1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 static inline void count_compact_event(enum vm_event_item item) 30 { 31 count_vm_event(item); 32 } 33 34 static inline void count_compact_events(enum vm_event_item item, long delta) 35 { 36 count_vm_events(item, delta); 37 } 38 #else 39 #define count_compact_event(item) do { } while (0) 40 #define count_compact_events(item, delta) do { } while (0) 41 #endif 42 43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/compaction.h> 47 48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 52 53 /* 54 * Fragmentation score check interval for proactive compaction purposes. 55 */ 56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500; 57 58 /* 59 * Page order with-respect-to which proactive compaction 60 * calculates external fragmentation, which is used as 61 * the "fragmentation score" of a node/zone. 62 */ 63 #if defined CONFIG_TRANSPARENT_HUGEPAGE 64 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 65 #elif defined CONFIG_HUGETLBFS 66 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 67 #else 68 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 69 #endif 70 71 static unsigned long release_freepages(struct list_head *freelist) 72 { 73 struct page *page, *next; 74 unsigned long high_pfn = 0; 75 76 list_for_each_entry_safe(page, next, freelist, lru) { 77 unsigned long pfn = page_to_pfn(page); 78 list_del(&page->lru); 79 __free_page(page); 80 if (pfn > high_pfn) 81 high_pfn = pfn; 82 } 83 84 return high_pfn; 85 } 86 87 static void split_map_pages(struct list_head *list) 88 { 89 unsigned int i, order, nr_pages; 90 struct page *page, *next; 91 LIST_HEAD(tmp_list); 92 93 list_for_each_entry_safe(page, next, list, lru) { 94 list_del(&page->lru); 95 96 order = page_private(page); 97 nr_pages = 1 << order; 98 99 post_alloc_hook(page, order, __GFP_MOVABLE); 100 if (order) 101 split_page(page, order); 102 103 for (i = 0; i < nr_pages; i++) { 104 list_add(&page->lru, &tmp_list); 105 page++; 106 } 107 } 108 109 list_splice(&tmp_list, list); 110 } 111 112 #ifdef CONFIG_COMPACTION 113 114 int PageMovable(struct page *page) 115 { 116 struct address_space *mapping; 117 118 VM_BUG_ON_PAGE(!PageLocked(page), page); 119 if (!__PageMovable(page)) 120 return 0; 121 122 mapping = page_mapping(page); 123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 124 return 1; 125 126 return 0; 127 } 128 EXPORT_SYMBOL(PageMovable); 129 130 void __SetPageMovable(struct page *page, struct address_space *mapping) 131 { 132 VM_BUG_ON_PAGE(!PageLocked(page), page); 133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 135 } 136 EXPORT_SYMBOL(__SetPageMovable); 137 138 void __ClearPageMovable(struct page *page) 139 { 140 VM_BUG_ON_PAGE(!PageMovable(page), page); 141 /* 142 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 143 * flag so that VM can catch up released page by driver after isolation. 144 * With it, VM migration doesn't try to put it back. 145 */ 146 page->mapping = (void *)((unsigned long)page->mapping & 147 PAGE_MAPPING_MOVABLE); 148 } 149 EXPORT_SYMBOL(__ClearPageMovable); 150 151 /* Do not skip compaction more than 64 times */ 152 #define COMPACT_MAX_DEFER_SHIFT 6 153 154 /* 155 * Compaction is deferred when compaction fails to result in a page 156 * allocation success. 1 << compact_defer_shift, compactions are skipped up 157 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 158 */ 159 static void defer_compaction(struct zone *zone, int order) 160 { 161 zone->compact_considered = 0; 162 zone->compact_defer_shift++; 163 164 if (order < zone->compact_order_failed) 165 zone->compact_order_failed = order; 166 167 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 168 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 169 170 trace_mm_compaction_defer_compaction(zone, order); 171 } 172 173 /* Returns true if compaction should be skipped this time */ 174 static bool compaction_deferred(struct zone *zone, int order) 175 { 176 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 177 178 if (order < zone->compact_order_failed) 179 return false; 180 181 /* Avoid possible overflow */ 182 if (++zone->compact_considered >= defer_limit) { 183 zone->compact_considered = defer_limit; 184 return false; 185 } 186 187 trace_mm_compaction_deferred(zone, order); 188 189 return true; 190 } 191 192 /* 193 * Update defer tracking counters after successful compaction of given order, 194 * which means an allocation either succeeded (alloc_success == true) or is 195 * expected to succeed. 196 */ 197 void compaction_defer_reset(struct zone *zone, int order, 198 bool alloc_success) 199 { 200 if (alloc_success) { 201 zone->compact_considered = 0; 202 zone->compact_defer_shift = 0; 203 } 204 if (order >= zone->compact_order_failed) 205 zone->compact_order_failed = order + 1; 206 207 trace_mm_compaction_defer_reset(zone, order); 208 } 209 210 /* Returns true if restarting compaction after many failures */ 211 static bool compaction_restarting(struct zone *zone, int order) 212 { 213 if (order < zone->compact_order_failed) 214 return false; 215 216 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 217 zone->compact_considered >= 1UL << zone->compact_defer_shift; 218 } 219 220 /* Returns true if the pageblock should be scanned for pages to isolate. */ 221 static inline bool isolation_suitable(struct compact_control *cc, 222 struct page *page) 223 { 224 if (cc->ignore_skip_hint) 225 return true; 226 227 return !get_pageblock_skip(page); 228 } 229 230 static void reset_cached_positions(struct zone *zone) 231 { 232 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 233 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 234 zone->compact_cached_free_pfn = 235 pageblock_start_pfn(zone_end_pfn(zone) - 1); 236 } 237 238 /* 239 * Compound pages of >= pageblock_order should consistently be skipped until 240 * released. It is always pointless to compact pages of such order (if they are 241 * migratable), and the pageblocks they occupy cannot contain any free pages. 242 */ 243 static bool pageblock_skip_persistent(struct page *page) 244 { 245 if (!PageCompound(page)) 246 return false; 247 248 page = compound_head(page); 249 250 if (compound_order(page) >= pageblock_order) 251 return true; 252 253 return false; 254 } 255 256 static bool 257 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 258 bool check_target) 259 { 260 struct page *page = pfn_to_online_page(pfn); 261 struct page *block_page; 262 struct page *end_page; 263 unsigned long block_pfn; 264 265 if (!page) 266 return false; 267 if (zone != page_zone(page)) 268 return false; 269 if (pageblock_skip_persistent(page)) 270 return false; 271 272 /* 273 * If skip is already cleared do no further checking once the 274 * restart points have been set. 275 */ 276 if (check_source && check_target && !get_pageblock_skip(page)) 277 return true; 278 279 /* 280 * If clearing skip for the target scanner, do not select a 281 * non-movable pageblock as the starting point. 282 */ 283 if (!check_source && check_target && 284 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 285 return false; 286 287 /* Ensure the start of the pageblock or zone is online and valid */ 288 block_pfn = pageblock_start_pfn(pfn); 289 block_pfn = max(block_pfn, zone->zone_start_pfn); 290 block_page = pfn_to_online_page(block_pfn); 291 if (block_page) { 292 page = block_page; 293 pfn = block_pfn; 294 } 295 296 /* Ensure the end of the pageblock or zone is online and valid */ 297 block_pfn = pageblock_end_pfn(pfn) - 1; 298 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 299 end_page = pfn_to_online_page(block_pfn); 300 if (!end_page) 301 return false; 302 303 /* 304 * Only clear the hint if a sample indicates there is either a 305 * free page or an LRU page in the block. One or other condition 306 * is necessary for the block to be a migration source/target. 307 */ 308 do { 309 if (pfn_valid_within(pfn)) { 310 if (check_source && PageLRU(page)) { 311 clear_pageblock_skip(page); 312 return true; 313 } 314 315 if (check_target && PageBuddy(page)) { 316 clear_pageblock_skip(page); 317 return true; 318 } 319 } 320 321 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 322 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER); 323 } while (page <= end_page); 324 325 return false; 326 } 327 328 /* 329 * This function is called to clear all cached information on pageblocks that 330 * should be skipped for page isolation when the migrate and free page scanner 331 * meet. 332 */ 333 static void __reset_isolation_suitable(struct zone *zone) 334 { 335 unsigned long migrate_pfn = zone->zone_start_pfn; 336 unsigned long free_pfn = zone_end_pfn(zone) - 1; 337 unsigned long reset_migrate = free_pfn; 338 unsigned long reset_free = migrate_pfn; 339 bool source_set = false; 340 bool free_set = false; 341 342 if (!zone->compact_blockskip_flush) 343 return; 344 345 zone->compact_blockskip_flush = false; 346 347 /* 348 * Walk the zone and update pageblock skip information. Source looks 349 * for PageLRU while target looks for PageBuddy. When the scanner 350 * is found, both PageBuddy and PageLRU are checked as the pageblock 351 * is suitable as both source and target. 352 */ 353 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 354 free_pfn -= pageblock_nr_pages) { 355 cond_resched(); 356 357 /* Update the migrate PFN */ 358 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 359 migrate_pfn < reset_migrate) { 360 source_set = true; 361 reset_migrate = migrate_pfn; 362 zone->compact_init_migrate_pfn = reset_migrate; 363 zone->compact_cached_migrate_pfn[0] = reset_migrate; 364 zone->compact_cached_migrate_pfn[1] = reset_migrate; 365 } 366 367 /* Update the free PFN */ 368 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 369 free_pfn > reset_free) { 370 free_set = true; 371 reset_free = free_pfn; 372 zone->compact_init_free_pfn = reset_free; 373 zone->compact_cached_free_pfn = reset_free; 374 } 375 } 376 377 /* Leave no distance if no suitable block was reset */ 378 if (reset_migrate >= reset_free) { 379 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 380 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 381 zone->compact_cached_free_pfn = free_pfn; 382 } 383 } 384 385 void reset_isolation_suitable(pg_data_t *pgdat) 386 { 387 int zoneid; 388 389 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 390 struct zone *zone = &pgdat->node_zones[zoneid]; 391 if (!populated_zone(zone)) 392 continue; 393 394 /* Only flush if a full compaction finished recently */ 395 if (zone->compact_blockskip_flush) 396 __reset_isolation_suitable(zone); 397 } 398 } 399 400 /* 401 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 402 * locks are not required for read/writers. Returns true if it was already set. 403 */ 404 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 405 unsigned long pfn) 406 { 407 bool skip; 408 409 /* Do no update if skip hint is being ignored */ 410 if (cc->ignore_skip_hint) 411 return false; 412 413 if (!IS_ALIGNED(pfn, pageblock_nr_pages)) 414 return false; 415 416 skip = get_pageblock_skip(page); 417 if (!skip && !cc->no_set_skip_hint) 418 set_pageblock_skip(page); 419 420 return skip; 421 } 422 423 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 424 { 425 struct zone *zone = cc->zone; 426 427 pfn = pageblock_end_pfn(pfn); 428 429 /* Set for isolation rather than compaction */ 430 if (cc->no_set_skip_hint) 431 return; 432 433 if (pfn > zone->compact_cached_migrate_pfn[0]) 434 zone->compact_cached_migrate_pfn[0] = pfn; 435 if (cc->mode != MIGRATE_ASYNC && 436 pfn > zone->compact_cached_migrate_pfn[1]) 437 zone->compact_cached_migrate_pfn[1] = pfn; 438 } 439 440 /* 441 * If no pages were isolated then mark this pageblock to be skipped in the 442 * future. The information is later cleared by __reset_isolation_suitable(). 443 */ 444 static void update_pageblock_skip(struct compact_control *cc, 445 struct page *page, unsigned long pfn) 446 { 447 struct zone *zone = cc->zone; 448 449 if (cc->no_set_skip_hint) 450 return; 451 452 if (!page) 453 return; 454 455 set_pageblock_skip(page); 456 457 /* Update where async and sync compaction should restart */ 458 if (pfn < zone->compact_cached_free_pfn) 459 zone->compact_cached_free_pfn = pfn; 460 } 461 #else 462 static inline bool isolation_suitable(struct compact_control *cc, 463 struct page *page) 464 { 465 return true; 466 } 467 468 static inline bool pageblock_skip_persistent(struct page *page) 469 { 470 return false; 471 } 472 473 static inline void update_pageblock_skip(struct compact_control *cc, 474 struct page *page, unsigned long pfn) 475 { 476 } 477 478 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 479 { 480 } 481 482 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 483 unsigned long pfn) 484 { 485 return false; 486 } 487 #endif /* CONFIG_COMPACTION */ 488 489 /* 490 * Compaction requires the taking of some coarse locks that are potentially 491 * very heavily contended. For async compaction, trylock and record if the 492 * lock is contended. The lock will still be acquired but compaction will 493 * abort when the current block is finished regardless of success rate. 494 * Sync compaction acquires the lock. 495 * 496 * Always returns true which makes it easier to track lock state in callers. 497 */ 498 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 499 struct compact_control *cc) 500 __acquires(lock) 501 { 502 /* Track if the lock is contended in async mode */ 503 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 504 if (spin_trylock_irqsave(lock, *flags)) 505 return true; 506 507 cc->contended = true; 508 } 509 510 spin_lock_irqsave(lock, *flags); 511 return true; 512 } 513 514 /* 515 * Compaction requires the taking of some coarse locks that are potentially 516 * very heavily contended. The lock should be periodically unlocked to avoid 517 * having disabled IRQs for a long time, even when there is nobody waiting on 518 * the lock. It might also be that allowing the IRQs will result in 519 * need_resched() becoming true. If scheduling is needed, async compaction 520 * aborts. Sync compaction schedules. 521 * Either compaction type will also abort if a fatal signal is pending. 522 * In either case if the lock was locked, it is dropped and not regained. 523 * 524 * Returns true if compaction should abort due to fatal signal pending, or 525 * async compaction due to need_resched() 526 * Returns false when compaction can continue (sync compaction might have 527 * scheduled) 528 */ 529 static bool compact_unlock_should_abort(spinlock_t *lock, 530 unsigned long flags, bool *locked, struct compact_control *cc) 531 { 532 if (*locked) { 533 spin_unlock_irqrestore(lock, flags); 534 *locked = false; 535 } 536 537 if (fatal_signal_pending(current)) { 538 cc->contended = true; 539 return true; 540 } 541 542 cond_resched(); 543 544 return false; 545 } 546 547 /* 548 * Isolate free pages onto a private freelist. If @strict is true, will abort 549 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 550 * (even though it may still end up isolating some pages). 551 */ 552 static unsigned long isolate_freepages_block(struct compact_control *cc, 553 unsigned long *start_pfn, 554 unsigned long end_pfn, 555 struct list_head *freelist, 556 unsigned int stride, 557 bool strict) 558 { 559 int nr_scanned = 0, total_isolated = 0; 560 struct page *cursor; 561 unsigned long flags = 0; 562 bool locked = false; 563 unsigned long blockpfn = *start_pfn; 564 unsigned int order; 565 566 /* Strict mode is for isolation, speed is secondary */ 567 if (strict) 568 stride = 1; 569 570 cursor = pfn_to_page(blockpfn); 571 572 /* Isolate free pages. */ 573 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 574 int isolated; 575 struct page *page = cursor; 576 577 /* 578 * Periodically drop the lock (if held) regardless of its 579 * contention, to give chance to IRQs. Abort if fatal signal 580 * pending or async compaction detects need_resched() 581 */ 582 if (!(blockpfn % SWAP_CLUSTER_MAX) 583 && compact_unlock_should_abort(&cc->zone->lock, flags, 584 &locked, cc)) 585 break; 586 587 nr_scanned++; 588 if (!pfn_valid_within(blockpfn)) 589 goto isolate_fail; 590 591 /* 592 * For compound pages such as THP and hugetlbfs, we can save 593 * potentially a lot of iterations if we skip them at once. 594 * The check is racy, but we can consider only valid values 595 * and the only danger is skipping too much. 596 */ 597 if (PageCompound(page)) { 598 const unsigned int order = compound_order(page); 599 600 if (likely(order < MAX_ORDER)) { 601 blockpfn += (1UL << order) - 1; 602 cursor += (1UL << order) - 1; 603 } 604 goto isolate_fail; 605 } 606 607 if (!PageBuddy(page)) 608 goto isolate_fail; 609 610 /* 611 * If we already hold the lock, we can skip some rechecking. 612 * Note that if we hold the lock now, checked_pageblock was 613 * already set in some previous iteration (or strict is true), 614 * so it is correct to skip the suitable migration target 615 * recheck as well. 616 */ 617 if (!locked) { 618 locked = compact_lock_irqsave(&cc->zone->lock, 619 &flags, cc); 620 621 /* Recheck this is a buddy page under lock */ 622 if (!PageBuddy(page)) 623 goto isolate_fail; 624 } 625 626 /* Found a free page, will break it into order-0 pages */ 627 order = buddy_order(page); 628 isolated = __isolate_free_page(page, order); 629 if (!isolated) 630 break; 631 set_page_private(page, order); 632 633 total_isolated += isolated; 634 cc->nr_freepages += isolated; 635 list_add_tail(&page->lru, freelist); 636 637 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 638 blockpfn += isolated; 639 break; 640 } 641 /* Advance to the end of split page */ 642 blockpfn += isolated - 1; 643 cursor += isolated - 1; 644 continue; 645 646 isolate_fail: 647 if (strict) 648 break; 649 else 650 continue; 651 652 } 653 654 if (locked) 655 spin_unlock_irqrestore(&cc->zone->lock, flags); 656 657 /* 658 * There is a tiny chance that we have read bogus compound_order(), 659 * so be careful to not go outside of the pageblock. 660 */ 661 if (unlikely(blockpfn > end_pfn)) 662 blockpfn = end_pfn; 663 664 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 665 nr_scanned, total_isolated); 666 667 /* Record how far we have got within the block */ 668 *start_pfn = blockpfn; 669 670 /* 671 * If strict isolation is requested by CMA then check that all the 672 * pages requested were isolated. If there were any failures, 0 is 673 * returned and CMA will fail. 674 */ 675 if (strict && blockpfn < end_pfn) 676 total_isolated = 0; 677 678 cc->total_free_scanned += nr_scanned; 679 if (total_isolated) 680 count_compact_events(COMPACTISOLATED, total_isolated); 681 return total_isolated; 682 } 683 684 /** 685 * isolate_freepages_range() - isolate free pages. 686 * @cc: Compaction control structure. 687 * @start_pfn: The first PFN to start isolating. 688 * @end_pfn: The one-past-last PFN. 689 * 690 * Non-free pages, invalid PFNs, or zone boundaries within the 691 * [start_pfn, end_pfn) range are considered errors, cause function to 692 * undo its actions and return zero. 693 * 694 * Otherwise, function returns one-past-the-last PFN of isolated page 695 * (which may be greater then end_pfn if end fell in a middle of 696 * a free page). 697 */ 698 unsigned long 699 isolate_freepages_range(struct compact_control *cc, 700 unsigned long start_pfn, unsigned long end_pfn) 701 { 702 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 703 LIST_HEAD(freelist); 704 705 pfn = start_pfn; 706 block_start_pfn = pageblock_start_pfn(pfn); 707 if (block_start_pfn < cc->zone->zone_start_pfn) 708 block_start_pfn = cc->zone->zone_start_pfn; 709 block_end_pfn = pageblock_end_pfn(pfn); 710 711 for (; pfn < end_pfn; pfn += isolated, 712 block_start_pfn = block_end_pfn, 713 block_end_pfn += pageblock_nr_pages) { 714 /* Protect pfn from changing by isolate_freepages_block */ 715 unsigned long isolate_start_pfn = pfn; 716 717 block_end_pfn = min(block_end_pfn, end_pfn); 718 719 /* 720 * pfn could pass the block_end_pfn if isolated freepage 721 * is more than pageblock order. In this case, we adjust 722 * scanning range to right one. 723 */ 724 if (pfn >= block_end_pfn) { 725 block_start_pfn = pageblock_start_pfn(pfn); 726 block_end_pfn = pageblock_end_pfn(pfn); 727 block_end_pfn = min(block_end_pfn, end_pfn); 728 } 729 730 if (!pageblock_pfn_to_page(block_start_pfn, 731 block_end_pfn, cc->zone)) 732 break; 733 734 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 735 block_end_pfn, &freelist, 0, true); 736 737 /* 738 * In strict mode, isolate_freepages_block() returns 0 if 739 * there are any holes in the block (ie. invalid PFNs or 740 * non-free pages). 741 */ 742 if (!isolated) 743 break; 744 745 /* 746 * If we managed to isolate pages, it is always (1 << n) * 747 * pageblock_nr_pages for some non-negative n. (Max order 748 * page may span two pageblocks). 749 */ 750 } 751 752 /* __isolate_free_page() does not map the pages */ 753 split_map_pages(&freelist); 754 755 if (pfn < end_pfn) { 756 /* Loop terminated early, cleanup. */ 757 release_freepages(&freelist); 758 return 0; 759 } 760 761 /* We don't use freelists for anything. */ 762 return pfn; 763 } 764 765 /* Similar to reclaim, but different enough that they don't share logic */ 766 static bool too_many_isolated(pg_data_t *pgdat) 767 { 768 unsigned long active, inactive, isolated; 769 770 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 771 node_page_state(pgdat, NR_INACTIVE_ANON); 772 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 773 node_page_state(pgdat, NR_ACTIVE_ANON); 774 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 775 node_page_state(pgdat, NR_ISOLATED_ANON); 776 777 return isolated > (inactive + active) / 2; 778 } 779 780 /** 781 * isolate_migratepages_block() - isolate all migrate-able pages within 782 * a single pageblock 783 * @cc: Compaction control structure. 784 * @low_pfn: The first PFN to isolate 785 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 786 * @isolate_mode: Isolation mode to be used. 787 * 788 * Isolate all pages that can be migrated from the range specified by 789 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 790 * Returns zero if there is a fatal signal pending, otherwise PFN of the 791 * first page that was not scanned (which may be both less, equal to or more 792 * than end_pfn). 793 * 794 * The pages are isolated on cc->migratepages list (not required to be empty), 795 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 796 * is neither read nor updated. 797 */ 798 static unsigned long 799 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 800 unsigned long end_pfn, isolate_mode_t isolate_mode) 801 { 802 pg_data_t *pgdat = cc->zone->zone_pgdat; 803 unsigned long nr_scanned = 0, nr_isolated = 0; 804 struct lruvec *lruvec; 805 unsigned long flags = 0; 806 struct lruvec *locked = NULL; 807 struct page *page = NULL, *valid_page = NULL; 808 unsigned long start_pfn = low_pfn; 809 bool skip_on_failure = false; 810 unsigned long next_skip_pfn = 0; 811 bool skip_updated = false; 812 813 /* 814 * Ensure that there are not too many pages isolated from the LRU 815 * list by either parallel reclaimers or compaction. If there are, 816 * delay for some time until fewer pages are isolated 817 */ 818 while (unlikely(too_many_isolated(pgdat))) { 819 /* stop isolation if there are still pages not migrated */ 820 if (cc->nr_migratepages) 821 return 0; 822 823 /* async migration should just abort */ 824 if (cc->mode == MIGRATE_ASYNC) 825 return 0; 826 827 congestion_wait(BLK_RW_ASYNC, HZ/10); 828 829 if (fatal_signal_pending(current)) 830 return 0; 831 } 832 833 cond_resched(); 834 835 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 836 skip_on_failure = true; 837 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 838 } 839 840 /* Time to isolate some pages for migration */ 841 for (; low_pfn < end_pfn; low_pfn++) { 842 843 if (skip_on_failure && low_pfn >= next_skip_pfn) { 844 /* 845 * We have isolated all migration candidates in the 846 * previous order-aligned block, and did not skip it due 847 * to failure. We should migrate the pages now and 848 * hopefully succeed compaction. 849 */ 850 if (nr_isolated) 851 break; 852 853 /* 854 * We failed to isolate in the previous order-aligned 855 * block. Set the new boundary to the end of the 856 * current block. Note we can't simply increase 857 * next_skip_pfn by 1 << order, as low_pfn might have 858 * been incremented by a higher number due to skipping 859 * a compound or a high-order buddy page in the 860 * previous loop iteration. 861 */ 862 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 863 } 864 865 /* 866 * Periodically drop the lock (if held) regardless of its 867 * contention, to give chance to IRQs. Abort completely if 868 * a fatal signal is pending. 869 */ 870 if (!(low_pfn % SWAP_CLUSTER_MAX)) { 871 if (locked) { 872 unlock_page_lruvec_irqrestore(locked, flags); 873 locked = NULL; 874 } 875 876 if (fatal_signal_pending(current)) { 877 cc->contended = true; 878 879 low_pfn = 0; 880 goto fatal_pending; 881 } 882 883 cond_resched(); 884 } 885 886 if (!pfn_valid_within(low_pfn)) 887 goto isolate_fail; 888 nr_scanned++; 889 890 page = pfn_to_page(low_pfn); 891 892 /* 893 * Check if the pageblock has already been marked skipped. 894 * Only the aligned PFN is checked as the caller isolates 895 * COMPACT_CLUSTER_MAX at a time so the second call must 896 * not falsely conclude that the block should be skipped. 897 */ 898 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) { 899 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) { 900 low_pfn = end_pfn; 901 page = NULL; 902 goto isolate_abort; 903 } 904 valid_page = page; 905 } 906 907 /* 908 * Skip if free. We read page order here without zone lock 909 * which is generally unsafe, but the race window is small and 910 * the worst thing that can happen is that we skip some 911 * potential isolation targets. 912 */ 913 if (PageBuddy(page)) { 914 unsigned long freepage_order = buddy_order_unsafe(page); 915 916 /* 917 * Without lock, we cannot be sure that what we got is 918 * a valid page order. Consider only values in the 919 * valid order range to prevent low_pfn overflow. 920 */ 921 if (freepage_order > 0 && freepage_order < MAX_ORDER) 922 low_pfn += (1UL << freepage_order) - 1; 923 continue; 924 } 925 926 /* 927 * Regardless of being on LRU, compound pages such as THP and 928 * hugetlbfs are not to be compacted unless we are attempting 929 * an allocation much larger than the huge page size (eg CMA). 930 * We can potentially save a lot of iterations if we skip them 931 * at once. The check is racy, but we can consider only valid 932 * values and the only danger is skipping too much. 933 */ 934 if (PageCompound(page) && !cc->alloc_contig) { 935 const unsigned int order = compound_order(page); 936 937 if (likely(order < MAX_ORDER)) 938 low_pfn += (1UL << order) - 1; 939 goto isolate_fail; 940 } 941 942 /* 943 * Check may be lockless but that's ok as we recheck later. 944 * It's possible to migrate LRU and non-lru movable pages. 945 * Skip any other type of page 946 */ 947 if (!PageLRU(page)) { 948 /* 949 * __PageMovable can return false positive so we need 950 * to verify it under page_lock. 951 */ 952 if (unlikely(__PageMovable(page)) && 953 !PageIsolated(page)) { 954 if (locked) { 955 unlock_page_lruvec_irqrestore(locked, flags); 956 locked = NULL; 957 } 958 959 if (!isolate_movable_page(page, isolate_mode)) 960 goto isolate_success; 961 } 962 963 goto isolate_fail; 964 } 965 966 /* 967 * Migration will fail if an anonymous page is pinned in memory, 968 * so avoid taking lru_lock and isolating it unnecessarily in an 969 * admittedly racy check. 970 */ 971 if (!page_mapping(page) && 972 page_count(page) > page_mapcount(page)) 973 goto isolate_fail; 974 975 /* 976 * Only allow to migrate anonymous pages in GFP_NOFS context 977 * because those do not depend on fs locks. 978 */ 979 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page)) 980 goto isolate_fail; 981 982 /* 983 * Be careful not to clear PageLRU until after we're 984 * sure the page is not being freed elsewhere -- the 985 * page release code relies on it. 986 */ 987 if (unlikely(!get_page_unless_zero(page))) 988 goto isolate_fail; 989 990 if (!__isolate_lru_page_prepare(page, isolate_mode)) 991 goto isolate_fail_put; 992 993 /* Try isolate the page */ 994 if (!TestClearPageLRU(page)) 995 goto isolate_fail_put; 996 997 lruvec = mem_cgroup_page_lruvec(page, pgdat); 998 999 /* If we already hold the lock, we can skip some rechecking */ 1000 if (lruvec != locked) { 1001 if (locked) 1002 unlock_page_lruvec_irqrestore(locked, flags); 1003 1004 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); 1005 locked = lruvec; 1006 1007 lruvec_memcg_debug(lruvec, page); 1008 1009 /* Try get exclusive access under lock */ 1010 if (!skip_updated) { 1011 skip_updated = true; 1012 if (test_and_set_skip(cc, page, low_pfn)) 1013 goto isolate_abort; 1014 } 1015 1016 /* 1017 * Page become compound since the non-locked check, 1018 * and it's on LRU. It can only be a THP so the order 1019 * is safe to read and it's 0 for tail pages. 1020 */ 1021 if (unlikely(PageCompound(page) && !cc->alloc_contig)) { 1022 low_pfn += compound_nr(page) - 1; 1023 SetPageLRU(page); 1024 goto isolate_fail_put; 1025 } 1026 } 1027 1028 /* The whole page is taken off the LRU; skip the tail pages. */ 1029 if (PageCompound(page)) 1030 low_pfn += compound_nr(page) - 1; 1031 1032 /* Successfully isolated */ 1033 del_page_from_lru_list(page, lruvec); 1034 mod_node_page_state(page_pgdat(page), 1035 NR_ISOLATED_ANON + page_is_file_lru(page), 1036 thp_nr_pages(page)); 1037 1038 isolate_success: 1039 list_add(&page->lru, &cc->migratepages); 1040 cc->nr_migratepages += compound_nr(page); 1041 nr_isolated += compound_nr(page); 1042 1043 /* 1044 * Avoid isolating too much unless this block is being 1045 * rescanned (e.g. dirty/writeback pages, parallel allocation) 1046 * or a lock is contended. For contention, isolate quickly to 1047 * potentially remove one source of contention. 1048 */ 1049 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1050 !cc->rescan && !cc->contended) { 1051 ++low_pfn; 1052 break; 1053 } 1054 1055 continue; 1056 1057 isolate_fail_put: 1058 /* Avoid potential deadlock in freeing page under lru_lock */ 1059 if (locked) { 1060 unlock_page_lruvec_irqrestore(locked, flags); 1061 locked = NULL; 1062 } 1063 put_page(page); 1064 1065 isolate_fail: 1066 if (!skip_on_failure) 1067 continue; 1068 1069 /* 1070 * We have isolated some pages, but then failed. Release them 1071 * instead of migrating, as we cannot form the cc->order buddy 1072 * page anyway. 1073 */ 1074 if (nr_isolated) { 1075 if (locked) { 1076 unlock_page_lruvec_irqrestore(locked, flags); 1077 locked = NULL; 1078 } 1079 putback_movable_pages(&cc->migratepages); 1080 cc->nr_migratepages = 0; 1081 nr_isolated = 0; 1082 } 1083 1084 if (low_pfn < next_skip_pfn) { 1085 low_pfn = next_skip_pfn - 1; 1086 /* 1087 * The check near the loop beginning would have updated 1088 * next_skip_pfn too, but this is a bit simpler. 1089 */ 1090 next_skip_pfn += 1UL << cc->order; 1091 } 1092 } 1093 1094 /* 1095 * The PageBuddy() check could have potentially brought us outside 1096 * the range to be scanned. 1097 */ 1098 if (unlikely(low_pfn > end_pfn)) 1099 low_pfn = end_pfn; 1100 1101 page = NULL; 1102 1103 isolate_abort: 1104 if (locked) 1105 unlock_page_lruvec_irqrestore(locked, flags); 1106 if (page) { 1107 SetPageLRU(page); 1108 put_page(page); 1109 } 1110 1111 /* 1112 * Updated the cached scanner pfn once the pageblock has been scanned 1113 * Pages will either be migrated in which case there is no point 1114 * scanning in the near future or migration failed in which case the 1115 * failure reason may persist. The block is marked for skipping if 1116 * there were no pages isolated in the block or if the block is 1117 * rescanned twice in a row. 1118 */ 1119 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) { 1120 if (valid_page && !skip_updated) 1121 set_pageblock_skip(valid_page); 1122 update_cached_migrate(cc, low_pfn); 1123 } 1124 1125 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1126 nr_scanned, nr_isolated); 1127 1128 fatal_pending: 1129 cc->total_migrate_scanned += nr_scanned; 1130 if (nr_isolated) 1131 count_compact_events(COMPACTISOLATED, nr_isolated); 1132 1133 return low_pfn; 1134 } 1135 1136 /** 1137 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1138 * @cc: Compaction control structure. 1139 * @start_pfn: The first PFN to start isolating. 1140 * @end_pfn: The one-past-last PFN. 1141 * 1142 * Returns zero if isolation fails fatally due to e.g. pending signal. 1143 * Otherwise, function returns one-past-the-last PFN of isolated page 1144 * (which may be greater than end_pfn if end fell in a middle of a THP page). 1145 */ 1146 unsigned long 1147 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1148 unsigned long end_pfn) 1149 { 1150 unsigned long pfn, block_start_pfn, block_end_pfn; 1151 1152 /* Scan block by block. First and last block may be incomplete */ 1153 pfn = start_pfn; 1154 block_start_pfn = pageblock_start_pfn(pfn); 1155 if (block_start_pfn < cc->zone->zone_start_pfn) 1156 block_start_pfn = cc->zone->zone_start_pfn; 1157 block_end_pfn = pageblock_end_pfn(pfn); 1158 1159 for (; pfn < end_pfn; pfn = block_end_pfn, 1160 block_start_pfn = block_end_pfn, 1161 block_end_pfn += pageblock_nr_pages) { 1162 1163 block_end_pfn = min(block_end_pfn, end_pfn); 1164 1165 if (!pageblock_pfn_to_page(block_start_pfn, 1166 block_end_pfn, cc->zone)) 1167 continue; 1168 1169 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 1170 ISOLATE_UNEVICTABLE); 1171 1172 if (!pfn) 1173 break; 1174 1175 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1176 break; 1177 } 1178 1179 return pfn; 1180 } 1181 1182 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1183 #ifdef CONFIG_COMPACTION 1184 1185 static bool suitable_migration_source(struct compact_control *cc, 1186 struct page *page) 1187 { 1188 int block_mt; 1189 1190 if (pageblock_skip_persistent(page)) 1191 return false; 1192 1193 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1194 return true; 1195 1196 block_mt = get_pageblock_migratetype(page); 1197 1198 if (cc->migratetype == MIGRATE_MOVABLE) 1199 return is_migrate_movable(block_mt); 1200 else 1201 return block_mt == cc->migratetype; 1202 } 1203 1204 /* Returns true if the page is within a block suitable for migration to */ 1205 static bool suitable_migration_target(struct compact_control *cc, 1206 struct page *page) 1207 { 1208 /* If the page is a large free page, then disallow migration */ 1209 if (PageBuddy(page)) { 1210 /* 1211 * We are checking page_order without zone->lock taken. But 1212 * the only small danger is that we skip a potentially suitable 1213 * pageblock, so it's not worth to check order for valid range. 1214 */ 1215 if (buddy_order_unsafe(page) >= pageblock_order) 1216 return false; 1217 } 1218 1219 if (cc->ignore_block_suitable) 1220 return true; 1221 1222 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1223 if (is_migrate_movable(get_pageblock_migratetype(page))) 1224 return true; 1225 1226 /* Otherwise skip the block */ 1227 return false; 1228 } 1229 1230 static inline unsigned int 1231 freelist_scan_limit(struct compact_control *cc) 1232 { 1233 unsigned short shift = BITS_PER_LONG - 1; 1234 1235 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1236 } 1237 1238 /* 1239 * Test whether the free scanner has reached the same or lower pageblock than 1240 * the migration scanner, and compaction should thus terminate. 1241 */ 1242 static inline bool compact_scanners_met(struct compact_control *cc) 1243 { 1244 return (cc->free_pfn >> pageblock_order) 1245 <= (cc->migrate_pfn >> pageblock_order); 1246 } 1247 1248 /* 1249 * Used when scanning for a suitable migration target which scans freelists 1250 * in reverse. Reorders the list such as the unscanned pages are scanned 1251 * first on the next iteration of the free scanner 1252 */ 1253 static void 1254 move_freelist_head(struct list_head *freelist, struct page *freepage) 1255 { 1256 LIST_HEAD(sublist); 1257 1258 if (!list_is_last(freelist, &freepage->lru)) { 1259 list_cut_before(&sublist, freelist, &freepage->lru); 1260 if (!list_empty(&sublist)) 1261 list_splice_tail(&sublist, freelist); 1262 } 1263 } 1264 1265 /* 1266 * Similar to move_freelist_head except used by the migration scanner 1267 * when scanning forward. It's possible for these list operations to 1268 * move against each other if they search the free list exactly in 1269 * lockstep. 1270 */ 1271 static void 1272 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1273 { 1274 LIST_HEAD(sublist); 1275 1276 if (!list_is_first(freelist, &freepage->lru)) { 1277 list_cut_position(&sublist, freelist, &freepage->lru); 1278 if (!list_empty(&sublist)) 1279 list_splice_tail(&sublist, freelist); 1280 } 1281 } 1282 1283 static void 1284 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated) 1285 { 1286 unsigned long start_pfn, end_pfn; 1287 struct page *page; 1288 1289 /* Do not search around if there are enough pages already */ 1290 if (cc->nr_freepages >= cc->nr_migratepages) 1291 return; 1292 1293 /* Minimise scanning during async compaction */ 1294 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1295 return; 1296 1297 /* Pageblock boundaries */ 1298 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn); 1299 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)); 1300 1301 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone); 1302 if (!page) 1303 return; 1304 1305 /* Scan before */ 1306 if (start_pfn != pfn) { 1307 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false); 1308 if (cc->nr_freepages >= cc->nr_migratepages) 1309 return; 1310 } 1311 1312 /* Scan after */ 1313 start_pfn = pfn + nr_isolated; 1314 if (start_pfn < end_pfn) 1315 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1316 1317 /* Skip this pageblock in the future as it's full or nearly full */ 1318 if (cc->nr_freepages < cc->nr_migratepages) 1319 set_pageblock_skip(page); 1320 } 1321 1322 /* Search orders in round-robin fashion */ 1323 static int next_search_order(struct compact_control *cc, int order) 1324 { 1325 order--; 1326 if (order < 0) 1327 order = cc->order - 1; 1328 1329 /* Search wrapped around? */ 1330 if (order == cc->search_order) { 1331 cc->search_order--; 1332 if (cc->search_order < 0) 1333 cc->search_order = cc->order - 1; 1334 return -1; 1335 } 1336 1337 return order; 1338 } 1339 1340 static unsigned long 1341 fast_isolate_freepages(struct compact_control *cc) 1342 { 1343 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1); 1344 unsigned int nr_scanned = 0; 1345 unsigned long low_pfn, min_pfn, highest = 0; 1346 unsigned long nr_isolated = 0; 1347 unsigned long distance; 1348 struct page *page = NULL; 1349 bool scan_start = false; 1350 int order; 1351 1352 /* Full compaction passes in a negative order */ 1353 if (cc->order <= 0) 1354 return cc->free_pfn; 1355 1356 /* 1357 * If starting the scan, use a deeper search and use the highest 1358 * PFN found if a suitable one is not found. 1359 */ 1360 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1361 limit = pageblock_nr_pages >> 1; 1362 scan_start = true; 1363 } 1364 1365 /* 1366 * Preferred point is in the top quarter of the scan space but take 1367 * a pfn from the top half if the search is problematic. 1368 */ 1369 distance = (cc->free_pfn - cc->migrate_pfn); 1370 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1371 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1372 1373 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1374 low_pfn = min_pfn; 1375 1376 /* 1377 * Search starts from the last successful isolation order or the next 1378 * order to search after a previous failure 1379 */ 1380 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1381 1382 for (order = cc->search_order; 1383 !page && order >= 0; 1384 order = next_search_order(cc, order)) { 1385 struct free_area *area = &cc->zone->free_area[order]; 1386 struct list_head *freelist; 1387 struct page *freepage; 1388 unsigned long flags; 1389 unsigned int order_scanned = 0; 1390 unsigned long high_pfn = 0; 1391 1392 if (!area->nr_free) 1393 continue; 1394 1395 spin_lock_irqsave(&cc->zone->lock, flags); 1396 freelist = &area->free_list[MIGRATE_MOVABLE]; 1397 list_for_each_entry_reverse(freepage, freelist, lru) { 1398 unsigned long pfn; 1399 1400 order_scanned++; 1401 nr_scanned++; 1402 pfn = page_to_pfn(freepage); 1403 1404 if (pfn >= highest) 1405 highest = max(pageblock_start_pfn(pfn), 1406 cc->zone->zone_start_pfn); 1407 1408 if (pfn >= low_pfn) { 1409 cc->fast_search_fail = 0; 1410 cc->search_order = order; 1411 page = freepage; 1412 break; 1413 } 1414 1415 if (pfn >= min_pfn && pfn > high_pfn) { 1416 high_pfn = pfn; 1417 1418 /* Shorten the scan if a candidate is found */ 1419 limit >>= 1; 1420 } 1421 1422 if (order_scanned >= limit) 1423 break; 1424 } 1425 1426 /* Use a minimum pfn if a preferred one was not found */ 1427 if (!page && high_pfn) { 1428 page = pfn_to_page(high_pfn); 1429 1430 /* Update freepage for the list reorder below */ 1431 freepage = page; 1432 } 1433 1434 /* Reorder to so a future search skips recent pages */ 1435 move_freelist_head(freelist, freepage); 1436 1437 /* Isolate the page if available */ 1438 if (page) { 1439 if (__isolate_free_page(page, order)) { 1440 set_page_private(page, order); 1441 nr_isolated = 1 << order; 1442 cc->nr_freepages += nr_isolated; 1443 list_add_tail(&page->lru, &cc->freepages); 1444 count_compact_events(COMPACTISOLATED, nr_isolated); 1445 } else { 1446 /* If isolation fails, abort the search */ 1447 order = cc->search_order + 1; 1448 page = NULL; 1449 } 1450 } 1451 1452 spin_unlock_irqrestore(&cc->zone->lock, flags); 1453 1454 /* 1455 * Smaller scan on next order so the total scan ig related 1456 * to freelist_scan_limit. 1457 */ 1458 if (order_scanned >= limit) 1459 limit = min(1U, limit >> 1); 1460 } 1461 1462 if (!page) { 1463 cc->fast_search_fail++; 1464 if (scan_start) { 1465 /* 1466 * Use the highest PFN found above min. If one was 1467 * not found, be pessimistic for direct compaction 1468 * and use the min mark. 1469 */ 1470 if (highest) { 1471 page = pfn_to_page(highest); 1472 cc->free_pfn = highest; 1473 } else { 1474 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1475 page = pageblock_pfn_to_page(min_pfn, 1476 min(pageblock_end_pfn(min_pfn), 1477 zone_end_pfn(cc->zone)), 1478 cc->zone); 1479 cc->free_pfn = min_pfn; 1480 } 1481 } 1482 } 1483 } 1484 1485 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1486 highest -= pageblock_nr_pages; 1487 cc->zone->compact_cached_free_pfn = highest; 1488 } 1489 1490 cc->total_free_scanned += nr_scanned; 1491 if (!page) 1492 return cc->free_pfn; 1493 1494 low_pfn = page_to_pfn(page); 1495 fast_isolate_around(cc, low_pfn, nr_isolated); 1496 return low_pfn; 1497 } 1498 1499 /* 1500 * Based on information in the current compact_control, find blocks 1501 * suitable for isolating free pages from and then isolate them. 1502 */ 1503 static void isolate_freepages(struct compact_control *cc) 1504 { 1505 struct zone *zone = cc->zone; 1506 struct page *page; 1507 unsigned long block_start_pfn; /* start of current pageblock */ 1508 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1509 unsigned long block_end_pfn; /* end of current pageblock */ 1510 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1511 struct list_head *freelist = &cc->freepages; 1512 unsigned int stride; 1513 1514 /* Try a small search of the free lists for a candidate */ 1515 isolate_start_pfn = fast_isolate_freepages(cc); 1516 if (cc->nr_freepages) 1517 goto splitmap; 1518 1519 /* 1520 * Initialise the free scanner. The starting point is where we last 1521 * successfully isolated from, zone-cached value, or the end of the 1522 * zone when isolating for the first time. For looping we also need 1523 * this pfn aligned down to the pageblock boundary, because we do 1524 * block_start_pfn -= pageblock_nr_pages in the for loop. 1525 * For ending point, take care when isolating in last pageblock of a 1526 * zone which ends in the middle of a pageblock. 1527 * The low boundary is the end of the pageblock the migration scanner 1528 * is using. 1529 */ 1530 isolate_start_pfn = cc->free_pfn; 1531 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1532 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1533 zone_end_pfn(zone)); 1534 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1535 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1536 1537 /* 1538 * Isolate free pages until enough are available to migrate the 1539 * pages on cc->migratepages. We stop searching if the migrate 1540 * and free page scanners meet or enough free pages are isolated. 1541 */ 1542 for (; block_start_pfn >= low_pfn; 1543 block_end_pfn = block_start_pfn, 1544 block_start_pfn -= pageblock_nr_pages, 1545 isolate_start_pfn = block_start_pfn) { 1546 unsigned long nr_isolated; 1547 1548 /* 1549 * This can iterate a massively long zone without finding any 1550 * suitable migration targets, so periodically check resched. 1551 */ 1552 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1553 cond_resched(); 1554 1555 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1556 zone); 1557 if (!page) 1558 continue; 1559 1560 /* Check the block is suitable for migration */ 1561 if (!suitable_migration_target(cc, page)) 1562 continue; 1563 1564 /* If isolation recently failed, do not retry */ 1565 if (!isolation_suitable(cc, page)) 1566 continue; 1567 1568 /* Found a block suitable for isolating free pages from. */ 1569 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1570 block_end_pfn, freelist, stride, false); 1571 1572 /* Update the skip hint if the full pageblock was scanned */ 1573 if (isolate_start_pfn == block_end_pfn) 1574 update_pageblock_skip(cc, page, block_start_pfn); 1575 1576 /* Are enough freepages isolated? */ 1577 if (cc->nr_freepages >= cc->nr_migratepages) { 1578 if (isolate_start_pfn >= block_end_pfn) { 1579 /* 1580 * Restart at previous pageblock if more 1581 * freepages can be isolated next time. 1582 */ 1583 isolate_start_pfn = 1584 block_start_pfn - pageblock_nr_pages; 1585 } 1586 break; 1587 } else if (isolate_start_pfn < block_end_pfn) { 1588 /* 1589 * If isolation failed early, do not continue 1590 * needlessly. 1591 */ 1592 break; 1593 } 1594 1595 /* Adjust stride depending on isolation */ 1596 if (nr_isolated) { 1597 stride = 1; 1598 continue; 1599 } 1600 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1601 } 1602 1603 /* 1604 * Record where the free scanner will restart next time. Either we 1605 * broke from the loop and set isolate_start_pfn based on the last 1606 * call to isolate_freepages_block(), or we met the migration scanner 1607 * and the loop terminated due to isolate_start_pfn < low_pfn 1608 */ 1609 cc->free_pfn = isolate_start_pfn; 1610 1611 splitmap: 1612 /* __isolate_free_page() does not map the pages */ 1613 split_map_pages(freelist); 1614 } 1615 1616 /* 1617 * This is a migrate-callback that "allocates" freepages by taking pages 1618 * from the isolated freelists in the block we are migrating to. 1619 */ 1620 static struct page *compaction_alloc(struct page *migratepage, 1621 unsigned long data) 1622 { 1623 struct compact_control *cc = (struct compact_control *)data; 1624 struct page *freepage; 1625 1626 if (list_empty(&cc->freepages)) { 1627 isolate_freepages(cc); 1628 1629 if (list_empty(&cc->freepages)) 1630 return NULL; 1631 } 1632 1633 freepage = list_entry(cc->freepages.next, struct page, lru); 1634 list_del(&freepage->lru); 1635 cc->nr_freepages--; 1636 1637 return freepage; 1638 } 1639 1640 /* 1641 * This is a migrate-callback that "frees" freepages back to the isolated 1642 * freelist. All pages on the freelist are from the same zone, so there is no 1643 * special handling needed for NUMA. 1644 */ 1645 static void compaction_free(struct page *page, unsigned long data) 1646 { 1647 struct compact_control *cc = (struct compact_control *)data; 1648 1649 list_add(&page->lru, &cc->freepages); 1650 cc->nr_freepages++; 1651 } 1652 1653 /* possible outcome of isolate_migratepages */ 1654 typedef enum { 1655 ISOLATE_ABORT, /* Abort compaction now */ 1656 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1657 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1658 } isolate_migrate_t; 1659 1660 /* 1661 * Allow userspace to control policy on scanning the unevictable LRU for 1662 * compactable pages. 1663 */ 1664 #ifdef CONFIG_PREEMPT_RT 1665 int sysctl_compact_unevictable_allowed __read_mostly = 0; 1666 #else 1667 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1668 #endif 1669 1670 static inline void 1671 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1672 { 1673 if (cc->fast_start_pfn == ULONG_MAX) 1674 return; 1675 1676 if (!cc->fast_start_pfn) 1677 cc->fast_start_pfn = pfn; 1678 1679 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1680 } 1681 1682 static inline unsigned long 1683 reinit_migrate_pfn(struct compact_control *cc) 1684 { 1685 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1686 return cc->migrate_pfn; 1687 1688 cc->migrate_pfn = cc->fast_start_pfn; 1689 cc->fast_start_pfn = ULONG_MAX; 1690 1691 return cc->migrate_pfn; 1692 } 1693 1694 /* 1695 * Briefly search the free lists for a migration source that already has 1696 * some free pages to reduce the number of pages that need migration 1697 * before a pageblock is free. 1698 */ 1699 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1700 { 1701 unsigned int limit = freelist_scan_limit(cc); 1702 unsigned int nr_scanned = 0; 1703 unsigned long distance; 1704 unsigned long pfn = cc->migrate_pfn; 1705 unsigned long high_pfn; 1706 int order; 1707 bool found_block = false; 1708 1709 /* Skip hints are relied on to avoid repeats on the fast search */ 1710 if (cc->ignore_skip_hint) 1711 return pfn; 1712 1713 /* 1714 * If the migrate_pfn is not at the start of a zone or the start 1715 * of a pageblock then assume this is a continuation of a previous 1716 * scan restarted due to COMPACT_CLUSTER_MAX. 1717 */ 1718 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1719 return pfn; 1720 1721 /* 1722 * For smaller orders, just linearly scan as the number of pages 1723 * to migrate should be relatively small and does not necessarily 1724 * justify freeing up a large block for a small allocation. 1725 */ 1726 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1727 return pfn; 1728 1729 /* 1730 * Only allow kcompactd and direct requests for movable pages to 1731 * quickly clear out a MOVABLE pageblock for allocation. This 1732 * reduces the risk that a large movable pageblock is freed for 1733 * an unmovable/reclaimable small allocation. 1734 */ 1735 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1736 return pfn; 1737 1738 /* 1739 * When starting the migration scanner, pick any pageblock within the 1740 * first half of the search space. Otherwise try and pick a pageblock 1741 * within the first eighth to reduce the chances that a migration 1742 * target later becomes a source. 1743 */ 1744 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1745 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1746 distance >>= 2; 1747 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1748 1749 for (order = cc->order - 1; 1750 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit; 1751 order--) { 1752 struct free_area *area = &cc->zone->free_area[order]; 1753 struct list_head *freelist; 1754 unsigned long flags; 1755 struct page *freepage; 1756 1757 if (!area->nr_free) 1758 continue; 1759 1760 spin_lock_irqsave(&cc->zone->lock, flags); 1761 freelist = &area->free_list[MIGRATE_MOVABLE]; 1762 list_for_each_entry(freepage, freelist, lru) { 1763 unsigned long free_pfn; 1764 1765 if (nr_scanned++ >= limit) { 1766 move_freelist_tail(freelist, freepage); 1767 break; 1768 } 1769 1770 free_pfn = page_to_pfn(freepage); 1771 if (free_pfn < high_pfn) { 1772 /* 1773 * Avoid if skipped recently. Ideally it would 1774 * move to the tail but even safe iteration of 1775 * the list assumes an entry is deleted, not 1776 * reordered. 1777 */ 1778 if (get_pageblock_skip(freepage)) 1779 continue; 1780 1781 /* Reorder to so a future search skips recent pages */ 1782 move_freelist_tail(freelist, freepage); 1783 1784 update_fast_start_pfn(cc, free_pfn); 1785 pfn = pageblock_start_pfn(free_pfn); 1786 cc->fast_search_fail = 0; 1787 found_block = true; 1788 set_pageblock_skip(freepage); 1789 break; 1790 } 1791 } 1792 spin_unlock_irqrestore(&cc->zone->lock, flags); 1793 } 1794 1795 cc->total_migrate_scanned += nr_scanned; 1796 1797 /* 1798 * If fast scanning failed then use a cached entry for a page block 1799 * that had free pages as the basis for starting a linear scan. 1800 */ 1801 if (!found_block) { 1802 cc->fast_search_fail++; 1803 pfn = reinit_migrate_pfn(cc); 1804 } 1805 return pfn; 1806 } 1807 1808 /* 1809 * Isolate all pages that can be migrated from the first suitable block, 1810 * starting at the block pointed to by the migrate scanner pfn within 1811 * compact_control. 1812 */ 1813 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1814 { 1815 unsigned long block_start_pfn; 1816 unsigned long block_end_pfn; 1817 unsigned long low_pfn; 1818 struct page *page; 1819 const isolate_mode_t isolate_mode = 1820 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1821 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1822 bool fast_find_block; 1823 1824 /* 1825 * Start at where we last stopped, or beginning of the zone as 1826 * initialized by compact_zone(). The first failure will use 1827 * the lowest PFN as the starting point for linear scanning. 1828 */ 1829 low_pfn = fast_find_migrateblock(cc); 1830 block_start_pfn = pageblock_start_pfn(low_pfn); 1831 if (block_start_pfn < cc->zone->zone_start_pfn) 1832 block_start_pfn = cc->zone->zone_start_pfn; 1833 1834 /* 1835 * fast_find_migrateblock marks a pageblock skipped so to avoid 1836 * the isolation_suitable check below, check whether the fast 1837 * search was successful. 1838 */ 1839 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1840 1841 /* Only scan within a pageblock boundary */ 1842 block_end_pfn = pageblock_end_pfn(low_pfn); 1843 1844 /* 1845 * Iterate over whole pageblocks until we find the first suitable. 1846 * Do not cross the free scanner. 1847 */ 1848 for (; block_end_pfn <= cc->free_pfn; 1849 fast_find_block = false, 1850 low_pfn = block_end_pfn, 1851 block_start_pfn = block_end_pfn, 1852 block_end_pfn += pageblock_nr_pages) { 1853 1854 /* 1855 * This can potentially iterate a massively long zone with 1856 * many pageblocks unsuitable, so periodically check if we 1857 * need to schedule. 1858 */ 1859 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1860 cond_resched(); 1861 1862 page = pageblock_pfn_to_page(block_start_pfn, 1863 block_end_pfn, cc->zone); 1864 if (!page) 1865 continue; 1866 1867 /* 1868 * If isolation recently failed, do not retry. Only check the 1869 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1870 * to be visited multiple times. Assume skip was checked 1871 * before making it "skip" so other compaction instances do 1872 * not scan the same block. 1873 */ 1874 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) && 1875 !fast_find_block && !isolation_suitable(cc, page)) 1876 continue; 1877 1878 /* 1879 * For async compaction, also only scan in MOVABLE blocks 1880 * without huge pages. Async compaction is optimistic to see 1881 * if the minimum amount of work satisfies the allocation. 1882 * The cached PFN is updated as it's possible that all 1883 * remaining blocks between source and target are unsuitable 1884 * and the compaction scanners fail to meet. 1885 */ 1886 if (!suitable_migration_source(cc, page)) { 1887 update_cached_migrate(cc, block_end_pfn); 1888 continue; 1889 } 1890 1891 /* Perform the isolation */ 1892 low_pfn = isolate_migratepages_block(cc, low_pfn, 1893 block_end_pfn, isolate_mode); 1894 1895 if (!low_pfn) 1896 return ISOLATE_ABORT; 1897 1898 /* 1899 * Either we isolated something and proceed with migration. Or 1900 * we failed and compact_zone should decide if we should 1901 * continue or not. 1902 */ 1903 break; 1904 } 1905 1906 /* Record where migration scanner will be restarted. */ 1907 cc->migrate_pfn = low_pfn; 1908 1909 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1910 } 1911 1912 /* 1913 * order == -1 is expected when compacting via 1914 * /proc/sys/vm/compact_memory 1915 */ 1916 static inline bool is_via_compact_memory(int order) 1917 { 1918 return order == -1; 1919 } 1920 1921 static bool kswapd_is_running(pg_data_t *pgdat) 1922 { 1923 return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING); 1924 } 1925 1926 /* 1927 * A zone's fragmentation score is the external fragmentation wrt to the 1928 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100]. 1929 */ 1930 static unsigned int fragmentation_score_zone(struct zone *zone) 1931 { 1932 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 1933 } 1934 1935 /* 1936 * A weighted zone's fragmentation score is the external fragmentation 1937 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It 1938 * returns a value in the range [0, 100]. 1939 * 1940 * The scaling factor ensures that proactive compaction focuses on larger 1941 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 1942 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 1943 * and thus never exceeds the high threshold for proactive compaction. 1944 */ 1945 static unsigned int fragmentation_score_zone_weighted(struct zone *zone) 1946 { 1947 unsigned long score; 1948 1949 score = zone->present_pages * fragmentation_score_zone(zone); 1950 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 1951 } 1952 1953 /* 1954 * The per-node proactive (background) compaction process is started by its 1955 * corresponding kcompactd thread when the node's fragmentation score 1956 * exceeds the high threshold. The compaction process remains active till 1957 * the node's score falls below the low threshold, or one of the back-off 1958 * conditions is met. 1959 */ 1960 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 1961 { 1962 unsigned int score = 0; 1963 int zoneid; 1964 1965 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1966 struct zone *zone; 1967 1968 zone = &pgdat->node_zones[zoneid]; 1969 score += fragmentation_score_zone_weighted(zone); 1970 } 1971 1972 return score; 1973 } 1974 1975 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low) 1976 { 1977 unsigned int wmark_low; 1978 1979 /* 1980 * Cap the low watermak to avoid excessive compaction 1981 * activity in case a user sets the proactivess tunable 1982 * close to 100 (maximum). 1983 */ 1984 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 1985 return low ? wmark_low : min(wmark_low + 10, 100U); 1986 } 1987 1988 static bool should_proactive_compact_node(pg_data_t *pgdat) 1989 { 1990 int wmark_high; 1991 1992 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 1993 return false; 1994 1995 wmark_high = fragmentation_score_wmark(pgdat, false); 1996 return fragmentation_score_node(pgdat) > wmark_high; 1997 } 1998 1999 static enum compact_result __compact_finished(struct compact_control *cc) 2000 { 2001 unsigned int order; 2002 const int migratetype = cc->migratetype; 2003 int ret; 2004 2005 /* Compaction run completes if the migrate and free scanner meet */ 2006 if (compact_scanners_met(cc)) { 2007 /* Let the next compaction start anew. */ 2008 reset_cached_positions(cc->zone); 2009 2010 /* 2011 * Mark that the PG_migrate_skip information should be cleared 2012 * by kswapd when it goes to sleep. kcompactd does not set the 2013 * flag itself as the decision to be clear should be directly 2014 * based on an allocation request. 2015 */ 2016 if (cc->direct_compaction) 2017 cc->zone->compact_blockskip_flush = true; 2018 2019 if (cc->whole_zone) 2020 return COMPACT_COMPLETE; 2021 else 2022 return COMPACT_PARTIAL_SKIPPED; 2023 } 2024 2025 if (cc->proactive_compaction) { 2026 int score, wmark_low; 2027 pg_data_t *pgdat; 2028 2029 pgdat = cc->zone->zone_pgdat; 2030 if (kswapd_is_running(pgdat)) 2031 return COMPACT_PARTIAL_SKIPPED; 2032 2033 score = fragmentation_score_zone(cc->zone); 2034 wmark_low = fragmentation_score_wmark(pgdat, true); 2035 2036 if (score > wmark_low) 2037 ret = COMPACT_CONTINUE; 2038 else 2039 ret = COMPACT_SUCCESS; 2040 2041 goto out; 2042 } 2043 2044 if (is_via_compact_memory(cc->order)) 2045 return COMPACT_CONTINUE; 2046 2047 /* 2048 * Always finish scanning a pageblock to reduce the possibility of 2049 * fallbacks in the future. This is particularly important when 2050 * migration source is unmovable/reclaimable but it's not worth 2051 * special casing. 2052 */ 2053 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages)) 2054 return COMPACT_CONTINUE; 2055 2056 /* Direct compactor: Is a suitable page free? */ 2057 ret = COMPACT_NO_SUITABLE_PAGE; 2058 for (order = cc->order; order < MAX_ORDER; order++) { 2059 struct free_area *area = &cc->zone->free_area[order]; 2060 bool can_steal; 2061 2062 /* Job done if page is free of the right migratetype */ 2063 if (!free_area_empty(area, migratetype)) 2064 return COMPACT_SUCCESS; 2065 2066 #ifdef CONFIG_CMA 2067 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2068 if (migratetype == MIGRATE_MOVABLE && 2069 !free_area_empty(area, MIGRATE_CMA)) 2070 return COMPACT_SUCCESS; 2071 #endif 2072 /* 2073 * Job done if allocation would steal freepages from 2074 * other migratetype buddy lists. 2075 */ 2076 if (find_suitable_fallback(area, order, migratetype, 2077 true, &can_steal) != -1) { 2078 2079 /* movable pages are OK in any pageblock */ 2080 if (migratetype == MIGRATE_MOVABLE) 2081 return COMPACT_SUCCESS; 2082 2083 /* 2084 * We are stealing for a non-movable allocation. Make 2085 * sure we finish compacting the current pageblock 2086 * first so it is as free as possible and we won't 2087 * have to steal another one soon. This only applies 2088 * to sync compaction, as async compaction operates 2089 * on pageblocks of the same migratetype. 2090 */ 2091 if (cc->mode == MIGRATE_ASYNC || 2092 IS_ALIGNED(cc->migrate_pfn, 2093 pageblock_nr_pages)) { 2094 return COMPACT_SUCCESS; 2095 } 2096 2097 ret = COMPACT_CONTINUE; 2098 break; 2099 } 2100 } 2101 2102 out: 2103 if (cc->contended || fatal_signal_pending(current)) 2104 ret = COMPACT_CONTENDED; 2105 2106 return ret; 2107 } 2108 2109 static enum compact_result compact_finished(struct compact_control *cc) 2110 { 2111 int ret; 2112 2113 ret = __compact_finished(cc); 2114 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2115 if (ret == COMPACT_NO_SUITABLE_PAGE) 2116 ret = COMPACT_CONTINUE; 2117 2118 return ret; 2119 } 2120 2121 static enum compact_result __compaction_suitable(struct zone *zone, int order, 2122 unsigned int alloc_flags, 2123 int highest_zoneidx, 2124 unsigned long wmark_target) 2125 { 2126 unsigned long watermark; 2127 2128 if (is_via_compact_memory(order)) 2129 return COMPACT_CONTINUE; 2130 2131 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 2132 /* 2133 * If watermarks for high-order allocation are already met, there 2134 * should be no need for compaction at all. 2135 */ 2136 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, 2137 alloc_flags)) 2138 return COMPACT_SUCCESS; 2139 2140 /* 2141 * Watermarks for order-0 must be met for compaction to be able to 2142 * isolate free pages for migration targets. This means that the 2143 * watermark and alloc_flags have to match, or be more pessimistic than 2144 * the check in __isolate_free_page(). We don't use the direct 2145 * compactor's alloc_flags, as they are not relevant for freepage 2146 * isolation. We however do use the direct compactor's highest_zoneidx 2147 * to skip over zones where lowmem reserves would prevent allocation 2148 * even if compaction succeeds. 2149 * For costly orders, we require low watermark instead of min for 2150 * compaction to proceed to increase its chances. 2151 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2152 * suitable migration targets 2153 */ 2154 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2155 low_wmark_pages(zone) : min_wmark_pages(zone); 2156 watermark += compact_gap(order); 2157 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2158 ALLOC_CMA, wmark_target)) 2159 return COMPACT_SKIPPED; 2160 2161 return COMPACT_CONTINUE; 2162 } 2163 2164 /* 2165 * compaction_suitable: Is this suitable to run compaction on this zone now? 2166 * Returns 2167 * COMPACT_SKIPPED - If there are too few free pages for compaction 2168 * COMPACT_SUCCESS - If the allocation would succeed without compaction 2169 * COMPACT_CONTINUE - If compaction should run now 2170 */ 2171 enum compact_result compaction_suitable(struct zone *zone, int order, 2172 unsigned int alloc_flags, 2173 int highest_zoneidx) 2174 { 2175 enum compact_result ret; 2176 int fragindex; 2177 2178 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx, 2179 zone_page_state(zone, NR_FREE_PAGES)); 2180 /* 2181 * fragmentation index determines if allocation failures are due to 2182 * low memory or external fragmentation 2183 * 2184 * index of -1000 would imply allocations might succeed depending on 2185 * watermarks, but we already failed the high-order watermark check 2186 * index towards 0 implies failure is due to lack of memory 2187 * index towards 1000 implies failure is due to fragmentation 2188 * 2189 * Only compact if a failure would be due to fragmentation. Also 2190 * ignore fragindex for non-costly orders where the alternative to 2191 * a successful reclaim/compaction is OOM. Fragindex and the 2192 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2193 * excessive compaction for costly orders, but it should not be at the 2194 * expense of system stability. 2195 */ 2196 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2197 fragindex = fragmentation_index(zone, order); 2198 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2199 ret = COMPACT_NOT_SUITABLE_ZONE; 2200 } 2201 2202 trace_mm_compaction_suitable(zone, order, ret); 2203 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2204 ret = COMPACT_SKIPPED; 2205 2206 return ret; 2207 } 2208 2209 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2210 int alloc_flags) 2211 { 2212 struct zone *zone; 2213 struct zoneref *z; 2214 2215 /* 2216 * Make sure at least one zone would pass __compaction_suitable if we continue 2217 * retrying the reclaim. 2218 */ 2219 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2220 ac->highest_zoneidx, ac->nodemask) { 2221 unsigned long available; 2222 enum compact_result compact_result; 2223 2224 /* 2225 * Do not consider all the reclaimable memory because we do not 2226 * want to trash just for a single high order allocation which 2227 * is even not guaranteed to appear even if __compaction_suitable 2228 * is happy about the watermark check. 2229 */ 2230 available = zone_reclaimable_pages(zone) / order; 2231 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2232 compact_result = __compaction_suitable(zone, order, alloc_flags, 2233 ac->highest_zoneidx, available); 2234 if (compact_result != COMPACT_SKIPPED) 2235 return true; 2236 } 2237 2238 return false; 2239 } 2240 2241 static enum compact_result 2242 compact_zone(struct compact_control *cc, struct capture_control *capc) 2243 { 2244 enum compact_result ret; 2245 unsigned long start_pfn = cc->zone->zone_start_pfn; 2246 unsigned long end_pfn = zone_end_pfn(cc->zone); 2247 unsigned long last_migrated_pfn; 2248 const bool sync = cc->mode != MIGRATE_ASYNC; 2249 bool update_cached; 2250 2251 /* 2252 * These counters track activities during zone compaction. Initialize 2253 * them before compacting a new zone. 2254 */ 2255 cc->total_migrate_scanned = 0; 2256 cc->total_free_scanned = 0; 2257 cc->nr_migratepages = 0; 2258 cc->nr_freepages = 0; 2259 INIT_LIST_HEAD(&cc->freepages); 2260 INIT_LIST_HEAD(&cc->migratepages); 2261 2262 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2263 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2264 cc->highest_zoneidx); 2265 /* Compaction is likely to fail */ 2266 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2267 return ret; 2268 2269 /* huh, compaction_suitable is returning something unexpected */ 2270 VM_BUG_ON(ret != COMPACT_CONTINUE); 2271 2272 /* 2273 * Clear pageblock skip if there were failures recently and compaction 2274 * is about to be retried after being deferred. 2275 */ 2276 if (compaction_restarting(cc->zone, cc->order)) 2277 __reset_isolation_suitable(cc->zone); 2278 2279 /* 2280 * Setup to move all movable pages to the end of the zone. Used cached 2281 * information on where the scanners should start (unless we explicitly 2282 * want to compact the whole zone), but check that it is initialised 2283 * by ensuring the values are within zone boundaries. 2284 */ 2285 cc->fast_start_pfn = 0; 2286 if (cc->whole_zone) { 2287 cc->migrate_pfn = start_pfn; 2288 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2289 } else { 2290 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2291 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2292 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2293 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2294 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2295 } 2296 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2297 cc->migrate_pfn = start_pfn; 2298 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2299 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2300 } 2301 2302 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2303 cc->whole_zone = true; 2304 } 2305 2306 last_migrated_pfn = 0; 2307 2308 /* 2309 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2310 * the basis that some migrations will fail in ASYNC mode. However, 2311 * if the cached PFNs match and pageblocks are skipped due to having 2312 * no isolation candidates, then the sync state does not matter. 2313 * Until a pageblock with isolation candidates is found, keep the 2314 * cached PFNs in sync to avoid revisiting the same blocks. 2315 */ 2316 update_cached = !sync && 2317 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2318 2319 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 2320 cc->free_pfn, end_pfn, sync); 2321 2322 migrate_prep_local(); 2323 2324 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2325 int err; 2326 unsigned long iteration_start_pfn = cc->migrate_pfn; 2327 2328 /* 2329 * Avoid multiple rescans which can happen if a page cannot be 2330 * isolated (dirty/writeback in async mode) or if the migrated 2331 * pages are being allocated before the pageblock is cleared. 2332 * The first rescan will capture the entire pageblock for 2333 * migration. If it fails, it'll be marked skip and scanning 2334 * will proceed as normal. 2335 */ 2336 cc->rescan = false; 2337 if (pageblock_start_pfn(last_migrated_pfn) == 2338 pageblock_start_pfn(iteration_start_pfn)) { 2339 cc->rescan = true; 2340 } 2341 2342 switch (isolate_migratepages(cc)) { 2343 case ISOLATE_ABORT: 2344 ret = COMPACT_CONTENDED; 2345 putback_movable_pages(&cc->migratepages); 2346 cc->nr_migratepages = 0; 2347 goto out; 2348 case ISOLATE_NONE: 2349 if (update_cached) { 2350 cc->zone->compact_cached_migrate_pfn[1] = 2351 cc->zone->compact_cached_migrate_pfn[0]; 2352 } 2353 2354 /* 2355 * We haven't isolated and migrated anything, but 2356 * there might still be unflushed migrations from 2357 * previous cc->order aligned block. 2358 */ 2359 goto check_drain; 2360 case ISOLATE_SUCCESS: 2361 update_cached = false; 2362 last_migrated_pfn = iteration_start_pfn; 2363 } 2364 2365 err = migrate_pages(&cc->migratepages, compaction_alloc, 2366 compaction_free, (unsigned long)cc, cc->mode, 2367 MR_COMPACTION); 2368 2369 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 2370 &cc->migratepages); 2371 2372 /* All pages were either migrated or will be released */ 2373 cc->nr_migratepages = 0; 2374 if (err) { 2375 putback_movable_pages(&cc->migratepages); 2376 /* 2377 * migrate_pages() may return -ENOMEM when scanners meet 2378 * and we want compact_finished() to detect it 2379 */ 2380 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2381 ret = COMPACT_CONTENDED; 2382 goto out; 2383 } 2384 /* 2385 * We failed to migrate at least one page in the current 2386 * order-aligned block, so skip the rest of it. 2387 */ 2388 if (cc->direct_compaction && 2389 (cc->mode == MIGRATE_ASYNC)) { 2390 cc->migrate_pfn = block_end_pfn( 2391 cc->migrate_pfn - 1, cc->order); 2392 /* Draining pcplists is useless in this case */ 2393 last_migrated_pfn = 0; 2394 } 2395 } 2396 2397 check_drain: 2398 /* 2399 * Has the migration scanner moved away from the previous 2400 * cc->order aligned block where we migrated from? If yes, 2401 * flush the pages that were freed, so that they can merge and 2402 * compact_finished() can detect immediately if allocation 2403 * would succeed. 2404 */ 2405 if (cc->order > 0 && last_migrated_pfn) { 2406 unsigned long current_block_start = 2407 block_start_pfn(cc->migrate_pfn, cc->order); 2408 2409 if (last_migrated_pfn < current_block_start) { 2410 lru_add_drain_cpu_zone(cc->zone); 2411 /* No more flushing until we migrate again */ 2412 last_migrated_pfn = 0; 2413 } 2414 } 2415 2416 /* Stop if a page has been captured */ 2417 if (capc && capc->page) { 2418 ret = COMPACT_SUCCESS; 2419 break; 2420 } 2421 } 2422 2423 out: 2424 /* 2425 * Release free pages and update where the free scanner should restart, 2426 * so we don't leave any returned pages behind in the next attempt. 2427 */ 2428 if (cc->nr_freepages > 0) { 2429 unsigned long free_pfn = release_freepages(&cc->freepages); 2430 2431 cc->nr_freepages = 0; 2432 VM_BUG_ON(free_pfn == 0); 2433 /* The cached pfn is always the first in a pageblock */ 2434 free_pfn = pageblock_start_pfn(free_pfn); 2435 /* 2436 * Only go back, not forward. The cached pfn might have been 2437 * already reset to zone end in compact_finished() 2438 */ 2439 if (free_pfn > cc->zone->compact_cached_free_pfn) 2440 cc->zone->compact_cached_free_pfn = free_pfn; 2441 } 2442 2443 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2444 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2445 2446 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 2447 cc->free_pfn, end_pfn, sync, ret); 2448 2449 return ret; 2450 } 2451 2452 static enum compact_result compact_zone_order(struct zone *zone, int order, 2453 gfp_t gfp_mask, enum compact_priority prio, 2454 unsigned int alloc_flags, int highest_zoneidx, 2455 struct page **capture) 2456 { 2457 enum compact_result ret; 2458 struct compact_control cc = { 2459 .order = order, 2460 .search_order = order, 2461 .gfp_mask = gfp_mask, 2462 .zone = zone, 2463 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2464 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2465 .alloc_flags = alloc_flags, 2466 .highest_zoneidx = highest_zoneidx, 2467 .direct_compaction = true, 2468 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2469 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2470 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2471 }; 2472 struct capture_control capc = { 2473 .cc = &cc, 2474 .page = NULL, 2475 }; 2476 2477 /* 2478 * Make sure the structs are really initialized before we expose the 2479 * capture control, in case we are interrupted and the interrupt handler 2480 * frees a page. 2481 */ 2482 barrier(); 2483 WRITE_ONCE(current->capture_control, &capc); 2484 2485 ret = compact_zone(&cc, &capc); 2486 2487 VM_BUG_ON(!list_empty(&cc.freepages)); 2488 VM_BUG_ON(!list_empty(&cc.migratepages)); 2489 2490 /* 2491 * Make sure we hide capture control first before we read the captured 2492 * page pointer, otherwise an interrupt could free and capture a page 2493 * and we would leak it. 2494 */ 2495 WRITE_ONCE(current->capture_control, NULL); 2496 *capture = READ_ONCE(capc.page); 2497 2498 return ret; 2499 } 2500 2501 int sysctl_extfrag_threshold = 500; 2502 2503 /** 2504 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2505 * @gfp_mask: The GFP mask of the current allocation 2506 * @order: The order of the current allocation 2507 * @alloc_flags: The allocation flags of the current allocation 2508 * @ac: The context of current allocation 2509 * @prio: Determines how hard direct compaction should try to succeed 2510 * @capture: Pointer to free page created by compaction will be stored here 2511 * 2512 * This is the main entry point for direct page compaction. 2513 */ 2514 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2515 unsigned int alloc_flags, const struct alloc_context *ac, 2516 enum compact_priority prio, struct page **capture) 2517 { 2518 int may_perform_io = gfp_mask & __GFP_IO; 2519 struct zoneref *z; 2520 struct zone *zone; 2521 enum compact_result rc = COMPACT_SKIPPED; 2522 2523 /* 2524 * Check if the GFP flags allow compaction - GFP_NOIO is really 2525 * tricky context because the migration might require IO 2526 */ 2527 if (!may_perform_io) 2528 return COMPACT_SKIPPED; 2529 2530 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2531 2532 /* Compact each zone in the list */ 2533 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2534 ac->highest_zoneidx, ac->nodemask) { 2535 enum compact_result status; 2536 2537 if (prio > MIN_COMPACT_PRIORITY 2538 && compaction_deferred(zone, order)) { 2539 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2540 continue; 2541 } 2542 2543 status = compact_zone_order(zone, order, gfp_mask, prio, 2544 alloc_flags, ac->highest_zoneidx, capture); 2545 rc = max(status, rc); 2546 2547 /* The allocation should succeed, stop compacting */ 2548 if (status == COMPACT_SUCCESS) { 2549 /* 2550 * We think the allocation will succeed in this zone, 2551 * but it is not certain, hence the false. The caller 2552 * will repeat this with true if allocation indeed 2553 * succeeds in this zone. 2554 */ 2555 compaction_defer_reset(zone, order, false); 2556 2557 break; 2558 } 2559 2560 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2561 status == COMPACT_PARTIAL_SKIPPED)) 2562 /* 2563 * We think that allocation won't succeed in this zone 2564 * so we defer compaction there. If it ends up 2565 * succeeding after all, it will be reset. 2566 */ 2567 defer_compaction(zone, order); 2568 2569 /* 2570 * We might have stopped compacting due to need_resched() in 2571 * async compaction, or due to a fatal signal detected. In that 2572 * case do not try further zones 2573 */ 2574 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2575 || fatal_signal_pending(current)) 2576 break; 2577 } 2578 2579 return rc; 2580 } 2581 2582 /* 2583 * Compact all zones within a node till each zone's fragmentation score 2584 * reaches within proactive compaction thresholds (as determined by the 2585 * proactiveness tunable). 2586 * 2587 * It is possible that the function returns before reaching score targets 2588 * due to various back-off conditions, such as, contention on per-node or 2589 * per-zone locks. 2590 */ 2591 static void proactive_compact_node(pg_data_t *pgdat) 2592 { 2593 int zoneid; 2594 struct zone *zone; 2595 struct compact_control cc = { 2596 .order = -1, 2597 .mode = MIGRATE_SYNC_LIGHT, 2598 .ignore_skip_hint = true, 2599 .whole_zone = true, 2600 .gfp_mask = GFP_KERNEL, 2601 .proactive_compaction = true, 2602 }; 2603 2604 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2605 zone = &pgdat->node_zones[zoneid]; 2606 if (!populated_zone(zone)) 2607 continue; 2608 2609 cc.zone = zone; 2610 2611 compact_zone(&cc, NULL); 2612 2613 VM_BUG_ON(!list_empty(&cc.freepages)); 2614 VM_BUG_ON(!list_empty(&cc.migratepages)); 2615 } 2616 } 2617 2618 /* Compact all zones within a node */ 2619 static void compact_node(int nid) 2620 { 2621 pg_data_t *pgdat = NODE_DATA(nid); 2622 int zoneid; 2623 struct zone *zone; 2624 struct compact_control cc = { 2625 .order = -1, 2626 .mode = MIGRATE_SYNC, 2627 .ignore_skip_hint = true, 2628 .whole_zone = true, 2629 .gfp_mask = GFP_KERNEL, 2630 }; 2631 2632 2633 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2634 2635 zone = &pgdat->node_zones[zoneid]; 2636 if (!populated_zone(zone)) 2637 continue; 2638 2639 cc.zone = zone; 2640 2641 compact_zone(&cc, NULL); 2642 2643 VM_BUG_ON(!list_empty(&cc.freepages)); 2644 VM_BUG_ON(!list_empty(&cc.migratepages)); 2645 } 2646 } 2647 2648 /* Compact all nodes in the system */ 2649 static void compact_nodes(void) 2650 { 2651 int nid; 2652 2653 /* Flush pending updates to the LRU lists */ 2654 lru_add_drain_all(); 2655 2656 for_each_online_node(nid) 2657 compact_node(nid); 2658 } 2659 2660 /* The written value is actually unused, all memory is compacted */ 2661 int sysctl_compact_memory; 2662 2663 /* 2664 * Tunable for proactive compaction. It determines how 2665 * aggressively the kernel should compact memory in the 2666 * background. It takes values in the range [0, 100]. 2667 */ 2668 unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 2669 2670 /* 2671 * This is the entry point for compacting all nodes via 2672 * /proc/sys/vm/compact_memory 2673 */ 2674 int sysctl_compaction_handler(struct ctl_table *table, int write, 2675 void *buffer, size_t *length, loff_t *ppos) 2676 { 2677 if (write) 2678 compact_nodes(); 2679 2680 return 0; 2681 } 2682 2683 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2684 static ssize_t sysfs_compact_node(struct device *dev, 2685 struct device_attribute *attr, 2686 const char *buf, size_t count) 2687 { 2688 int nid = dev->id; 2689 2690 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2691 /* Flush pending updates to the LRU lists */ 2692 lru_add_drain_all(); 2693 2694 compact_node(nid); 2695 } 2696 2697 return count; 2698 } 2699 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node); 2700 2701 int compaction_register_node(struct node *node) 2702 { 2703 return device_create_file(&node->dev, &dev_attr_compact); 2704 } 2705 2706 void compaction_unregister_node(struct node *node) 2707 { 2708 return device_remove_file(&node->dev, &dev_attr_compact); 2709 } 2710 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2711 2712 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2713 { 2714 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 2715 } 2716 2717 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2718 { 2719 int zoneid; 2720 struct zone *zone; 2721 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 2722 2723 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 2724 zone = &pgdat->node_zones[zoneid]; 2725 2726 if (!populated_zone(zone)) 2727 continue; 2728 2729 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2730 highest_zoneidx) == COMPACT_CONTINUE) 2731 return true; 2732 } 2733 2734 return false; 2735 } 2736 2737 static void kcompactd_do_work(pg_data_t *pgdat) 2738 { 2739 /* 2740 * With no special task, compact all zones so that a page of requested 2741 * order is allocatable. 2742 */ 2743 int zoneid; 2744 struct zone *zone; 2745 struct compact_control cc = { 2746 .order = pgdat->kcompactd_max_order, 2747 .search_order = pgdat->kcompactd_max_order, 2748 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 2749 .mode = MIGRATE_SYNC_LIGHT, 2750 .ignore_skip_hint = false, 2751 .gfp_mask = GFP_KERNEL, 2752 }; 2753 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2754 cc.highest_zoneidx); 2755 count_compact_event(KCOMPACTD_WAKE); 2756 2757 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 2758 int status; 2759 2760 zone = &pgdat->node_zones[zoneid]; 2761 if (!populated_zone(zone)) 2762 continue; 2763 2764 if (compaction_deferred(zone, cc.order)) 2765 continue; 2766 2767 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2768 COMPACT_CONTINUE) 2769 continue; 2770 2771 if (kthread_should_stop()) 2772 return; 2773 2774 cc.zone = zone; 2775 status = compact_zone(&cc, NULL); 2776 2777 if (status == COMPACT_SUCCESS) { 2778 compaction_defer_reset(zone, cc.order, false); 2779 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2780 /* 2781 * Buddy pages may become stranded on pcps that could 2782 * otherwise coalesce on the zone's free area for 2783 * order >= cc.order. This is ratelimited by the 2784 * upcoming deferral. 2785 */ 2786 drain_all_pages(zone); 2787 2788 /* 2789 * We use sync migration mode here, so we defer like 2790 * sync direct compaction does. 2791 */ 2792 defer_compaction(zone, cc.order); 2793 } 2794 2795 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2796 cc.total_migrate_scanned); 2797 count_compact_events(KCOMPACTD_FREE_SCANNED, 2798 cc.total_free_scanned); 2799 2800 VM_BUG_ON(!list_empty(&cc.freepages)); 2801 VM_BUG_ON(!list_empty(&cc.migratepages)); 2802 } 2803 2804 /* 2805 * Regardless of success, we are done until woken up next. But remember 2806 * the requested order/highest_zoneidx in case it was higher/tighter 2807 * than our current ones 2808 */ 2809 if (pgdat->kcompactd_max_order <= cc.order) 2810 pgdat->kcompactd_max_order = 0; 2811 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 2812 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2813 } 2814 2815 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 2816 { 2817 if (!order) 2818 return; 2819 2820 if (pgdat->kcompactd_max_order < order) 2821 pgdat->kcompactd_max_order = order; 2822 2823 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 2824 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 2825 2826 /* 2827 * Pairs with implicit barrier in wait_event_freezable() 2828 * such that wakeups are not missed. 2829 */ 2830 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2831 return; 2832 2833 if (!kcompactd_node_suitable(pgdat)) 2834 return; 2835 2836 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2837 highest_zoneidx); 2838 wake_up_interruptible(&pgdat->kcompactd_wait); 2839 } 2840 2841 /* 2842 * The background compaction daemon, started as a kernel thread 2843 * from the init process. 2844 */ 2845 static int kcompactd(void *p) 2846 { 2847 pg_data_t *pgdat = (pg_data_t*)p; 2848 struct task_struct *tsk = current; 2849 unsigned int proactive_defer = 0; 2850 2851 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2852 2853 if (!cpumask_empty(cpumask)) 2854 set_cpus_allowed_ptr(tsk, cpumask); 2855 2856 set_freezable(); 2857 2858 pgdat->kcompactd_max_order = 0; 2859 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2860 2861 while (!kthread_should_stop()) { 2862 unsigned long pflags; 2863 2864 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2865 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 2866 kcompactd_work_requested(pgdat), 2867 msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) { 2868 2869 psi_memstall_enter(&pflags); 2870 kcompactd_do_work(pgdat); 2871 psi_memstall_leave(&pflags); 2872 continue; 2873 } 2874 2875 /* kcompactd wait timeout */ 2876 if (should_proactive_compact_node(pgdat)) { 2877 unsigned int prev_score, score; 2878 2879 if (proactive_defer) { 2880 proactive_defer--; 2881 continue; 2882 } 2883 prev_score = fragmentation_score_node(pgdat); 2884 proactive_compact_node(pgdat); 2885 score = fragmentation_score_node(pgdat); 2886 /* 2887 * Defer proactive compaction if the fragmentation 2888 * score did not go down i.e. no progress made. 2889 */ 2890 proactive_defer = score < prev_score ? 2891 0 : 1 << COMPACT_MAX_DEFER_SHIFT; 2892 } 2893 } 2894 2895 return 0; 2896 } 2897 2898 /* 2899 * This kcompactd start function will be called by init and node-hot-add. 2900 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2901 */ 2902 int kcompactd_run(int nid) 2903 { 2904 pg_data_t *pgdat = NODE_DATA(nid); 2905 int ret = 0; 2906 2907 if (pgdat->kcompactd) 2908 return 0; 2909 2910 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2911 if (IS_ERR(pgdat->kcompactd)) { 2912 pr_err("Failed to start kcompactd on node %d\n", nid); 2913 ret = PTR_ERR(pgdat->kcompactd); 2914 pgdat->kcompactd = NULL; 2915 } 2916 return ret; 2917 } 2918 2919 /* 2920 * Called by memory hotplug when all memory in a node is offlined. Caller must 2921 * hold mem_hotplug_begin/end(). 2922 */ 2923 void kcompactd_stop(int nid) 2924 { 2925 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2926 2927 if (kcompactd) { 2928 kthread_stop(kcompactd); 2929 NODE_DATA(nid)->kcompactd = NULL; 2930 } 2931 } 2932 2933 /* 2934 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2935 * not required for correctness. So if the last cpu in a node goes 2936 * away, we get changed to run anywhere: as the first one comes back, 2937 * restore their cpu bindings. 2938 */ 2939 static int kcompactd_cpu_online(unsigned int cpu) 2940 { 2941 int nid; 2942 2943 for_each_node_state(nid, N_MEMORY) { 2944 pg_data_t *pgdat = NODE_DATA(nid); 2945 const struct cpumask *mask; 2946 2947 mask = cpumask_of_node(pgdat->node_id); 2948 2949 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2950 /* One of our CPUs online: restore mask */ 2951 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2952 } 2953 return 0; 2954 } 2955 2956 static int __init kcompactd_init(void) 2957 { 2958 int nid; 2959 int ret; 2960 2961 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 2962 "mm/compaction:online", 2963 kcompactd_cpu_online, NULL); 2964 if (ret < 0) { 2965 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 2966 return ret; 2967 } 2968 2969 for_each_node_state(nid, N_MEMORY) 2970 kcompactd_run(nid); 2971 return 0; 2972 } 2973 subsys_initcall(kcompactd_init) 2974 2975 #endif /* CONFIG_COMPACTION */ 2976