1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 static inline void count_compact_event(enum vm_event_item item) 30 { 31 count_vm_event(item); 32 } 33 34 static inline void count_compact_events(enum vm_event_item item, long delta) 35 { 36 count_vm_events(item, delta); 37 } 38 #else 39 #define count_compact_event(item) do { } while (0) 40 #define count_compact_events(item, delta) do { } while (0) 41 #endif 42 43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/compaction.h> 47 48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 52 53 static unsigned long release_freepages(struct list_head *freelist) 54 { 55 struct page *page, *next; 56 unsigned long high_pfn = 0; 57 58 list_for_each_entry_safe(page, next, freelist, lru) { 59 unsigned long pfn = page_to_pfn(page); 60 list_del(&page->lru); 61 __free_page(page); 62 if (pfn > high_pfn) 63 high_pfn = pfn; 64 } 65 66 return high_pfn; 67 } 68 69 static void split_map_pages(struct list_head *list) 70 { 71 unsigned int i, order, nr_pages; 72 struct page *page, *next; 73 LIST_HEAD(tmp_list); 74 75 list_for_each_entry_safe(page, next, list, lru) { 76 list_del(&page->lru); 77 78 order = page_private(page); 79 nr_pages = 1 << order; 80 81 post_alloc_hook(page, order, __GFP_MOVABLE); 82 if (order) 83 split_page(page, order); 84 85 for (i = 0; i < nr_pages; i++) { 86 list_add(&page->lru, &tmp_list); 87 page++; 88 } 89 } 90 91 list_splice(&tmp_list, list); 92 } 93 94 #ifdef CONFIG_COMPACTION 95 96 int PageMovable(struct page *page) 97 { 98 struct address_space *mapping; 99 100 VM_BUG_ON_PAGE(!PageLocked(page), page); 101 if (!__PageMovable(page)) 102 return 0; 103 104 mapping = page_mapping(page); 105 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 106 return 1; 107 108 return 0; 109 } 110 EXPORT_SYMBOL(PageMovable); 111 112 void __SetPageMovable(struct page *page, struct address_space *mapping) 113 { 114 VM_BUG_ON_PAGE(!PageLocked(page), page); 115 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 116 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 117 } 118 EXPORT_SYMBOL(__SetPageMovable); 119 120 void __ClearPageMovable(struct page *page) 121 { 122 VM_BUG_ON_PAGE(!PageLocked(page), page); 123 VM_BUG_ON_PAGE(!PageMovable(page), page); 124 /* 125 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 126 * flag so that VM can catch up released page by driver after isolation. 127 * With it, VM migration doesn't try to put it back. 128 */ 129 page->mapping = (void *)((unsigned long)page->mapping & 130 PAGE_MAPPING_MOVABLE); 131 } 132 EXPORT_SYMBOL(__ClearPageMovable); 133 134 /* Do not skip compaction more than 64 times */ 135 #define COMPACT_MAX_DEFER_SHIFT 6 136 137 /* 138 * Compaction is deferred when compaction fails to result in a page 139 * allocation success. 1 << compact_defer_limit compactions are skipped up 140 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 141 */ 142 void defer_compaction(struct zone *zone, int order) 143 { 144 zone->compact_considered = 0; 145 zone->compact_defer_shift++; 146 147 if (order < zone->compact_order_failed) 148 zone->compact_order_failed = order; 149 150 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 151 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 152 153 trace_mm_compaction_defer_compaction(zone, order); 154 } 155 156 /* Returns true if compaction should be skipped this time */ 157 bool compaction_deferred(struct zone *zone, int order) 158 { 159 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 160 161 if (order < zone->compact_order_failed) 162 return false; 163 164 /* Avoid possible overflow */ 165 if (++zone->compact_considered > defer_limit) 166 zone->compact_considered = defer_limit; 167 168 if (zone->compact_considered >= defer_limit) 169 return false; 170 171 trace_mm_compaction_deferred(zone, order); 172 173 return true; 174 } 175 176 /* 177 * Update defer tracking counters after successful compaction of given order, 178 * which means an allocation either succeeded (alloc_success == true) or is 179 * expected to succeed. 180 */ 181 void compaction_defer_reset(struct zone *zone, int order, 182 bool alloc_success) 183 { 184 if (alloc_success) { 185 zone->compact_considered = 0; 186 zone->compact_defer_shift = 0; 187 } 188 if (order >= zone->compact_order_failed) 189 zone->compact_order_failed = order + 1; 190 191 trace_mm_compaction_defer_reset(zone, order); 192 } 193 194 /* Returns true if restarting compaction after many failures */ 195 bool compaction_restarting(struct zone *zone, int order) 196 { 197 if (order < zone->compact_order_failed) 198 return false; 199 200 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 201 zone->compact_considered >= 1UL << zone->compact_defer_shift; 202 } 203 204 /* Returns true if the pageblock should be scanned for pages to isolate. */ 205 static inline bool isolation_suitable(struct compact_control *cc, 206 struct page *page) 207 { 208 if (cc->ignore_skip_hint) 209 return true; 210 211 return !get_pageblock_skip(page); 212 } 213 214 static void reset_cached_positions(struct zone *zone) 215 { 216 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 217 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 218 zone->compact_cached_free_pfn = 219 pageblock_start_pfn(zone_end_pfn(zone) - 1); 220 } 221 222 /* 223 * Compound pages of >= pageblock_order should consistenly be skipped until 224 * released. It is always pointless to compact pages of such order (if they are 225 * migratable), and the pageblocks they occupy cannot contain any free pages. 226 */ 227 static bool pageblock_skip_persistent(struct page *page) 228 { 229 if (!PageCompound(page)) 230 return false; 231 232 page = compound_head(page); 233 234 if (compound_order(page) >= pageblock_order) 235 return true; 236 237 return false; 238 } 239 240 static bool 241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 242 bool check_target) 243 { 244 struct page *page = pfn_to_online_page(pfn); 245 struct page *block_page; 246 struct page *end_page; 247 unsigned long block_pfn; 248 249 if (!page) 250 return false; 251 if (zone != page_zone(page)) 252 return false; 253 if (pageblock_skip_persistent(page)) 254 return false; 255 256 /* 257 * If skip is already cleared do no further checking once the 258 * restart points have been set. 259 */ 260 if (check_source && check_target && !get_pageblock_skip(page)) 261 return true; 262 263 /* 264 * If clearing skip for the target scanner, do not select a 265 * non-movable pageblock as the starting point. 266 */ 267 if (!check_source && check_target && 268 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 269 return false; 270 271 /* Ensure the start of the pageblock or zone is online and valid */ 272 block_pfn = pageblock_start_pfn(pfn); 273 block_page = pfn_to_online_page(max(block_pfn, zone->zone_start_pfn)); 274 if (block_page) { 275 page = block_page; 276 pfn = block_pfn; 277 } 278 279 /* Ensure the end of the pageblock or zone is online and valid */ 280 block_pfn += pageblock_nr_pages; 281 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 282 end_page = pfn_to_online_page(block_pfn); 283 if (!end_page) 284 return false; 285 286 /* 287 * Only clear the hint if a sample indicates there is either a 288 * free page or an LRU page in the block. One or other condition 289 * is necessary for the block to be a migration source/target. 290 */ 291 do { 292 if (pfn_valid_within(pfn)) { 293 if (check_source && PageLRU(page)) { 294 clear_pageblock_skip(page); 295 return true; 296 } 297 298 if (check_target && PageBuddy(page)) { 299 clear_pageblock_skip(page); 300 return true; 301 } 302 } 303 304 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 305 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER); 306 } while (page < end_page); 307 308 return false; 309 } 310 311 /* 312 * This function is called to clear all cached information on pageblocks that 313 * should be skipped for page isolation when the migrate and free page scanner 314 * meet. 315 */ 316 static void __reset_isolation_suitable(struct zone *zone) 317 { 318 unsigned long migrate_pfn = zone->zone_start_pfn; 319 unsigned long free_pfn = zone_end_pfn(zone) - 1; 320 unsigned long reset_migrate = free_pfn; 321 unsigned long reset_free = migrate_pfn; 322 bool source_set = false; 323 bool free_set = false; 324 325 if (!zone->compact_blockskip_flush) 326 return; 327 328 zone->compact_blockskip_flush = false; 329 330 /* 331 * Walk the zone and update pageblock skip information. Source looks 332 * for PageLRU while target looks for PageBuddy. When the scanner 333 * is found, both PageBuddy and PageLRU are checked as the pageblock 334 * is suitable as both source and target. 335 */ 336 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 337 free_pfn -= pageblock_nr_pages) { 338 cond_resched(); 339 340 /* Update the migrate PFN */ 341 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 342 migrate_pfn < reset_migrate) { 343 source_set = true; 344 reset_migrate = migrate_pfn; 345 zone->compact_init_migrate_pfn = reset_migrate; 346 zone->compact_cached_migrate_pfn[0] = reset_migrate; 347 zone->compact_cached_migrate_pfn[1] = reset_migrate; 348 } 349 350 /* Update the free PFN */ 351 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 352 free_pfn > reset_free) { 353 free_set = true; 354 reset_free = free_pfn; 355 zone->compact_init_free_pfn = reset_free; 356 zone->compact_cached_free_pfn = reset_free; 357 } 358 } 359 360 /* Leave no distance if no suitable block was reset */ 361 if (reset_migrate >= reset_free) { 362 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 363 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 364 zone->compact_cached_free_pfn = free_pfn; 365 } 366 } 367 368 void reset_isolation_suitable(pg_data_t *pgdat) 369 { 370 int zoneid; 371 372 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 373 struct zone *zone = &pgdat->node_zones[zoneid]; 374 if (!populated_zone(zone)) 375 continue; 376 377 /* Only flush if a full compaction finished recently */ 378 if (zone->compact_blockskip_flush) 379 __reset_isolation_suitable(zone); 380 } 381 } 382 383 /* 384 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 385 * locks are not required for read/writers. Returns true if it was already set. 386 */ 387 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 388 unsigned long pfn) 389 { 390 bool skip; 391 392 /* Do no update if skip hint is being ignored */ 393 if (cc->ignore_skip_hint) 394 return false; 395 396 if (!IS_ALIGNED(pfn, pageblock_nr_pages)) 397 return false; 398 399 skip = get_pageblock_skip(page); 400 if (!skip && !cc->no_set_skip_hint) 401 set_pageblock_skip(page); 402 403 return skip; 404 } 405 406 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 407 { 408 struct zone *zone = cc->zone; 409 410 pfn = pageblock_end_pfn(pfn); 411 412 /* Set for isolation rather than compaction */ 413 if (cc->no_set_skip_hint) 414 return; 415 416 if (pfn > zone->compact_cached_migrate_pfn[0]) 417 zone->compact_cached_migrate_pfn[0] = pfn; 418 if (cc->mode != MIGRATE_ASYNC && 419 pfn > zone->compact_cached_migrate_pfn[1]) 420 zone->compact_cached_migrate_pfn[1] = pfn; 421 } 422 423 /* 424 * If no pages were isolated then mark this pageblock to be skipped in the 425 * future. The information is later cleared by __reset_isolation_suitable(). 426 */ 427 static void update_pageblock_skip(struct compact_control *cc, 428 struct page *page, unsigned long pfn) 429 { 430 struct zone *zone = cc->zone; 431 432 if (cc->no_set_skip_hint) 433 return; 434 435 if (!page) 436 return; 437 438 set_pageblock_skip(page); 439 440 /* Update where async and sync compaction should restart */ 441 if (pfn < zone->compact_cached_free_pfn) 442 zone->compact_cached_free_pfn = pfn; 443 } 444 #else 445 static inline bool isolation_suitable(struct compact_control *cc, 446 struct page *page) 447 { 448 return true; 449 } 450 451 static inline bool pageblock_skip_persistent(struct page *page) 452 { 453 return false; 454 } 455 456 static inline void update_pageblock_skip(struct compact_control *cc, 457 struct page *page, unsigned long pfn) 458 { 459 } 460 461 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 462 { 463 } 464 465 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 466 unsigned long pfn) 467 { 468 return false; 469 } 470 #endif /* CONFIG_COMPACTION */ 471 472 /* 473 * Compaction requires the taking of some coarse locks that are potentially 474 * very heavily contended. For async compaction, trylock and record if the 475 * lock is contended. The lock will still be acquired but compaction will 476 * abort when the current block is finished regardless of success rate. 477 * Sync compaction acquires the lock. 478 * 479 * Always returns true which makes it easier to track lock state in callers. 480 */ 481 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 482 struct compact_control *cc) 483 { 484 /* Track if the lock is contended in async mode */ 485 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 486 if (spin_trylock_irqsave(lock, *flags)) 487 return true; 488 489 cc->contended = true; 490 } 491 492 spin_lock_irqsave(lock, *flags); 493 return true; 494 } 495 496 /* 497 * Compaction requires the taking of some coarse locks that are potentially 498 * very heavily contended. The lock should be periodically unlocked to avoid 499 * having disabled IRQs for a long time, even when there is nobody waiting on 500 * the lock. It might also be that allowing the IRQs will result in 501 * need_resched() becoming true. If scheduling is needed, async compaction 502 * aborts. Sync compaction schedules. 503 * Either compaction type will also abort if a fatal signal is pending. 504 * In either case if the lock was locked, it is dropped and not regained. 505 * 506 * Returns true if compaction should abort due to fatal signal pending, or 507 * async compaction due to need_resched() 508 * Returns false when compaction can continue (sync compaction might have 509 * scheduled) 510 */ 511 static bool compact_unlock_should_abort(spinlock_t *lock, 512 unsigned long flags, bool *locked, struct compact_control *cc) 513 { 514 if (*locked) { 515 spin_unlock_irqrestore(lock, flags); 516 *locked = false; 517 } 518 519 if (fatal_signal_pending(current)) { 520 cc->contended = true; 521 return true; 522 } 523 524 cond_resched(); 525 526 return false; 527 } 528 529 /* 530 * Isolate free pages onto a private freelist. If @strict is true, will abort 531 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 532 * (even though it may still end up isolating some pages). 533 */ 534 static unsigned long isolate_freepages_block(struct compact_control *cc, 535 unsigned long *start_pfn, 536 unsigned long end_pfn, 537 struct list_head *freelist, 538 unsigned int stride, 539 bool strict) 540 { 541 int nr_scanned = 0, total_isolated = 0; 542 struct page *cursor; 543 unsigned long flags = 0; 544 bool locked = false; 545 unsigned long blockpfn = *start_pfn; 546 unsigned int order; 547 548 /* Strict mode is for isolation, speed is secondary */ 549 if (strict) 550 stride = 1; 551 552 cursor = pfn_to_page(blockpfn); 553 554 /* Isolate free pages. */ 555 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 556 int isolated; 557 struct page *page = cursor; 558 559 /* 560 * Periodically drop the lock (if held) regardless of its 561 * contention, to give chance to IRQs. Abort if fatal signal 562 * pending or async compaction detects need_resched() 563 */ 564 if (!(blockpfn % SWAP_CLUSTER_MAX) 565 && compact_unlock_should_abort(&cc->zone->lock, flags, 566 &locked, cc)) 567 break; 568 569 nr_scanned++; 570 if (!pfn_valid_within(blockpfn)) 571 goto isolate_fail; 572 573 /* 574 * For compound pages such as THP and hugetlbfs, we can save 575 * potentially a lot of iterations if we skip them at once. 576 * The check is racy, but we can consider only valid values 577 * and the only danger is skipping too much. 578 */ 579 if (PageCompound(page)) { 580 const unsigned int order = compound_order(page); 581 582 if (likely(order < MAX_ORDER)) { 583 blockpfn += (1UL << order) - 1; 584 cursor += (1UL << order) - 1; 585 } 586 goto isolate_fail; 587 } 588 589 if (!PageBuddy(page)) 590 goto isolate_fail; 591 592 /* 593 * If we already hold the lock, we can skip some rechecking. 594 * Note that if we hold the lock now, checked_pageblock was 595 * already set in some previous iteration (or strict is true), 596 * so it is correct to skip the suitable migration target 597 * recheck as well. 598 */ 599 if (!locked) { 600 locked = compact_lock_irqsave(&cc->zone->lock, 601 &flags, cc); 602 603 /* Recheck this is a buddy page under lock */ 604 if (!PageBuddy(page)) 605 goto isolate_fail; 606 } 607 608 /* Found a free page, will break it into order-0 pages */ 609 order = page_order(page); 610 isolated = __isolate_free_page(page, order); 611 if (!isolated) 612 break; 613 set_page_private(page, order); 614 615 total_isolated += isolated; 616 cc->nr_freepages += isolated; 617 list_add_tail(&page->lru, freelist); 618 619 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 620 blockpfn += isolated; 621 break; 622 } 623 /* Advance to the end of split page */ 624 blockpfn += isolated - 1; 625 cursor += isolated - 1; 626 continue; 627 628 isolate_fail: 629 if (strict) 630 break; 631 else 632 continue; 633 634 } 635 636 if (locked) 637 spin_unlock_irqrestore(&cc->zone->lock, flags); 638 639 /* 640 * There is a tiny chance that we have read bogus compound_order(), 641 * so be careful to not go outside of the pageblock. 642 */ 643 if (unlikely(blockpfn > end_pfn)) 644 blockpfn = end_pfn; 645 646 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 647 nr_scanned, total_isolated); 648 649 /* Record how far we have got within the block */ 650 *start_pfn = blockpfn; 651 652 /* 653 * If strict isolation is requested by CMA then check that all the 654 * pages requested were isolated. If there were any failures, 0 is 655 * returned and CMA will fail. 656 */ 657 if (strict && blockpfn < end_pfn) 658 total_isolated = 0; 659 660 cc->total_free_scanned += nr_scanned; 661 if (total_isolated) 662 count_compact_events(COMPACTISOLATED, total_isolated); 663 return total_isolated; 664 } 665 666 /** 667 * isolate_freepages_range() - isolate free pages. 668 * @cc: Compaction control structure. 669 * @start_pfn: The first PFN to start isolating. 670 * @end_pfn: The one-past-last PFN. 671 * 672 * Non-free pages, invalid PFNs, or zone boundaries within the 673 * [start_pfn, end_pfn) range are considered errors, cause function to 674 * undo its actions and return zero. 675 * 676 * Otherwise, function returns one-past-the-last PFN of isolated page 677 * (which may be greater then end_pfn if end fell in a middle of 678 * a free page). 679 */ 680 unsigned long 681 isolate_freepages_range(struct compact_control *cc, 682 unsigned long start_pfn, unsigned long end_pfn) 683 { 684 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 685 LIST_HEAD(freelist); 686 687 pfn = start_pfn; 688 block_start_pfn = pageblock_start_pfn(pfn); 689 if (block_start_pfn < cc->zone->zone_start_pfn) 690 block_start_pfn = cc->zone->zone_start_pfn; 691 block_end_pfn = pageblock_end_pfn(pfn); 692 693 for (; pfn < end_pfn; pfn += isolated, 694 block_start_pfn = block_end_pfn, 695 block_end_pfn += pageblock_nr_pages) { 696 /* Protect pfn from changing by isolate_freepages_block */ 697 unsigned long isolate_start_pfn = pfn; 698 699 block_end_pfn = min(block_end_pfn, end_pfn); 700 701 /* 702 * pfn could pass the block_end_pfn if isolated freepage 703 * is more than pageblock order. In this case, we adjust 704 * scanning range to right one. 705 */ 706 if (pfn >= block_end_pfn) { 707 block_start_pfn = pageblock_start_pfn(pfn); 708 block_end_pfn = pageblock_end_pfn(pfn); 709 block_end_pfn = min(block_end_pfn, end_pfn); 710 } 711 712 if (!pageblock_pfn_to_page(block_start_pfn, 713 block_end_pfn, cc->zone)) 714 break; 715 716 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 717 block_end_pfn, &freelist, 0, true); 718 719 /* 720 * In strict mode, isolate_freepages_block() returns 0 if 721 * there are any holes in the block (ie. invalid PFNs or 722 * non-free pages). 723 */ 724 if (!isolated) 725 break; 726 727 /* 728 * If we managed to isolate pages, it is always (1 << n) * 729 * pageblock_nr_pages for some non-negative n. (Max order 730 * page may span two pageblocks). 731 */ 732 } 733 734 /* __isolate_free_page() does not map the pages */ 735 split_map_pages(&freelist); 736 737 if (pfn < end_pfn) { 738 /* Loop terminated early, cleanup. */ 739 release_freepages(&freelist); 740 return 0; 741 } 742 743 /* We don't use freelists for anything. */ 744 return pfn; 745 } 746 747 /* Similar to reclaim, but different enough that they don't share logic */ 748 static bool too_many_isolated(pg_data_t *pgdat) 749 { 750 unsigned long active, inactive, isolated; 751 752 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 753 node_page_state(pgdat, NR_INACTIVE_ANON); 754 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 755 node_page_state(pgdat, NR_ACTIVE_ANON); 756 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 757 node_page_state(pgdat, NR_ISOLATED_ANON); 758 759 return isolated > (inactive + active) / 2; 760 } 761 762 /** 763 * isolate_migratepages_block() - isolate all migrate-able pages within 764 * a single pageblock 765 * @cc: Compaction control structure. 766 * @low_pfn: The first PFN to isolate 767 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 768 * @isolate_mode: Isolation mode to be used. 769 * 770 * Isolate all pages that can be migrated from the range specified by 771 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 772 * Returns zero if there is a fatal signal pending, otherwise PFN of the 773 * first page that was not scanned (which may be both less, equal to or more 774 * than end_pfn). 775 * 776 * The pages are isolated on cc->migratepages list (not required to be empty), 777 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 778 * is neither read nor updated. 779 */ 780 static unsigned long 781 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 782 unsigned long end_pfn, isolate_mode_t isolate_mode) 783 { 784 pg_data_t *pgdat = cc->zone->zone_pgdat; 785 unsigned long nr_scanned = 0, nr_isolated = 0; 786 struct lruvec *lruvec; 787 unsigned long flags = 0; 788 bool locked = false; 789 struct page *page = NULL, *valid_page = NULL; 790 unsigned long start_pfn = low_pfn; 791 bool skip_on_failure = false; 792 unsigned long next_skip_pfn = 0; 793 bool skip_updated = false; 794 795 /* 796 * Ensure that there are not too many pages isolated from the LRU 797 * list by either parallel reclaimers or compaction. If there are, 798 * delay for some time until fewer pages are isolated 799 */ 800 while (unlikely(too_many_isolated(pgdat))) { 801 /* async migration should just abort */ 802 if (cc->mode == MIGRATE_ASYNC) 803 return 0; 804 805 congestion_wait(BLK_RW_ASYNC, HZ/10); 806 807 if (fatal_signal_pending(current)) 808 return 0; 809 } 810 811 cond_resched(); 812 813 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 814 skip_on_failure = true; 815 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 816 } 817 818 /* Time to isolate some pages for migration */ 819 for (; low_pfn < end_pfn; low_pfn++) { 820 821 if (skip_on_failure && low_pfn >= next_skip_pfn) { 822 /* 823 * We have isolated all migration candidates in the 824 * previous order-aligned block, and did not skip it due 825 * to failure. We should migrate the pages now and 826 * hopefully succeed compaction. 827 */ 828 if (nr_isolated) 829 break; 830 831 /* 832 * We failed to isolate in the previous order-aligned 833 * block. Set the new boundary to the end of the 834 * current block. Note we can't simply increase 835 * next_skip_pfn by 1 << order, as low_pfn might have 836 * been incremented by a higher number due to skipping 837 * a compound or a high-order buddy page in the 838 * previous loop iteration. 839 */ 840 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 841 } 842 843 /* 844 * Periodically drop the lock (if held) regardless of its 845 * contention, to give chance to IRQs. Abort completely if 846 * a fatal signal is pending. 847 */ 848 if (!(low_pfn % SWAP_CLUSTER_MAX) 849 && compact_unlock_should_abort(&pgdat->lru_lock, 850 flags, &locked, cc)) { 851 low_pfn = 0; 852 goto fatal_pending; 853 } 854 855 if (!pfn_valid_within(low_pfn)) 856 goto isolate_fail; 857 nr_scanned++; 858 859 page = pfn_to_page(low_pfn); 860 861 /* 862 * Check if the pageblock has already been marked skipped. 863 * Only the aligned PFN is checked as the caller isolates 864 * COMPACT_CLUSTER_MAX at a time so the second call must 865 * not falsely conclude that the block should be skipped. 866 */ 867 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) { 868 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) { 869 low_pfn = end_pfn; 870 goto isolate_abort; 871 } 872 valid_page = page; 873 } 874 875 /* 876 * Skip if free. We read page order here without zone lock 877 * which is generally unsafe, but the race window is small and 878 * the worst thing that can happen is that we skip some 879 * potential isolation targets. 880 */ 881 if (PageBuddy(page)) { 882 unsigned long freepage_order = page_order_unsafe(page); 883 884 /* 885 * Without lock, we cannot be sure that what we got is 886 * a valid page order. Consider only values in the 887 * valid order range to prevent low_pfn overflow. 888 */ 889 if (freepage_order > 0 && freepage_order < MAX_ORDER) 890 low_pfn += (1UL << freepage_order) - 1; 891 continue; 892 } 893 894 /* 895 * Regardless of being on LRU, compound pages such as THP and 896 * hugetlbfs are not to be compacted. We can potentially save 897 * a lot of iterations if we skip them at once. The check is 898 * racy, but we can consider only valid values and the only 899 * danger is skipping too much. 900 */ 901 if (PageCompound(page)) { 902 const unsigned int order = compound_order(page); 903 904 if (likely(order < MAX_ORDER)) 905 low_pfn += (1UL << order) - 1; 906 goto isolate_fail; 907 } 908 909 /* 910 * Check may be lockless but that's ok as we recheck later. 911 * It's possible to migrate LRU and non-lru movable pages. 912 * Skip any other type of page 913 */ 914 if (!PageLRU(page)) { 915 /* 916 * __PageMovable can return false positive so we need 917 * to verify it under page_lock. 918 */ 919 if (unlikely(__PageMovable(page)) && 920 !PageIsolated(page)) { 921 if (locked) { 922 spin_unlock_irqrestore(&pgdat->lru_lock, 923 flags); 924 locked = false; 925 } 926 927 if (!isolate_movable_page(page, isolate_mode)) 928 goto isolate_success; 929 } 930 931 goto isolate_fail; 932 } 933 934 /* 935 * Migration will fail if an anonymous page is pinned in memory, 936 * so avoid taking lru_lock and isolating it unnecessarily in an 937 * admittedly racy check. 938 */ 939 if (!page_mapping(page) && 940 page_count(page) > page_mapcount(page)) 941 goto isolate_fail; 942 943 /* 944 * Only allow to migrate anonymous pages in GFP_NOFS context 945 * because those do not depend on fs locks. 946 */ 947 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page)) 948 goto isolate_fail; 949 950 /* If we already hold the lock, we can skip some rechecking */ 951 if (!locked) { 952 locked = compact_lock_irqsave(&pgdat->lru_lock, 953 &flags, cc); 954 955 /* Try get exclusive access under lock */ 956 if (!skip_updated) { 957 skip_updated = true; 958 if (test_and_set_skip(cc, page, low_pfn)) 959 goto isolate_abort; 960 } 961 962 /* Recheck PageLRU and PageCompound under lock */ 963 if (!PageLRU(page)) 964 goto isolate_fail; 965 966 /* 967 * Page become compound since the non-locked check, 968 * and it's on LRU. It can only be a THP so the order 969 * is safe to read and it's 0 for tail pages. 970 */ 971 if (unlikely(PageCompound(page))) { 972 low_pfn += (1UL << compound_order(page)) - 1; 973 goto isolate_fail; 974 } 975 } 976 977 lruvec = mem_cgroup_page_lruvec(page, pgdat); 978 979 /* Try isolate the page */ 980 if (__isolate_lru_page(page, isolate_mode) != 0) 981 goto isolate_fail; 982 983 VM_BUG_ON_PAGE(PageCompound(page), page); 984 985 /* Successfully isolated */ 986 del_page_from_lru_list(page, lruvec, page_lru(page)); 987 inc_node_page_state(page, 988 NR_ISOLATED_ANON + page_is_file_cache(page)); 989 990 isolate_success: 991 list_add(&page->lru, &cc->migratepages); 992 cc->nr_migratepages++; 993 nr_isolated++; 994 995 /* 996 * Avoid isolating too much unless this block is being 997 * rescanned (e.g. dirty/writeback pages, parallel allocation) 998 * or a lock is contended. For contention, isolate quickly to 999 * potentially remove one source of contention. 1000 */ 1001 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX && 1002 !cc->rescan && !cc->contended) { 1003 ++low_pfn; 1004 break; 1005 } 1006 1007 continue; 1008 isolate_fail: 1009 if (!skip_on_failure) 1010 continue; 1011 1012 /* 1013 * We have isolated some pages, but then failed. Release them 1014 * instead of migrating, as we cannot form the cc->order buddy 1015 * page anyway. 1016 */ 1017 if (nr_isolated) { 1018 if (locked) { 1019 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1020 locked = false; 1021 } 1022 putback_movable_pages(&cc->migratepages); 1023 cc->nr_migratepages = 0; 1024 nr_isolated = 0; 1025 } 1026 1027 if (low_pfn < next_skip_pfn) { 1028 low_pfn = next_skip_pfn - 1; 1029 /* 1030 * The check near the loop beginning would have updated 1031 * next_skip_pfn too, but this is a bit simpler. 1032 */ 1033 next_skip_pfn += 1UL << cc->order; 1034 } 1035 } 1036 1037 /* 1038 * The PageBuddy() check could have potentially brought us outside 1039 * the range to be scanned. 1040 */ 1041 if (unlikely(low_pfn > end_pfn)) 1042 low_pfn = end_pfn; 1043 1044 isolate_abort: 1045 if (locked) 1046 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1047 1048 /* 1049 * Updated the cached scanner pfn once the pageblock has been scanned 1050 * Pages will either be migrated in which case there is no point 1051 * scanning in the near future or migration failed in which case the 1052 * failure reason may persist. The block is marked for skipping if 1053 * there were no pages isolated in the block or if the block is 1054 * rescanned twice in a row. 1055 */ 1056 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) { 1057 if (valid_page && !skip_updated) 1058 set_pageblock_skip(valid_page); 1059 update_cached_migrate(cc, low_pfn); 1060 } 1061 1062 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1063 nr_scanned, nr_isolated); 1064 1065 fatal_pending: 1066 cc->total_migrate_scanned += nr_scanned; 1067 if (nr_isolated) 1068 count_compact_events(COMPACTISOLATED, nr_isolated); 1069 1070 return low_pfn; 1071 } 1072 1073 /** 1074 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1075 * @cc: Compaction control structure. 1076 * @start_pfn: The first PFN to start isolating. 1077 * @end_pfn: The one-past-last PFN. 1078 * 1079 * Returns zero if isolation fails fatally due to e.g. pending signal. 1080 * Otherwise, function returns one-past-the-last PFN of isolated page 1081 * (which may be greater than end_pfn if end fell in a middle of a THP page). 1082 */ 1083 unsigned long 1084 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1085 unsigned long end_pfn) 1086 { 1087 unsigned long pfn, block_start_pfn, block_end_pfn; 1088 1089 /* Scan block by block. First and last block may be incomplete */ 1090 pfn = start_pfn; 1091 block_start_pfn = pageblock_start_pfn(pfn); 1092 if (block_start_pfn < cc->zone->zone_start_pfn) 1093 block_start_pfn = cc->zone->zone_start_pfn; 1094 block_end_pfn = pageblock_end_pfn(pfn); 1095 1096 for (; pfn < end_pfn; pfn = block_end_pfn, 1097 block_start_pfn = block_end_pfn, 1098 block_end_pfn += pageblock_nr_pages) { 1099 1100 block_end_pfn = min(block_end_pfn, end_pfn); 1101 1102 if (!pageblock_pfn_to_page(block_start_pfn, 1103 block_end_pfn, cc->zone)) 1104 continue; 1105 1106 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 1107 ISOLATE_UNEVICTABLE); 1108 1109 if (!pfn) 1110 break; 1111 1112 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 1113 break; 1114 } 1115 1116 return pfn; 1117 } 1118 1119 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1120 #ifdef CONFIG_COMPACTION 1121 1122 static bool suitable_migration_source(struct compact_control *cc, 1123 struct page *page) 1124 { 1125 int block_mt; 1126 1127 if (pageblock_skip_persistent(page)) 1128 return false; 1129 1130 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1131 return true; 1132 1133 block_mt = get_pageblock_migratetype(page); 1134 1135 if (cc->migratetype == MIGRATE_MOVABLE) 1136 return is_migrate_movable(block_mt); 1137 else 1138 return block_mt == cc->migratetype; 1139 } 1140 1141 /* Returns true if the page is within a block suitable for migration to */ 1142 static bool suitable_migration_target(struct compact_control *cc, 1143 struct page *page) 1144 { 1145 /* If the page is a large free page, then disallow migration */ 1146 if (PageBuddy(page)) { 1147 /* 1148 * We are checking page_order without zone->lock taken. But 1149 * the only small danger is that we skip a potentially suitable 1150 * pageblock, so it's not worth to check order for valid range. 1151 */ 1152 if (page_order_unsafe(page) >= pageblock_order) 1153 return false; 1154 } 1155 1156 if (cc->ignore_block_suitable) 1157 return true; 1158 1159 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1160 if (is_migrate_movable(get_pageblock_migratetype(page))) 1161 return true; 1162 1163 /* Otherwise skip the block */ 1164 return false; 1165 } 1166 1167 static inline unsigned int 1168 freelist_scan_limit(struct compact_control *cc) 1169 { 1170 unsigned short shift = BITS_PER_LONG - 1; 1171 1172 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1173 } 1174 1175 /* 1176 * Test whether the free scanner has reached the same or lower pageblock than 1177 * the migration scanner, and compaction should thus terminate. 1178 */ 1179 static inline bool compact_scanners_met(struct compact_control *cc) 1180 { 1181 return (cc->free_pfn >> pageblock_order) 1182 <= (cc->migrate_pfn >> pageblock_order); 1183 } 1184 1185 /* 1186 * Used when scanning for a suitable migration target which scans freelists 1187 * in reverse. Reorders the list such as the unscanned pages are scanned 1188 * first on the next iteration of the free scanner 1189 */ 1190 static void 1191 move_freelist_head(struct list_head *freelist, struct page *freepage) 1192 { 1193 LIST_HEAD(sublist); 1194 1195 if (!list_is_last(freelist, &freepage->lru)) { 1196 list_cut_before(&sublist, freelist, &freepage->lru); 1197 if (!list_empty(&sublist)) 1198 list_splice_tail(&sublist, freelist); 1199 } 1200 } 1201 1202 /* 1203 * Similar to move_freelist_head except used by the migration scanner 1204 * when scanning forward. It's possible for these list operations to 1205 * move against each other if they search the free list exactly in 1206 * lockstep. 1207 */ 1208 static void 1209 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1210 { 1211 LIST_HEAD(sublist); 1212 1213 if (!list_is_first(freelist, &freepage->lru)) { 1214 list_cut_position(&sublist, freelist, &freepage->lru); 1215 if (!list_empty(&sublist)) 1216 list_splice_tail(&sublist, freelist); 1217 } 1218 } 1219 1220 static void 1221 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated) 1222 { 1223 unsigned long start_pfn, end_pfn; 1224 struct page *page = pfn_to_page(pfn); 1225 1226 /* Do not search around if there are enough pages already */ 1227 if (cc->nr_freepages >= cc->nr_migratepages) 1228 return; 1229 1230 /* Minimise scanning during async compaction */ 1231 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1232 return; 1233 1234 /* Pageblock boundaries */ 1235 start_pfn = pageblock_start_pfn(pfn); 1236 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1; 1237 1238 /* Scan before */ 1239 if (start_pfn != pfn) { 1240 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false); 1241 if (cc->nr_freepages >= cc->nr_migratepages) 1242 return; 1243 } 1244 1245 /* Scan after */ 1246 start_pfn = pfn + nr_isolated; 1247 if (start_pfn < end_pfn) 1248 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1249 1250 /* Skip this pageblock in the future as it's full or nearly full */ 1251 if (cc->nr_freepages < cc->nr_migratepages) 1252 set_pageblock_skip(page); 1253 } 1254 1255 /* Search orders in round-robin fashion */ 1256 static int next_search_order(struct compact_control *cc, int order) 1257 { 1258 order--; 1259 if (order < 0) 1260 order = cc->order - 1; 1261 1262 /* Search wrapped around? */ 1263 if (order == cc->search_order) { 1264 cc->search_order--; 1265 if (cc->search_order < 0) 1266 cc->search_order = cc->order - 1; 1267 return -1; 1268 } 1269 1270 return order; 1271 } 1272 1273 static unsigned long 1274 fast_isolate_freepages(struct compact_control *cc) 1275 { 1276 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1); 1277 unsigned int nr_scanned = 0; 1278 unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0; 1279 unsigned long nr_isolated = 0; 1280 unsigned long distance; 1281 struct page *page = NULL; 1282 bool scan_start = false; 1283 int order; 1284 1285 /* Full compaction passes in a negative order */ 1286 if (cc->order <= 0) 1287 return cc->free_pfn; 1288 1289 /* 1290 * If starting the scan, use a deeper search and use the highest 1291 * PFN found if a suitable one is not found. 1292 */ 1293 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1294 limit = pageblock_nr_pages >> 1; 1295 scan_start = true; 1296 } 1297 1298 /* 1299 * Preferred point is in the top quarter of the scan space but take 1300 * a pfn from the top half if the search is problematic. 1301 */ 1302 distance = (cc->free_pfn - cc->migrate_pfn); 1303 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1304 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1305 1306 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1307 low_pfn = min_pfn; 1308 1309 /* 1310 * Search starts from the last successful isolation order or the next 1311 * order to search after a previous failure 1312 */ 1313 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1314 1315 for (order = cc->search_order; 1316 !page && order >= 0; 1317 order = next_search_order(cc, order)) { 1318 struct free_area *area = &cc->zone->free_area[order]; 1319 struct list_head *freelist; 1320 struct page *freepage; 1321 unsigned long flags; 1322 unsigned int order_scanned = 0; 1323 1324 if (!area->nr_free) 1325 continue; 1326 1327 spin_lock_irqsave(&cc->zone->lock, flags); 1328 freelist = &area->free_list[MIGRATE_MOVABLE]; 1329 list_for_each_entry_reverse(freepage, freelist, lru) { 1330 unsigned long pfn; 1331 1332 order_scanned++; 1333 nr_scanned++; 1334 pfn = page_to_pfn(freepage); 1335 1336 if (pfn >= highest) 1337 highest = pageblock_start_pfn(pfn); 1338 1339 if (pfn >= low_pfn) { 1340 cc->fast_search_fail = 0; 1341 cc->search_order = order; 1342 page = freepage; 1343 break; 1344 } 1345 1346 if (pfn >= min_pfn && pfn > high_pfn) { 1347 high_pfn = pfn; 1348 1349 /* Shorten the scan if a candidate is found */ 1350 limit >>= 1; 1351 } 1352 1353 if (order_scanned >= limit) 1354 break; 1355 } 1356 1357 /* Use a minimum pfn if a preferred one was not found */ 1358 if (!page && high_pfn) { 1359 page = pfn_to_page(high_pfn); 1360 1361 /* Update freepage for the list reorder below */ 1362 freepage = page; 1363 } 1364 1365 /* Reorder to so a future search skips recent pages */ 1366 move_freelist_head(freelist, freepage); 1367 1368 /* Isolate the page if available */ 1369 if (page) { 1370 if (__isolate_free_page(page, order)) { 1371 set_page_private(page, order); 1372 nr_isolated = 1 << order; 1373 cc->nr_freepages += nr_isolated; 1374 list_add_tail(&page->lru, &cc->freepages); 1375 count_compact_events(COMPACTISOLATED, nr_isolated); 1376 } else { 1377 /* If isolation fails, abort the search */ 1378 order = cc->search_order + 1; 1379 page = NULL; 1380 } 1381 } 1382 1383 spin_unlock_irqrestore(&cc->zone->lock, flags); 1384 1385 /* 1386 * Smaller scan on next order so the total scan ig related 1387 * to freelist_scan_limit. 1388 */ 1389 if (order_scanned >= limit) 1390 limit = min(1U, limit >> 1); 1391 } 1392 1393 if (!page) { 1394 cc->fast_search_fail++; 1395 if (scan_start) { 1396 /* 1397 * Use the highest PFN found above min. If one was 1398 * not found, be pessemistic for direct compaction 1399 * and use the min mark. 1400 */ 1401 if (highest) { 1402 page = pfn_to_page(highest); 1403 cc->free_pfn = highest; 1404 } else { 1405 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1406 page = pfn_to_page(min_pfn); 1407 cc->free_pfn = min_pfn; 1408 } 1409 } 1410 } 1411 } 1412 1413 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1414 highest -= pageblock_nr_pages; 1415 cc->zone->compact_cached_free_pfn = highest; 1416 } 1417 1418 cc->total_free_scanned += nr_scanned; 1419 if (!page) 1420 return cc->free_pfn; 1421 1422 low_pfn = page_to_pfn(page); 1423 fast_isolate_around(cc, low_pfn, nr_isolated); 1424 return low_pfn; 1425 } 1426 1427 /* 1428 * Based on information in the current compact_control, find blocks 1429 * suitable for isolating free pages from and then isolate them. 1430 */ 1431 static void isolate_freepages(struct compact_control *cc) 1432 { 1433 struct zone *zone = cc->zone; 1434 struct page *page; 1435 unsigned long block_start_pfn; /* start of current pageblock */ 1436 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1437 unsigned long block_end_pfn; /* end of current pageblock */ 1438 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1439 struct list_head *freelist = &cc->freepages; 1440 unsigned int stride; 1441 1442 /* Try a small search of the free lists for a candidate */ 1443 isolate_start_pfn = fast_isolate_freepages(cc); 1444 if (cc->nr_freepages) 1445 goto splitmap; 1446 1447 /* 1448 * Initialise the free scanner. The starting point is where we last 1449 * successfully isolated from, zone-cached value, or the end of the 1450 * zone when isolating for the first time. For looping we also need 1451 * this pfn aligned down to the pageblock boundary, because we do 1452 * block_start_pfn -= pageblock_nr_pages in the for loop. 1453 * For ending point, take care when isolating in last pageblock of a 1454 * a zone which ends in the middle of a pageblock. 1455 * The low boundary is the end of the pageblock the migration scanner 1456 * is using. 1457 */ 1458 isolate_start_pfn = cc->free_pfn; 1459 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1460 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1461 zone_end_pfn(zone)); 1462 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1463 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1464 1465 /* 1466 * Isolate free pages until enough are available to migrate the 1467 * pages on cc->migratepages. We stop searching if the migrate 1468 * and free page scanners meet or enough free pages are isolated. 1469 */ 1470 for (; block_start_pfn >= low_pfn; 1471 block_end_pfn = block_start_pfn, 1472 block_start_pfn -= pageblock_nr_pages, 1473 isolate_start_pfn = block_start_pfn) { 1474 unsigned long nr_isolated; 1475 1476 /* 1477 * This can iterate a massively long zone without finding any 1478 * suitable migration targets, so periodically check resched. 1479 */ 1480 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1481 cond_resched(); 1482 1483 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1484 zone); 1485 if (!page) 1486 continue; 1487 1488 /* Check the block is suitable for migration */ 1489 if (!suitable_migration_target(cc, page)) 1490 continue; 1491 1492 /* If isolation recently failed, do not retry */ 1493 if (!isolation_suitable(cc, page)) 1494 continue; 1495 1496 /* Found a block suitable for isolating free pages from. */ 1497 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1498 block_end_pfn, freelist, stride, false); 1499 1500 /* Update the skip hint if the full pageblock was scanned */ 1501 if (isolate_start_pfn == block_end_pfn) 1502 update_pageblock_skip(cc, page, block_start_pfn); 1503 1504 /* Are enough freepages isolated? */ 1505 if (cc->nr_freepages >= cc->nr_migratepages) { 1506 if (isolate_start_pfn >= block_end_pfn) { 1507 /* 1508 * Restart at previous pageblock if more 1509 * freepages can be isolated next time. 1510 */ 1511 isolate_start_pfn = 1512 block_start_pfn - pageblock_nr_pages; 1513 } 1514 break; 1515 } else if (isolate_start_pfn < block_end_pfn) { 1516 /* 1517 * If isolation failed early, do not continue 1518 * needlessly. 1519 */ 1520 break; 1521 } 1522 1523 /* Adjust stride depending on isolation */ 1524 if (nr_isolated) { 1525 stride = 1; 1526 continue; 1527 } 1528 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1529 } 1530 1531 /* 1532 * Record where the free scanner will restart next time. Either we 1533 * broke from the loop and set isolate_start_pfn based on the last 1534 * call to isolate_freepages_block(), or we met the migration scanner 1535 * and the loop terminated due to isolate_start_pfn < low_pfn 1536 */ 1537 cc->free_pfn = isolate_start_pfn; 1538 1539 splitmap: 1540 /* __isolate_free_page() does not map the pages */ 1541 split_map_pages(freelist); 1542 } 1543 1544 /* 1545 * This is a migrate-callback that "allocates" freepages by taking pages 1546 * from the isolated freelists in the block we are migrating to. 1547 */ 1548 static struct page *compaction_alloc(struct page *migratepage, 1549 unsigned long data) 1550 { 1551 struct compact_control *cc = (struct compact_control *)data; 1552 struct page *freepage; 1553 1554 if (list_empty(&cc->freepages)) { 1555 isolate_freepages(cc); 1556 1557 if (list_empty(&cc->freepages)) 1558 return NULL; 1559 } 1560 1561 freepage = list_entry(cc->freepages.next, struct page, lru); 1562 list_del(&freepage->lru); 1563 cc->nr_freepages--; 1564 1565 return freepage; 1566 } 1567 1568 /* 1569 * This is a migrate-callback that "frees" freepages back to the isolated 1570 * freelist. All pages on the freelist are from the same zone, so there is no 1571 * special handling needed for NUMA. 1572 */ 1573 static void compaction_free(struct page *page, unsigned long data) 1574 { 1575 struct compact_control *cc = (struct compact_control *)data; 1576 1577 list_add(&page->lru, &cc->freepages); 1578 cc->nr_freepages++; 1579 } 1580 1581 /* possible outcome of isolate_migratepages */ 1582 typedef enum { 1583 ISOLATE_ABORT, /* Abort compaction now */ 1584 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1585 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1586 } isolate_migrate_t; 1587 1588 /* 1589 * Allow userspace to control policy on scanning the unevictable LRU for 1590 * compactable pages. 1591 */ 1592 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1593 1594 static inline void 1595 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1596 { 1597 if (cc->fast_start_pfn == ULONG_MAX) 1598 return; 1599 1600 if (!cc->fast_start_pfn) 1601 cc->fast_start_pfn = pfn; 1602 1603 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1604 } 1605 1606 static inline unsigned long 1607 reinit_migrate_pfn(struct compact_control *cc) 1608 { 1609 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1610 return cc->migrate_pfn; 1611 1612 cc->migrate_pfn = cc->fast_start_pfn; 1613 cc->fast_start_pfn = ULONG_MAX; 1614 1615 return cc->migrate_pfn; 1616 } 1617 1618 /* 1619 * Briefly search the free lists for a migration source that already has 1620 * some free pages to reduce the number of pages that need migration 1621 * before a pageblock is free. 1622 */ 1623 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1624 { 1625 unsigned int limit = freelist_scan_limit(cc); 1626 unsigned int nr_scanned = 0; 1627 unsigned long distance; 1628 unsigned long pfn = cc->migrate_pfn; 1629 unsigned long high_pfn; 1630 int order; 1631 1632 /* Skip hints are relied on to avoid repeats on the fast search */ 1633 if (cc->ignore_skip_hint) 1634 return pfn; 1635 1636 /* 1637 * If the migrate_pfn is not at the start of a zone or the start 1638 * of a pageblock then assume this is a continuation of a previous 1639 * scan restarted due to COMPACT_CLUSTER_MAX. 1640 */ 1641 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1642 return pfn; 1643 1644 /* 1645 * For smaller orders, just linearly scan as the number of pages 1646 * to migrate should be relatively small and does not necessarily 1647 * justify freeing up a large block for a small allocation. 1648 */ 1649 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1650 return pfn; 1651 1652 /* 1653 * Only allow kcompactd and direct requests for movable pages to 1654 * quickly clear out a MOVABLE pageblock for allocation. This 1655 * reduces the risk that a large movable pageblock is freed for 1656 * an unmovable/reclaimable small allocation. 1657 */ 1658 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1659 return pfn; 1660 1661 /* 1662 * When starting the migration scanner, pick any pageblock within the 1663 * first half of the search space. Otherwise try and pick a pageblock 1664 * within the first eighth to reduce the chances that a migration 1665 * target later becomes a source. 1666 */ 1667 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1668 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1669 distance >>= 2; 1670 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1671 1672 for (order = cc->order - 1; 1673 order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit; 1674 order--) { 1675 struct free_area *area = &cc->zone->free_area[order]; 1676 struct list_head *freelist; 1677 unsigned long flags; 1678 struct page *freepage; 1679 1680 if (!area->nr_free) 1681 continue; 1682 1683 spin_lock_irqsave(&cc->zone->lock, flags); 1684 freelist = &area->free_list[MIGRATE_MOVABLE]; 1685 list_for_each_entry(freepage, freelist, lru) { 1686 unsigned long free_pfn; 1687 1688 nr_scanned++; 1689 free_pfn = page_to_pfn(freepage); 1690 if (free_pfn < high_pfn) { 1691 /* 1692 * Avoid if skipped recently. Ideally it would 1693 * move to the tail but even safe iteration of 1694 * the list assumes an entry is deleted, not 1695 * reordered. 1696 */ 1697 if (get_pageblock_skip(freepage)) { 1698 if (list_is_last(freelist, &freepage->lru)) 1699 break; 1700 1701 continue; 1702 } 1703 1704 /* Reorder to so a future search skips recent pages */ 1705 move_freelist_tail(freelist, freepage); 1706 1707 update_fast_start_pfn(cc, free_pfn); 1708 pfn = pageblock_start_pfn(free_pfn); 1709 cc->fast_search_fail = 0; 1710 set_pageblock_skip(freepage); 1711 break; 1712 } 1713 1714 if (nr_scanned >= limit) { 1715 cc->fast_search_fail++; 1716 move_freelist_tail(freelist, freepage); 1717 break; 1718 } 1719 } 1720 spin_unlock_irqrestore(&cc->zone->lock, flags); 1721 } 1722 1723 cc->total_migrate_scanned += nr_scanned; 1724 1725 /* 1726 * If fast scanning failed then use a cached entry for a page block 1727 * that had free pages as the basis for starting a linear scan. 1728 */ 1729 if (pfn == cc->migrate_pfn) 1730 pfn = reinit_migrate_pfn(cc); 1731 1732 return pfn; 1733 } 1734 1735 /* 1736 * Isolate all pages that can be migrated from the first suitable block, 1737 * starting at the block pointed to by the migrate scanner pfn within 1738 * compact_control. 1739 */ 1740 static isolate_migrate_t isolate_migratepages(struct zone *zone, 1741 struct compact_control *cc) 1742 { 1743 unsigned long block_start_pfn; 1744 unsigned long block_end_pfn; 1745 unsigned long low_pfn; 1746 struct page *page; 1747 const isolate_mode_t isolate_mode = 1748 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1749 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1750 bool fast_find_block; 1751 1752 /* 1753 * Start at where we last stopped, or beginning of the zone as 1754 * initialized by compact_zone(). The first failure will use 1755 * the lowest PFN as the starting point for linear scanning. 1756 */ 1757 low_pfn = fast_find_migrateblock(cc); 1758 block_start_pfn = pageblock_start_pfn(low_pfn); 1759 if (block_start_pfn < zone->zone_start_pfn) 1760 block_start_pfn = zone->zone_start_pfn; 1761 1762 /* 1763 * fast_find_migrateblock marks a pageblock skipped so to avoid 1764 * the isolation_suitable check below, check whether the fast 1765 * search was successful. 1766 */ 1767 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1768 1769 /* Only scan within a pageblock boundary */ 1770 block_end_pfn = pageblock_end_pfn(low_pfn); 1771 1772 /* 1773 * Iterate over whole pageblocks until we find the first suitable. 1774 * Do not cross the free scanner. 1775 */ 1776 for (; block_end_pfn <= cc->free_pfn; 1777 fast_find_block = false, 1778 low_pfn = block_end_pfn, 1779 block_start_pfn = block_end_pfn, 1780 block_end_pfn += pageblock_nr_pages) { 1781 1782 /* 1783 * This can potentially iterate a massively long zone with 1784 * many pageblocks unsuitable, so periodically check if we 1785 * need to schedule. 1786 */ 1787 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1788 cond_resched(); 1789 1790 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1791 zone); 1792 if (!page) 1793 continue; 1794 1795 /* 1796 * If isolation recently failed, do not retry. Only check the 1797 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1798 * to be visited multiple times. Assume skip was checked 1799 * before making it "skip" so other compaction instances do 1800 * not scan the same block. 1801 */ 1802 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) && 1803 !fast_find_block && !isolation_suitable(cc, page)) 1804 continue; 1805 1806 /* 1807 * For async compaction, also only scan in MOVABLE blocks 1808 * without huge pages. Async compaction is optimistic to see 1809 * if the minimum amount of work satisfies the allocation. 1810 * The cached PFN is updated as it's possible that all 1811 * remaining blocks between source and target are unsuitable 1812 * and the compaction scanners fail to meet. 1813 */ 1814 if (!suitable_migration_source(cc, page)) { 1815 update_cached_migrate(cc, block_end_pfn); 1816 continue; 1817 } 1818 1819 /* Perform the isolation */ 1820 low_pfn = isolate_migratepages_block(cc, low_pfn, 1821 block_end_pfn, isolate_mode); 1822 1823 if (!low_pfn) 1824 return ISOLATE_ABORT; 1825 1826 /* 1827 * Either we isolated something and proceed with migration. Or 1828 * we failed and compact_zone should decide if we should 1829 * continue or not. 1830 */ 1831 break; 1832 } 1833 1834 /* Record where migration scanner will be restarted. */ 1835 cc->migrate_pfn = low_pfn; 1836 1837 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1838 } 1839 1840 /* 1841 * order == -1 is expected when compacting via 1842 * /proc/sys/vm/compact_memory 1843 */ 1844 static inline bool is_via_compact_memory(int order) 1845 { 1846 return order == -1; 1847 } 1848 1849 static enum compact_result __compact_finished(struct compact_control *cc) 1850 { 1851 unsigned int order; 1852 const int migratetype = cc->migratetype; 1853 int ret; 1854 1855 /* Compaction run completes if the migrate and free scanner meet */ 1856 if (compact_scanners_met(cc)) { 1857 /* Let the next compaction start anew. */ 1858 reset_cached_positions(cc->zone); 1859 1860 /* 1861 * Mark that the PG_migrate_skip information should be cleared 1862 * by kswapd when it goes to sleep. kcompactd does not set the 1863 * flag itself as the decision to be clear should be directly 1864 * based on an allocation request. 1865 */ 1866 if (cc->direct_compaction) 1867 cc->zone->compact_blockskip_flush = true; 1868 1869 if (cc->whole_zone) 1870 return COMPACT_COMPLETE; 1871 else 1872 return COMPACT_PARTIAL_SKIPPED; 1873 } 1874 1875 if (is_via_compact_memory(cc->order)) 1876 return COMPACT_CONTINUE; 1877 1878 /* 1879 * Always finish scanning a pageblock to reduce the possibility of 1880 * fallbacks in the future. This is particularly important when 1881 * migration source is unmovable/reclaimable but it's not worth 1882 * special casing. 1883 */ 1884 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages)) 1885 return COMPACT_CONTINUE; 1886 1887 /* Direct compactor: Is a suitable page free? */ 1888 ret = COMPACT_NO_SUITABLE_PAGE; 1889 for (order = cc->order; order < MAX_ORDER; order++) { 1890 struct free_area *area = &cc->zone->free_area[order]; 1891 bool can_steal; 1892 1893 /* Job done if page is free of the right migratetype */ 1894 if (!free_area_empty(area, migratetype)) 1895 return COMPACT_SUCCESS; 1896 1897 #ifdef CONFIG_CMA 1898 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 1899 if (migratetype == MIGRATE_MOVABLE && 1900 !free_area_empty(area, MIGRATE_CMA)) 1901 return COMPACT_SUCCESS; 1902 #endif 1903 /* 1904 * Job done if allocation would steal freepages from 1905 * other migratetype buddy lists. 1906 */ 1907 if (find_suitable_fallback(area, order, migratetype, 1908 true, &can_steal) != -1) { 1909 1910 /* movable pages are OK in any pageblock */ 1911 if (migratetype == MIGRATE_MOVABLE) 1912 return COMPACT_SUCCESS; 1913 1914 /* 1915 * We are stealing for a non-movable allocation. Make 1916 * sure we finish compacting the current pageblock 1917 * first so it is as free as possible and we won't 1918 * have to steal another one soon. This only applies 1919 * to sync compaction, as async compaction operates 1920 * on pageblocks of the same migratetype. 1921 */ 1922 if (cc->mode == MIGRATE_ASYNC || 1923 IS_ALIGNED(cc->migrate_pfn, 1924 pageblock_nr_pages)) { 1925 return COMPACT_SUCCESS; 1926 } 1927 1928 ret = COMPACT_CONTINUE; 1929 break; 1930 } 1931 } 1932 1933 if (cc->contended || fatal_signal_pending(current)) 1934 ret = COMPACT_CONTENDED; 1935 1936 return ret; 1937 } 1938 1939 static enum compact_result compact_finished(struct compact_control *cc) 1940 { 1941 int ret; 1942 1943 ret = __compact_finished(cc); 1944 trace_mm_compaction_finished(cc->zone, cc->order, ret); 1945 if (ret == COMPACT_NO_SUITABLE_PAGE) 1946 ret = COMPACT_CONTINUE; 1947 1948 return ret; 1949 } 1950 1951 /* 1952 * compaction_suitable: Is this suitable to run compaction on this zone now? 1953 * Returns 1954 * COMPACT_SKIPPED - If there are too few free pages for compaction 1955 * COMPACT_SUCCESS - If the allocation would succeed without compaction 1956 * COMPACT_CONTINUE - If compaction should run now 1957 */ 1958 static enum compact_result __compaction_suitable(struct zone *zone, int order, 1959 unsigned int alloc_flags, 1960 int classzone_idx, 1961 unsigned long wmark_target) 1962 { 1963 unsigned long watermark; 1964 1965 if (is_via_compact_memory(order)) 1966 return COMPACT_CONTINUE; 1967 1968 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 1969 /* 1970 * If watermarks for high-order allocation are already met, there 1971 * should be no need for compaction at all. 1972 */ 1973 if (zone_watermark_ok(zone, order, watermark, classzone_idx, 1974 alloc_flags)) 1975 return COMPACT_SUCCESS; 1976 1977 /* 1978 * Watermarks for order-0 must be met for compaction to be able to 1979 * isolate free pages for migration targets. This means that the 1980 * watermark and alloc_flags have to match, or be more pessimistic than 1981 * the check in __isolate_free_page(). We don't use the direct 1982 * compactor's alloc_flags, as they are not relevant for freepage 1983 * isolation. We however do use the direct compactor's classzone_idx to 1984 * skip over zones where lowmem reserves would prevent allocation even 1985 * if compaction succeeds. 1986 * For costly orders, we require low watermark instead of min for 1987 * compaction to proceed to increase its chances. 1988 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 1989 * suitable migration targets 1990 */ 1991 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 1992 low_wmark_pages(zone) : min_wmark_pages(zone); 1993 watermark += compact_gap(order); 1994 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx, 1995 ALLOC_CMA, wmark_target)) 1996 return COMPACT_SKIPPED; 1997 1998 return COMPACT_CONTINUE; 1999 } 2000 2001 enum compact_result compaction_suitable(struct zone *zone, int order, 2002 unsigned int alloc_flags, 2003 int classzone_idx) 2004 { 2005 enum compact_result ret; 2006 int fragindex; 2007 2008 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx, 2009 zone_page_state(zone, NR_FREE_PAGES)); 2010 /* 2011 * fragmentation index determines if allocation failures are due to 2012 * low memory or external fragmentation 2013 * 2014 * index of -1000 would imply allocations might succeed depending on 2015 * watermarks, but we already failed the high-order watermark check 2016 * index towards 0 implies failure is due to lack of memory 2017 * index towards 1000 implies failure is due to fragmentation 2018 * 2019 * Only compact if a failure would be due to fragmentation. Also 2020 * ignore fragindex for non-costly orders where the alternative to 2021 * a successful reclaim/compaction is OOM. Fragindex and the 2022 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2023 * excessive compaction for costly orders, but it should not be at the 2024 * expense of system stability. 2025 */ 2026 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2027 fragindex = fragmentation_index(zone, order); 2028 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2029 ret = COMPACT_NOT_SUITABLE_ZONE; 2030 } 2031 2032 trace_mm_compaction_suitable(zone, order, ret); 2033 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2034 ret = COMPACT_SKIPPED; 2035 2036 return ret; 2037 } 2038 2039 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2040 int alloc_flags) 2041 { 2042 struct zone *zone; 2043 struct zoneref *z; 2044 2045 /* 2046 * Make sure at least one zone would pass __compaction_suitable if we continue 2047 * retrying the reclaim. 2048 */ 2049 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 2050 ac->nodemask) { 2051 unsigned long available; 2052 enum compact_result compact_result; 2053 2054 /* 2055 * Do not consider all the reclaimable memory because we do not 2056 * want to trash just for a single high order allocation which 2057 * is even not guaranteed to appear even if __compaction_suitable 2058 * is happy about the watermark check. 2059 */ 2060 available = zone_reclaimable_pages(zone) / order; 2061 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2062 compact_result = __compaction_suitable(zone, order, alloc_flags, 2063 ac_classzone_idx(ac), available); 2064 if (compact_result != COMPACT_SKIPPED) 2065 return true; 2066 } 2067 2068 return false; 2069 } 2070 2071 static enum compact_result 2072 compact_zone(struct compact_control *cc, struct capture_control *capc) 2073 { 2074 enum compact_result ret; 2075 unsigned long start_pfn = cc->zone->zone_start_pfn; 2076 unsigned long end_pfn = zone_end_pfn(cc->zone); 2077 unsigned long last_migrated_pfn; 2078 const bool sync = cc->mode != MIGRATE_ASYNC; 2079 bool update_cached; 2080 2081 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask); 2082 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2083 cc->classzone_idx); 2084 /* Compaction is likely to fail */ 2085 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2086 return ret; 2087 2088 /* huh, compaction_suitable is returning something unexpected */ 2089 VM_BUG_ON(ret != COMPACT_CONTINUE); 2090 2091 /* 2092 * Clear pageblock skip if there were failures recently and compaction 2093 * is about to be retried after being deferred. 2094 */ 2095 if (compaction_restarting(cc->zone, cc->order)) 2096 __reset_isolation_suitable(cc->zone); 2097 2098 /* 2099 * Setup to move all movable pages to the end of the zone. Used cached 2100 * information on where the scanners should start (unless we explicitly 2101 * want to compact the whole zone), but check that it is initialised 2102 * by ensuring the values are within zone boundaries. 2103 */ 2104 cc->fast_start_pfn = 0; 2105 if (cc->whole_zone) { 2106 cc->migrate_pfn = start_pfn; 2107 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2108 } else { 2109 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2110 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2111 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2112 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2113 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2114 } 2115 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2116 cc->migrate_pfn = start_pfn; 2117 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2118 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2119 } 2120 2121 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2122 cc->whole_zone = true; 2123 } 2124 2125 last_migrated_pfn = 0; 2126 2127 /* 2128 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2129 * the basis that some migrations will fail in ASYNC mode. However, 2130 * if the cached PFNs match and pageblocks are skipped due to having 2131 * no isolation candidates, then the sync state does not matter. 2132 * Until a pageblock with isolation candidates is found, keep the 2133 * cached PFNs in sync to avoid revisiting the same blocks. 2134 */ 2135 update_cached = !sync && 2136 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2137 2138 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 2139 cc->free_pfn, end_pfn, sync); 2140 2141 migrate_prep_local(); 2142 2143 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2144 int err; 2145 unsigned long start_pfn = cc->migrate_pfn; 2146 2147 /* 2148 * Avoid multiple rescans which can happen if a page cannot be 2149 * isolated (dirty/writeback in async mode) or if the migrated 2150 * pages are being allocated before the pageblock is cleared. 2151 * The first rescan will capture the entire pageblock for 2152 * migration. If it fails, it'll be marked skip and scanning 2153 * will proceed as normal. 2154 */ 2155 cc->rescan = false; 2156 if (pageblock_start_pfn(last_migrated_pfn) == 2157 pageblock_start_pfn(start_pfn)) { 2158 cc->rescan = true; 2159 } 2160 2161 switch (isolate_migratepages(cc->zone, cc)) { 2162 case ISOLATE_ABORT: 2163 ret = COMPACT_CONTENDED; 2164 putback_movable_pages(&cc->migratepages); 2165 cc->nr_migratepages = 0; 2166 last_migrated_pfn = 0; 2167 goto out; 2168 case ISOLATE_NONE: 2169 if (update_cached) { 2170 cc->zone->compact_cached_migrate_pfn[1] = 2171 cc->zone->compact_cached_migrate_pfn[0]; 2172 } 2173 2174 /* 2175 * We haven't isolated and migrated anything, but 2176 * there might still be unflushed migrations from 2177 * previous cc->order aligned block. 2178 */ 2179 goto check_drain; 2180 case ISOLATE_SUCCESS: 2181 update_cached = false; 2182 last_migrated_pfn = start_pfn; 2183 ; 2184 } 2185 2186 err = migrate_pages(&cc->migratepages, compaction_alloc, 2187 compaction_free, (unsigned long)cc, cc->mode, 2188 MR_COMPACTION); 2189 2190 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 2191 &cc->migratepages); 2192 2193 /* All pages were either migrated or will be released */ 2194 cc->nr_migratepages = 0; 2195 if (err) { 2196 putback_movable_pages(&cc->migratepages); 2197 /* 2198 * migrate_pages() may return -ENOMEM when scanners meet 2199 * and we want compact_finished() to detect it 2200 */ 2201 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2202 ret = COMPACT_CONTENDED; 2203 goto out; 2204 } 2205 /* 2206 * We failed to migrate at least one page in the current 2207 * order-aligned block, so skip the rest of it. 2208 */ 2209 if (cc->direct_compaction && 2210 (cc->mode == MIGRATE_ASYNC)) { 2211 cc->migrate_pfn = block_end_pfn( 2212 cc->migrate_pfn - 1, cc->order); 2213 /* Draining pcplists is useless in this case */ 2214 last_migrated_pfn = 0; 2215 } 2216 } 2217 2218 check_drain: 2219 /* 2220 * Has the migration scanner moved away from the previous 2221 * cc->order aligned block where we migrated from? If yes, 2222 * flush the pages that were freed, so that they can merge and 2223 * compact_finished() can detect immediately if allocation 2224 * would succeed. 2225 */ 2226 if (cc->order > 0 && last_migrated_pfn) { 2227 int cpu; 2228 unsigned long current_block_start = 2229 block_start_pfn(cc->migrate_pfn, cc->order); 2230 2231 if (last_migrated_pfn < current_block_start) { 2232 cpu = get_cpu(); 2233 lru_add_drain_cpu(cpu); 2234 drain_local_pages(cc->zone); 2235 put_cpu(); 2236 /* No more flushing until we migrate again */ 2237 last_migrated_pfn = 0; 2238 } 2239 } 2240 2241 /* Stop if a page has been captured */ 2242 if (capc && capc->page) { 2243 ret = COMPACT_SUCCESS; 2244 break; 2245 } 2246 } 2247 2248 out: 2249 /* 2250 * Release free pages and update where the free scanner should restart, 2251 * so we don't leave any returned pages behind in the next attempt. 2252 */ 2253 if (cc->nr_freepages > 0) { 2254 unsigned long free_pfn = release_freepages(&cc->freepages); 2255 2256 cc->nr_freepages = 0; 2257 VM_BUG_ON(free_pfn == 0); 2258 /* The cached pfn is always the first in a pageblock */ 2259 free_pfn = pageblock_start_pfn(free_pfn); 2260 /* 2261 * Only go back, not forward. The cached pfn might have been 2262 * already reset to zone end in compact_finished() 2263 */ 2264 if (free_pfn > cc->zone->compact_cached_free_pfn) 2265 cc->zone->compact_cached_free_pfn = free_pfn; 2266 } 2267 2268 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2269 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2270 2271 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 2272 cc->free_pfn, end_pfn, sync, ret); 2273 2274 return ret; 2275 } 2276 2277 static enum compact_result compact_zone_order(struct zone *zone, int order, 2278 gfp_t gfp_mask, enum compact_priority prio, 2279 unsigned int alloc_flags, int classzone_idx, 2280 struct page **capture) 2281 { 2282 enum compact_result ret; 2283 struct compact_control cc = { 2284 .nr_freepages = 0, 2285 .nr_migratepages = 0, 2286 .total_migrate_scanned = 0, 2287 .total_free_scanned = 0, 2288 .order = order, 2289 .search_order = order, 2290 .gfp_mask = gfp_mask, 2291 .zone = zone, 2292 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2293 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2294 .alloc_flags = alloc_flags, 2295 .classzone_idx = classzone_idx, 2296 .direct_compaction = true, 2297 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2298 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2299 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2300 }; 2301 struct capture_control capc = { 2302 .cc = &cc, 2303 .page = NULL, 2304 }; 2305 2306 if (capture) 2307 current->capture_control = &capc; 2308 INIT_LIST_HEAD(&cc.freepages); 2309 INIT_LIST_HEAD(&cc.migratepages); 2310 2311 ret = compact_zone(&cc, &capc); 2312 2313 VM_BUG_ON(!list_empty(&cc.freepages)); 2314 VM_BUG_ON(!list_empty(&cc.migratepages)); 2315 2316 *capture = capc.page; 2317 current->capture_control = NULL; 2318 2319 return ret; 2320 } 2321 2322 int sysctl_extfrag_threshold = 500; 2323 2324 /** 2325 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2326 * @gfp_mask: The GFP mask of the current allocation 2327 * @order: The order of the current allocation 2328 * @alloc_flags: The allocation flags of the current allocation 2329 * @ac: The context of current allocation 2330 * @prio: Determines how hard direct compaction should try to succeed 2331 * 2332 * This is the main entry point for direct page compaction. 2333 */ 2334 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2335 unsigned int alloc_flags, const struct alloc_context *ac, 2336 enum compact_priority prio, struct page **capture) 2337 { 2338 int may_perform_io = gfp_mask & __GFP_IO; 2339 struct zoneref *z; 2340 struct zone *zone; 2341 enum compact_result rc = COMPACT_SKIPPED; 2342 2343 /* 2344 * Check if the GFP flags allow compaction - GFP_NOIO is really 2345 * tricky context because the migration might require IO 2346 */ 2347 if (!may_perform_io) 2348 return COMPACT_SKIPPED; 2349 2350 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2351 2352 /* Compact each zone in the list */ 2353 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 2354 ac->nodemask) { 2355 enum compact_result status; 2356 2357 if (prio > MIN_COMPACT_PRIORITY 2358 && compaction_deferred(zone, order)) { 2359 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2360 continue; 2361 } 2362 2363 status = compact_zone_order(zone, order, gfp_mask, prio, 2364 alloc_flags, ac_classzone_idx(ac), capture); 2365 rc = max(status, rc); 2366 2367 /* The allocation should succeed, stop compacting */ 2368 if (status == COMPACT_SUCCESS) { 2369 /* 2370 * We think the allocation will succeed in this zone, 2371 * but it is not certain, hence the false. The caller 2372 * will repeat this with true if allocation indeed 2373 * succeeds in this zone. 2374 */ 2375 compaction_defer_reset(zone, order, false); 2376 2377 break; 2378 } 2379 2380 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2381 status == COMPACT_PARTIAL_SKIPPED)) 2382 /* 2383 * We think that allocation won't succeed in this zone 2384 * so we defer compaction there. If it ends up 2385 * succeeding after all, it will be reset. 2386 */ 2387 defer_compaction(zone, order); 2388 2389 /* 2390 * We might have stopped compacting due to need_resched() in 2391 * async compaction, or due to a fatal signal detected. In that 2392 * case do not try further zones 2393 */ 2394 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2395 || fatal_signal_pending(current)) 2396 break; 2397 } 2398 2399 return rc; 2400 } 2401 2402 2403 /* Compact all zones within a node */ 2404 static void compact_node(int nid) 2405 { 2406 pg_data_t *pgdat = NODE_DATA(nid); 2407 int zoneid; 2408 struct zone *zone; 2409 struct compact_control cc = { 2410 .order = -1, 2411 .total_migrate_scanned = 0, 2412 .total_free_scanned = 0, 2413 .mode = MIGRATE_SYNC, 2414 .ignore_skip_hint = true, 2415 .whole_zone = true, 2416 .gfp_mask = GFP_KERNEL, 2417 }; 2418 2419 2420 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2421 2422 zone = &pgdat->node_zones[zoneid]; 2423 if (!populated_zone(zone)) 2424 continue; 2425 2426 cc.nr_freepages = 0; 2427 cc.nr_migratepages = 0; 2428 cc.zone = zone; 2429 INIT_LIST_HEAD(&cc.freepages); 2430 INIT_LIST_HEAD(&cc.migratepages); 2431 2432 compact_zone(&cc, NULL); 2433 2434 VM_BUG_ON(!list_empty(&cc.freepages)); 2435 VM_BUG_ON(!list_empty(&cc.migratepages)); 2436 } 2437 } 2438 2439 /* Compact all nodes in the system */ 2440 static void compact_nodes(void) 2441 { 2442 int nid; 2443 2444 /* Flush pending updates to the LRU lists */ 2445 lru_add_drain_all(); 2446 2447 for_each_online_node(nid) 2448 compact_node(nid); 2449 } 2450 2451 /* The written value is actually unused, all memory is compacted */ 2452 int sysctl_compact_memory; 2453 2454 /* 2455 * This is the entry point for compacting all nodes via 2456 * /proc/sys/vm/compact_memory 2457 */ 2458 int sysctl_compaction_handler(struct ctl_table *table, int write, 2459 void __user *buffer, size_t *length, loff_t *ppos) 2460 { 2461 if (write) 2462 compact_nodes(); 2463 2464 return 0; 2465 } 2466 2467 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2468 static ssize_t sysfs_compact_node(struct device *dev, 2469 struct device_attribute *attr, 2470 const char *buf, size_t count) 2471 { 2472 int nid = dev->id; 2473 2474 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2475 /* Flush pending updates to the LRU lists */ 2476 lru_add_drain_all(); 2477 2478 compact_node(nid); 2479 } 2480 2481 return count; 2482 } 2483 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node); 2484 2485 int compaction_register_node(struct node *node) 2486 { 2487 return device_create_file(&node->dev, &dev_attr_compact); 2488 } 2489 2490 void compaction_unregister_node(struct node *node) 2491 { 2492 return device_remove_file(&node->dev, &dev_attr_compact); 2493 } 2494 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2495 2496 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2497 { 2498 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 2499 } 2500 2501 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2502 { 2503 int zoneid; 2504 struct zone *zone; 2505 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx; 2506 2507 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) { 2508 zone = &pgdat->node_zones[zoneid]; 2509 2510 if (!populated_zone(zone)) 2511 continue; 2512 2513 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2514 classzone_idx) == COMPACT_CONTINUE) 2515 return true; 2516 } 2517 2518 return false; 2519 } 2520 2521 static void kcompactd_do_work(pg_data_t *pgdat) 2522 { 2523 /* 2524 * With no special task, compact all zones so that a page of requested 2525 * order is allocatable. 2526 */ 2527 int zoneid; 2528 struct zone *zone; 2529 struct compact_control cc = { 2530 .order = pgdat->kcompactd_max_order, 2531 .search_order = pgdat->kcompactd_max_order, 2532 .total_migrate_scanned = 0, 2533 .total_free_scanned = 0, 2534 .classzone_idx = pgdat->kcompactd_classzone_idx, 2535 .mode = MIGRATE_SYNC_LIGHT, 2536 .ignore_skip_hint = false, 2537 .gfp_mask = GFP_KERNEL, 2538 }; 2539 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2540 cc.classzone_idx); 2541 count_compact_event(KCOMPACTD_WAKE); 2542 2543 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) { 2544 int status; 2545 2546 zone = &pgdat->node_zones[zoneid]; 2547 if (!populated_zone(zone)) 2548 continue; 2549 2550 if (compaction_deferred(zone, cc.order)) 2551 continue; 2552 2553 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2554 COMPACT_CONTINUE) 2555 continue; 2556 2557 cc.nr_freepages = 0; 2558 cc.nr_migratepages = 0; 2559 cc.total_migrate_scanned = 0; 2560 cc.total_free_scanned = 0; 2561 cc.zone = zone; 2562 INIT_LIST_HEAD(&cc.freepages); 2563 INIT_LIST_HEAD(&cc.migratepages); 2564 2565 if (kthread_should_stop()) 2566 return; 2567 status = compact_zone(&cc, NULL); 2568 2569 if (status == COMPACT_SUCCESS) { 2570 compaction_defer_reset(zone, cc.order, false); 2571 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2572 /* 2573 * Buddy pages may become stranded on pcps that could 2574 * otherwise coalesce on the zone's free area for 2575 * order >= cc.order. This is ratelimited by the 2576 * upcoming deferral. 2577 */ 2578 drain_all_pages(zone); 2579 2580 /* 2581 * We use sync migration mode here, so we defer like 2582 * sync direct compaction does. 2583 */ 2584 defer_compaction(zone, cc.order); 2585 } 2586 2587 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2588 cc.total_migrate_scanned); 2589 count_compact_events(KCOMPACTD_FREE_SCANNED, 2590 cc.total_free_scanned); 2591 2592 VM_BUG_ON(!list_empty(&cc.freepages)); 2593 VM_BUG_ON(!list_empty(&cc.migratepages)); 2594 } 2595 2596 /* 2597 * Regardless of success, we are done until woken up next. But remember 2598 * the requested order/classzone_idx in case it was higher/tighter than 2599 * our current ones 2600 */ 2601 if (pgdat->kcompactd_max_order <= cc.order) 2602 pgdat->kcompactd_max_order = 0; 2603 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx) 2604 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 2605 } 2606 2607 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx) 2608 { 2609 if (!order) 2610 return; 2611 2612 if (pgdat->kcompactd_max_order < order) 2613 pgdat->kcompactd_max_order = order; 2614 2615 if (pgdat->kcompactd_classzone_idx > classzone_idx) 2616 pgdat->kcompactd_classzone_idx = classzone_idx; 2617 2618 /* 2619 * Pairs with implicit barrier in wait_event_freezable() 2620 * such that wakeups are not missed. 2621 */ 2622 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2623 return; 2624 2625 if (!kcompactd_node_suitable(pgdat)) 2626 return; 2627 2628 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2629 classzone_idx); 2630 wake_up_interruptible(&pgdat->kcompactd_wait); 2631 } 2632 2633 /* 2634 * The background compaction daemon, started as a kernel thread 2635 * from the init process. 2636 */ 2637 static int kcompactd(void *p) 2638 { 2639 pg_data_t *pgdat = (pg_data_t*)p; 2640 struct task_struct *tsk = current; 2641 2642 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2643 2644 if (!cpumask_empty(cpumask)) 2645 set_cpus_allowed_ptr(tsk, cpumask); 2646 2647 set_freezable(); 2648 2649 pgdat->kcompactd_max_order = 0; 2650 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 2651 2652 while (!kthread_should_stop()) { 2653 unsigned long pflags; 2654 2655 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2656 wait_event_freezable(pgdat->kcompactd_wait, 2657 kcompactd_work_requested(pgdat)); 2658 2659 psi_memstall_enter(&pflags); 2660 kcompactd_do_work(pgdat); 2661 psi_memstall_leave(&pflags); 2662 } 2663 2664 return 0; 2665 } 2666 2667 /* 2668 * This kcompactd start function will be called by init and node-hot-add. 2669 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2670 */ 2671 int kcompactd_run(int nid) 2672 { 2673 pg_data_t *pgdat = NODE_DATA(nid); 2674 int ret = 0; 2675 2676 if (pgdat->kcompactd) 2677 return 0; 2678 2679 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2680 if (IS_ERR(pgdat->kcompactd)) { 2681 pr_err("Failed to start kcompactd on node %d\n", nid); 2682 ret = PTR_ERR(pgdat->kcompactd); 2683 pgdat->kcompactd = NULL; 2684 } 2685 return ret; 2686 } 2687 2688 /* 2689 * Called by memory hotplug when all memory in a node is offlined. Caller must 2690 * hold mem_hotplug_begin/end(). 2691 */ 2692 void kcompactd_stop(int nid) 2693 { 2694 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2695 2696 if (kcompactd) { 2697 kthread_stop(kcompactd); 2698 NODE_DATA(nid)->kcompactd = NULL; 2699 } 2700 } 2701 2702 /* 2703 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2704 * not required for correctness. So if the last cpu in a node goes 2705 * away, we get changed to run anywhere: as the first one comes back, 2706 * restore their cpu bindings. 2707 */ 2708 static int kcompactd_cpu_online(unsigned int cpu) 2709 { 2710 int nid; 2711 2712 for_each_node_state(nid, N_MEMORY) { 2713 pg_data_t *pgdat = NODE_DATA(nid); 2714 const struct cpumask *mask; 2715 2716 mask = cpumask_of_node(pgdat->node_id); 2717 2718 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2719 /* One of our CPUs online: restore mask */ 2720 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2721 } 2722 return 0; 2723 } 2724 2725 static int __init kcompactd_init(void) 2726 { 2727 int nid; 2728 int ret; 2729 2730 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 2731 "mm/compaction:online", 2732 kcompactd_cpu_online, NULL); 2733 if (ret < 0) { 2734 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 2735 return ret; 2736 } 2737 2738 for_each_node_state(nid, N_MEMORY) 2739 kcompactd_run(nid); 2740 return 0; 2741 } 2742 subsys_initcall(kcompactd_init) 2743 2744 #endif /* CONFIG_COMPACTION */ 2745