_stop(int nid)
3072 {
3073 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3074 
3075 	if (kcompactd) {
3076 		kthread_stop(kcompactd);
3077 		NODE_DATA(nid)->kcompactd = NULL;
3078 	}
3079 }
3080 
3081 /*
3082  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3083  * not required for correctness. So if the last cpu in a node goes
3084  * away, we get changed to run anywhere: as the first one comes back,
3085  * restore their cpu bindings.
3086  */
3087 static int kcompactd_cpu_online(unsigned int cpu)
3088 {
3089 	int nid;
3090 
3091 	for_each_node_state(nid, N_MEMORY) {
3092 		pg_data_t *pgdat = NODE_DATA(nid);
3093 		const struct cpumask *mask;
3094 
3095 		mask = cpumask_of_node(pgdat->node_id);
3096 
3097 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3098 			/* One of our CPUs online: restore mask */
3099 			if (pgdat->kcompactd)
3100 				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3101 	}
3102 	return 0;
3103 }
3104 
3105 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3106 		int write, void *buffer, size_t *lenp, loff_t *ppos)
3107 {
3108 	int ret, old;
3109 
3110 	if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3111 		return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3112 
3113 	old = *(int *)table->data;
3114 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3115 	if (ret)
3116 		return ret;
3117 	if (old != *(int *)table->data)
3118 		pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3119 			     table->procname, current->comm,
3120 			     task_pid_nr(current));
3121 	return ret;
3122 }
3123 
3124 static struct ctl_table vm_compaction[] = {
3125 	{
3126 		.procname	= "compact_memory",
3127 		.data		= &sysctl_compact_memory,
3128 		.maxlen		= sizeof(int),
3129 		.mode		= 0200,
3130 		.proc_handler	= sysctl_compaction_handler,
3131 	},
3132 	{
3133 		.procname	= "compaction_proactiveness",
3134 		.data		= &sysctl_compaction_proactiveness,
3135 		.maxlen		= sizeof(sysctl_compaction_proactiveness),
3136 		.mode		= 0644,
3137 		.proc_handler	= compaction_proactiveness_sysctl_handler,
3138 		.extra1		= SYSCTL_ZERO,
3139 		.extra2		= SYSCTL_ONE_HUNDRED,
3140 	},
3141 	{
3142 		.procname	= "extfrag_threshold",
3143 		.data		= &sysctl_extfrag_threshold,
3144 		.maxlen		= sizeof(int),
3145 		.mode		= 0644,
3146 		.proc_handler	= proc_dointvec_minmax,
3147 		.extra1		= SYSCTL_ZERO,
3148 		.extra2		= SYSCTL_ONE_THOUSAND,
3149 	},
3150 	{
3151 		.procname	= "compact_unevictable_allowed",
3152 		.data		= &sysctl_compact_unevictable_allowed,
3153 		.maxlen		= sizeof(int),
3154 		.mode		= 0644,
3155 		.proc_handler	= proc_dointvec_minmax_warn_RT_change,
3156 		.extra1		= SYSCTL_ZERO,
3157 		.extra2		= SYSCTL_ONE,
3158 	},
3159 	{ }
3160 };
3161 
3162 static int __init kcompactd_init(void)
3163 {
3164 	int nid;
3165 	int ret;
3166 
3167 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3168 					"mm/compaction:online",
3169 					kcompactd_cpu_online, NULL);
3170 	if (ret < 0) {
3171 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3172 		return ret;
3173 	}
3174 
3175 	for_each_node_state(nid, N_MEMORY)
3176 		kcompactd_run(nid);
3177 	register_sysctl_init("vm", vm_compaction);
3178 	return 0;
3179 }
3180 subsys_initcall(kcompactd_init)
3181 
3182 #endif /* CONFIG_COMPACTION */
3183