xref: /openbmc/linux/mm/compaction.c (revision 600a711c)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include "internal.h"
18 
19 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
20 
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/compaction.h>
23 
24 static unsigned long release_freepages(struct list_head *freelist)
25 {
26 	struct page *page, *next;
27 	unsigned long count = 0;
28 
29 	list_for_each_entry_safe(page, next, freelist, lru) {
30 		list_del(&page->lru);
31 		__free_page(page);
32 		count++;
33 	}
34 
35 	return count;
36 }
37 
38 static void map_pages(struct list_head *list)
39 {
40 	struct page *page;
41 
42 	list_for_each_entry(page, list, lru) {
43 		arch_alloc_page(page, 0);
44 		kernel_map_pages(page, 1, 1);
45 	}
46 }
47 
48 static inline bool migrate_async_suitable(int migratetype)
49 {
50 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
51 }
52 
53 /*
54  * Compaction requires the taking of some coarse locks that are potentially
55  * very heavily contended. Check if the process needs to be scheduled or
56  * if the lock is contended. For async compaction, back out in the event
57  * if contention is severe. For sync compaction, schedule.
58  *
59  * Returns true if the lock is held.
60  * Returns false if the lock is released and compaction should abort
61  */
62 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
63 				      bool locked, struct compact_control *cc)
64 {
65 	if (need_resched() || spin_is_contended(lock)) {
66 		if (locked) {
67 			spin_unlock_irqrestore(lock, *flags);
68 			locked = false;
69 		}
70 
71 		/* async aborts if taking too long or contended */
72 		if (!cc->sync) {
73 			if (cc->contended)
74 				*cc->contended = true;
75 			return false;
76 		}
77 
78 		cond_resched();
79 		if (fatal_signal_pending(current))
80 			return false;
81 	}
82 
83 	if (!locked)
84 		spin_lock_irqsave(lock, *flags);
85 	return true;
86 }
87 
88 static inline bool compact_trylock_irqsave(spinlock_t *lock,
89 			unsigned long *flags, struct compact_control *cc)
90 {
91 	return compact_checklock_irqsave(lock, flags, false, cc);
92 }
93 
94 /*
95  * Isolate free pages onto a private freelist. Caller must hold zone->lock.
96  * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
97  * pages inside of the pageblock (even though it may still end up isolating
98  * some pages).
99  */
100 static unsigned long isolate_freepages_block(unsigned long blockpfn,
101 				unsigned long end_pfn,
102 				struct list_head *freelist,
103 				bool strict)
104 {
105 	int nr_scanned = 0, total_isolated = 0;
106 	struct page *cursor;
107 
108 	cursor = pfn_to_page(blockpfn);
109 
110 	/* Isolate free pages. This assumes the block is valid */
111 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
112 		int isolated, i;
113 		struct page *page = cursor;
114 
115 		if (!pfn_valid_within(blockpfn)) {
116 			if (strict)
117 				return 0;
118 			continue;
119 		}
120 		nr_scanned++;
121 
122 		if (!PageBuddy(page)) {
123 			if (strict)
124 				return 0;
125 			continue;
126 		}
127 
128 		/* Found a free page, break it into order-0 pages */
129 		isolated = split_free_page(page);
130 		if (!isolated && strict)
131 			return 0;
132 		total_isolated += isolated;
133 		for (i = 0; i < isolated; i++) {
134 			list_add(&page->lru, freelist);
135 			page++;
136 		}
137 
138 		/* If a page was split, advance to the end of it */
139 		if (isolated) {
140 			blockpfn += isolated - 1;
141 			cursor += isolated - 1;
142 		}
143 	}
144 
145 	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
146 	return total_isolated;
147 }
148 
149 /**
150  * isolate_freepages_range() - isolate free pages.
151  * @start_pfn: The first PFN to start isolating.
152  * @end_pfn:   The one-past-last PFN.
153  *
154  * Non-free pages, invalid PFNs, or zone boundaries within the
155  * [start_pfn, end_pfn) range are considered errors, cause function to
156  * undo its actions and return zero.
157  *
158  * Otherwise, function returns one-past-the-last PFN of isolated page
159  * (which may be greater then end_pfn if end fell in a middle of
160  * a free page).
161  */
162 unsigned long
163 isolate_freepages_range(unsigned long start_pfn, unsigned long end_pfn)
164 {
165 	unsigned long isolated, pfn, block_end_pfn, flags;
166 	struct zone *zone = NULL;
167 	LIST_HEAD(freelist);
168 
169 	if (pfn_valid(start_pfn))
170 		zone = page_zone(pfn_to_page(start_pfn));
171 
172 	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
173 		if (!pfn_valid(pfn) || zone != page_zone(pfn_to_page(pfn)))
174 			break;
175 
176 		/*
177 		 * On subsequent iterations ALIGN() is actually not needed,
178 		 * but we keep it that we not to complicate the code.
179 		 */
180 		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
181 		block_end_pfn = min(block_end_pfn, end_pfn);
182 
183 		spin_lock_irqsave(&zone->lock, flags);
184 		isolated = isolate_freepages_block(pfn, block_end_pfn,
185 						   &freelist, true);
186 		spin_unlock_irqrestore(&zone->lock, flags);
187 
188 		/*
189 		 * In strict mode, isolate_freepages_block() returns 0 if
190 		 * there are any holes in the block (ie. invalid PFNs or
191 		 * non-free pages).
192 		 */
193 		if (!isolated)
194 			break;
195 
196 		/*
197 		 * If we managed to isolate pages, it is always (1 << n) *
198 		 * pageblock_nr_pages for some non-negative n.  (Max order
199 		 * page may span two pageblocks).
200 		 */
201 	}
202 
203 	/* split_free_page does not map the pages */
204 	map_pages(&freelist);
205 
206 	if (pfn < end_pfn) {
207 		/* Loop terminated early, cleanup. */
208 		release_freepages(&freelist);
209 		return 0;
210 	}
211 
212 	/* We don't use freelists for anything. */
213 	return pfn;
214 }
215 
216 /* Update the number of anon and file isolated pages in the zone */
217 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
218 {
219 	struct page *page;
220 	unsigned int count[2] = { 0, };
221 
222 	list_for_each_entry(page, &cc->migratepages, lru)
223 		count[!!page_is_file_cache(page)]++;
224 
225 	/* If locked we can use the interrupt unsafe versions */
226 	if (locked) {
227 		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
228 		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
229 	} else {
230 		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
231 		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
232 	}
233 }
234 
235 /* Similar to reclaim, but different enough that they don't share logic */
236 static bool too_many_isolated(struct zone *zone)
237 {
238 	unsigned long active, inactive, isolated;
239 
240 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
241 					zone_page_state(zone, NR_INACTIVE_ANON);
242 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
243 					zone_page_state(zone, NR_ACTIVE_ANON);
244 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
245 					zone_page_state(zone, NR_ISOLATED_ANON);
246 
247 	return isolated > (inactive + active) / 2;
248 }
249 
250 /**
251  * isolate_migratepages_range() - isolate all migrate-able pages in range.
252  * @zone:	Zone pages are in.
253  * @cc:		Compaction control structure.
254  * @low_pfn:	The first PFN of the range.
255  * @end_pfn:	The one-past-the-last PFN of the range.
256  *
257  * Isolate all pages that can be migrated from the range specified by
258  * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
259  * pending), otherwise PFN of the first page that was not scanned
260  * (which may be both less, equal to or more then end_pfn).
261  *
262  * Assumes that cc->migratepages is empty and cc->nr_migratepages is
263  * zero.
264  *
265  * Apart from cc->migratepages and cc->nr_migratetypes this function
266  * does not modify any cc's fields, in particular it does not modify
267  * (or read for that matter) cc->migrate_pfn.
268  */
269 unsigned long
270 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
271 			   unsigned long low_pfn, unsigned long end_pfn)
272 {
273 	unsigned long last_pageblock_nr = 0, pageblock_nr;
274 	unsigned long nr_scanned = 0, nr_isolated = 0;
275 	struct list_head *migratelist = &cc->migratepages;
276 	isolate_mode_t mode = 0;
277 	struct lruvec *lruvec;
278 	unsigned long flags;
279 	bool locked;
280 
281 	/*
282 	 * Ensure that there are not too many pages isolated from the LRU
283 	 * list by either parallel reclaimers or compaction. If there are,
284 	 * delay for some time until fewer pages are isolated
285 	 */
286 	while (unlikely(too_many_isolated(zone))) {
287 		/* async migration should just abort */
288 		if (!cc->sync)
289 			return 0;
290 
291 		congestion_wait(BLK_RW_ASYNC, HZ/10);
292 
293 		if (fatal_signal_pending(current))
294 			return 0;
295 	}
296 
297 	/* Time to isolate some pages for migration */
298 	cond_resched();
299 	spin_lock_irqsave(&zone->lru_lock, flags);
300 	locked = true;
301 	for (; low_pfn < end_pfn; low_pfn++) {
302 		struct page *page;
303 
304 		/* give a chance to irqs before checking need_resched() */
305 		if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
306 			spin_unlock_irqrestore(&zone->lru_lock, flags);
307 			locked = false;
308 		}
309 
310 		/* Check if it is ok to still hold the lock */
311 		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
312 								locked, cc);
313 		if (!locked)
314 			break;
315 
316 		/*
317 		 * migrate_pfn does not necessarily start aligned to a
318 		 * pageblock. Ensure that pfn_valid is called when moving
319 		 * into a new MAX_ORDER_NR_PAGES range in case of large
320 		 * memory holes within the zone
321 		 */
322 		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
323 			if (!pfn_valid(low_pfn)) {
324 				low_pfn += MAX_ORDER_NR_PAGES - 1;
325 				continue;
326 			}
327 		}
328 
329 		if (!pfn_valid_within(low_pfn))
330 			continue;
331 		nr_scanned++;
332 
333 		/*
334 		 * Get the page and ensure the page is within the same zone.
335 		 * See the comment in isolate_freepages about overlapping
336 		 * nodes. It is deliberate that the new zone lock is not taken
337 		 * as memory compaction should not move pages between nodes.
338 		 */
339 		page = pfn_to_page(low_pfn);
340 		if (page_zone(page) != zone)
341 			continue;
342 
343 		/* Skip if free */
344 		if (PageBuddy(page))
345 			continue;
346 
347 		/*
348 		 * For async migration, also only scan in MOVABLE blocks. Async
349 		 * migration is optimistic to see if the minimum amount of work
350 		 * satisfies the allocation
351 		 */
352 		pageblock_nr = low_pfn >> pageblock_order;
353 		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
354 		    !migrate_async_suitable(get_pageblock_migratetype(page))) {
355 			low_pfn += pageblock_nr_pages;
356 			low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
357 			last_pageblock_nr = pageblock_nr;
358 			continue;
359 		}
360 
361 		if (!PageLRU(page))
362 			continue;
363 
364 		/*
365 		 * PageLRU is set, and lru_lock excludes isolation,
366 		 * splitting and collapsing (collapsing has already
367 		 * happened if PageLRU is set).
368 		 */
369 		if (PageTransHuge(page)) {
370 			low_pfn += (1 << compound_order(page)) - 1;
371 			continue;
372 		}
373 
374 		if (!cc->sync)
375 			mode |= ISOLATE_ASYNC_MIGRATE;
376 
377 		lruvec = mem_cgroup_page_lruvec(page, zone);
378 
379 		/* Try isolate the page */
380 		if (__isolate_lru_page(page, mode) != 0)
381 			continue;
382 
383 		VM_BUG_ON(PageTransCompound(page));
384 
385 		/* Successfully isolated */
386 		del_page_from_lru_list(page, lruvec, page_lru(page));
387 		list_add(&page->lru, migratelist);
388 		cc->nr_migratepages++;
389 		nr_isolated++;
390 
391 		/* Avoid isolating too much */
392 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
393 			++low_pfn;
394 			break;
395 		}
396 	}
397 
398 	acct_isolated(zone, locked, cc);
399 
400 	if (locked)
401 		spin_unlock_irqrestore(&zone->lru_lock, flags);
402 
403 	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
404 
405 	return low_pfn;
406 }
407 
408 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
409 #ifdef CONFIG_COMPACTION
410 
411 /* Returns true if the page is within a block suitable for migration to */
412 static bool suitable_migration_target(struct page *page)
413 {
414 
415 	int migratetype = get_pageblock_migratetype(page);
416 
417 	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
418 	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
419 		return false;
420 
421 	/* If the page is a large free page, then allow migration */
422 	if (PageBuddy(page) && page_order(page) >= pageblock_order)
423 		return true;
424 
425 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
426 	if (migrate_async_suitable(migratetype))
427 		return true;
428 
429 	/* Otherwise skip the block */
430 	return false;
431 }
432 
433 /*
434  * Returns the start pfn of the last page block in a zone.  This is the starting
435  * point for full compaction of a zone.  Compaction searches for free pages from
436  * the end of each zone, while isolate_freepages_block scans forward inside each
437  * page block.
438  */
439 static unsigned long start_free_pfn(struct zone *zone)
440 {
441 	unsigned long free_pfn;
442 	free_pfn = zone->zone_start_pfn + zone->spanned_pages;
443 	free_pfn &= ~(pageblock_nr_pages-1);
444 	return free_pfn;
445 }
446 
447 /*
448  * Based on information in the current compact_control, find blocks
449  * suitable for isolating free pages from and then isolate them.
450  */
451 static void isolate_freepages(struct zone *zone,
452 				struct compact_control *cc)
453 {
454 	struct page *page;
455 	unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
456 	unsigned long flags;
457 	int nr_freepages = cc->nr_freepages;
458 	struct list_head *freelist = &cc->freepages;
459 
460 	/*
461 	 * Initialise the free scanner. The starting point is where we last
462 	 * scanned from (or the end of the zone if starting). The low point
463 	 * is the end of the pageblock the migration scanner is using.
464 	 */
465 	pfn = cc->free_pfn;
466 	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
467 
468 	/*
469 	 * Take care that if the migration scanner is at the end of the zone
470 	 * that the free scanner does not accidentally move to the next zone
471 	 * in the next isolation cycle.
472 	 */
473 	high_pfn = min(low_pfn, pfn);
474 
475 	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
476 
477 	/*
478 	 * Isolate free pages until enough are available to migrate the
479 	 * pages on cc->migratepages. We stop searching if the migrate
480 	 * and free page scanners meet or enough free pages are isolated.
481 	 */
482 	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
483 					pfn -= pageblock_nr_pages) {
484 		unsigned long isolated;
485 
486 		if (!pfn_valid(pfn))
487 			continue;
488 
489 		/*
490 		 * Check for overlapping nodes/zones. It's possible on some
491 		 * configurations to have a setup like
492 		 * node0 node1 node0
493 		 * i.e. it's possible that all pages within a zones range of
494 		 * pages do not belong to a single zone.
495 		 */
496 		page = pfn_to_page(pfn);
497 		if (page_zone(page) != zone)
498 			continue;
499 
500 		/* Check the block is suitable for migration */
501 		if (!suitable_migration_target(page))
502 			continue;
503 
504 		/*
505 		 * Found a block suitable for isolating free pages from. Now
506 		 * we disabled interrupts, double check things are ok and
507 		 * isolate the pages. This is to minimise the time IRQs
508 		 * are disabled
509 		 */
510 		isolated = 0;
511 
512 		/*
513 		 * The zone lock must be held to isolate freepages. This
514 		 * unfortunately this is a very coarse lock and can be
515 		 * heavily contended if there are parallel allocations
516 		 * or parallel compactions. For async compaction do not
517 		 * spin on the lock
518 		 */
519 		if (!compact_trylock_irqsave(&zone->lock, &flags, cc))
520 			break;
521 		if (suitable_migration_target(page)) {
522 			end_pfn = min(pfn + pageblock_nr_pages, zone_end_pfn);
523 			isolated = isolate_freepages_block(pfn, end_pfn,
524 							   freelist, false);
525 			nr_freepages += isolated;
526 		}
527 		spin_unlock_irqrestore(&zone->lock, flags);
528 
529 		/*
530 		 * Record the highest PFN we isolated pages from. When next
531 		 * looking for free pages, the search will restart here as
532 		 * page migration may have returned some pages to the allocator
533 		 */
534 		if (isolated) {
535 			high_pfn = max(high_pfn, pfn);
536 
537 			/*
538 			 * If the free scanner has wrapped, update
539 			 * compact_cached_free_pfn to point to the highest
540 			 * pageblock with free pages. This reduces excessive
541 			 * scanning of full pageblocks near the end of the
542 			 * zone
543 			 */
544 			if (cc->order > 0 && cc->wrapped)
545 				zone->compact_cached_free_pfn = high_pfn;
546 		}
547 	}
548 
549 	/* split_free_page does not map the pages */
550 	map_pages(freelist);
551 
552 	cc->free_pfn = high_pfn;
553 	cc->nr_freepages = nr_freepages;
554 
555 	/* If compact_cached_free_pfn is reset then set it now */
556 	if (cc->order > 0 && !cc->wrapped &&
557 			zone->compact_cached_free_pfn == start_free_pfn(zone))
558 		zone->compact_cached_free_pfn = high_pfn;
559 }
560 
561 /*
562  * This is a migrate-callback that "allocates" freepages by taking pages
563  * from the isolated freelists in the block we are migrating to.
564  */
565 static struct page *compaction_alloc(struct page *migratepage,
566 					unsigned long data,
567 					int **result)
568 {
569 	struct compact_control *cc = (struct compact_control *)data;
570 	struct page *freepage;
571 
572 	/* Isolate free pages if necessary */
573 	if (list_empty(&cc->freepages)) {
574 		isolate_freepages(cc->zone, cc);
575 
576 		if (list_empty(&cc->freepages))
577 			return NULL;
578 	}
579 
580 	freepage = list_entry(cc->freepages.next, struct page, lru);
581 	list_del(&freepage->lru);
582 	cc->nr_freepages--;
583 
584 	return freepage;
585 }
586 
587 /*
588  * We cannot control nr_migratepages and nr_freepages fully when migration is
589  * running as migrate_pages() has no knowledge of compact_control. When
590  * migration is complete, we count the number of pages on the lists by hand.
591  */
592 static void update_nr_listpages(struct compact_control *cc)
593 {
594 	int nr_migratepages = 0;
595 	int nr_freepages = 0;
596 	struct page *page;
597 
598 	list_for_each_entry(page, &cc->migratepages, lru)
599 		nr_migratepages++;
600 	list_for_each_entry(page, &cc->freepages, lru)
601 		nr_freepages++;
602 
603 	cc->nr_migratepages = nr_migratepages;
604 	cc->nr_freepages = nr_freepages;
605 }
606 
607 /* possible outcome of isolate_migratepages */
608 typedef enum {
609 	ISOLATE_ABORT,		/* Abort compaction now */
610 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
611 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
612 } isolate_migrate_t;
613 
614 /*
615  * Isolate all pages that can be migrated from the block pointed to by
616  * the migrate scanner within compact_control.
617  */
618 static isolate_migrate_t isolate_migratepages(struct zone *zone,
619 					struct compact_control *cc)
620 {
621 	unsigned long low_pfn, end_pfn;
622 
623 	/* Do not scan outside zone boundaries */
624 	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
625 
626 	/* Only scan within a pageblock boundary */
627 	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
628 
629 	/* Do not cross the free scanner or scan within a memory hole */
630 	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
631 		cc->migrate_pfn = end_pfn;
632 		return ISOLATE_NONE;
633 	}
634 
635 	/* Perform the isolation */
636 	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn);
637 	if (!low_pfn)
638 		return ISOLATE_ABORT;
639 
640 	cc->migrate_pfn = low_pfn;
641 
642 	return ISOLATE_SUCCESS;
643 }
644 
645 static int compact_finished(struct zone *zone,
646 			    struct compact_control *cc)
647 {
648 	unsigned int order;
649 	unsigned long watermark;
650 
651 	if (fatal_signal_pending(current))
652 		return COMPACT_PARTIAL;
653 
654 	/*
655 	 * A full (order == -1) compaction run starts at the beginning and
656 	 * end of a zone; it completes when the migrate and free scanner meet.
657 	 * A partial (order > 0) compaction can start with the free scanner
658 	 * at a random point in the zone, and may have to restart.
659 	 */
660 	if (cc->free_pfn <= cc->migrate_pfn) {
661 		if (cc->order > 0 && !cc->wrapped) {
662 			/* We started partway through; restart at the end. */
663 			unsigned long free_pfn = start_free_pfn(zone);
664 			zone->compact_cached_free_pfn = free_pfn;
665 			cc->free_pfn = free_pfn;
666 			cc->wrapped = 1;
667 			return COMPACT_CONTINUE;
668 		}
669 		return COMPACT_COMPLETE;
670 	}
671 
672 	/* We wrapped around and ended up where we started. */
673 	if (cc->wrapped && cc->free_pfn <= cc->start_free_pfn)
674 		return COMPACT_COMPLETE;
675 
676 	/*
677 	 * order == -1 is expected when compacting via
678 	 * /proc/sys/vm/compact_memory
679 	 */
680 	if (cc->order == -1)
681 		return COMPACT_CONTINUE;
682 
683 	/* Compaction run is not finished if the watermark is not met */
684 	watermark = low_wmark_pages(zone);
685 	watermark += (1 << cc->order);
686 
687 	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
688 		return COMPACT_CONTINUE;
689 
690 	/* Direct compactor: Is a suitable page free? */
691 	for (order = cc->order; order < MAX_ORDER; order++) {
692 		/* Job done if page is free of the right migratetype */
693 		if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
694 			return COMPACT_PARTIAL;
695 
696 		/* Job done if allocation would set block type */
697 		if (order >= pageblock_order && zone->free_area[order].nr_free)
698 			return COMPACT_PARTIAL;
699 	}
700 
701 	return COMPACT_CONTINUE;
702 }
703 
704 /*
705  * compaction_suitable: Is this suitable to run compaction on this zone now?
706  * Returns
707  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
708  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
709  *   COMPACT_CONTINUE - If compaction should run now
710  */
711 unsigned long compaction_suitable(struct zone *zone, int order)
712 {
713 	int fragindex;
714 	unsigned long watermark;
715 
716 	/*
717 	 * order == -1 is expected when compacting via
718 	 * /proc/sys/vm/compact_memory
719 	 */
720 	if (order == -1)
721 		return COMPACT_CONTINUE;
722 
723 	/*
724 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
725 	 * This is because during migration, copies of pages need to be
726 	 * allocated and for a short time, the footprint is higher
727 	 */
728 	watermark = low_wmark_pages(zone) + (2UL << order);
729 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
730 		return COMPACT_SKIPPED;
731 
732 	/*
733 	 * fragmentation index determines if allocation failures are due to
734 	 * low memory or external fragmentation
735 	 *
736 	 * index of -1000 implies allocations might succeed depending on
737 	 * watermarks
738 	 * index towards 0 implies failure is due to lack of memory
739 	 * index towards 1000 implies failure is due to fragmentation
740 	 *
741 	 * Only compact if a failure would be due to fragmentation.
742 	 */
743 	fragindex = fragmentation_index(zone, order);
744 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
745 		return COMPACT_SKIPPED;
746 
747 	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
748 	    0, 0))
749 		return COMPACT_PARTIAL;
750 
751 	return COMPACT_CONTINUE;
752 }
753 
754 static int compact_zone(struct zone *zone, struct compact_control *cc)
755 {
756 	int ret;
757 
758 	ret = compaction_suitable(zone, cc->order);
759 	switch (ret) {
760 	case COMPACT_PARTIAL:
761 	case COMPACT_SKIPPED:
762 		/* Compaction is likely to fail */
763 		return ret;
764 	case COMPACT_CONTINUE:
765 		/* Fall through to compaction */
766 		;
767 	}
768 
769 	/* Setup to move all movable pages to the end of the zone */
770 	cc->migrate_pfn = zone->zone_start_pfn;
771 
772 	if (cc->order > 0) {
773 		/* Incremental compaction. Start where the last one stopped. */
774 		cc->free_pfn = zone->compact_cached_free_pfn;
775 		cc->start_free_pfn = cc->free_pfn;
776 	} else {
777 		/* Order == -1 starts at the end of the zone. */
778 		cc->free_pfn = start_free_pfn(zone);
779 	}
780 
781 	migrate_prep_local();
782 
783 	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
784 		unsigned long nr_migrate, nr_remaining;
785 		int err;
786 
787 		switch (isolate_migratepages(zone, cc)) {
788 		case ISOLATE_ABORT:
789 			ret = COMPACT_PARTIAL;
790 			goto out;
791 		case ISOLATE_NONE:
792 			continue;
793 		case ISOLATE_SUCCESS:
794 			;
795 		}
796 
797 		nr_migrate = cc->nr_migratepages;
798 		err = migrate_pages(&cc->migratepages, compaction_alloc,
799 				(unsigned long)cc, false,
800 				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC);
801 		update_nr_listpages(cc);
802 		nr_remaining = cc->nr_migratepages;
803 
804 		count_vm_event(COMPACTBLOCKS);
805 		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
806 		if (nr_remaining)
807 			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
808 		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
809 						nr_remaining);
810 
811 		/* Release LRU pages not migrated */
812 		if (err) {
813 			putback_lru_pages(&cc->migratepages);
814 			cc->nr_migratepages = 0;
815 			if (err == -ENOMEM) {
816 				ret = COMPACT_PARTIAL;
817 				goto out;
818 			}
819 		}
820 	}
821 
822 out:
823 	/* Release free pages and check accounting */
824 	cc->nr_freepages -= release_freepages(&cc->freepages);
825 	VM_BUG_ON(cc->nr_freepages != 0);
826 
827 	return ret;
828 }
829 
830 static unsigned long compact_zone_order(struct zone *zone,
831 				 int order, gfp_t gfp_mask,
832 				 bool sync, bool *contended)
833 {
834 	struct compact_control cc = {
835 		.nr_freepages = 0,
836 		.nr_migratepages = 0,
837 		.order = order,
838 		.migratetype = allocflags_to_migratetype(gfp_mask),
839 		.zone = zone,
840 		.sync = sync,
841 		.contended = contended,
842 	};
843 	INIT_LIST_HEAD(&cc.freepages);
844 	INIT_LIST_HEAD(&cc.migratepages);
845 
846 	return compact_zone(zone, &cc);
847 }
848 
849 int sysctl_extfrag_threshold = 500;
850 
851 /**
852  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
853  * @zonelist: The zonelist used for the current allocation
854  * @order: The order of the current allocation
855  * @gfp_mask: The GFP mask of the current allocation
856  * @nodemask: The allowed nodes to allocate from
857  * @sync: Whether migration is synchronous or not
858  *
859  * This is the main entry point for direct page compaction.
860  */
861 unsigned long try_to_compact_pages(struct zonelist *zonelist,
862 			int order, gfp_t gfp_mask, nodemask_t *nodemask,
863 			bool sync, bool *contended)
864 {
865 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
866 	int may_enter_fs = gfp_mask & __GFP_FS;
867 	int may_perform_io = gfp_mask & __GFP_IO;
868 	struct zoneref *z;
869 	struct zone *zone;
870 	int rc = COMPACT_SKIPPED;
871 
872 	/*
873 	 * Check whether it is worth even starting compaction. The order check is
874 	 * made because an assumption is made that the page allocator can satisfy
875 	 * the "cheaper" orders without taking special steps
876 	 */
877 	if (!order || !may_enter_fs || !may_perform_io)
878 		return rc;
879 
880 	count_vm_event(COMPACTSTALL);
881 
882 	/* Compact each zone in the list */
883 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
884 								nodemask) {
885 		int status;
886 
887 		status = compact_zone_order(zone, order, gfp_mask, sync,
888 						contended);
889 		rc = max(status, rc);
890 
891 		/* If a normal allocation would succeed, stop compacting */
892 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
893 			break;
894 	}
895 
896 	return rc;
897 }
898 
899 
900 /* Compact all zones within a node */
901 static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
902 {
903 	int zoneid;
904 	struct zone *zone;
905 
906 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
907 
908 		zone = &pgdat->node_zones[zoneid];
909 		if (!populated_zone(zone))
910 			continue;
911 
912 		cc->nr_freepages = 0;
913 		cc->nr_migratepages = 0;
914 		cc->zone = zone;
915 		INIT_LIST_HEAD(&cc->freepages);
916 		INIT_LIST_HEAD(&cc->migratepages);
917 
918 		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
919 			compact_zone(zone, cc);
920 
921 		if (cc->order > 0) {
922 			int ok = zone_watermark_ok(zone, cc->order,
923 						low_wmark_pages(zone), 0, 0);
924 			if (ok && cc->order >= zone->compact_order_failed)
925 				zone->compact_order_failed = cc->order + 1;
926 			/* Currently async compaction is never deferred. */
927 			else if (!ok && cc->sync)
928 				defer_compaction(zone, cc->order);
929 		}
930 
931 		VM_BUG_ON(!list_empty(&cc->freepages));
932 		VM_BUG_ON(!list_empty(&cc->migratepages));
933 	}
934 
935 	return 0;
936 }
937 
938 int compact_pgdat(pg_data_t *pgdat, int order)
939 {
940 	struct compact_control cc = {
941 		.order = order,
942 		.sync = false,
943 	};
944 
945 	return __compact_pgdat(pgdat, &cc);
946 }
947 
948 static int compact_node(int nid)
949 {
950 	struct compact_control cc = {
951 		.order = -1,
952 		.sync = true,
953 	};
954 
955 	return __compact_pgdat(NODE_DATA(nid), &cc);
956 }
957 
958 /* Compact all nodes in the system */
959 static int compact_nodes(void)
960 {
961 	int nid;
962 
963 	/* Flush pending updates to the LRU lists */
964 	lru_add_drain_all();
965 
966 	for_each_online_node(nid)
967 		compact_node(nid);
968 
969 	return COMPACT_COMPLETE;
970 }
971 
972 /* The written value is actually unused, all memory is compacted */
973 int sysctl_compact_memory;
974 
975 /* This is the entry point for compacting all nodes via /proc/sys/vm */
976 int sysctl_compaction_handler(struct ctl_table *table, int write,
977 			void __user *buffer, size_t *length, loff_t *ppos)
978 {
979 	if (write)
980 		return compact_nodes();
981 
982 	return 0;
983 }
984 
985 int sysctl_extfrag_handler(struct ctl_table *table, int write,
986 			void __user *buffer, size_t *length, loff_t *ppos)
987 {
988 	proc_dointvec_minmax(table, write, buffer, length, ppos);
989 
990 	return 0;
991 }
992 
993 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
994 ssize_t sysfs_compact_node(struct device *dev,
995 			struct device_attribute *attr,
996 			const char *buf, size_t count)
997 {
998 	int nid = dev->id;
999 
1000 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1001 		/* Flush pending updates to the LRU lists */
1002 		lru_add_drain_all();
1003 
1004 		compact_node(nid);
1005 	}
1006 
1007 	return count;
1008 }
1009 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1010 
1011 int compaction_register_node(struct node *node)
1012 {
1013 	return device_create_file(&node->dev, &dev_attr_compact);
1014 }
1015 
1016 void compaction_unregister_node(struct node *node)
1017 {
1018 	return device_remove_file(&node->dev, &dev_attr_compact);
1019 }
1020 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1021 
1022 #endif /* CONFIG_COMPACTION */
1023