xref: /openbmc/linux/mm/compaction.c (revision 504f231c)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/sched/signal.h>
16 #include <linux/backing-dev.h>
17 #include <linux/sysctl.h>
18 #include <linux/sysfs.h>
19 #include <linux/page-isolation.h>
20 #include <linux/kasan.h>
21 #include <linux/kthread.h>
22 #include <linux/freezer.h>
23 #include <linux/page_owner.h>
24 #include "internal.h"
25 
26 #ifdef CONFIG_COMPACTION
27 static inline void count_compact_event(enum vm_event_item item)
28 {
29 	count_vm_event(item);
30 }
31 
32 static inline void count_compact_events(enum vm_event_item item, long delta)
33 {
34 	count_vm_events(item, delta);
35 }
36 #else
37 #define count_compact_event(item) do { } while (0)
38 #define count_compact_events(item, delta) do { } while (0)
39 #endif
40 
41 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/compaction.h>
45 
46 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
47 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
48 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
49 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
50 
51 static unsigned long release_freepages(struct list_head *freelist)
52 {
53 	struct page *page, *next;
54 	unsigned long high_pfn = 0;
55 
56 	list_for_each_entry_safe(page, next, freelist, lru) {
57 		unsigned long pfn = page_to_pfn(page);
58 		list_del(&page->lru);
59 		__free_page(page);
60 		if (pfn > high_pfn)
61 			high_pfn = pfn;
62 	}
63 
64 	return high_pfn;
65 }
66 
67 static void map_pages(struct list_head *list)
68 {
69 	unsigned int i, order, nr_pages;
70 	struct page *page, *next;
71 	LIST_HEAD(tmp_list);
72 
73 	list_for_each_entry_safe(page, next, list, lru) {
74 		list_del(&page->lru);
75 
76 		order = page_private(page);
77 		nr_pages = 1 << order;
78 
79 		post_alloc_hook(page, order, __GFP_MOVABLE);
80 		if (order)
81 			split_page(page, order);
82 
83 		for (i = 0; i < nr_pages; i++) {
84 			list_add(&page->lru, &tmp_list);
85 			page++;
86 		}
87 	}
88 
89 	list_splice(&tmp_list, list);
90 }
91 
92 #ifdef CONFIG_COMPACTION
93 
94 int PageMovable(struct page *page)
95 {
96 	struct address_space *mapping;
97 
98 	VM_BUG_ON_PAGE(!PageLocked(page), page);
99 	if (!__PageMovable(page))
100 		return 0;
101 
102 	mapping = page_mapping(page);
103 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
104 		return 1;
105 
106 	return 0;
107 }
108 EXPORT_SYMBOL(PageMovable);
109 
110 void __SetPageMovable(struct page *page, struct address_space *mapping)
111 {
112 	VM_BUG_ON_PAGE(!PageLocked(page), page);
113 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
114 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
115 }
116 EXPORT_SYMBOL(__SetPageMovable);
117 
118 void __ClearPageMovable(struct page *page)
119 {
120 	VM_BUG_ON_PAGE(!PageLocked(page), page);
121 	VM_BUG_ON_PAGE(!PageMovable(page), page);
122 	/*
123 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
124 	 * flag so that VM can catch up released page by driver after isolation.
125 	 * With it, VM migration doesn't try to put it back.
126 	 */
127 	page->mapping = (void *)((unsigned long)page->mapping &
128 				PAGE_MAPPING_MOVABLE);
129 }
130 EXPORT_SYMBOL(__ClearPageMovable);
131 
132 /* Do not skip compaction more than 64 times */
133 #define COMPACT_MAX_DEFER_SHIFT 6
134 
135 /*
136  * Compaction is deferred when compaction fails to result in a page
137  * allocation success. 1 << compact_defer_limit compactions are skipped up
138  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
139  */
140 void defer_compaction(struct zone *zone, int order)
141 {
142 	zone->compact_considered = 0;
143 	zone->compact_defer_shift++;
144 
145 	if (order < zone->compact_order_failed)
146 		zone->compact_order_failed = order;
147 
148 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
149 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
150 
151 	trace_mm_compaction_defer_compaction(zone, order);
152 }
153 
154 /* Returns true if compaction should be skipped this time */
155 bool compaction_deferred(struct zone *zone, int order)
156 {
157 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
158 
159 	if (order < zone->compact_order_failed)
160 		return false;
161 
162 	/* Avoid possible overflow */
163 	if (++zone->compact_considered > defer_limit)
164 		zone->compact_considered = defer_limit;
165 
166 	if (zone->compact_considered >= defer_limit)
167 		return false;
168 
169 	trace_mm_compaction_deferred(zone, order);
170 
171 	return true;
172 }
173 
174 /*
175  * Update defer tracking counters after successful compaction of given order,
176  * which means an allocation either succeeded (alloc_success == true) or is
177  * expected to succeed.
178  */
179 void compaction_defer_reset(struct zone *zone, int order,
180 		bool alloc_success)
181 {
182 	if (alloc_success) {
183 		zone->compact_considered = 0;
184 		zone->compact_defer_shift = 0;
185 	}
186 	if (order >= zone->compact_order_failed)
187 		zone->compact_order_failed = order + 1;
188 
189 	trace_mm_compaction_defer_reset(zone, order);
190 }
191 
192 /* Returns true if restarting compaction after many failures */
193 bool compaction_restarting(struct zone *zone, int order)
194 {
195 	if (order < zone->compact_order_failed)
196 		return false;
197 
198 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
199 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
200 }
201 
202 /* Returns true if the pageblock should be scanned for pages to isolate. */
203 static inline bool isolation_suitable(struct compact_control *cc,
204 					struct page *page)
205 {
206 	if (cc->ignore_skip_hint)
207 		return true;
208 
209 	return !get_pageblock_skip(page);
210 }
211 
212 static void reset_cached_positions(struct zone *zone)
213 {
214 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
215 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
216 	zone->compact_cached_free_pfn =
217 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
218 }
219 
220 /*
221  * This function is called to clear all cached information on pageblocks that
222  * should be skipped for page isolation when the migrate and free page scanner
223  * meet.
224  */
225 static void __reset_isolation_suitable(struct zone *zone)
226 {
227 	unsigned long start_pfn = zone->zone_start_pfn;
228 	unsigned long end_pfn = zone_end_pfn(zone);
229 	unsigned long pfn;
230 
231 	zone->compact_blockskip_flush = false;
232 
233 	/* Walk the zone and mark every pageblock as suitable for isolation */
234 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
235 		struct page *page;
236 
237 		cond_resched();
238 
239 		if (!pfn_valid(pfn))
240 			continue;
241 
242 		page = pfn_to_page(pfn);
243 		if (zone != page_zone(page))
244 			continue;
245 
246 		clear_pageblock_skip(page);
247 	}
248 
249 	reset_cached_positions(zone);
250 }
251 
252 void reset_isolation_suitable(pg_data_t *pgdat)
253 {
254 	int zoneid;
255 
256 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
257 		struct zone *zone = &pgdat->node_zones[zoneid];
258 		if (!populated_zone(zone))
259 			continue;
260 
261 		/* Only flush if a full compaction finished recently */
262 		if (zone->compact_blockskip_flush)
263 			__reset_isolation_suitable(zone);
264 	}
265 }
266 
267 /*
268  * If no pages were isolated then mark this pageblock to be skipped in the
269  * future. The information is later cleared by __reset_isolation_suitable().
270  */
271 static void update_pageblock_skip(struct compact_control *cc,
272 			struct page *page, unsigned long nr_isolated,
273 			bool migrate_scanner)
274 {
275 	struct zone *zone = cc->zone;
276 	unsigned long pfn;
277 
278 	if (cc->ignore_skip_hint)
279 		return;
280 
281 	if (!page)
282 		return;
283 
284 	if (nr_isolated)
285 		return;
286 
287 	set_pageblock_skip(page);
288 
289 	pfn = page_to_pfn(page);
290 
291 	/* Update where async and sync compaction should restart */
292 	if (migrate_scanner) {
293 		if (pfn > zone->compact_cached_migrate_pfn[0])
294 			zone->compact_cached_migrate_pfn[0] = pfn;
295 		if (cc->mode != MIGRATE_ASYNC &&
296 		    pfn > zone->compact_cached_migrate_pfn[1])
297 			zone->compact_cached_migrate_pfn[1] = pfn;
298 	} else {
299 		if (pfn < zone->compact_cached_free_pfn)
300 			zone->compact_cached_free_pfn = pfn;
301 	}
302 }
303 #else
304 static inline bool isolation_suitable(struct compact_control *cc,
305 					struct page *page)
306 {
307 	return true;
308 }
309 
310 static void update_pageblock_skip(struct compact_control *cc,
311 			struct page *page, unsigned long nr_isolated,
312 			bool migrate_scanner)
313 {
314 }
315 #endif /* CONFIG_COMPACTION */
316 
317 /*
318  * Compaction requires the taking of some coarse locks that are potentially
319  * very heavily contended. For async compaction, back out if the lock cannot
320  * be taken immediately. For sync compaction, spin on the lock if needed.
321  *
322  * Returns true if the lock is held
323  * Returns false if the lock is not held and compaction should abort
324  */
325 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
326 						struct compact_control *cc)
327 {
328 	if (cc->mode == MIGRATE_ASYNC) {
329 		if (!spin_trylock_irqsave(lock, *flags)) {
330 			cc->contended = true;
331 			return false;
332 		}
333 	} else {
334 		spin_lock_irqsave(lock, *flags);
335 	}
336 
337 	return true;
338 }
339 
340 /*
341  * Compaction requires the taking of some coarse locks that are potentially
342  * very heavily contended. The lock should be periodically unlocked to avoid
343  * having disabled IRQs for a long time, even when there is nobody waiting on
344  * the lock. It might also be that allowing the IRQs will result in
345  * need_resched() becoming true. If scheduling is needed, async compaction
346  * aborts. Sync compaction schedules.
347  * Either compaction type will also abort if a fatal signal is pending.
348  * In either case if the lock was locked, it is dropped and not regained.
349  *
350  * Returns true if compaction should abort due to fatal signal pending, or
351  *		async compaction due to need_resched()
352  * Returns false when compaction can continue (sync compaction might have
353  *		scheduled)
354  */
355 static bool compact_unlock_should_abort(spinlock_t *lock,
356 		unsigned long flags, bool *locked, struct compact_control *cc)
357 {
358 	if (*locked) {
359 		spin_unlock_irqrestore(lock, flags);
360 		*locked = false;
361 	}
362 
363 	if (fatal_signal_pending(current)) {
364 		cc->contended = true;
365 		return true;
366 	}
367 
368 	if (need_resched()) {
369 		if (cc->mode == MIGRATE_ASYNC) {
370 			cc->contended = true;
371 			return true;
372 		}
373 		cond_resched();
374 	}
375 
376 	return false;
377 }
378 
379 /*
380  * Aside from avoiding lock contention, compaction also periodically checks
381  * need_resched() and either schedules in sync compaction or aborts async
382  * compaction. This is similar to what compact_unlock_should_abort() does, but
383  * is used where no lock is concerned.
384  *
385  * Returns false when no scheduling was needed, or sync compaction scheduled.
386  * Returns true when async compaction should abort.
387  */
388 static inline bool compact_should_abort(struct compact_control *cc)
389 {
390 	/* async compaction aborts if contended */
391 	if (need_resched()) {
392 		if (cc->mode == MIGRATE_ASYNC) {
393 			cc->contended = true;
394 			return true;
395 		}
396 
397 		cond_resched();
398 	}
399 
400 	return false;
401 }
402 
403 /*
404  * Isolate free pages onto a private freelist. If @strict is true, will abort
405  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
406  * (even though it may still end up isolating some pages).
407  */
408 static unsigned long isolate_freepages_block(struct compact_control *cc,
409 				unsigned long *start_pfn,
410 				unsigned long end_pfn,
411 				struct list_head *freelist,
412 				bool strict)
413 {
414 	int nr_scanned = 0, total_isolated = 0;
415 	struct page *cursor, *valid_page = NULL;
416 	unsigned long flags = 0;
417 	bool locked = false;
418 	unsigned long blockpfn = *start_pfn;
419 	unsigned int order;
420 
421 	cursor = pfn_to_page(blockpfn);
422 
423 	/* Isolate free pages. */
424 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
425 		int isolated;
426 		struct page *page = cursor;
427 
428 		/*
429 		 * Periodically drop the lock (if held) regardless of its
430 		 * contention, to give chance to IRQs. Abort if fatal signal
431 		 * pending or async compaction detects need_resched()
432 		 */
433 		if (!(blockpfn % SWAP_CLUSTER_MAX)
434 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
435 								&locked, cc))
436 			break;
437 
438 		nr_scanned++;
439 		if (!pfn_valid_within(blockpfn))
440 			goto isolate_fail;
441 
442 		if (!valid_page)
443 			valid_page = page;
444 
445 		/*
446 		 * For compound pages such as THP and hugetlbfs, we can save
447 		 * potentially a lot of iterations if we skip them at once.
448 		 * The check is racy, but we can consider only valid values
449 		 * and the only danger is skipping too much.
450 		 */
451 		if (PageCompound(page)) {
452 			unsigned int comp_order = compound_order(page);
453 
454 			if (likely(comp_order < MAX_ORDER)) {
455 				blockpfn += (1UL << comp_order) - 1;
456 				cursor += (1UL << comp_order) - 1;
457 			}
458 
459 			goto isolate_fail;
460 		}
461 
462 		if (!PageBuddy(page))
463 			goto isolate_fail;
464 
465 		/*
466 		 * If we already hold the lock, we can skip some rechecking.
467 		 * Note that if we hold the lock now, checked_pageblock was
468 		 * already set in some previous iteration (or strict is true),
469 		 * so it is correct to skip the suitable migration target
470 		 * recheck as well.
471 		 */
472 		if (!locked) {
473 			/*
474 			 * The zone lock must be held to isolate freepages.
475 			 * Unfortunately this is a very coarse lock and can be
476 			 * heavily contended if there are parallel allocations
477 			 * or parallel compactions. For async compaction do not
478 			 * spin on the lock and we acquire the lock as late as
479 			 * possible.
480 			 */
481 			locked = compact_trylock_irqsave(&cc->zone->lock,
482 								&flags, cc);
483 			if (!locked)
484 				break;
485 
486 			/* Recheck this is a buddy page under lock */
487 			if (!PageBuddy(page))
488 				goto isolate_fail;
489 		}
490 
491 		/* Found a free page, will break it into order-0 pages */
492 		order = page_order(page);
493 		isolated = __isolate_free_page(page, order);
494 		if (!isolated)
495 			break;
496 		set_page_private(page, order);
497 
498 		total_isolated += isolated;
499 		cc->nr_freepages += isolated;
500 		list_add_tail(&page->lru, freelist);
501 
502 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
503 			blockpfn += isolated;
504 			break;
505 		}
506 		/* Advance to the end of split page */
507 		blockpfn += isolated - 1;
508 		cursor += isolated - 1;
509 		continue;
510 
511 isolate_fail:
512 		if (strict)
513 			break;
514 		else
515 			continue;
516 
517 	}
518 
519 	if (locked)
520 		spin_unlock_irqrestore(&cc->zone->lock, flags);
521 
522 	/*
523 	 * There is a tiny chance that we have read bogus compound_order(),
524 	 * so be careful to not go outside of the pageblock.
525 	 */
526 	if (unlikely(blockpfn > end_pfn))
527 		blockpfn = end_pfn;
528 
529 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
530 					nr_scanned, total_isolated);
531 
532 	/* Record how far we have got within the block */
533 	*start_pfn = blockpfn;
534 
535 	/*
536 	 * If strict isolation is requested by CMA then check that all the
537 	 * pages requested were isolated. If there were any failures, 0 is
538 	 * returned and CMA will fail.
539 	 */
540 	if (strict && blockpfn < end_pfn)
541 		total_isolated = 0;
542 
543 	/* Update the pageblock-skip if the whole pageblock was scanned */
544 	if (blockpfn == end_pfn)
545 		update_pageblock_skip(cc, valid_page, total_isolated, false);
546 
547 	cc->total_free_scanned += nr_scanned;
548 	if (total_isolated)
549 		count_compact_events(COMPACTISOLATED, total_isolated);
550 	return total_isolated;
551 }
552 
553 /**
554  * isolate_freepages_range() - isolate free pages.
555  * @start_pfn: The first PFN to start isolating.
556  * @end_pfn:   The one-past-last PFN.
557  *
558  * Non-free pages, invalid PFNs, or zone boundaries within the
559  * [start_pfn, end_pfn) range are considered errors, cause function to
560  * undo its actions and return zero.
561  *
562  * Otherwise, function returns one-past-the-last PFN of isolated page
563  * (which may be greater then end_pfn if end fell in a middle of
564  * a free page).
565  */
566 unsigned long
567 isolate_freepages_range(struct compact_control *cc,
568 			unsigned long start_pfn, unsigned long end_pfn)
569 {
570 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
571 	LIST_HEAD(freelist);
572 
573 	pfn = start_pfn;
574 	block_start_pfn = pageblock_start_pfn(pfn);
575 	if (block_start_pfn < cc->zone->zone_start_pfn)
576 		block_start_pfn = cc->zone->zone_start_pfn;
577 	block_end_pfn = pageblock_end_pfn(pfn);
578 
579 	for (; pfn < end_pfn; pfn += isolated,
580 				block_start_pfn = block_end_pfn,
581 				block_end_pfn += pageblock_nr_pages) {
582 		/* Protect pfn from changing by isolate_freepages_block */
583 		unsigned long isolate_start_pfn = pfn;
584 
585 		block_end_pfn = min(block_end_pfn, end_pfn);
586 
587 		/*
588 		 * pfn could pass the block_end_pfn if isolated freepage
589 		 * is more than pageblock order. In this case, we adjust
590 		 * scanning range to right one.
591 		 */
592 		if (pfn >= block_end_pfn) {
593 			block_start_pfn = pageblock_start_pfn(pfn);
594 			block_end_pfn = pageblock_end_pfn(pfn);
595 			block_end_pfn = min(block_end_pfn, end_pfn);
596 		}
597 
598 		if (!pageblock_pfn_to_page(block_start_pfn,
599 					block_end_pfn, cc->zone))
600 			break;
601 
602 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
603 						block_end_pfn, &freelist, true);
604 
605 		/*
606 		 * In strict mode, isolate_freepages_block() returns 0 if
607 		 * there are any holes in the block (ie. invalid PFNs or
608 		 * non-free pages).
609 		 */
610 		if (!isolated)
611 			break;
612 
613 		/*
614 		 * If we managed to isolate pages, it is always (1 << n) *
615 		 * pageblock_nr_pages for some non-negative n.  (Max order
616 		 * page may span two pageblocks).
617 		 */
618 	}
619 
620 	/* __isolate_free_page() does not map the pages */
621 	map_pages(&freelist);
622 
623 	if (pfn < end_pfn) {
624 		/* Loop terminated early, cleanup. */
625 		release_freepages(&freelist);
626 		return 0;
627 	}
628 
629 	/* We don't use freelists for anything. */
630 	return pfn;
631 }
632 
633 /* Similar to reclaim, but different enough that they don't share logic */
634 static bool too_many_isolated(struct zone *zone)
635 {
636 	unsigned long active, inactive, isolated;
637 
638 	inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
639 			node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
640 	active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
641 			node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
642 	isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
643 			node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
644 
645 	return isolated > (inactive + active) / 2;
646 }
647 
648 /**
649  * isolate_migratepages_block() - isolate all migrate-able pages within
650  *				  a single pageblock
651  * @cc:		Compaction control structure.
652  * @low_pfn:	The first PFN to isolate
653  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
654  * @isolate_mode: Isolation mode to be used.
655  *
656  * Isolate all pages that can be migrated from the range specified by
657  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
658  * Returns zero if there is a fatal signal pending, otherwise PFN of the
659  * first page that was not scanned (which may be both less, equal to or more
660  * than end_pfn).
661  *
662  * The pages are isolated on cc->migratepages list (not required to be empty),
663  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
664  * is neither read nor updated.
665  */
666 static unsigned long
667 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
668 			unsigned long end_pfn, isolate_mode_t isolate_mode)
669 {
670 	struct zone *zone = cc->zone;
671 	unsigned long nr_scanned = 0, nr_isolated = 0;
672 	struct lruvec *lruvec;
673 	unsigned long flags = 0;
674 	bool locked = false;
675 	struct page *page = NULL, *valid_page = NULL;
676 	unsigned long start_pfn = low_pfn;
677 	bool skip_on_failure = false;
678 	unsigned long next_skip_pfn = 0;
679 
680 	/*
681 	 * Ensure that there are not too many pages isolated from the LRU
682 	 * list by either parallel reclaimers or compaction. If there are,
683 	 * delay for some time until fewer pages are isolated
684 	 */
685 	while (unlikely(too_many_isolated(zone))) {
686 		/* async migration should just abort */
687 		if (cc->mode == MIGRATE_ASYNC)
688 			return 0;
689 
690 		congestion_wait(BLK_RW_ASYNC, HZ/10);
691 
692 		if (fatal_signal_pending(current))
693 			return 0;
694 	}
695 
696 	if (compact_should_abort(cc))
697 		return 0;
698 
699 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
700 		skip_on_failure = true;
701 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
702 	}
703 
704 	/* Time to isolate some pages for migration */
705 	for (; low_pfn < end_pfn; low_pfn++) {
706 
707 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
708 			/*
709 			 * We have isolated all migration candidates in the
710 			 * previous order-aligned block, and did not skip it due
711 			 * to failure. We should migrate the pages now and
712 			 * hopefully succeed compaction.
713 			 */
714 			if (nr_isolated)
715 				break;
716 
717 			/*
718 			 * We failed to isolate in the previous order-aligned
719 			 * block. Set the new boundary to the end of the
720 			 * current block. Note we can't simply increase
721 			 * next_skip_pfn by 1 << order, as low_pfn might have
722 			 * been incremented by a higher number due to skipping
723 			 * a compound or a high-order buddy page in the
724 			 * previous loop iteration.
725 			 */
726 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
727 		}
728 
729 		/*
730 		 * Periodically drop the lock (if held) regardless of its
731 		 * contention, to give chance to IRQs. Abort async compaction
732 		 * if contended.
733 		 */
734 		if (!(low_pfn % SWAP_CLUSTER_MAX)
735 		    && compact_unlock_should_abort(zone_lru_lock(zone), flags,
736 								&locked, cc))
737 			break;
738 
739 		if (!pfn_valid_within(low_pfn))
740 			goto isolate_fail;
741 		nr_scanned++;
742 
743 		page = pfn_to_page(low_pfn);
744 
745 		if (!valid_page)
746 			valid_page = page;
747 
748 		/*
749 		 * Skip if free. We read page order here without zone lock
750 		 * which is generally unsafe, but the race window is small and
751 		 * the worst thing that can happen is that we skip some
752 		 * potential isolation targets.
753 		 */
754 		if (PageBuddy(page)) {
755 			unsigned long freepage_order = page_order_unsafe(page);
756 
757 			/*
758 			 * Without lock, we cannot be sure that what we got is
759 			 * a valid page order. Consider only values in the
760 			 * valid order range to prevent low_pfn overflow.
761 			 */
762 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
763 				low_pfn += (1UL << freepage_order) - 1;
764 			continue;
765 		}
766 
767 		/*
768 		 * Regardless of being on LRU, compound pages such as THP and
769 		 * hugetlbfs are not to be compacted. We can potentially save
770 		 * a lot of iterations if we skip them at once. The check is
771 		 * racy, but we can consider only valid values and the only
772 		 * danger is skipping too much.
773 		 */
774 		if (PageCompound(page)) {
775 			unsigned int comp_order = compound_order(page);
776 
777 			if (likely(comp_order < MAX_ORDER))
778 				low_pfn += (1UL << comp_order) - 1;
779 
780 			goto isolate_fail;
781 		}
782 
783 		/*
784 		 * Check may be lockless but that's ok as we recheck later.
785 		 * It's possible to migrate LRU and non-lru movable pages.
786 		 * Skip any other type of page
787 		 */
788 		if (!PageLRU(page)) {
789 			/*
790 			 * __PageMovable can return false positive so we need
791 			 * to verify it under page_lock.
792 			 */
793 			if (unlikely(__PageMovable(page)) &&
794 					!PageIsolated(page)) {
795 				if (locked) {
796 					spin_unlock_irqrestore(zone_lru_lock(zone),
797 									flags);
798 					locked = false;
799 				}
800 
801 				if (!isolate_movable_page(page, isolate_mode))
802 					goto isolate_success;
803 			}
804 
805 			goto isolate_fail;
806 		}
807 
808 		/*
809 		 * Migration will fail if an anonymous page is pinned in memory,
810 		 * so avoid taking lru_lock and isolating it unnecessarily in an
811 		 * admittedly racy check.
812 		 */
813 		if (!page_mapping(page) &&
814 		    page_count(page) > page_mapcount(page))
815 			goto isolate_fail;
816 
817 		/*
818 		 * Only allow to migrate anonymous pages in GFP_NOFS context
819 		 * because those do not depend on fs locks.
820 		 */
821 		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
822 			goto isolate_fail;
823 
824 		/* If we already hold the lock, we can skip some rechecking */
825 		if (!locked) {
826 			locked = compact_trylock_irqsave(zone_lru_lock(zone),
827 								&flags, cc);
828 			if (!locked)
829 				break;
830 
831 			/* Recheck PageLRU and PageCompound under lock */
832 			if (!PageLRU(page))
833 				goto isolate_fail;
834 
835 			/*
836 			 * Page become compound since the non-locked check,
837 			 * and it's on LRU. It can only be a THP so the order
838 			 * is safe to read and it's 0 for tail pages.
839 			 */
840 			if (unlikely(PageCompound(page))) {
841 				low_pfn += (1UL << compound_order(page)) - 1;
842 				goto isolate_fail;
843 			}
844 		}
845 
846 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
847 
848 		/* Try isolate the page */
849 		if (__isolate_lru_page(page, isolate_mode) != 0)
850 			goto isolate_fail;
851 
852 		VM_BUG_ON_PAGE(PageCompound(page), page);
853 
854 		/* Successfully isolated */
855 		del_page_from_lru_list(page, lruvec, page_lru(page));
856 		inc_node_page_state(page,
857 				NR_ISOLATED_ANON + page_is_file_cache(page));
858 
859 isolate_success:
860 		list_add(&page->lru, &cc->migratepages);
861 		cc->nr_migratepages++;
862 		nr_isolated++;
863 
864 		/*
865 		 * Record where we could have freed pages by migration and not
866 		 * yet flushed them to buddy allocator.
867 		 * - this is the lowest page that was isolated and likely be
868 		 * then freed by migration.
869 		 */
870 		if (!cc->last_migrated_pfn)
871 			cc->last_migrated_pfn = low_pfn;
872 
873 		/* Avoid isolating too much */
874 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
875 			++low_pfn;
876 			break;
877 		}
878 
879 		continue;
880 isolate_fail:
881 		if (!skip_on_failure)
882 			continue;
883 
884 		/*
885 		 * We have isolated some pages, but then failed. Release them
886 		 * instead of migrating, as we cannot form the cc->order buddy
887 		 * page anyway.
888 		 */
889 		if (nr_isolated) {
890 			if (locked) {
891 				spin_unlock_irqrestore(zone_lru_lock(zone), flags);
892 				locked = false;
893 			}
894 			putback_movable_pages(&cc->migratepages);
895 			cc->nr_migratepages = 0;
896 			cc->last_migrated_pfn = 0;
897 			nr_isolated = 0;
898 		}
899 
900 		if (low_pfn < next_skip_pfn) {
901 			low_pfn = next_skip_pfn - 1;
902 			/*
903 			 * The check near the loop beginning would have updated
904 			 * next_skip_pfn too, but this is a bit simpler.
905 			 */
906 			next_skip_pfn += 1UL << cc->order;
907 		}
908 	}
909 
910 	/*
911 	 * The PageBuddy() check could have potentially brought us outside
912 	 * the range to be scanned.
913 	 */
914 	if (unlikely(low_pfn > end_pfn))
915 		low_pfn = end_pfn;
916 
917 	if (locked)
918 		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
919 
920 	/*
921 	 * Update the pageblock-skip information and cached scanner pfn,
922 	 * if the whole pageblock was scanned without isolating any page.
923 	 */
924 	if (low_pfn == end_pfn)
925 		update_pageblock_skip(cc, valid_page, nr_isolated, true);
926 
927 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
928 						nr_scanned, nr_isolated);
929 
930 	cc->total_migrate_scanned += nr_scanned;
931 	if (nr_isolated)
932 		count_compact_events(COMPACTISOLATED, nr_isolated);
933 
934 	return low_pfn;
935 }
936 
937 /**
938  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
939  * @cc:        Compaction control structure.
940  * @start_pfn: The first PFN to start isolating.
941  * @end_pfn:   The one-past-last PFN.
942  *
943  * Returns zero if isolation fails fatally due to e.g. pending signal.
944  * Otherwise, function returns one-past-the-last PFN of isolated page
945  * (which may be greater than end_pfn if end fell in a middle of a THP page).
946  */
947 unsigned long
948 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
949 							unsigned long end_pfn)
950 {
951 	unsigned long pfn, block_start_pfn, block_end_pfn;
952 
953 	/* Scan block by block. First and last block may be incomplete */
954 	pfn = start_pfn;
955 	block_start_pfn = pageblock_start_pfn(pfn);
956 	if (block_start_pfn < cc->zone->zone_start_pfn)
957 		block_start_pfn = cc->zone->zone_start_pfn;
958 	block_end_pfn = pageblock_end_pfn(pfn);
959 
960 	for (; pfn < end_pfn; pfn = block_end_pfn,
961 				block_start_pfn = block_end_pfn,
962 				block_end_pfn += pageblock_nr_pages) {
963 
964 		block_end_pfn = min(block_end_pfn, end_pfn);
965 
966 		if (!pageblock_pfn_to_page(block_start_pfn,
967 					block_end_pfn, cc->zone))
968 			continue;
969 
970 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
971 							ISOLATE_UNEVICTABLE);
972 
973 		if (!pfn)
974 			break;
975 
976 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
977 			break;
978 	}
979 
980 	return pfn;
981 }
982 
983 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
984 #ifdef CONFIG_COMPACTION
985 
986 static bool suitable_migration_source(struct compact_control *cc,
987 							struct page *page)
988 {
989 	int block_mt;
990 
991 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
992 		return true;
993 
994 	block_mt = get_pageblock_migratetype(page);
995 
996 	if (cc->migratetype == MIGRATE_MOVABLE)
997 		return is_migrate_movable(block_mt);
998 	else
999 		return block_mt == cc->migratetype;
1000 }
1001 
1002 /* Returns true if the page is within a block suitable for migration to */
1003 static bool suitable_migration_target(struct compact_control *cc,
1004 							struct page *page)
1005 {
1006 	/* If the page is a large free page, then disallow migration */
1007 	if (PageBuddy(page)) {
1008 		/*
1009 		 * We are checking page_order without zone->lock taken. But
1010 		 * the only small danger is that we skip a potentially suitable
1011 		 * pageblock, so it's not worth to check order for valid range.
1012 		 */
1013 		if (page_order_unsafe(page) >= pageblock_order)
1014 			return false;
1015 	}
1016 
1017 	if (cc->ignore_block_suitable)
1018 		return true;
1019 
1020 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1021 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1022 		return true;
1023 
1024 	/* Otherwise skip the block */
1025 	return false;
1026 }
1027 
1028 /*
1029  * Test whether the free scanner has reached the same or lower pageblock than
1030  * the migration scanner, and compaction should thus terminate.
1031  */
1032 static inline bool compact_scanners_met(struct compact_control *cc)
1033 {
1034 	return (cc->free_pfn >> pageblock_order)
1035 		<= (cc->migrate_pfn >> pageblock_order);
1036 }
1037 
1038 /*
1039  * Based on information in the current compact_control, find blocks
1040  * suitable for isolating free pages from and then isolate them.
1041  */
1042 static void isolate_freepages(struct compact_control *cc)
1043 {
1044 	struct zone *zone = cc->zone;
1045 	struct page *page;
1046 	unsigned long block_start_pfn;	/* start of current pageblock */
1047 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1048 	unsigned long block_end_pfn;	/* end of current pageblock */
1049 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1050 	struct list_head *freelist = &cc->freepages;
1051 
1052 	/*
1053 	 * Initialise the free scanner. The starting point is where we last
1054 	 * successfully isolated from, zone-cached value, or the end of the
1055 	 * zone when isolating for the first time. For looping we also need
1056 	 * this pfn aligned down to the pageblock boundary, because we do
1057 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1058 	 * For ending point, take care when isolating in last pageblock of a
1059 	 * a zone which ends in the middle of a pageblock.
1060 	 * The low boundary is the end of the pageblock the migration scanner
1061 	 * is using.
1062 	 */
1063 	isolate_start_pfn = cc->free_pfn;
1064 	block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1065 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1066 						zone_end_pfn(zone));
1067 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1068 
1069 	/*
1070 	 * Isolate free pages until enough are available to migrate the
1071 	 * pages on cc->migratepages. We stop searching if the migrate
1072 	 * and free page scanners meet or enough free pages are isolated.
1073 	 */
1074 	for (; block_start_pfn >= low_pfn;
1075 				block_end_pfn = block_start_pfn,
1076 				block_start_pfn -= pageblock_nr_pages,
1077 				isolate_start_pfn = block_start_pfn) {
1078 		/*
1079 		 * This can iterate a massively long zone without finding any
1080 		 * suitable migration targets, so periodically check if we need
1081 		 * to schedule, or even abort async compaction.
1082 		 */
1083 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1084 						&& compact_should_abort(cc))
1085 			break;
1086 
1087 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1088 									zone);
1089 		if (!page)
1090 			continue;
1091 
1092 		/* Check the block is suitable for migration */
1093 		if (!suitable_migration_target(cc, page))
1094 			continue;
1095 
1096 		/* If isolation recently failed, do not retry */
1097 		if (!isolation_suitable(cc, page))
1098 			continue;
1099 
1100 		/* Found a block suitable for isolating free pages from. */
1101 		isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1102 					freelist, false);
1103 
1104 		/*
1105 		 * If we isolated enough freepages, or aborted due to lock
1106 		 * contention, terminate.
1107 		 */
1108 		if ((cc->nr_freepages >= cc->nr_migratepages)
1109 							|| cc->contended) {
1110 			if (isolate_start_pfn >= block_end_pfn) {
1111 				/*
1112 				 * Restart at previous pageblock if more
1113 				 * freepages can be isolated next time.
1114 				 */
1115 				isolate_start_pfn =
1116 					block_start_pfn - pageblock_nr_pages;
1117 			}
1118 			break;
1119 		} else if (isolate_start_pfn < block_end_pfn) {
1120 			/*
1121 			 * If isolation failed early, do not continue
1122 			 * needlessly.
1123 			 */
1124 			break;
1125 		}
1126 	}
1127 
1128 	/* __isolate_free_page() does not map the pages */
1129 	map_pages(freelist);
1130 
1131 	/*
1132 	 * Record where the free scanner will restart next time. Either we
1133 	 * broke from the loop and set isolate_start_pfn based on the last
1134 	 * call to isolate_freepages_block(), or we met the migration scanner
1135 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1136 	 */
1137 	cc->free_pfn = isolate_start_pfn;
1138 }
1139 
1140 /*
1141  * This is a migrate-callback that "allocates" freepages by taking pages
1142  * from the isolated freelists in the block we are migrating to.
1143  */
1144 static struct page *compaction_alloc(struct page *migratepage,
1145 					unsigned long data,
1146 					int **result)
1147 {
1148 	struct compact_control *cc = (struct compact_control *)data;
1149 	struct page *freepage;
1150 
1151 	/*
1152 	 * Isolate free pages if necessary, and if we are not aborting due to
1153 	 * contention.
1154 	 */
1155 	if (list_empty(&cc->freepages)) {
1156 		if (!cc->contended)
1157 			isolate_freepages(cc);
1158 
1159 		if (list_empty(&cc->freepages))
1160 			return NULL;
1161 	}
1162 
1163 	freepage = list_entry(cc->freepages.next, struct page, lru);
1164 	list_del(&freepage->lru);
1165 	cc->nr_freepages--;
1166 
1167 	return freepage;
1168 }
1169 
1170 /*
1171  * This is a migrate-callback that "frees" freepages back to the isolated
1172  * freelist.  All pages on the freelist are from the same zone, so there is no
1173  * special handling needed for NUMA.
1174  */
1175 static void compaction_free(struct page *page, unsigned long data)
1176 {
1177 	struct compact_control *cc = (struct compact_control *)data;
1178 
1179 	list_add(&page->lru, &cc->freepages);
1180 	cc->nr_freepages++;
1181 }
1182 
1183 /* possible outcome of isolate_migratepages */
1184 typedef enum {
1185 	ISOLATE_ABORT,		/* Abort compaction now */
1186 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1187 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1188 } isolate_migrate_t;
1189 
1190 /*
1191  * Allow userspace to control policy on scanning the unevictable LRU for
1192  * compactable pages.
1193  */
1194 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1195 
1196 /*
1197  * Isolate all pages that can be migrated from the first suitable block,
1198  * starting at the block pointed to by the migrate scanner pfn within
1199  * compact_control.
1200  */
1201 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1202 					struct compact_control *cc)
1203 {
1204 	unsigned long block_start_pfn;
1205 	unsigned long block_end_pfn;
1206 	unsigned long low_pfn;
1207 	struct page *page;
1208 	const isolate_mode_t isolate_mode =
1209 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1210 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1211 
1212 	/*
1213 	 * Start at where we last stopped, or beginning of the zone as
1214 	 * initialized by compact_zone()
1215 	 */
1216 	low_pfn = cc->migrate_pfn;
1217 	block_start_pfn = pageblock_start_pfn(low_pfn);
1218 	if (block_start_pfn < zone->zone_start_pfn)
1219 		block_start_pfn = zone->zone_start_pfn;
1220 
1221 	/* Only scan within a pageblock boundary */
1222 	block_end_pfn = pageblock_end_pfn(low_pfn);
1223 
1224 	/*
1225 	 * Iterate over whole pageblocks until we find the first suitable.
1226 	 * Do not cross the free scanner.
1227 	 */
1228 	for (; block_end_pfn <= cc->free_pfn;
1229 			low_pfn = block_end_pfn,
1230 			block_start_pfn = block_end_pfn,
1231 			block_end_pfn += pageblock_nr_pages) {
1232 
1233 		/*
1234 		 * This can potentially iterate a massively long zone with
1235 		 * many pageblocks unsuitable, so periodically check if we
1236 		 * need to schedule, or even abort async compaction.
1237 		 */
1238 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1239 						&& compact_should_abort(cc))
1240 			break;
1241 
1242 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1243 									zone);
1244 		if (!page)
1245 			continue;
1246 
1247 		/* If isolation recently failed, do not retry */
1248 		if (!isolation_suitable(cc, page))
1249 			continue;
1250 
1251 		/*
1252 		 * For async compaction, also only scan in MOVABLE blocks.
1253 		 * Async compaction is optimistic to see if the minimum amount
1254 		 * of work satisfies the allocation.
1255 		 */
1256 		if (!suitable_migration_source(cc, page))
1257 			continue;
1258 
1259 		/* Perform the isolation */
1260 		low_pfn = isolate_migratepages_block(cc, low_pfn,
1261 						block_end_pfn, isolate_mode);
1262 
1263 		if (!low_pfn || cc->contended)
1264 			return ISOLATE_ABORT;
1265 
1266 		/*
1267 		 * Either we isolated something and proceed with migration. Or
1268 		 * we failed and compact_zone should decide if we should
1269 		 * continue or not.
1270 		 */
1271 		break;
1272 	}
1273 
1274 	/* Record where migration scanner will be restarted. */
1275 	cc->migrate_pfn = low_pfn;
1276 
1277 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1278 }
1279 
1280 /*
1281  * order == -1 is expected when compacting via
1282  * /proc/sys/vm/compact_memory
1283  */
1284 static inline bool is_via_compact_memory(int order)
1285 {
1286 	return order == -1;
1287 }
1288 
1289 static enum compact_result __compact_finished(struct zone *zone,
1290 						struct compact_control *cc)
1291 {
1292 	unsigned int order;
1293 	const int migratetype = cc->migratetype;
1294 
1295 	if (cc->contended || fatal_signal_pending(current))
1296 		return COMPACT_CONTENDED;
1297 
1298 	/* Compaction run completes if the migrate and free scanner meet */
1299 	if (compact_scanners_met(cc)) {
1300 		/* Let the next compaction start anew. */
1301 		reset_cached_positions(zone);
1302 
1303 		/*
1304 		 * Mark that the PG_migrate_skip information should be cleared
1305 		 * by kswapd when it goes to sleep. kcompactd does not set the
1306 		 * flag itself as the decision to be clear should be directly
1307 		 * based on an allocation request.
1308 		 */
1309 		if (cc->direct_compaction)
1310 			zone->compact_blockskip_flush = true;
1311 
1312 		if (cc->whole_zone)
1313 			return COMPACT_COMPLETE;
1314 		else
1315 			return COMPACT_PARTIAL_SKIPPED;
1316 	}
1317 
1318 	if (is_via_compact_memory(cc->order))
1319 		return COMPACT_CONTINUE;
1320 
1321 	if (cc->finishing_block) {
1322 		/*
1323 		 * We have finished the pageblock, but better check again that
1324 		 * we really succeeded.
1325 		 */
1326 		if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1327 			cc->finishing_block = false;
1328 		else
1329 			return COMPACT_CONTINUE;
1330 	}
1331 
1332 	/* Direct compactor: Is a suitable page free? */
1333 	for (order = cc->order; order < MAX_ORDER; order++) {
1334 		struct free_area *area = &zone->free_area[order];
1335 		bool can_steal;
1336 
1337 		/* Job done if page is free of the right migratetype */
1338 		if (!list_empty(&area->free_list[migratetype]))
1339 			return COMPACT_SUCCESS;
1340 
1341 #ifdef CONFIG_CMA
1342 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1343 		if (migratetype == MIGRATE_MOVABLE &&
1344 			!list_empty(&area->free_list[MIGRATE_CMA]))
1345 			return COMPACT_SUCCESS;
1346 #endif
1347 		/*
1348 		 * Job done if allocation would steal freepages from
1349 		 * other migratetype buddy lists.
1350 		 */
1351 		if (find_suitable_fallback(area, order, migratetype,
1352 						true, &can_steal) != -1) {
1353 
1354 			/* movable pages are OK in any pageblock */
1355 			if (migratetype == MIGRATE_MOVABLE)
1356 				return COMPACT_SUCCESS;
1357 
1358 			/*
1359 			 * We are stealing for a non-movable allocation. Make
1360 			 * sure we finish compacting the current pageblock
1361 			 * first so it is as free as possible and we won't
1362 			 * have to steal another one soon. This only applies
1363 			 * to sync compaction, as async compaction operates
1364 			 * on pageblocks of the same migratetype.
1365 			 */
1366 			if (cc->mode == MIGRATE_ASYNC ||
1367 					IS_ALIGNED(cc->migrate_pfn,
1368 							pageblock_nr_pages)) {
1369 				return COMPACT_SUCCESS;
1370 			}
1371 
1372 			cc->finishing_block = true;
1373 			return COMPACT_CONTINUE;
1374 		}
1375 	}
1376 
1377 	return COMPACT_NO_SUITABLE_PAGE;
1378 }
1379 
1380 static enum compact_result compact_finished(struct zone *zone,
1381 			struct compact_control *cc)
1382 {
1383 	int ret;
1384 
1385 	ret = __compact_finished(zone, cc);
1386 	trace_mm_compaction_finished(zone, cc->order, ret);
1387 	if (ret == COMPACT_NO_SUITABLE_PAGE)
1388 		ret = COMPACT_CONTINUE;
1389 
1390 	return ret;
1391 }
1392 
1393 /*
1394  * compaction_suitable: Is this suitable to run compaction on this zone now?
1395  * Returns
1396  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1397  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1398  *   COMPACT_CONTINUE - If compaction should run now
1399  */
1400 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1401 					unsigned int alloc_flags,
1402 					int classzone_idx,
1403 					unsigned long wmark_target)
1404 {
1405 	unsigned long watermark;
1406 
1407 	if (is_via_compact_memory(order))
1408 		return COMPACT_CONTINUE;
1409 
1410 	watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1411 	/*
1412 	 * If watermarks for high-order allocation are already met, there
1413 	 * should be no need for compaction at all.
1414 	 */
1415 	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1416 								alloc_flags))
1417 		return COMPACT_SUCCESS;
1418 
1419 	/*
1420 	 * Watermarks for order-0 must be met for compaction to be able to
1421 	 * isolate free pages for migration targets. This means that the
1422 	 * watermark and alloc_flags have to match, or be more pessimistic than
1423 	 * the check in __isolate_free_page(). We don't use the direct
1424 	 * compactor's alloc_flags, as they are not relevant for freepage
1425 	 * isolation. We however do use the direct compactor's classzone_idx to
1426 	 * skip over zones where lowmem reserves would prevent allocation even
1427 	 * if compaction succeeds.
1428 	 * For costly orders, we require low watermark instead of min for
1429 	 * compaction to proceed to increase its chances.
1430 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1431 	 * suitable migration targets
1432 	 */
1433 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1434 				low_wmark_pages(zone) : min_wmark_pages(zone);
1435 	watermark += compact_gap(order);
1436 	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1437 						ALLOC_CMA, wmark_target))
1438 		return COMPACT_SKIPPED;
1439 
1440 	return COMPACT_CONTINUE;
1441 }
1442 
1443 enum compact_result compaction_suitable(struct zone *zone, int order,
1444 					unsigned int alloc_flags,
1445 					int classzone_idx)
1446 {
1447 	enum compact_result ret;
1448 	int fragindex;
1449 
1450 	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1451 				    zone_page_state(zone, NR_FREE_PAGES));
1452 	/*
1453 	 * fragmentation index determines if allocation failures are due to
1454 	 * low memory or external fragmentation
1455 	 *
1456 	 * index of -1000 would imply allocations might succeed depending on
1457 	 * watermarks, but we already failed the high-order watermark check
1458 	 * index towards 0 implies failure is due to lack of memory
1459 	 * index towards 1000 implies failure is due to fragmentation
1460 	 *
1461 	 * Only compact if a failure would be due to fragmentation. Also
1462 	 * ignore fragindex for non-costly orders where the alternative to
1463 	 * a successful reclaim/compaction is OOM. Fragindex and the
1464 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1465 	 * excessive compaction for costly orders, but it should not be at the
1466 	 * expense of system stability.
1467 	 */
1468 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1469 		fragindex = fragmentation_index(zone, order);
1470 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1471 			ret = COMPACT_NOT_SUITABLE_ZONE;
1472 	}
1473 
1474 	trace_mm_compaction_suitable(zone, order, ret);
1475 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
1476 		ret = COMPACT_SKIPPED;
1477 
1478 	return ret;
1479 }
1480 
1481 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1482 		int alloc_flags)
1483 {
1484 	struct zone *zone;
1485 	struct zoneref *z;
1486 
1487 	/*
1488 	 * Make sure at least one zone would pass __compaction_suitable if we continue
1489 	 * retrying the reclaim.
1490 	 */
1491 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1492 					ac->nodemask) {
1493 		unsigned long available;
1494 		enum compact_result compact_result;
1495 
1496 		/*
1497 		 * Do not consider all the reclaimable memory because we do not
1498 		 * want to trash just for a single high order allocation which
1499 		 * is even not guaranteed to appear even if __compaction_suitable
1500 		 * is happy about the watermark check.
1501 		 */
1502 		available = zone_reclaimable_pages(zone) / order;
1503 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1504 		compact_result = __compaction_suitable(zone, order, alloc_flags,
1505 				ac_classzone_idx(ac), available);
1506 		if (compact_result != COMPACT_SKIPPED)
1507 			return true;
1508 	}
1509 
1510 	return false;
1511 }
1512 
1513 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1514 {
1515 	enum compact_result ret;
1516 	unsigned long start_pfn = zone->zone_start_pfn;
1517 	unsigned long end_pfn = zone_end_pfn(zone);
1518 	const bool sync = cc->mode != MIGRATE_ASYNC;
1519 
1520 	cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1521 	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1522 							cc->classzone_idx);
1523 	/* Compaction is likely to fail */
1524 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1525 		return ret;
1526 
1527 	/* huh, compaction_suitable is returning something unexpected */
1528 	VM_BUG_ON(ret != COMPACT_CONTINUE);
1529 
1530 	/*
1531 	 * Clear pageblock skip if there were failures recently and compaction
1532 	 * is about to be retried after being deferred.
1533 	 */
1534 	if (compaction_restarting(zone, cc->order))
1535 		__reset_isolation_suitable(zone);
1536 
1537 	/*
1538 	 * Setup to move all movable pages to the end of the zone. Used cached
1539 	 * information on where the scanners should start (unless we explicitly
1540 	 * want to compact the whole zone), but check that it is initialised
1541 	 * by ensuring the values are within zone boundaries.
1542 	 */
1543 	if (cc->whole_zone) {
1544 		cc->migrate_pfn = start_pfn;
1545 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1546 	} else {
1547 		cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1548 		cc->free_pfn = zone->compact_cached_free_pfn;
1549 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1550 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1551 			zone->compact_cached_free_pfn = cc->free_pfn;
1552 		}
1553 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1554 			cc->migrate_pfn = start_pfn;
1555 			zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1556 			zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1557 		}
1558 
1559 		if (cc->migrate_pfn == start_pfn)
1560 			cc->whole_zone = true;
1561 	}
1562 
1563 	cc->last_migrated_pfn = 0;
1564 
1565 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1566 				cc->free_pfn, end_pfn, sync);
1567 
1568 	migrate_prep_local();
1569 
1570 	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1571 		int err;
1572 
1573 		switch (isolate_migratepages(zone, cc)) {
1574 		case ISOLATE_ABORT:
1575 			ret = COMPACT_CONTENDED;
1576 			putback_movable_pages(&cc->migratepages);
1577 			cc->nr_migratepages = 0;
1578 			goto out;
1579 		case ISOLATE_NONE:
1580 			/*
1581 			 * We haven't isolated and migrated anything, but
1582 			 * there might still be unflushed migrations from
1583 			 * previous cc->order aligned block.
1584 			 */
1585 			goto check_drain;
1586 		case ISOLATE_SUCCESS:
1587 			;
1588 		}
1589 
1590 		err = migrate_pages(&cc->migratepages, compaction_alloc,
1591 				compaction_free, (unsigned long)cc, cc->mode,
1592 				MR_COMPACTION);
1593 
1594 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1595 							&cc->migratepages);
1596 
1597 		/* All pages were either migrated or will be released */
1598 		cc->nr_migratepages = 0;
1599 		if (err) {
1600 			putback_movable_pages(&cc->migratepages);
1601 			/*
1602 			 * migrate_pages() may return -ENOMEM when scanners meet
1603 			 * and we want compact_finished() to detect it
1604 			 */
1605 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1606 				ret = COMPACT_CONTENDED;
1607 				goto out;
1608 			}
1609 			/*
1610 			 * We failed to migrate at least one page in the current
1611 			 * order-aligned block, so skip the rest of it.
1612 			 */
1613 			if (cc->direct_compaction &&
1614 						(cc->mode == MIGRATE_ASYNC)) {
1615 				cc->migrate_pfn = block_end_pfn(
1616 						cc->migrate_pfn - 1, cc->order);
1617 				/* Draining pcplists is useless in this case */
1618 				cc->last_migrated_pfn = 0;
1619 
1620 			}
1621 		}
1622 
1623 check_drain:
1624 		/*
1625 		 * Has the migration scanner moved away from the previous
1626 		 * cc->order aligned block where we migrated from? If yes,
1627 		 * flush the pages that were freed, so that they can merge and
1628 		 * compact_finished() can detect immediately if allocation
1629 		 * would succeed.
1630 		 */
1631 		if (cc->order > 0 && cc->last_migrated_pfn) {
1632 			int cpu;
1633 			unsigned long current_block_start =
1634 				block_start_pfn(cc->migrate_pfn, cc->order);
1635 
1636 			if (cc->last_migrated_pfn < current_block_start) {
1637 				cpu = get_cpu();
1638 				lru_add_drain_cpu(cpu);
1639 				drain_local_pages(zone);
1640 				put_cpu();
1641 				/* No more flushing until we migrate again */
1642 				cc->last_migrated_pfn = 0;
1643 			}
1644 		}
1645 
1646 	}
1647 
1648 out:
1649 	/*
1650 	 * Release free pages and update where the free scanner should restart,
1651 	 * so we don't leave any returned pages behind in the next attempt.
1652 	 */
1653 	if (cc->nr_freepages > 0) {
1654 		unsigned long free_pfn = release_freepages(&cc->freepages);
1655 
1656 		cc->nr_freepages = 0;
1657 		VM_BUG_ON(free_pfn == 0);
1658 		/* The cached pfn is always the first in a pageblock */
1659 		free_pfn = pageblock_start_pfn(free_pfn);
1660 		/*
1661 		 * Only go back, not forward. The cached pfn might have been
1662 		 * already reset to zone end in compact_finished()
1663 		 */
1664 		if (free_pfn > zone->compact_cached_free_pfn)
1665 			zone->compact_cached_free_pfn = free_pfn;
1666 	}
1667 
1668 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
1669 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
1670 
1671 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1672 				cc->free_pfn, end_pfn, sync, ret);
1673 
1674 	return ret;
1675 }
1676 
1677 static enum compact_result compact_zone_order(struct zone *zone, int order,
1678 		gfp_t gfp_mask, enum compact_priority prio,
1679 		unsigned int alloc_flags, int classzone_idx)
1680 {
1681 	enum compact_result ret;
1682 	struct compact_control cc = {
1683 		.nr_freepages = 0,
1684 		.nr_migratepages = 0,
1685 		.total_migrate_scanned = 0,
1686 		.total_free_scanned = 0,
1687 		.order = order,
1688 		.gfp_mask = gfp_mask,
1689 		.zone = zone,
1690 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
1691 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
1692 		.alloc_flags = alloc_flags,
1693 		.classzone_idx = classzone_idx,
1694 		.direct_compaction = true,
1695 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
1696 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1697 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1698 	};
1699 	INIT_LIST_HEAD(&cc.freepages);
1700 	INIT_LIST_HEAD(&cc.migratepages);
1701 
1702 	ret = compact_zone(zone, &cc);
1703 
1704 	VM_BUG_ON(!list_empty(&cc.freepages));
1705 	VM_BUG_ON(!list_empty(&cc.migratepages));
1706 
1707 	return ret;
1708 }
1709 
1710 int sysctl_extfrag_threshold = 500;
1711 
1712 /**
1713  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1714  * @gfp_mask: The GFP mask of the current allocation
1715  * @order: The order of the current allocation
1716  * @alloc_flags: The allocation flags of the current allocation
1717  * @ac: The context of current allocation
1718  * @mode: The migration mode for async, sync light, or sync migration
1719  *
1720  * This is the main entry point for direct page compaction.
1721  */
1722 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1723 		unsigned int alloc_flags, const struct alloc_context *ac,
1724 		enum compact_priority prio)
1725 {
1726 	int may_perform_io = gfp_mask & __GFP_IO;
1727 	struct zoneref *z;
1728 	struct zone *zone;
1729 	enum compact_result rc = COMPACT_SKIPPED;
1730 
1731 	/*
1732 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
1733 	 * tricky context because the migration might require IO
1734 	 */
1735 	if (!may_perform_io)
1736 		return COMPACT_SKIPPED;
1737 
1738 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1739 
1740 	/* Compact each zone in the list */
1741 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1742 								ac->nodemask) {
1743 		enum compact_result status;
1744 
1745 		if (prio > MIN_COMPACT_PRIORITY
1746 					&& compaction_deferred(zone, order)) {
1747 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1748 			continue;
1749 		}
1750 
1751 		status = compact_zone_order(zone, order, gfp_mask, prio,
1752 					alloc_flags, ac_classzone_idx(ac));
1753 		rc = max(status, rc);
1754 
1755 		/* The allocation should succeed, stop compacting */
1756 		if (status == COMPACT_SUCCESS) {
1757 			/*
1758 			 * We think the allocation will succeed in this zone,
1759 			 * but it is not certain, hence the false. The caller
1760 			 * will repeat this with true if allocation indeed
1761 			 * succeeds in this zone.
1762 			 */
1763 			compaction_defer_reset(zone, order, false);
1764 
1765 			break;
1766 		}
1767 
1768 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1769 					status == COMPACT_PARTIAL_SKIPPED))
1770 			/*
1771 			 * We think that allocation won't succeed in this zone
1772 			 * so we defer compaction there. If it ends up
1773 			 * succeeding after all, it will be reset.
1774 			 */
1775 			defer_compaction(zone, order);
1776 
1777 		/*
1778 		 * We might have stopped compacting due to need_resched() in
1779 		 * async compaction, or due to a fatal signal detected. In that
1780 		 * case do not try further zones
1781 		 */
1782 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1783 					|| fatal_signal_pending(current))
1784 			break;
1785 	}
1786 
1787 	return rc;
1788 }
1789 
1790 
1791 /* Compact all zones within a node */
1792 static void compact_node(int nid)
1793 {
1794 	pg_data_t *pgdat = NODE_DATA(nid);
1795 	int zoneid;
1796 	struct zone *zone;
1797 	struct compact_control cc = {
1798 		.order = -1,
1799 		.total_migrate_scanned = 0,
1800 		.total_free_scanned = 0,
1801 		.mode = MIGRATE_SYNC,
1802 		.ignore_skip_hint = true,
1803 		.whole_zone = true,
1804 		.gfp_mask = GFP_KERNEL,
1805 	};
1806 
1807 
1808 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1809 
1810 		zone = &pgdat->node_zones[zoneid];
1811 		if (!populated_zone(zone))
1812 			continue;
1813 
1814 		cc.nr_freepages = 0;
1815 		cc.nr_migratepages = 0;
1816 		cc.zone = zone;
1817 		INIT_LIST_HEAD(&cc.freepages);
1818 		INIT_LIST_HEAD(&cc.migratepages);
1819 
1820 		compact_zone(zone, &cc);
1821 
1822 		VM_BUG_ON(!list_empty(&cc.freepages));
1823 		VM_BUG_ON(!list_empty(&cc.migratepages));
1824 	}
1825 }
1826 
1827 /* Compact all nodes in the system */
1828 static void compact_nodes(void)
1829 {
1830 	int nid;
1831 
1832 	/* Flush pending updates to the LRU lists */
1833 	lru_add_drain_all();
1834 
1835 	for_each_online_node(nid)
1836 		compact_node(nid);
1837 }
1838 
1839 /* The written value is actually unused, all memory is compacted */
1840 int sysctl_compact_memory;
1841 
1842 /*
1843  * This is the entry point for compacting all nodes via
1844  * /proc/sys/vm/compact_memory
1845  */
1846 int sysctl_compaction_handler(struct ctl_table *table, int write,
1847 			void __user *buffer, size_t *length, loff_t *ppos)
1848 {
1849 	if (write)
1850 		compact_nodes();
1851 
1852 	return 0;
1853 }
1854 
1855 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1856 			void __user *buffer, size_t *length, loff_t *ppos)
1857 {
1858 	proc_dointvec_minmax(table, write, buffer, length, ppos);
1859 
1860 	return 0;
1861 }
1862 
1863 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1864 static ssize_t sysfs_compact_node(struct device *dev,
1865 			struct device_attribute *attr,
1866 			const char *buf, size_t count)
1867 {
1868 	int nid = dev->id;
1869 
1870 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1871 		/* Flush pending updates to the LRU lists */
1872 		lru_add_drain_all();
1873 
1874 		compact_node(nid);
1875 	}
1876 
1877 	return count;
1878 }
1879 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1880 
1881 int compaction_register_node(struct node *node)
1882 {
1883 	return device_create_file(&node->dev, &dev_attr_compact);
1884 }
1885 
1886 void compaction_unregister_node(struct node *node)
1887 {
1888 	return device_remove_file(&node->dev, &dev_attr_compact);
1889 }
1890 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1891 
1892 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1893 {
1894 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1895 }
1896 
1897 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1898 {
1899 	int zoneid;
1900 	struct zone *zone;
1901 	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1902 
1903 	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1904 		zone = &pgdat->node_zones[zoneid];
1905 
1906 		if (!populated_zone(zone))
1907 			continue;
1908 
1909 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1910 					classzone_idx) == COMPACT_CONTINUE)
1911 			return true;
1912 	}
1913 
1914 	return false;
1915 }
1916 
1917 static void kcompactd_do_work(pg_data_t *pgdat)
1918 {
1919 	/*
1920 	 * With no special task, compact all zones so that a page of requested
1921 	 * order is allocatable.
1922 	 */
1923 	int zoneid;
1924 	struct zone *zone;
1925 	struct compact_control cc = {
1926 		.order = pgdat->kcompactd_max_order,
1927 		.total_migrate_scanned = 0,
1928 		.total_free_scanned = 0,
1929 		.classzone_idx = pgdat->kcompactd_classzone_idx,
1930 		.mode = MIGRATE_SYNC_LIGHT,
1931 		.ignore_skip_hint = true,
1932 		.gfp_mask = GFP_KERNEL,
1933 
1934 	};
1935 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1936 							cc.classzone_idx);
1937 	count_compact_event(KCOMPACTD_WAKE);
1938 
1939 	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1940 		int status;
1941 
1942 		zone = &pgdat->node_zones[zoneid];
1943 		if (!populated_zone(zone))
1944 			continue;
1945 
1946 		if (compaction_deferred(zone, cc.order))
1947 			continue;
1948 
1949 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1950 							COMPACT_CONTINUE)
1951 			continue;
1952 
1953 		cc.nr_freepages = 0;
1954 		cc.nr_migratepages = 0;
1955 		cc.total_migrate_scanned = 0;
1956 		cc.total_free_scanned = 0;
1957 		cc.zone = zone;
1958 		INIT_LIST_HEAD(&cc.freepages);
1959 		INIT_LIST_HEAD(&cc.migratepages);
1960 
1961 		if (kthread_should_stop())
1962 			return;
1963 		status = compact_zone(zone, &cc);
1964 
1965 		if (status == COMPACT_SUCCESS) {
1966 			compaction_defer_reset(zone, cc.order, false);
1967 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1968 			/*
1969 			 * We use sync migration mode here, so we defer like
1970 			 * sync direct compaction does.
1971 			 */
1972 			defer_compaction(zone, cc.order);
1973 		}
1974 
1975 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
1976 				     cc.total_migrate_scanned);
1977 		count_compact_events(KCOMPACTD_FREE_SCANNED,
1978 				     cc.total_free_scanned);
1979 
1980 		VM_BUG_ON(!list_empty(&cc.freepages));
1981 		VM_BUG_ON(!list_empty(&cc.migratepages));
1982 	}
1983 
1984 	/*
1985 	 * Regardless of success, we are done until woken up next. But remember
1986 	 * the requested order/classzone_idx in case it was higher/tighter than
1987 	 * our current ones
1988 	 */
1989 	if (pgdat->kcompactd_max_order <= cc.order)
1990 		pgdat->kcompactd_max_order = 0;
1991 	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1992 		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1993 }
1994 
1995 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1996 {
1997 	if (!order)
1998 		return;
1999 
2000 	if (pgdat->kcompactd_max_order < order)
2001 		pgdat->kcompactd_max_order = order;
2002 
2003 	/*
2004 	 * Pairs with implicit barrier in wait_event_freezable()
2005 	 * such that wakeups are not missed in the lockless
2006 	 * waitqueue_active() call.
2007 	 */
2008 	smp_acquire__after_ctrl_dep();
2009 
2010 	if (pgdat->kcompactd_classzone_idx > classzone_idx)
2011 		pgdat->kcompactd_classzone_idx = classzone_idx;
2012 
2013 	if (!waitqueue_active(&pgdat->kcompactd_wait))
2014 		return;
2015 
2016 	if (!kcompactd_node_suitable(pgdat))
2017 		return;
2018 
2019 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2020 							classzone_idx);
2021 	wake_up_interruptible(&pgdat->kcompactd_wait);
2022 }
2023 
2024 /*
2025  * The background compaction daemon, started as a kernel thread
2026  * from the init process.
2027  */
2028 static int kcompactd(void *p)
2029 {
2030 	pg_data_t *pgdat = (pg_data_t*)p;
2031 	struct task_struct *tsk = current;
2032 
2033 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2034 
2035 	if (!cpumask_empty(cpumask))
2036 		set_cpus_allowed_ptr(tsk, cpumask);
2037 
2038 	set_freezable();
2039 
2040 	pgdat->kcompactd_max_order = 0;
2041 	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2042 
2043 	while (!kthread_should_stop()) {
2044 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2045 		wait_event_freezable(pgdat->kcompactd_wait,
2046 				kcompactd_work_requested(pgdat));
2047 
2048 		kcompactd_do_work(pgdat);
2049 	}
2050 
2051 	return 0;
2052 }
2053 
2054 /*
2055  * This kcompactd start function will be called by init and node-hot-add.
2056  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2057  */
2058 int kcompactd_run(int nid)
2059 {
2060 	pg_data_t *pgdat = NODE_DATA(nid);
2061 	int ret = 0;
2062 
2063 	if (pgdat->kcompactd)
2064 		return 0;
2065 
2066 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2067 	if (IS_ERR(pgdat->kcompactd)) {
2068 		pr_err("Failed to start kcompactd on node %d\n", nid);
2069 		ret = PTR_ERR(pgdat->kcompactd);
2070 		pgdat->kcompactd = NULL;
2071 	}
2072 	return ret;
2073 }
2074 
2075 /*
2076  * Called by memory hotplug when all memory in a node is offlined. Caller must
2077  * hold mem_hotplug_begin/end().
2078  */
2079 void kcompactd_stop(int nid)
2080 {
2081 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2082 
2083 	if (kcompactd) {
2084 		kthread_stop(kcompactd);
2085 		NODE_DATA(nid)->kcompactd = NULL;
2086 	}
2087 }
2088 
2089 /*
2090  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2091  * not required for correctness. So if the last cpu in a node goes
2092  * away, we get changed to run anywhere: as the first one comes back,
2093  * restore their cpu bindings.
2094  */
2095 static int kcompactd_cpu_online(unsigned int cpu)
2096 {
2097 	int nid;
2098 
2099 	for_each_node_state(nid, N_MEMORY) {
2100 		pg_data_t *pgdat = NODE_DATA(nid);
2101 		const struct cpumask *mask;
2102 
2103 		mask = cpumask_of_node(pgdat->node_id);
2104 
2105 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2106 			/* One of our CPUs online: restore mask */
2107 			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2108 	}
2109 	return 0;
2110 }
2111 
2112 static int __init kcompactd_init(void)
2113 {
2114 	int nid;
2115 	int ret;
2116 
2117 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2118 					"mm/compaction:online",
2119 					kcompactd_cpu_online, NULL);
2120 	if (ret < 0) {
2121 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
2122 		return ret;
2123 	}
2124 
2125 	for_each_node_state(nid, N_MEMORY)
2126 		kcompactd_run(nid);
2127 	return 0;
2128 }
2129 subsys_initcall(kcompactd_init)
2130 
2131 #endif /* CONFIG_COMPACTION */
2132