xref: /openbmc/linux/mm/compaction.c (revision 5c73cc4b6c83e88863a5de869cc5df3b913aef4a)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
21 
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item)
24 {
25 	count_vm_event(item);
26 }
27 
28 static inline void count_compact_events(enum vm_event_item item, long delta)
29 {
30 	count_vm_events(item, delta);
31 }
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
36 
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 #ifdef CONFIG_TRACEPOINTS
39 static const char *const compaction_status_string[] = {
40 	"deferred",
41 	"skipped",
42 	"continue",
43 	"partial",
44 	"complete",
45 	"no_suitable_page",
46 	"not_suitable_zone",
47 };
48 #endif
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52 
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55 	struct page *page, *next;
56 	unsigned long high_pfn = 0;
57 
58 	list_for_each_entry_safe(page, next, freelist, lru) {
59 		unsigned long pfn = page_to_pfn(page);
60 		list_del(&page->lru);
61 		__free_page(page);
62 		if (pfn > high_pfn)
63 			high_pfn = pfn;
64 	}
65 
66 	return high_pfn;
67 }
68 
69 static void map_pages(struct list_head *list)
70 {
71 	struct page *page;
72 
73 	list_for_each_entry(page, list, lru) {
74 		arch_alloc_page(page, 0);
75 		kernel_map_pages(page, 1, 1);
76 		kasan_alloc_pages(page, 0);
77 	}
78 }
79 
80 static inline bool migrate_async_suitable(int migratetype)
81 {
82 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
83 }
84 
85 /*
86  * Check that the whole (or subset of) a pageblock given by the interval of
87  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
88  * with the migration of free compaction scanner. The scanners then need to
89  * use only pfn_valid_within() check for arches that allow holes within
90  * pageblocks.
91  *
92  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
93  *
94  * It's possible on some configurations to have a setup like node0 node1 node0
95  * i.e. it's possible that all pages within a zones range of pages do not
96  * belong to a single zone. We assume that a border between node0 and node1
97  * can occur within a single pageblock, but not a node0 node1 node0
98  * interleaving within a single pageblock. It is therefore sufficient to check
99  * the first and last page of a pageblock and avoid checking each individual
100  * page in a pageblock.
101  */
102 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
103 				unsigned long end_pfn, struct zone *zone)
104 {
105 	struct page *start_page;
106 	struct page *end_page;
107 
108 	/* end_pfn is one past the range we are checking */
109 	end_pfn--;
110 
111 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
112 		return NULL;
113 
114 	start_page = pfn_to_page(start_pfn);
115 
116 	if (page_zone(start_page) != zone)
117 		return NULL;
118 
119 	end_page = pfn_to_page(end_pfn);
120 
121 	/* This gives a shorter code than deriving page_zone(end_page) */
122 	if (page_zone_id(start_page) != page_zone_id(end_page))
123 		return NULL;
124 
125 	return start_page;
126 }
127 
128 #ifdef CONFIG_COMPACTION
129 
130 /* Do not skip compaction more than 64 times */
131 #define COMPACT_MAX_DEFER_SHIFT 6
132 
133 /*
134  * Compaction is deferred when compaction fails to result in a page
135  * allocation success. 1 << compact_defer_limit compactions are skipped up
136  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
137  */
138 void defer_compaction(struct zone *zone, int order)
139 {
140 	zone->compact_considered = 0;
141 	zone->compact_defer_shift++;
142 
143 	if (order < zone->compact_order_failed)
144 		zone->compact_order_failed = order;
145 
146 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
147 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
148 
149 	trace_mm_compaction_defer_compaction(zone, order);
150 }
151 
152 /* Returns true if compaction should be skipped this time */
153 bool compaction_deferred(struct zone *zone, int order)
154 {
155 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
156 
157 	if (order < zone->compact_order_failed)
158 		return false;
159 
160 	/* Avoid possible overflow */
161 	if (++zone->compact_considered > defer_limit)
162 		zone->compact_considered = defer_limit;
163 
164 	if (zone->compact_considered >= defer_limit)
165 		return false;
166 
167 	trace_mm_compaction_deferred(zone, order);
168 
169 	return true;
170 }
171 
172 /*
173  * Update defer tracking counters after successful compaction of given order,
174  * which means an allocation either succeeded (alloc_success == true) or is
175  * expected to succeed.
176  */
177 void compaction_defer_reset(struct zone *zone, int order,
178 		bool alloc_success)
179 {
180 	if (alloc_success) {
181 		zone->compact_considered = 0;
182 		zone->compact_defer_shift = 0;
183 	}
184 	if (order >= zone->compact_order_failed)
185 		zone->compact_order_failed = order + 1;
186 
187 	trace_mm_compaction_defer_reset(zone, order);
188 }
189 
190 /* Returns true if restarting compaction after many failures */
191 bool compaction_restarting(struct zone *zone, int order)
192 {
193 	if (order < zone->compact_order_failed)
194 		return false;
195 
196 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
197 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
198 }
199 
200 /* Returns true if the pageblock should be scanned for pages to isolate. */
201 static inline bool isolation_suitable(struct compact_control *cc,
202 					struct page *page)
203 {
204 	if (cc->ignore_skip_hint)
205 		return true;
206 
207 	return !get_pageblock_skip(page);
208 }
209 
210 /*
211  * This function is called to clear all cached information on pageblocks that
212  * should be skipped for page isolation when the migrate and free page scanner
213  * meet.
214  */
215 static void __reset_isolation_suitable(struct zone *zone)
216 {
217 	unsigned long start_pfn = zone->zone_start_pfn;
218 	unsigned long end_pfn = zone_end_pfn(zone);
219 	unsigned long pfn;
220 
221 	zone->compact_cached_migrate_pfn[0] = start_pfn;
222 	zone->compact_cached_migrate_pfn[1] = start_pfn;
223 	zone->compact_cached_free_pfn = end_pfn;
224 	zone->compact_blockskip_flush = false;
225 
226 	/* Walk the zone and mark every pageblock as suitable for isolation */
227 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
228 		struct page *page;
229 
230 		cond_resched();
231 
232 		if (!pfn_valid(pfn))
233 			continue;
234 
235 		page = pfn_to_page(pfn);
236 		if (zone != page_zone(page))
237 			continue;
238 
239 		clear_pageblock_skip(page);
240 	}
241 }
242 
243 void reset_isolation_suitable(pg_data_t *pgdat)
244 {
245 	int zoneid;
246 
247 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
248 		struct zone *zone = &pgdat->node_zones[zoneid];
249 		if (!populated_zone(zone))
250 			continue;
251 
252 		/* Only flush if a full compaction finished recently */
253 		if (zone->compact_blockskip_flush)
254 			__reset_isolation_suitable(zone);
255 	}
256 }
257 
258 /*
259  * If no pages were isolated then mark this pageblock to be skipped in the
260  * future. The information is later cleared by __reset_isolation_suitable().
261  */
262 static void update_pageblock_skip(struct compact_control *cc,
263 			struct page *page, unsigned long nr_isolated,
264 			bool migrate_scanner)
265 {
266 	struct zone *zone = cc->zone;
267 	unsigned long pfn;
268 
269 	if (cc->ignore_skip_hint)
270 		return;
271 
272 	if (!page)
273 		return;
274 
275 	if (nr_isolated)
276 		return;
277 
278 	set_pageblock_skip(page);
279 
280 	pfn = page_to_pfn(page);
281 
282 	/* Update where async and sync compaction should restart */
283 	if (migrate_scanner) {
284 		if (pfn > zone->compact_cached_migrate_pfn[0])
285 			zone->compact_cached_migrate_pfn[0] = pfn;
286 		if (cc->mode != MIGRATE_ASYNC &&
287 		    pfn > zone->compact_cached_migrate_pfn[1])
288 			zone->compact_cached_migrate_pfn[1] = pfn;
289 	} else {
290 		if (pfn < zone->compact_cached_free_pfn)
291 			zone->compact_cached_free_pfn = pfn;
292 	}
293 }
294 #else
295 static inline bool isolation_suitable(struct compact_control *cc,
296 					struct page *page)
297 {
298 	return true;
299 }
300 
301 static void update_pageblock_skip(struct compact_control *cc,
302 			struct page *page, unsigned long nr_isolated,
303 			bool migrate_scanner)
304 {
305 }
306 #endif /* CONFIG_COMPACTION */
307 
308 /*
309  * Compaction requires the taking of some coarse locks that are potentially
310  * very heavily contended. For async compaction, back out if the lock cannot
311  * be taken immediately. For sync compaction, spin on the lock if needed.
312  *
313  * Returns true if the lock is held
314  * Returns false if the lock is not held and compaction should abort
315  */
316 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
317 						struct compact_control *cc)
318 {
319 	if (cc->mode == MIGRATE_ASYNC) {
320 		if (!spin_trylock_irqsave(lock, *flags)) {
321 			cc->contended = COMPACT_CONTENDED_LOCK;
322 			return false;
323 		}
324 	} else {
325 		spin_lock_irqsave(lock, *flags);
326 	}
327 
328 	return true;
329 }
330 
331 /*
332  * Compaction requires the taking of some coarse locks that are potentially
333  * very heavily contended. The lock should be periodically unlocked to avoid
334  * having disabled IRQs for a long time, even when there is nobody waiting on
335  * the lock. It might also be that allowing the IRQs will result in
336  * need_resched() becoming true. If scheduling is needed, async compaction
337  * aborts. Sync compaction schedules.
338  * Either compaction type will also abort if a fatal signal is pending.
339  * In either case if the lock was locked, it is dropped and not regained.
340  *
341  * Returns true if compaction should abort due to fatal signal pending, or
342  *		async compaction due to need_resched()
343  * Returns false when compaction can continue (sync compaction might have
344  *		scheduled)
345  */
346 static bool compact_unlock_should_abort(spinlock_t *lock,
347 		unsigned long flags, bool *locked, struct compact_control *cc)
348 {
349 	if (*locked) {
350 		spin_unlock_irqrestore(lock, flags);
351 		*locked = false;
352 	}
353 
354 	if (fatal_signal_pending(current)) {
355 		cc->contended = COMPACT_CONTENDED_SCHED;
356 		return true;
357 	}
358 
359 	if (need_resched()) {
360 		if (cc->mode == MIGRATE_ASYNC) {
361 			cc->contended = COMPACT_CONTENDED_SCHED;
362 			return true;
363 		}
364 		cond_resched();
365 	}
366 
367 	return false;
368 }
369 
370 /*
371  * Aside from avoiding lock contention, compaction also periodically checks
372  * need_resched() and either schedules in sync compaction or aborts async
373  * compaction. This is similar to what compact_unlock_should_abort() does, but
374  * is used where no lock is concerned.
375  *
376  * Returns false when no scheduling was needed, or sync compaction scheduled.
377  * Returns true when async compaction should abort.
378  */
379 static inline bool compact_should_abort(struct compact_control *cc)
380 {
381 	/* async compaction aborts if contended */
382 	if (need_resched()) {
383 		if (cc->mode == MIGRATE_ASYNC) {
384 			cc->contended = COMPACT_CONTENDED_SCHED;
385 			return true;
386 		}
387 
388 		cond_resched();
389 	}
390 
391 	return false;
392 }
393 
394 /*
395  * Isolate free pages onto a private freelist. If @strict is true, will abort
396  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
397  * (even though it may still end up isolating some pages).
398  */
399 static unsigned long isolate_freepages_block(struct compact_control *cc,
400 				unsigned long *start_pfn,
401 				unsigned long end_pfn,
402 				struct list_head *freelist,
403 				bool strict)
404 {
405 	int nr_scanned = 0, total_isolated = 0;
406 	struct page *cursor, *valid_page = NULL;
407 	unsigned long flags = 0;
408 	bool locked = false;
409 	unsigned long blockpfn = *start_pfn;
410 
411 	cursor = pfn_to_page(blockpfn);
412 
413 	/* Isolate free pages. */
414 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
415 		int isolated, i;
416 		struct page *page = cursor;
417 
418 		/*
419 		 * Periodically drop the lock (if held) regardless of its
420 		 * contention, to give chance to IRQs. Abort if fatal signal
421 		 * pending or async compaction detects need_resched()
422 		 */
423 		if (!(blockpfn % SWAP_CLUSTER_MAX)
424 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
425 								&locked, cc))
426 			break;
427 
428 		nr_scanned++;
429 		if (!pfn_valid_within(blockpfn))
430 			goto isolate_fail;
431 
432 		if (!valid_page)
433 			valid_page = page;
434 		if (!PageBuddy(page))
435 			goto isolate_fail;
436 
437 		/*
438 		 * If we already hold the lock, we can skip some rechecking.
439 		 * Note that if we hold the lock now, checked_pageblock was
440 		 * already set in some previous iteration (or strict is true),
441 		 * so it is correct to skip the suitable migration target
442 		 * recheck as well.
443 		 */
444 		if (!locked) {
445 			/*
446 			 * The zone lock must be held to isolate freepages.
447 			 * Unfortunately this is a very coarse lock and can be
448 			 * heavily contended if there are parallel allocations
449 			 * or parallel compactions. For async compaction do not
450 			 * spin on the lock and we acquire the lock as late as
451 			 * possible.
452 			 */
453 			locked = compact_trylock_irqsave(&cc->zone->lock,
454 								&flags, cc);
455 			if (!locked)
456 				break;
457 
458 			/* Recheck this is a buddy page under lock */
459 			if (!PageBuddy(page))
460 				goto isolate_fail;
461 		}
462 
463 		/* Found a free page, break it into order-0 pages */
464 		isolated = split_free_page(page);
465 		total_isolated += isolated;
466 		for (i = 0; i < isolated; i++) {
467 			list_add(&page->lru, freelist);
468 			page++;
469 		}
470 
471 		/* If a page was split, advance to the end of it */
472 		if (isolated) {
473 			cc->nr_freepages += isolated;
474 			if (!strict &&
475 				cc->nr_migratepages <= cc->nr_freepages) {
476 				blockpfn += isolated;
477 				break;
478 			}
479 
480 			blockpfn += isolated - 1;
481 			cursor += isolated - 1;
482 			continue;
483 		}
484 
485 isolate_fail:
486 		if (strict)
487 			break;
488 		else
489 			continue;
490 
491 	}
492 
493 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
494 					nr_scanned, total_isolated);
495 
496 	/* Record how far we have got within the block */
497 	*start_pfn = blockpfn;
498 
499 	/*
500 	 * If strict isolation is requested by CMA then check that all the
501 	 * pages requested were isolated. If there were any failures, 0 is
502 	 * returned and CMA will fail.
503 	 */
504 	if (strict && blockpfn < end_pfn)
505 		total_isolated = 0;
506 
507 	if (locked)
508 		spin_unlock_irqrestore(&cc->zone->lock, flags);
509 
510 	/* Update the pageblock-skip if the whole pageblock was scanned */
511 	if (blockpfn == end_pfn)
512 		update_pageblock_skip(cc, valid_page, total_isolated, false);
513 
514 	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
515 	if (total_isolated)
516 		count_compact_events(COMPACTISOLATED, total_isolated);
517 	return total_isolated;
518 }
519 
520 /**
521  * isolate_freepages_range() - isolate free pages.
522  * @start_pfn: The first PFN to start isolating.
523  * @end_pfn:   The one-past-last PFN.
524  *
525  * Non-free pages, invalid PFNs, or zone boundaries within the
526  * [start_pfn, end_pfn) range are considered errors, cause function to
527  * undo its actions and return zero.
528  *
529  * Otherwise, function returns one-past-the-last PFN of isolated page
530  * (which may be greater then end_pfn if end fell in a middle of
531  * a free page).
532  */
533 unsigned long
534 isolate_freepages_range(struct compact_control *cc,
535 			unsigned long start_pfn, unsigned long end_pfn)
536 {
537 	unsigned long isolated, pfn, block_end_pfn;
538 	LIST_HEAD(freelist);
539 
540 	pfn = start_pfn;
541 	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
542 
543 	for (; pfn < end_pfn; pfn += isolated,
544 				block_end_pfn += pageblock_nr_pages) {
545 		/* Protect pfn from changing by isolate_freepages_block */
546 		unsigned long isolate_start_pfn = pfn;
547 
548 		block_end_pfn = min(block_end_pfn, end_pfn);
549 
550 		/*
551 		 * pfn could pass the block_end_pfn if isolated freepage
552 		 * is more than pageblock order. In this case, we adjust
553 		 * scanning range to right one.
554 		 */
555 		if (pfn >= block_end_pfn) {
556 			block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
557 			block_end_pfn = min(block_end_pfn, end_pfn);
558 		}
559 
560 		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
561 			break;
562 
563 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
564 						block_end_pfn, &freelist, true);
565 
566 		/*
567 		 * In strict mode, isolate_freepages_block() returns 0 if
568 		 * there are any holes in the block (ie. invalid PFNs or
569 		 * non-free pages).
570 		 */
571 		if (!isolated)
572 			break;
573 
574 		/*
575 		 * If we managed to isolate pages, it is always (1 << n) *
576 		 * pageblock_nr_pages for some non-negative n.  (Max order
577 		 * page may span two pageblocks).
578 		 */
579 	}
580 
581 	/* split_free_page does not map the pages */
582 	map_pages(&freelist);
583 
584 	if (pfn < end_pfn) {
585 		/* Loop terminated early, cleanup. */
586 		release_freepages(&freelist);
587 		return 0;
588 	}
589 
590 	/* We don't use freelists for anything. */
591 	return pfn;
592 }
593 
594 /* Update the number of anon and file isolated pages in the zone */
595 static void acct_isolated(struct zone *zone, struct compact_control *cc)
596 {
597 	struct page *page;
598 	unsigned int count[2] = { 0, };
599 
600 	if (list_empty(&cc->migratepages))
601 		return;
602 
603 	list_for_each_entry(page, &cc->migratepages, lru)
604 		count[!!page_is_file_cache(page)]++;
605 
606 	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
607 	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
608 }
609 
610 /* Similar to reclaim, but different enough that they don't share logic */
611 static bool too_many_isolated(struct zone *zone)
612 {
613 	unsigned long active, inactive, isolated;
614 
615 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
616 					zone_page_state(zone, NR_INACTIVE_ANON);
617 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
618 					zone_page_state(zone, NR_ACTIVE_ANON);
619 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
620 					zone_page_state(zone, NR_ISOLATED_ANON);
621 
622 	return isolated > (inactive + active) / 2;
623 }
624 
625 /**
626  * isolate_migratepages_block() - isolate all migrate-able pages within
627  *				  a single pageblock
628  * @cc:		Compaction control structure.
629  * @low_pfn:	The first PFN to isolate
630  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
631  * @isolate_mode: Isolation mode to be used.
632  *
633  * Isolate all pages that can be migrated from the range specified by
634  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
635  * Returns zero if there is a fatal signal pending, otherwise PFN of the
636  * first page that was not scanned (which may be both less, equal to or more
637  * than end_pfn).
638  *
639  * The pages are isolated on cc->migratepages list (not required to be empty),
640  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
641  * is neither read nor updated.
642  */
643 static unsigned long
644 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
645 			unsigned long end_pfn, isolate_mode_t isolate_mode)
646 {
647 	struct zone *zone = cc->zone;
648 	unsigned long nr_scanned = 0, nr_isolated = 0;
649 	struct list_head *migratelist = &cc->migratepages;
650 	struct lruvec *lruvec;
651 	unsigned long flags = 0;
652 	bool locked = false;
653 	struct page *page = NULL, *valid_page = NULL;
654 	unsigned long start_pfn = low_pfn;
655 
656 	/*
657 	 * Ensure that there are not too many pages isolated from the LRU
658 	 * list by either parallel reclaimers or compaction. If there are,
659 	 * delay for some time until fewer pages are isolated
660 	 */
661 	while (unlikely(too_many_isolated(zone))) {
662 		/* async migration should just abort */
663 		if (cc->mode == MIGRATE_ASYNC)
664 			return 0;
665 
666 		congestion_wait(BLK_RW_ASYNC, HZ/10);
667 
668 		if (fatal_signal_pending(current))
669 			return 0;
670 	}
671 
672 	if (compact_should_abort(cc))
673 		return 0;
674 
675 	/* Time to isolate some pages for migration */
676 	for (; low_pfn < end_pfn; low_pfn++) {
677 		/*
678 		 * Periodically drop the lock (if held) regardless of its
679 		 * contention, to give chance to IRQs. Abort async compaction
680 		 * if contended.
681 		 */
682 		if (!(low_pfn % SWAP_CLUSTER_MAX)
683 		    && compact_unlock_should_abort(&zone->lru_lock, flags,
684 								&locked, cc))
685 			break;
686 
687 		if (!pfn_valid_within(low_pfn))
688 			continue;
689 		nr_scanned++;
690 
691 		page = pfn_to_page(low_pfn);
692 
693 		if (!valid_page)
694 			valid_page = page;
695 
696 		/*
697 		 * Skip if free. We read page order here without zone lock
698 		 * which is generally unsafe, but the race window is small and
699 		 * the worst thing that can happen is that we skip some
700 		 * potential isolation targets.
701 		 */
702 		if (PageBuddy(page)) {
703 			unsigned long freepage_order = page_order_unsafe(page);
704 
705 			/*
706 			 * Without lock, we cannot be sure that what we got is
707 			 * a valid page order. Consider only values in the
708 			 * valid order range to prevent low_pfn overflow.
709 			 */
710 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
711 				low_pfn += (1UL << freepage_order) - 1;
712 			continue;
713 		}
714 
715 		/*
716 		 * Check may be lockless but that's ok as we recheck later.
717 		 * It's possible to migrate LRU pages and balloon pages
718 		 * Skip any other type of page
719 		 */
720 		if (!PageLRU(page)) {
721 			if (unlikely(balloon_page_movable(page))) {
722 				if (balloon_page_isolate(page)) {
723 					/* Successfully isolated */
724 					goto isolate_success;
725 				}
726 			}
727 			continue;
728 		}
729 
730 		/*
731 		 * PageLRU is set. lru_lock normally excludes isolation
732 		 * splitting and collapsing (collapsing has already happened
733 		 * if PageLRU is set) but the lock is not necessarily taken
734 		 * here and it is wasteful to take it just to check transhuge.
735 		 * Check TransHuge without lock and skip the whole pageblock if
736 		 * it's either a transhuge or hugetlbfs page, as calling
737 		 * compound_order() without preventing THP from splitting the
738 		 * page underneath us may return surprising results.
739 		 */
740 		if (PageTransHuge(page)) {
741 			if (!locked)
742 				low_pfn = ALIGN(low_pfn + 1,
743 						pageblock_nr_pages) - 1;
744 			else
745 				low_pfn += (1 << compound_order(page)) - 1;
746 
747 			continue;
748 		}
749 
750 		/*
751 		 * Migration will fail if an anonymous page is pinned in memory,
752 		 * so avoid taking lru_lock and isolating it unnecessarily in an
753 		 * admittedly racy check.
754 		 */
755 		if (!page_mapping(page) &&
756 		    page_count(page) > page_mapcount(page))
757 			continue;
758 
759 		/* If we already hold the lock, we can skip some rechecking */
760 		if (!locked) {
761 			locked = compact_trylock_irqsave(&zone->lru_lock,
762 								&flags, cc);
763 			if (!locked)
764 				break;
765 
766 			/* Recheck PageLRU and PageTransHuge under lock */
767 			if (!PageLRU(page))
768 				continue;
769 			if (PageTransHuge(page)) {
770 				low_pfn += (1 << compound_order(page)) - 1;
771 				continue;
772 			}
773 		}
774 
775 		lruvec = mem_cgroup_page_lruvec(page, zone);
776 
777 		/* Try isolate the page */
778 		if (__isolate_lru_page(page, isolate_mode) != 0)
779 			continue;
780 
781 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
782 
783 		/* Successfully isolated */
784 		del_page_from_lru_list(page, lruvec, page_lru(page));
785 
786 isolate_success:
787 		list_add(&page->lru, migratelist);
788 		cc->nr_migratepages++;
789 		nr_isolated++;
790 
791 		/* Avoid isolating too much */
792 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
793 			++low_pfn;
794 			break;
795 		}
796 	}
797 
798 	/*
799 	 * The PageBuddy() check could have potentially brought us outside
800 	 * the range to be scanned.
801 	 */
802 	if (unlikely(low_pfn > end_pfn))
803 		low_pfn = end_pfn;
804 
805 	if (locked)
806 		spin_unlock_irqrestore(&zone->lru_lock, flags);
807 
808 	/*
809 	 * Update the pageblock-skip information and cached scanner pfn,
810 	 * if the whole pageblock was scanned without isolating any page.
811 	 */
812 	if (low_pfn == end_pfn)
813 		update_pageblock_skip(cc, valid_page, nr_isolated, true);
814 
815 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
816 						nr_scanned, nr_isolated);
817 
818 	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
819 	if (nr_isolated)
820 		count_compact_events(COMPACTISOLATED, nr_isolated);
821 
822 	return low_pfn;
823 }
824 
825 /**
826  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
827  * @cc:        Compaction control structure.
828  * @start_pfn: The first PFN to start isolating.
829  * @end_pfn:   The one-past-last PFN.
830  *
831  * Returns zero if isolation fails fatally due to e.g. pending signal.
832  * Otherwise, function returns one-past-the-last PFN of isolated page
833  * (which may be greater than end_pfn if end fell in a middle of a THP page).
834  */
835 unsigned long
836 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
837 							unsigned long end_pfn)
838 {
839 	unsigned long pfn, block_end_pfn;
840 
841 	/* Scan block by block. First and last block may be incomplete */
842 	pfn = start_pfn;
843 	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
844 
845 	for (; pfn < end_pfn; pfn = block_end_pfn,
846 				block_end_pfn += pageblock_nr_pages) {
847 
848 		block_end_pfn = min(block_end_pfn, end_pfn);
849 
850 		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
851 			continue;
852 
853 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
854 							ISOLATE_UNEVICTABLE);
855 
856 		/*
857 		 * In case of fatal failure, release everything that might
858 		 * have been isolated in the previous iteration, and signal
859 		 * the failure back to caller.
860 		 */
861 		if (!pfn) {
862 			putback_movable_pages(&cc->migratepages);
863 			cc->nr_migratepages = 0;
864 			break;
865 		}
866 
867 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
868 			break;
869 	}
870 	acct_isolated(cc->zone, cc);
871 
872 	return pfn;
873 }
874 
875 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
876 #ifdef CONFIG_COMPACTION
877 
878 /* Returns true if the page is within a block suitable for migration to */
879 static bool suitable_migration_target(struct page *page)
880 {
881 	/* If the page is a large free page, then disallow migration */
882 	if (PageBuddy(page)) {
883 		/*
884 		 * We are checking page_order without zone->lock taken. But
885 		 * the only small danger is that we skip a potentially suitable
886 		 * pageblock, so it's not worth to check order for valid range.
887 		 */
888 		if (page_order_unsafe(page) >= pageblock_order)
889 			return false;
890 	}
891 
892 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
893 	if (migrate_async_suitable(get_pageblock_migratetype(page)))
894 		return true;
895 
896 	/* Otherwise skip the block */
897 	return false;
898 }
899 
900 /*
901  * Based on information in the current compact_control, find blocks
902  * suitable for isolating free pages from and then isolate them.
903  */
904 static void isolate_freepages(struct compact_control *cc)
905 {
906 	struct zone *zone = cc->zone;
907 	struct page *page;
908 	unsigned long block_start_pfn;	/* start of current pageblock */
909 	unsigned long isolate_start_pfn; /* exact pfn we start at */
910 	unsigned long block_end_pfn;	/* end of current pageblock */
911 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
912 	struct list_head *freelist = &cc->freepages;
913 
914 	/*
915 	 * Initialise the free scanner. The starting point is where we last
916 	 * successfully isolated from, zone-cached value, or the end of the
917 	 * zone when isolating for the first time. For looping we also need
918 	 * this pfn aligned down to the pageblock boundary, because we do
919 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
920 	 * For ending point, take care when isolating in last pageblock of a
921 	 * a zone which ends in the middle of a pageblock.
922 	 * The low boundary is the end of the pageblock the migration scanner
923 	 * is using.
924 	 */
925 	isolate_start_pfn = cc->free_pfn;
926 	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
927 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
928 						zone_end_pfn(zone));
929 	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
930 
931 	/*
932 	 * Isolate free pages until enough are available to migrate the
933 	 * pages on cc->migratepages. We stop searching if the migrate
934 	 * and free page scanners meet or enough free pages are isolated.
935 	 */
936 	for (; block_start_pfn >= low_pfn &&
937 			cc->nr_migratepages > cc->nr_freepages;
938 				block_end_pfn = block_start_pfn,
939 				block_start_pfn -= pageblock_nr_pages,
940 				isolate_start_pfn = block_start_pfn) {
941 
942 		/*
943 		 * This can iterate a massively long zone without finding any
944 		 * suitable migration targets, so periodically check if we need
945 		 * to schedule, or even abort async compaction.
946 		 */
947 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
948 						&& compact_should_abort(cc))
949 			break;
950 
951 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
952 									zone);
953 		if (!page)
954 			continue;
955 
956 		/* Check the block is suitable for migration */
957 		if (!suitable_migration_target(page))
958 			continue;
959 
960 		/* If isolation recently failed, do not retry */
961 		if (!isolation_suitable(cc, page))
962 			continue;
963 
964 		/* Found a block suitable for isolating free pages from. */
965 		isolate_freepages_block(cc, &isolate_start_pfn,
966 					block_end_pfn, freelist, false);
967 
968 		/*
969 		 * Remember where the free scanner should restart next time,
970 		 * which is where isolate_freepages_block() left off.
971 		 * But if it scanned the whole pageblock, isolate_start_pfn
972 		 * now points at block_end_pfn, which is the start of the next
973 		 * pageblock.
974 		 * In that case we will however want to restart at the start
975 		 * of the previous pageblock.
976 		 */
977 		cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
978 				isolate_start_pfn :
979 				block_start_pfn - pageblock_nr_pages;
980 
981 		/*
982 		 * isolate_freepages_block() might have aborted due to async
983 		 * compaction being contended
984 		 */
985 		if (cc->contended)
986 			break;
987 	}
988 
989 	/* split_free_page does not map the pages */
990 	map_pages(freelist);
991 
992 	/*
993 	 * If we crossed the migrate scanner, we want to keep it that way
994 	 * so that compact_finished() may detect this
995 	 */
996 	if (block_start_pfn < low_pfn)
997 		cc->free_pfn = cc->migrate_pfn;
998 }
999 
1000 /*
1001  * This is a migrate-callback that "allocates" freepages by taking pages
1002  * from the isolated freelists in the block we are migrating to.
1003  */
1004 static struct page *compaction_alloc(struct page *migratepage,
1005 					unsigned long data,
1006 					int **result)
1007 {
1008 	struct compact_control *cc = (struct compact_control *)data;
1009 	struct page *freepage;
1010 
1011 	/*
1012 	 * Isolate free pages if necessary, and if we are not aborting due to
1013 	 * contention.
1014 	 */
1015 	if (list_empty(&cc->freepages)) {
1016 		if (!cc->contended)
1017 			isolate_freepages(cc);
1018 
1019 		if (list_empty(&cc->freepages))
1020 			return NULL;
1021 	}
1022 
1023 	freepage = list_entry(cc->freepages.next, struct page, lru);
1024 	list_del(&freepage->lru);
1025 	cc->nr_freepages--;
1026 
1027 	return freepage;
1028 }
1029 
1030 /*
1031  * This is a migrate-callback that "frees" freepages back to the isolated
1032  * freelist.  All pages on the freelist are from the same zone, so there is no
1033  * special handling needed for NUMA.
1034  */
1035 static void compaction_free(struct page *page, unsigned long data)
1036 {
1037 	struct compact_control *cc = (struct compact_control *)data;
1038 
1039 	list_add(&page->lru, &cc->freepages);
1040 	cc->nr_freepages++;
1041 }
1042 
1043 /* possible outcome of isolate_migratepages */
1044 typedef enum {
1045 	ISOLATE_ABORT,		/* Abort compaction now */
1046 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1047 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1048 } isolate_migrate_t;
1049 
1050 /*
1051  * Allow userspace to control policy on scanning the unevictable LRU for
1052  * compactable pages.
1053  */
1054 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1055 
1056 /*
1057  * Isolate all pages that can be migrated from the first suitable block,
1058  * starting at the block pointed to by the migrate scanner pfn within
1059  * compact_control.
1060  */
1061 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1062 					struct compact_control *cc)
1063 {
1064 	unsigned long low_pfn, end_pfn;
1065 	struct page *page;
1066 	const isolate_mode_t isolate_mode =
1067 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1068 		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1069 
1070 	/*
1071 	 * Start at where we last stopped, or beginning of the zone as
1072 	 * initialized by compact_zone()
1073 	 */
1074 	low_pfn = cc->migrate_pfn;
1075 
1076 	/* Only scan within a pageblock boundary */
1077 	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1078 
1079 	/*
1080 	 * Iterate over whole pageblocks until we find the first suitable.
1081 	 * Do not cross the free scanner.
1082 	 */
1083 	for (; end_pfn <= cc->free_pfn;
1084 			low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1085 
1086 		/*
1087 		 * This can potentially iterate a massively long zone with
1088 		 * many pageblocks unsuitable, so periodically check if we
1089 		 * need to schedule, or even abort async compaction.
1090 		 */
1091 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1092 						&& compact_should_abort(cc))
1093 			break;
1094 
1095 		page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1096 		if (!page)
1097 			continue;
1098 
1099 		/* If isolation recently failed, do not retry */
1100 		if (!isolation_suitable(cc, page))
1101 			continue;
1102 
1103 		/*
1104 		 * For async compaction, also only scan in MOVABLE blocks.
1105 		 * Async compaction is optimistic to see if the minimum amount
1106 		 * of work satisfies the allocation.
1107 		 */
1108 		if (cc->mode == MIGRATE_ASYNC &&
1109 		    !migrate_async_suitable(get_pageblock_migratetype(page)))
1110 			continue;
1111 
1112 		/* Perform the isolation */
1113 		low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1114 								isolate_mode);
1115 
1116 		if (!low_pfn || cc->contended) {
1117 			acct_isolated(zone, cc);
1118 			return ISOLATE_ABORT;
1119 		}
1120 
1121 		/*
1122 		 * Either we isolated something and proceed with migration. Or
1123 		 * we failed and compact_zone should decide if we should
1124 		 * continue or not.
1125 		 */
1126 		break;
1127 	}
1128 
1129 	acct_isolated(zone, cc);
1130 	/*
1131 	 * Record where migration scanner will be restarted. If we end up in
1132 	 * the same pageblock as the free scanner, make the scanners fully
1133 	 * meet so that compact_finished() terminates compaction.
1134 	 */
1135 	cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
1136 
1137 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1138 }
1139 
1140 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1141 			    const int migratetype)
1142 {
1143 	unsigned int order;
1144 	unsigned long watermark;
1145 
1146 	if (cc->contended || fatal_signal_pending(current))
1147 		return COMPACT_PARTIAL;
1148 
1149 	/* Compaction run completes if the migrate and free scanner meet */
1150 	if (cc->free_pfn <= cc->migrate_pfn) {
1151 		/* Let the next compaction start anew. */
1152 		zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
1153 		zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1154 		zone->compact_cached_free_pfn = zone_end_pfn(zone);
1155 
1156 		/*
1157 		 * Mark that the PG_migrate_skip information should be cleared
1158 		 * by kswapd when it goes to sleep. kswapd does not set the
1159 		 * flag itself as the decision to be clear should be directly
1160 		 * based on an allocation request.
1161 		 */
1162 		if (!current_is_kswapd())
1163 			zone->compact_blockskip_flush = true;
1164 
1165 		return COMPACT_COMPLETE;
1166 	}
1167 
1168 	/*
1169 	 * order == -1 is expected when compacting via
1170 	 * /proc/sys/vm/compact_memory
1171 	 */
1172 	if (cc->order == -1)
1173 		return COMPACT_CONTINUE;
1174 
1175 	/* Compaction run is not finished if the watermark is not met */
1176 	watermark = low_wmark_pages(zone);
1177 
1178 	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1179 							cc->alloc_flags))
1180 		return COMPACT_CONTINUE;
1181 
1182 	/* Direct compactor: Is a suitable page free? */
1183 	for (order = cc->order; order < MAX_ORDER; order++) {
1184 		struct free_area *area = &zone->free_area[order];
1185 		bool can_steal;
1186 
1187 		/* Job done if page is free of the right migratetype */
1188 		if (!list_empty(&area->free_list[migratetype]))
1189 			return COMPACT_PARTIAL;
1190 
1191 #ifdef CONFIG_CMA
1192 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1193 		if (migratetype == MIGRATE_MOVABLE &&
1194 			!list_empty(&area->free_list[MIGRATE_CMA]))
1195 			return COMPACT_PARTIAL;
1196 #endif
1197 		/*
1198 		 * Job done if allocation would steal freepages from
1199 		 * other migratetype buddy lists.
1200 		 */
1201 		if (find_suitable_fallback(area, order, migratetype,
1202 						true, &can_steal) != -1)
1203 			return COMPACT_PARTIAL;
1204 	}
1205 
1206 	return COMPACT_NO_SUITABLE_PAGE;
1207 }
1208 
1209 static int compact_finished(struct zone *zone, struct compact_control *cc,
1210 			    const int migratetype)
1211 {
1212 	int ret;
1213 
1214 	ret = __compact_finished(zone, cc, migratetype);
1215 	trace_mm_compaction_finished(zone, cc->order, ret);
1216 	if (ret == COMPACT_NO_SUITABLE_PAGE)
1217 		ret = COMPACT_CONTINUE;
1218 
1219 	return ret;
1220 }
1221 
1222 /*
1223  * compaction_suitable: Is this suitable to run compaction on this zone now?
1224  * Returns
1225  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1226  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1227  *   COMPACT_CONTINUE - If compaction should run now
1228  */
1229 static unsigned long __compaction_suitable(struct zone *zone, int order,
1230 					int alloc_flags, int classzone_idx)
1231 {
1232 	int fragindex;
1233 	unsigned long watermark;
1234 
1235 	/*
1236 	 * order == -1 is expected when compacting via
1237 	 * /proc/sys/vm/compact_memory
1238 	 */
1239 	if (order == -1)
1240 		return COMPACT_CONTINUE;
1241 
1242 	watermark = low_wmark_pages(zone);
1243 	/*
1244 	 * If watermarks for high-order allocation are already met, there
1245 	 * should be no need for compaction at all.
1246 	 */
1247 	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1248 								alloc_flags))
1249 		return COMPACT_PARTIAL;
1250 
1251 	/*
1252 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1253 	 * This is because during migration, copies of pages need to be
1254 	 * allocated and for a short time, the footprint is higher
1255 	 */
1256 	watermark += (2UL << order);
1257 	if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1258 		return COMPACT_SKIPPED;
1259 
1260 	/*
1261 	 * fragmentation index determines if allocation failures are due to
1262 	 * low memory or external fragmentation
1263 	 *
1264 	 * index of -1000 would imply allocations might succeed depending on
1265 	 * watermarks, but we already failed the high-order watermark check
1266 	 * index towards 0 implies failure is due to lack of memory
1267 	 * index towards 1000 implies failure is due to fragmentation
1268 	 *
1269 	 * Only compact if a failure would be due to fragmentation.
1270 	 */
1271 	fragindex = fragmentation_index(zone, order);
1272 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1273 		return COMPACT_NOT_SUITABLE_ZONE;
1274 
1275 	return COMPACT_CONTINUE;
1276 }
1277 
1278 unsigned long compaction_suitable(struct zone *zone, int order,
1279 					int alloc_flags, int classzone_idx)
1280 {
1281 	unsigned long ret;
1282 
1283 	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1284 	trace_mm_compaction_suitable(zone, order, ret);
1285 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
1286 		ret = COMPACT_SKIPPED;
1287 
1288 	return ret;
1289 }
1290 
1291 static int compact_zone(struct zone *zone, struct compact_control *cc)
1292 {
1293 	int ret;
1294 	unsigned long start_pfn = zone->zone_start_pfn;
1295 	unsigned long end_pfn = zone_end_pfn(zone);
1296 	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1297 	const bool sync = cc->mode != MIGRATE_ASYNC;
1298 	unsigned long last_migrated_pfn = 0;
1299 
1300 	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1301 							cc->classzone_idx);
1302 	switch (ret) {
1303 	case COMPACT_PARTIAL:
1304 	case COMPACT_SKIPPED:
1305 		/* Compaction is likely to fail */
1306 		return ret;
1307 	case COMPACT_CONTINUE:
1308 		/* Fall through to compaction */
1309 		;
1310 	}
1311 
1312 	/*
1313 	 * Clear pageblock skip if there were failures recently and compaction
1314 	 * is about to be retried after being deferred. kswapd does not do
1315 	 * this reset as it'll reset the cached information when going to sleep.
1316 	 */
1317 	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1318 		__reset_isolation_suitable(zone);
1319 
1320 	/*
1321 	 * Setup to move all movable pages to the end of the zone. Used cached
1322 	 * information on where the scanners should start but check that it
1323 	 * is initialised by ensuring the values are within zone boundaries.
1324 	 */
1325 	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1326 	cc->free_pfn = zone->compact_cached_free_pfn;
1327 	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1328 		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1329 		zone->compact_cached_free_pfn = cc->free_pfn;
1330 	}
1331 	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1332 		cc->migrate_pfn = start_pfn;
1333 		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1334 		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1335 	}
1336 
1337 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1338 				cc->free_pfn, end_pfn, sync);
1339 
1340 	migrate_prep_local();
1341 
1342 	while ((ret = compact_finished(zone, cc, migratetype)) ==
1343 						COMPACT_CONTINUE) {
1344 		int err;
1345 		unsigned long isolate_start_pfn = cc->migrate_pfn;
1346 
1347 		switch (isolate_migratepages(zone, cc)) {
1348 		case ISOLATE_ABORT:
1349 			ret = COMPACT_PARTIAL;
1350 			putback_movable_pages(&cc->migratepages);
1351 			cc->nr_migratepages = 0;
1352 			goto out;
1353 		case ISOLATE_NONE:
1354 			/*
1355 			 * We haven't isolated and migrated anything, but
1356 			 * there might still be unflushed migrations from
1357 			 * previous cc->order aligned block.
1358 			 */
1359 			goto check_drain;
1360 		case ISOLATE_SUCCESS:
1361 			;
1362 		}
1363 
1364 		err = migrate_pages(&cc->migratepages, compaction_alloc,
1365 				compaction_free, (unsigned long)cc, cc->mode,
1366 				MR_COMPACTION);
1367 
1368 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1369 							&cc->migratepages);
1370 
1371 		/* All pages were either migrated or will be released */
1372 		cc->nr_migratepages = 0;
1373 		if (err) {
1374 			putback_movable_pages(&cc->migratepages);
1375 			/*
1376 			 * migrate_pages() may return -ENOMEM when scanners meet
1377 			 * and we want compact_finished() to detect it
1378 			 */
1379 			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1380 				ret = COMPACT_PARTIAL;
1381 				goto out;
1382 			}
1383 		}
1384 
1385 		/*
1386 		 * Record where we could have freed pages by migration and not
1387 		 * yet flushed them to buddy allocator. We use the pfn that
1388 		 * isolate_migratepages() started from in this loop iteration
1389 		 * - this is the lowest page that could have been isolated and
1390 		 * then freed by migration.
1391 		 */
1392 		if (!last_migrated_pfn)
1393 			last_migrated_pfn = isolate_start_pfn;
1394 
1395 check_drain:
1396 		/*
1397 		 * Has the migration scanner moved away from the previous
1398 		 * cc->order aligned block where we migrated from? If yes,
1399 		 * flush the pages that were freed, so that they can merge and
1400 		 * compact_finished() can detect immediately if allocation
1401 		 * would succeed.
1402 		 */
1403 		if (cc->order > 0 && last_migrated_pfn) {
1404 			int cpu;
1405 			unsigned long current_block_start =
1406 				cc->migrate_pfn & ~((1UL << cc->order) - 1);
1407 
1408 			if (last_migrated_pfn < current_block_start) {
1409 				cpu = get_cpu();
1410 				lru_add_drain_cpu(cpu);
1411 				drain_local_pages(zone);
1412 				put_cpu();
1413 				/* No more flushing until we migrate again */
1414 				last_migrated_pfn = 0;
1415 			}
1416 		}
1417 
1418 	}
1419 
1420 out:
1421 	/*
1422 	 * Release free pages and update where the free scanner should restart,
1423 	 * so we don't leave any returned pages behind in the next attempt.
1424 	 */
1425 	if (cc->nr_freepages > 0) {
1426 		unsigned long free_pfn = release_freepages(&cc->freepages);
1427 
1428 		cc->nr_freepages = 0;
1429 		VM_BUG_ON(free_pfn == 0);
1430 		/* The cached pfn is always the first in a pageblock */
1431 		free_pfn &= ~(pageblock_nr_pages-1);
1432 		/*
1433 		 * Only go back, not forward. The cached pfn might have been
1434 		 * already reset to zone end in compact_finished()
1435 		 */
1436 		if (free_pfn > zone->compact_cached_free_pfn)
1437 			zone->compact_cached_free_pfn = free_pfn;
1438 	}
1439 
1440 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1441 				cc->free_pfn, end_pfn, sync, ret);
1442 
1443 	return ret;
1444 }
1445 
1446 static unsigned long compact_zone_order(struct zone *zone, int order,
1447 		gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1448 		int alloc_flags, int classzone_idx)
1449 {
1450 	unsigned long ret;
1451 	struct compact_control cc = {
1452 		.nr_freepages = 0,
1453 		.nr_migratepages = 0,
1454 		.order = order,
1455 		.gfp_mask = gfp_mask,
1456 		.zone = zone,
1457 		.mode = mode,
1458 		.alloc_flags = alloc_flags,
1459 		.classzone_idx = classzone_idx,
1460 	};
1461 	INIT_LIST_HEAD(&cc.freepages);
1462 	INIT_LIST_HEAD(&cc.migratepages);
1463 
1464 	ret = compact_zone(zone, &cc);
1465 
1466 	VM_BUG_ON(!list_empty(&cc.freepages));
1467 	VM_BUG_ON(!list_empty(&cc.migratepages));
1468 
1469 	*contended = cc.contended;
1470 	return ret;
1471 }
1472 
1473 int sysctl_extfrag_threshold = 500;
1474 
1475 /**
1476  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1477  * @gfp_mask: The GFP mask of the current allocation
1478  * @order: The order of the current allocation
1479  * @alloc_flags: The allocation flags of the current allocation
1480  * @ac: The context of current allocation
1481  * @mode: The migration mode for async, sync light, or sync migration
1482  * @contended: Return value that determines if compaction was aborted due to
1483  *	       need_resched() or lock contention
1484  *
1485  * This is the main entry point for direct page compaction.
1486  */
1487 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1488 			int alloc_flags, const struct alloc_context *ac,
1489 			enum migrate_mode mode, int *contended)
1490 {
1491 	int may_enter_fs = gfp_mask & __GFP_FS;
1492 	int may_perform_io = gfp_mask & __GFP_IO;
1493 	struct zoneref *z;
1494 	struct zone *zone;
1495 	int rc = COMPACT_DEFERRED;
1496 	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1497 
1498 	*contended = COMPACT_CONTENDED_NONE;
1499 
1500 	/* Check if the GFP flags allow compaction */
1501 	if (!order || !may_enter_fs || !may_perform_io)
1502 		return COMPACT_SKIPPED;
1503 
1504 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1505 
1506 	/* Compact each zone in the list */
1507 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1508 								ac->nodemask) {
1509 		int status;
1510 		int zone_contended;
1511 
1512 		if (compaction_deferred(zone, order))
1513 			continue;
1514 
1515 		status = compact_zone_order(zone, order, gfp_mask, mode,
1516 				&zone_contended, alloc_flags,
1517 				ac->classzone_idx);
1518 		rc = max(status, rc);
1519 		/*
1520 		 * It takes at least one zone that wasn't lock contended
1521 		 * to clear all_zones_contended.
1522 		 */
1523 		all_zones_contended &= zone_contended;
1524 
1525 		/* If a normal allocation would succeed, stop compacting */
1526 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1527 					ac->classzone_idx, alloc_flags)) {
1528 			/*
1529 			 * We think the allocation will succeed in this zone,
1530 			 * but it is not certain, hence the false. The caller
1531 			 * will repeat this with true if allocation indeed
1532 			 * succeeds in this zone.
1533 			 */
1534 			compaction_defer_reset(zone, order, false);
1535 			/*
1536 			 * It is possible that async compaction aborted due to
1537 			 * need_resched() and the watermarks were ok thanks to
1538 			 * somebody else freeing memory. The allocation can
1539 			 * however still fail so we better signal the
1540 			 * need_resched() contention anyway (this will not
1541 			 * prevent the allocation attempt).
1542 			 */
1543 			if (zone_contended == COMPACT_CONTENDED_SCHED)
1544 				*contended = COMPACT_CONTENDED_SCHED;
1545 
1546 			goto break_loop;
1547 		}
1548 
1549 		if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1550 			/*
1551 			 * We think that allocation won't succeed in this zone
1552 			 * so we defer compaction there. If it ends up
1553 			 * succeeding after all, it will be reset.
1554 			 */
1555 			defer_compaction(zone, order);
1556 		}
1557 
1558 		/*
1559 		 * We might have stopped compacting due to need_resched() in
1560 		 * async compaction, or due to a fatal signal detected. In that
1561 		 * case do not try further zones and signal need_resched()
1562 		 * contention.
1563 		 */
1564 		if ((zone_contended == COMPACT_CONTENDED_SCHED)
1565 					|| fatal_signal_pending(current)) {
1566 			*contended = COMPACT_CONTENDED_SCHED;
1567 			goto break_loop;
1568 		}
1569 
1570 		continue;
1571 break_loop:
1572 		/*
1573 		 * We might not have tried all the zones, so  be conservative
1574 		 * and assume they are not all lock contended.
1575 		 */
1576 		all_zones_contended = 0;
1577 		break;
1578 	}
1579 
1580 	/*
1581 	 * If at least one zone wasn't deferred or skipped, we report if all
1582 	 * zones that were tried were lock contended.
1583 	 */
1584 	if (rc > COMPACT_SKIPPED && all_zones_contended)
1585 		*contended = COMPACT_CONTENDED_LOCK;
1586 
1587 	return rc;
1588 }
1589 
1590 
1591 /* Compact all zones within a node */
1592 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1593 {
1594 	int zoneid;
1595 	struct zone *zone;
1596 
1597 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1598 
1599 		zone = &pgdat->node_zones[zoneid];
1600 		if (!populated_zone(zone))
1601 			continue;
1602 
1603 		cc->nr_freepages = 0;
1604 		cc->nr_migratepages = 0;
1605 		cc->zone = zone;
1606 		INIT_LIST_HEAD(&cc->freepages);
1607 		INIT_LIST_HEAD(&cc->migratepages);
1608 
1609 		/*
1610 		 * When called via /proc/sys/vm/compact_memory
1611 		 * this makes sure we compact the whole zone regardless of
1612 		 * cached scanner positions.
1613 		 */
1614 		if (cc->order == -1)
1615 			__reset_isolation_suitable(zone);
1616 
1617 		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1618 			compact_zone(zone, cc);
1619 
1620 		if (cc->order > 0) {
1621 			if (zone_watermark_ok(zone, cc->order,
1622 						low_wmark_pages(zone), 0, 0))
1623 				compaction_defer_reset(zone, cc->order, false);
1624 		}
1625 
1626 		VM_BUG_ON(!list_empty(&cc->freepages));
1627 		VM_BUG_ON(!list_empty(&cc->migratepages));
1628 	}
1629 }
1630 
1631 void compact_pgdat(pg_data_t *pgdat, int order)
1632 {
1633 	struct compact_control cc = {
1634 		.order = order,
1635 		.mode = MIGRATE_ASYNC,
1636 	};
1637 
1638 	if (!order)
1639 		return;
1640 
1641 	__compact_pgdat(pgdat, &cc);
1642 }
1643 
1644 static void compact_node(int nid)
1645 {
1646 	struct compact_control cc = {
1647 		.order = -1,
1648 		.mode = MIGRATE_SYNC,
1649 		.ignore_skip_hint = true,
1650 	};
1651 
1652 	__compact_pgdat(NODE_DATA(nid), &cc);
1653 }
1654 
1655 /* Compact all nodes in the system */
1656 static void compact_nodes(void)
1657 {
1658 	int nid;
1659 
1660 	/* Flush pending updates to the LRU lists */
1661 	lru_add_drain_all();
1662 
1663 	for_each_online_node(nid)
1664 		compact_node(nid);
1665 }
1666 
1667 /* The written value is actually unused, all memory is compacted */
1668 int sysctl_compact_memory;
1669 
1670 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1671 int sysctl_compaction_handler(struct ctl_table *table, int write,
1672 			void __user *buffer, size_t *length, loff_t *ppos)
1673 {
1674 	if (write)
1675 		compact_nodes();
1676 
1677 	return 0;
1678 }
1679 
1680 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1681 			void __user *buffer, size_t *length, loff_t *ppos)
1682 {
1683 	proc_dointvec_minmax(table, write, buffer, length, ppos);
1684 
1685 	return 0;
1686 }
1687 
1688 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1689 static ssize_t sysfs_compact_node(struct device *dev,
1690 			struct device_attribute *attr,
1691 			const char *buf, size_t count)
1692 {
1693 	int nid = dev->id;
1694 
1695 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1696 		/* Flush pending updates to the LRU lists */
1697 		lru_add_drain_all();
1698 
1699 		compact_node(nid);
1700 	}
1701 
1702 	return count;
1703 }
1704 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1705 
1706 int compaction_register_node(struct node *node)
1707 {
1708 	return device_create_file(&node->dev, &dev_attr_compact);
1709 }
1710 
1711 void compaction_unregister_node(struct node *node)
1712 {
1713 	return device_remove_file(&node->dev, &dev_attr_compact);
1714 }
1715 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1716 
1717 #endif /* CONFIG_COMPACTION */
1718