xref: /openbmc/linux/mm/compaction.c (revision 46f28427)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
33 
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36 	count_vm_event(item);
37 }
38 
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41 	count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47 
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52 
53 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
55 
56 /*
57  * Page order with-respect-to which proactive compaction
58  * calculates external fragmentation, which is used as
59  * the "fragmentation score" of a node/zone.
60  */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
67 #endif
68 
69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71 	struct page *page, *next;
72 	unsigned long high_pfn = 0;
73 
74 	list_for_each_entry_safe(page, next, freelist, lru) {
75 		unsigned long pfn = page_to_pfn(page);
76 		list_del(&page->lru);
77 		__free_page(page);
78 		if (pfn > high_pfn)
79 			high_pfn = pfn;
80 	}
81 
82 	return high_pfn;
83 }
84 
85 static void split_map_pages(struct list_head *list)
86 {
87 	unsigned int i, order, nr_pages;
88 	struct page *page, *next;
89 	LIST_HEAD(tmp_list);
90 
91 	list_for_each_entry_safe(page, next, list, lru) {
92 		list_del(&page->lru);
93 
94 		order = page_private(page);
95 		nr_pages = 1 << order;
96 
97 		post_alloc_hook(page, order, __GFP_MOVABLE);
98 		if (order)
99 			split_page(page, order);
100 
101 		for (i = 0; i < nr_pages; i++) {
102 			list_add(&page->lru, &tmp_list);
103 			page++;
104 		}
105 	}
106 
107 	list_splice(&tmp_list, list);
108 }
109 
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
112 {
113 	const struct movable_operations *mops;
114 
115 	VM_BUG_ON_PAGE(!PageLocked(page), page);
116 	if (!__PageMovable(page))
117 		return false;
118 
119 	mops = page_movable_ops(page);
120 	if (mops)
121 		return true;
122 
123 	return false;
124 }
125 
126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127 {
128 	VM_BUG_ON_PAGE(!PageLocked(page), page);
129 	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130 	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__SetPageMovable);
133 
134 void __ClearPageMovable(struct page *page)
135 {
136 	VM_BUG_ON_PAGE(!PageMovable(page), page);
137 	/*
138 	 * This page still has the type of a movable page, but it's
139 	 * actually not movable any more.
140 	 */
141 	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142 }
143 EXPORT_SYMBOL(__ClearPageMovable);
144 
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
147 
148 /*
149  * Compaction is deferred when compaction fails to result in a page
150  * allocation success. 1 << compact_defer_shift, compactions are skipped up
151  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152  */
153 static void defer_compaction(struct zone *zone, int order)
154 {
155 	zone->compact_considered = 0;
156 	zone->compact_defer_shift++;
157 
158 	if (order < zone->compact_order_failed)
159 		zone->compact_order_failed = order;
160 
161 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163 
164 	trace_mm_compaction_defer_compaction(zone, order);
165 }
166 
167 /* Returns true if compaction should be skipped this time */
168 static bool compaction_deferred(struct zone *zone, int order)
169 {
170 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171 
172 	if (order < zone->compact_order_failed)
173 		return false;
174 
175 	/* Avoid possible overflow */
176 	if (++zone->compact_considered >= defer_limit) {
177 		zone->compact_considered = defer_limit;
178 		return false;
179 	}
180 
181 	trace_mm_compaction_deferred(zone, order);
182 
183 	return true;
184 }
185 
186 /*
187  * Update defer tracking counters after successful compaction of given order,
188  * which means an allocation either succeeded (alloc_success == true) or is
189  * expected to succeed.
190  */
191 void compaction_defer_reset(struct zone *zone, int order,
192 		bool alloc_success)
193 {
194 	if (alloc_success) {
195 		zone->compact_considered = 0;
196 		zone->compact_defer_shift = 0;
197 	}
198 	if (order >= zone->compact_order_failed)
199 		zone->compact_order_failed = order + 1;
200 
201 	trace_mm_compaction_defer_reset(zone, order);
202 }
203 
204 /* Returns true if restarting compaction after many failures */
205 static bool compaction_restarting(struct zone *zone, int order)
206 {
207 	if (order < zone->compact_order_failed)
208 		return false;
209 
210 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
212 }
213 
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
215 static inline bool isolation_suitable(struct compact_control *cc,
216 					struct page *page)
217 {
218 	if (cc->ignore_skip_hint)
219 		return true;
220 
221 	return !get_pageblock_skip(page);
222 }
223 
224 static void reset_cached_positions(struct zone *zone)
225 {
226 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228 	zone->compact_cached_free_pfn =
229 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
230 }
231 
232 /*
233  * Compound pages of >= pageblock_order should consistently be skipped until
234  * released. It is always pointless to compact pages of such order (if they are
235  * migratable), and the pageblocks they occupy cannot contain any free pages.
236  */
237 static bool pageblock_skip_persistent(struct page *page)
238 {
239 	if (!PageCompound(page))
240 		return false;
241 
242 	page = compound_head(page);
243 
244 	if (compound_order(page) >= pageblock_order)
245 		return true;
246 
247 	return false;
248 }
249 
250 static bool
251 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
252 							bool check_target)
253 {
254 	struct page *page = pfn_to_online_page(pfn);
255 	struct page *block_page;
256 	struct page *end_page;
257 	unsigned long block_pfn;
258 
259 	if (!page)
260 		return false;
261 	if (zone != page_zone(page))
262 		return false;
263 	if (pageblock_skip_persistent(page))
264 		return false;
265 
266 	/*
267 	 * If skip is already cleared do no further checking once the
268 	 * restart points have been set.
269 	 */
270 	if (check_source && check_target && !get_pageblock_skip(page))
271 		return true;
272 
273 	/*
274 	 * If clearing skip for the target scanner, do not select a
275 	 * non-movable pageblock as the starting point.
276 	 */
277 	if (!check_source && check_target &&
278 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
279 		return false;
280 
281 	/* Ensure the start of the pageblock or zone is online and valid */
282 	block_pfn = pageblock_start_pfn(pfn);
283 	block_pfn = max(block_pfn, zone->zone_start_pfn);
284 	block_page = pfn_to_online_page(block_pfn);
285 	if (block_page) {
286 		page = block_page;
287 		pfn = block_pfn;
288 	}
289 
290 	/* Ensure the end of the pageblock or zone is online and valid */
291 	block_pfn = pageblock_end_pfn(pfn) - 1;
292 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
293 	end_page = pfn_to_online_page(block_pfn);
294 	if (!end_page)
295 		return false;
296 
297 	/*
298 	 * Only clear the hint if a sample indicates there is either a
299 	 * free page or an LRU page in the block. One or other condition
300 	 * is necessary for the block to be a migration source/target.
301 	 */
302 	do {
303 		if (check_source && PageLRU(page)) {
304 			clear_pageblock_skip(page);
305 			return true;
306 		}
307 
308 		if (check_target && PageBuddy(page)) {
309 			clear_pageblock_skip(page);
310 			return true;
311 		}
312 
313 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
314 	} while (page <= end_page);
315 
316 	return false;
317 }
318 
319 /*
320  * This function is called to clear all cached information on pageblocks that
321  * should be skipped for page isolation when the migrate and free page scanner
322  * meet.
323  */
324 static void __reset_isolation_suitable(struct zone *zone)
325 {
326 	unsigned long migrate_pfn = zone->zone_start_pfn;
327 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
328 	unsigned long reset_migrate = free_pfn;
329 	unsigned long reset_free = migrate_pfn;
330 	bool source_set = false;
331 	bool free_set = false;
332 
333 	if (!zone->compact_blockskip_flush)
334 		return;
335 
336 	zone->compact_blockskip_flush = false;
337 
338 	/*
339 	 * Walk the zone and update pageblock skip information. Source looks
340 	 * for PageLRU while target looks for PageBuddy. When the scanner
341 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
342 	 * is suitable as both source and target.
343 	 */
344 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
345 					free_pfn -= pageblock_nr_pages) {
346 		cond_resched();
347 
348 		/* Update the migrate PFN */
349 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
350 		    migrate_pfn < reset_migrate) {
351 			source_set = true;
352 			reset_migrate = migrate_pfn;
353 			zone->compact_init_migrate_pfn = reset_migrate;
354 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
355 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
356 		}
357 
358 		/* Update the free PFN */
359 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
360 		    free_pfn > reset_free) {
361 			free_set = true;
362 			reset_free = free_pfn;
363 			zone->compact_init_free_pfn = reset_free;
364 			zone->compact_cached_free_pfn = reset_free;
365 		}
366 	}
367 
368 	/* Leave no distance if no suitable block was reset */
369 	if (reset_migrate >= reset_free) {
370 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
371 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
372 		zone->compact_cached_free_pfn = free_pfn;
373 	}
374 }
375 
376 void reset_isolation_suitable(pg_data_t *pgdat)
377 {
378 	int zoneid;
379 
380 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
381 		struct zone *zone = &pgdat->node_zones[zoneid];
382 		if (!populated_zone(zone))
383 			continue;
384 
385 		/* Only flush if a full compaction finished recently */
386 		if (zone->compact_blockskip_flush)
387 			__reset_isolation_suitable(zone);
388 	}
389 }
390 
391 /*
392  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
393  * locks are not required for read/writers. Returns true if it was already set.
394  */
395 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
396 							unsigned long pfn)
397 {
398 	bool skip;
399 
400 	/* Do no update if skip hint is being ignored */
401 	if (cc->ignore_skip_hint)
402 		return false;
403 
404 	if (!pageblock_aligned(pfn))
405 		return false;
406 
407 	skip = get_pageblock_skip(page);
408 	if (!skip && !cc->no_set_skip_hint)
409 		set_pageblock_skip(page);
410 
411 	return skip;
412 }
413 
414 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
415 {
416 	struct zone *zone = cc->zone;
417 
418 	pfn = pageblock_end_pfn(pfn);
419 
420 	/* Set for isolation rather than compaction */
421 	if (cc->no_set_skip_hint)
422 		return;
423 
424 	if (pfn > zone->compact_cached_migrate_pfn[0])
425 		zone->compact_cached_migrate_pfn[0] = pfn;
426 	if (cc->mode != MIGRATE_ASYNC &&
427 	    pfn > zone->compact_cached_migrate_pfn[1])
428 		zone->compact_cached_migrate_pfn[1] = pfn;
429 }
430 
431 /*
432  * If no pages were isolated then mark this pageblock to be skipped in the
433  * future. The information is later cleared by __reset_isolation_suitable().
434  */
435 static void update_pageblock_skip(struct compact_control *cc,
436 			struct page *page, unsigned long pfn)
437 {
438 	struct zone *zone = cc->zone;
439 
440 	if (cc->no_set_skip_hint)
441 		return;
442 
443 	if (!page)
444 		return;
445 
446 	set_pageblock_skip(page);
447 
448 	/* Update where async and sync compaction should restart */
449 	if (pfn < zone->compact_cached_free_pfn)
450 		zone->compact_cached_free_pfn = pfn;
451 }
452 #else
453 static inline bool isolation_suitable(struct compact_control *cc,
454 					struct page *page)
455 {
456 	return true;
457 }
458 
459 static inline bool pageblock_skip_persistent(struct page *page)
460 {
461 	return false;
462 }
463 
464 static inline void update_pageblock_skip(struct compact_control *cc,
465 			struct page *page, unsigned long pfn)
466 {
467 }
468 
469 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
470 {
471 }
472 
473 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
474 							unsigned long pfn)
475 {
476 	return false;
477 }
478 #endif /* CONFIG_COMPACTION */
479 
480 /*
481  * Compaction requires the taking of some coarse locks that are potentially
482  * very heavily contended. For async compaction, trylock and record if the
483  * lock is contended. The lock will still be acquired but compaction will
484  * abort when the current block is finished regardless of success rate.
485  * Sync compaction acquires the lock.
486  *
487  * Always returns true which makes it easier to track lock state in callers.
488  */
489 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
490 						struct compact_control *cc)
491 	__acquires(lock)
492 {
493 	/* Track if the lock is contended in async mode */
494 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
495 		if (spin_trylock_irqsave(lock, *flags))
496 			return true;
497 
498 		cc->contended = true;
499 	}
500 
501 	spin_lock_irqsave(lock, *flags);
502 	return true;
503 }
504 
505 /*
506  * Compaction requires the taking of some coarse locks that are potentially
507  * very heavily contended. The lock should be periodically unlocked to avoid
508  * having disabled IRQs for a long time, even when there is nobody waiting on
509  * the lock. It might also be that allowing the IRQs will result in
510  * need_resched() becoming true. If scheduling is needed, compaction schedules.
511  * Either compaction type will also abort if a fatal signal is pending.
512  * In either case if the lock was locked, it is dropped and not regained.
513  *
514  * Returns true if compaction should abort due to fatal signal pending.
515  * Returns false when compaction can continue.
516  */
517 static bool compact_unlock_should_abort(spinlock_t *lock,
518 		unsigned long flags, bool *locked, struct compact_control *cc)
519 {
520 	if (*locked) {
521 		spin_unlock_irqrestore(lock, flags);
522 		*locked = false;
523 	}
524 
525 	if (fatal_signal_pending(current)) {
526 		cc->contended = true;
527 		return true;
528 	}
529 
530 	cond_resched();
531 
532 	return false;
533 }
534 
535 /*
536  * Isolate free pages onto a private freelist. If @strict is true, will abort
537  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
538  * (even though it may still end up isolating some pages).
539  */
540 static unsigned long isolate_freepages_block(struct compact_control *cc,
541 				unsigned long *start_pfn,
542 				unsigned long end_pfn,
543 				struct list_head *freelist,
544 				unsigned int stride,
545 				bool strict)
546 {
547 	int nr_scanned = 0, total_isolated = 0;
548 	struct page *cursor;
549 	unsigned long flags = 0;
550 	bool locked = false;
551 	unsigned long blockpfn = *start_pfn;
552 	unsigned int order;
553 
554 	/* Strict mode is for isolation, speed is secondary */
555 	if (strict)
556 		stride = 1;
557 
558 	cursor = pfn_to_page(blockpfn);
559 
560 	/* Isolate free pages. */
561 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
562 		int isolated;
563 		struct page *page = cursor;
564 
565 		/*
566 		 * Periodically drop the lock (if held) regardless of its
567 		 * contention, to give chance to IRQs. Abort if fatal signal
568 		 * pending.
569 		 */
570 		if (!(blockpfn % COMPACT_CLUSTER_MAX)
571 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
572 								&locked, cc))
573 			break;
574 
575 		nr_scanned++;
576 
577 		/*
578 		 * For compound pages such as THP and hugetlbfs, we can save
579 		 * potentially a lot of iterations if we skip them at once.
580 		 * The check is racy, but we can consider only valid values
581 		 * and the only danger is skipping too much.
582 		 */
583 		if (PageCompound(page)) {
584 			const unsigned int order = compound_order(page);
585 
586 			if (likely(order < MAX_ORDER)) {
587 				blockpfn += (1UL << order) - 1;
588 				cursor += (1UL << order) - 1;
589 			}
590 			goto isolate_fail;
591 		}
592 
593 		if (!PageBuddy(page))
594 			goto isolate_fail;
595 
596 		/* If we already hold the lock, we can skip some rechecking. */
597 		if (!locked) {
598 			locked = compact_lock_irqsave(&cc->zone->lock,
599 								&flags, cc);
600 
601 			/* Recheck this is a buddy page under lock */
602 			if (!PageBuddy(page))
603 				goto isolate_fail;
604 		}
605 
606 		/* Found a free page, will break it into order-0 pages */
607 		order = buddy_order(page);
608 		isolated = __isolate_free_page(page, order);
609 		if (!isolated)
610 			break;
611 		set_page_private(page, order);
612 
613 		nr_scanned += isolated - 1;
614 		total_isolated += isolated;
615 		cc->nr_freepages += isolated;
616 		list_add_tail(&page->lru, freelist);
617 
618 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
619 			blockpfn += isolated;
620 			break;
621 		}
622 		/* Advance to the end of split page */
623 		blockpfn += isolated - 1;
624 		cursor += isolated - 1;
625 		continue;
626 
627 isolate_fail:
628 		if (strict)
629 			break;
630 		else
631 			continue;
632 
633 	}
634 
635 	if (locked)
636 		spin_unlock_irqrestore(&cc->zone->lock, flags);
637 
638 	/*
639 	 * There is a tiny chance that we have read bogus compound_order(),
640 	 * so be careful to not go outside of the pageblock.
641 	 */
642 	if (unlikely(blockpfn > end_pfn))
643 		blockpfn = end_pfn;
644 
645 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
646 					nr_scanned, total_isolated);
647 
648 	/* Record how far we have got within the block */
649 	*start_pfn = blockpfn;
650 
651 	/*
652 	 * If strict isolation is requested by CMA then check that all the
653 	 * pages requested were isolated. If there were any failures, 0 is
654 	 * returned and CMA will fail.
655 	 */
656 	if (strict && blockpfn < end_pfn)
657 		total_isolated = 0;
658 
659 	cc->total_free_scanned += nr_scanned;
660 	if (total_isolated)
661 		count_compact_events(COMPACTISOLATED, total_isolated);
662 	return total_isolated;
663 }
664 
665 /**
666  * isolate_freepages_range() - isolate free pages.
667  * @cc:        Compaction control structure.
668  * @start_pfn: The first PFN to start isolating.
669  * @end_pfn:   The one-past-last PFN.
670  *
671  * Non-free pages, invalid PFNs, or zone boundaries within the
672  * [start_pfn, end_pfn) range are considered errors, cause function to
673  * undo its actions and return zero.
674  *
675  * Otherwise, function returns one-past-the-last PFN of isolated page
676  * (which may be greater then end_pfn if end fell in a middle of
677  * a free page).
678  */
679 unsigned long
680 isolate_freepages_range(struct compact_control *cc,
681 			unsigned long start_pfn, unsigned long end_pfn)
682 {
683 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
684 	LIST_HEAD(freelist);
685 
686 	pfn = start_pfn;
687 	block_start_pfn = pageblock_start_pfn(pfn);
688 	if (block_start_pfn < cc->zone->zone_start_pfn)
689 		block_start_pfn = cc->zone->zone_start_pfn;
690 	block_end_pfn = pageblock_end_pfn(pfn);
691 
692 	for (; pfn < end_pfn; pfn += isolated,
693 				block_start_pfn = block_end_pfn,
694 				block_end_pfn += pageblock_nr_pages) {
695 		/* Protect pfn from changing by isolate_freepages_block */
696 		unsigned long isolate_start_pfn = pfn;
697 
698 		block_end_pfn = min(block_end_pfn, end_pfn);
699 
700 		/*
701 		 * pfn could pass the block_end_pfn if isolated freepage
702 		 * is more than pageblock order. In this case, we adjust
703 		 * scanning range to right one.
704 		 */
705 		if (pfn >= block_end_pfn) {
706 			block_start_pfn = pageblock_start_pfn(pfn);
707 			block_end_pfn = pageblock_end_pfn(pfn);
708 			block_end_pfn = min(block_end_pfn, end_pfn);
709 		}
710 
711 		if (!pageblock_pfn_to_page(block_start_pfn,
712 					block_end_pfn, cc->zone))
713 			break;
714 
715 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
716 					block_end_pfn, &freelist, 0, true);
717 
718 		/*
719 		 * In strict mode, isolate_freepages_block() returns 0 if
720 		 * there are any holes in the block (ie. invalid PFNs or
721 		 * non-free pages).
722 		 */
723 		if (!isolated)
724 			break;
725 
726 		/*
727 		 * If we managed to isolate pages, it is always (1 << n) *
728 		 * pageblock_nr_pages for some non-negative n.  (Max order
729 		 * page may span two pageblocks).
730 		 */
731 	}
732 
733 	/* __isolate_free_page() does not map the pages */
734 	split_map_pages(&freelist);
735 
736 	if (pfn < end_pfn) {
737 		/* Loop terminated early, cleanup. */
738 		release_freepages(&freelist);
739 		return 0;
740 	}
741 
742 	/* We don't use freelists for anything. */
743 	return pfn;
744 }
745 
746 /* Similar to reclaim, but different enough that they don't share logic */
747 static bool too_many_isolated(pg_data_t *pgdat)
748 {
749 	bool too_many;
750 
751 	unsigned long active, inactive, isolated;
752 
753 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
754 			node_page_state(pgdat, NR_INACTIVE_ANON);
755 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
756 			node_page_state(pgdat, NR_ACTIVE_ANON);
757 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
758 			node_page_state(pgdat, NR_ISOLATED_ANON);
759 
760 	too_many = isolated > (inactive + active) / 2;
761 	if (!too_many)
762 		wake_throttle_isolated(pgdat);
763 
764 	return too_many;
765 }
766 
767 /**
768  * isolate_migratepages_block() - isolate all migrate-able pages within
769  *				  a single pageblock
770  * @cc:		Compaction control structure.
771  * @low_pfn:	The first PFN to isolate
772  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
773  * @mode:	Isolation mode to be used.
774  *
775  * Isolate all pages that can be migrated from the range specified by
776  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
777  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
778  * -ENOMEM in case we could not allocate a page, or 0.
779  * cc->migrate_pfn will contain the next pfn to scan.
780  *
781  * The pages are isolated on cc->migratepages list (not required to be empty),
782  * and cc->nr_migratepages is updated accordingly.
783  */
784 static int
785 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
786 			unsigned long end_pfn, isolate_mode_t mode)
787 {
788 	pg_data_t *pgdat = cc->zone->zone_pgdat;
789 	unsigned long nr_scanned = 0, nr_isolated = 0;
790 	struct lruvec *lruvec;
791 	unsigned long flags = 0;
792 	struct lruvec *locked = NULL;
793 	struct page *page = NULL, *valid_page = NULL;
794 	struct address_space *mapping;
795 	unsigned long start_pfn = low_pfn;
796 	bool skip_on_failure = false;
797 	unsigned long next_skip_pfn = 0;
798 	bool skip_updated = false;
799 	int ret = 0;
800 
801 	cc->migrate_pfn = low_pfn;
802 
803 	/*
804 	 * Ensure that there are not too many pages isolated from the LRU
805 	 * list by either parallel reclaimers or compaction. If there are,
806 	 * delay for some time until fewer pages are isolated
807 	 */
808 	while (unlikely(too_many_isolated(pgdat))) {
809 		/* stop isolation if there are still pages not migrated */
810 		if (cc->nr_migratepages)
811 			return -EAGAIN;
812 
813 		/* async migration should just abort */
814 		if (cc->mode == MIGRATE_ASYNC)
815 			return -EAGAIN;
816 
817 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
818 
819 		if (fatal_signal_pending(current))
820 			return -EINTR;
821 	}
822 
823 	cond_resched();
824 
825 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
826 		skip_on_failure = true;
827 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
828 	}
829 
830 	/* Time to isolate some pages for migration */
831 	for (; low_pfn < end_pfn; low_pfn++) {
832 
833 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
834 			/*
835 			 * We have isolated all migration candidates in the
836 			 * previous order-aligned block, and did not skip it due
837 			 * to failure. We should migrate the pages now and
838 			 * hopefully succeed compaction.
839 			 */
840 			if (nr_isolated)
841 				break;
842 
843 			/*
844 			 * We failed to isolate in the previous order-aligned
845 			 * block. Set the new boundary to the end of the
846 			 * current block. Note we can't simply increase
847 			 * next_skip_pfn by 1 << order, as low_pfn might have
848 			 * been incremented by a higher number due to skipping
849 			 * a compound or a high-order buddy page in the
850 			 * previous loop iteration.
851 			 */
852 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
853 		}
854 
855 		/*
856 		 * Periodically drop the lock (if held) regardless of its
857 		 * contention, to give chance to IRQs. Abort completely if
858 		 * a fatal signal is pending.
859 		 */
860 		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
861 			if (locked) {
862 				unlock_page_lruvec_irqrestore(locked, flags);
863 				locked = NULL;
864 			}
865 
866 			if (fatal_signal_pending(current)) {
867 				cc->contended = true;
868 				ret = -EINTR;
869 
870 				goto fatal_pending;
871 			}
872 
873 			cond_resched();
874 		}
875 
876 		nr_scanned++;
877 
878 		page = pfn_to_page(low_pfn);
879 
880 		/*
881 		 * Check if the pageblock has already been marked skipped.
882 		 * Only the aligned PFN is checked as the caller isolates
883 		 * COMPACT_CLUSTER_MAX at a time so the second call must
884 		 * not falsely conclude that the block should be skipped.
885 		 */
886 		if (!valid_page && pageblock_aligned(low_pfn)) {
887 			if (!isolation_suitable(cc, page)) {
888 				low_pfn = end_pfn;
889 				page = NULL;
890 				goto isolate_abort;
891 			}
892 			valid_page = page;
893 		}
894 
895 		if (PageHuge(page) && cc->alloc_contig) {
896 			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
897 
898 			/*
899 			 * Fail isolation in case isolate_or_dissolve_huge_page()
900 			 * reports an error. In case of -ENOMEM, abort right away.
901 			 */
902 			if (ret < 0) {
903 				 /* Do not report -EBUSY down the chain */
904 				if (ret == -EBUSY)
905 					ret = 0;
906 				low_pfn += compound_nr(page) - 1;
907 				goto isolate_fail;
908 			}
909 
910 			if (PageHuge(page)) {
911 				/*
912 				 * Hugepage was successfully isolated and placed
913 				 * on the cc->migratepages list.
914 				 */
915 				low_pfn += compound_nr(page) - 1;
916 				goto isolate_success_no_list;
917 			}
918 
919 			/*
920 			 * Ok, the hugepage was dissolved. Now these pages are
921 			 * Buddy and cannot be re-allocated because they are
922 			 * isolated. Fall-through as the check below handles
923 			 * Buddy pages.
924 			 */
925 		}
926 
927 		/*
928 		 * Skip if free. We read page order here without zone lock
929 		 * which is generally unsafe, but the race window is small and
930 		 * the worst thing that can happen is that we skip some
931 		 * potential isolation targets.
932 		 */
933 		if (PageBuddy(page)) {
934 			unsigned long freepage_order = buddy_order_unsafe(page);
935 
936 			/*
937 			 * Without lock, we cannot be sure that what we got is
938 			 * a valid page order. Consider only values in the
939 			 * valid order range to prevent low_pfn overflow.
940 			 */
941 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
942 				low_pfn += (1UL << freepage_order) - 1;
943 			continue;
944 		}
945 
946 		/*
947 		 * Regardless of being on LRU, compound pages such as THP and
948 		 * hugetlbfs are not to be compacted unless we are attempting
949 		 * an allocation much larger than the huge page size (eg CMA).
950 		 * We can potentially save a lot of iterations if we skip them
951 		 * at once. The check is racy, but we can consider only valid
952 		 * values and the only danger is skipping too much.
953 		 */
954 		if (PageCompound(page) && !cc->alloc_contig) {
955 			const unsigned int order = compound_order(page);
956 
957 			if (likely(order < MAX_ORDER))
958 				low_pfn += (1UL << order) - 1;
959 			goto isolate_fail;
960 		}
961 
962 		/*
963 		 * Check may be lockless but that's ok as we recheck later.
964 		 * It's possible to migrate LRU and non-lru movable pages.
965 		 * Skip any other type of page
966 		 */
967 		if (!PageLRU(page)) {
968 			/*
969 			 * __PageMovable can return false positive so we need
970 			 * to verify it under page_lock.
971 			 */
972 			if (unlikely(__PageMovable(page)) &&
973 					!PageIsolated(page)) {
974 				if (locked) {
975 					unlock_page_lruvec_irqrestore(locked, flags);
976 					locked = NULL;
977 				}
978 
979 				if (isolate_movable_page(page, mode))
980 					goto isolate_success;
981 			}
982 
983 			goto isolate_fail;
984 		}
985 
986 		/*
987 		 * Be careful not to clear PageLRU until after we're
988 		 * sure the page is not being freed elsewhere -- the
989 		 * page release code relies on it.
990 		 */
991 		if (unlikely(!get_page_unless_zero(page)))
992 			goto isolate_fail;
993 
994 		/*
995 		 * Migration will fail if an anonymous page is pinned in memory,
996 		 * so avoid taking lru_lock and isolating it unnecessarily in an
997 		 * admittedly racy check.
998 		 */
999 		mapping = page_mapping(page);
1000 		if (!mapping && (page_count(page) - 1) > total_mapcount(page))
1001 			goto isolate_fail_put;
1002 
1003 		/*
1004 		 * Only allow to migrate anonymous pages in GFP_NOFS context
1005 		 * because those do not depend on fs locks.
1006 		 */
1007 		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1008 			goto isolate_fail_put;
1009 
1010 		/* Only take pages on LRU: a check now makes later tests safe */
1011 		if (!PageLRU(page))
1012 			goto isolate_fail_put;
1013 
1014 		/* Compaction might skip unevictable pages but CMA takes them */
1015 		if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1016 			goto isolate_fail_put;
1017 
1018 		/*
1019 		 * To minimise LRU disruption, the caller can indicate with
1020 		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1021 		 * it will be able to migrate without blocking - clean pages
1022 		 * for the most part.  PageWriteback would require blocking.
1023 		 */
1024 		if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1025 			goto isolate_fail_put;
1026 
1027 		if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1028 			bool migrate_dirty;
1029 
1030 			/*
1031 			 * Only pages without mappings or that have a
1032 			 * ->migrate_folio callback are possible to migrate
1033 			 * without blocking. However, we can be racing with
1034 			 * truncation so it's necessary to lock the page
1035 			 * to stabilise the mapping as truncation holds
1036 			 * the page lock until after the page is removed
1037 			 * from the page cache.
1038 			 */
1039 			if (!trylock_page(page))
1040 				goto isolate_fail_put;
1041 
1042 			mapping = page_mapping(page);
1043 			migrate_dirty = !mapping ||
1044 					mapping->a_ops->migrate_folio;
1045 			unlock_page(page);
1046 			if (!migrate_dirty)
1047 				goto isolate_fail_put;
1048 		}
1049 
1050 		/* Try isolate the page */
1051 		if (!TestClearPageLRU(page))
1052 			goto isolate_fail_put;
1053 
1054 		lruvec = folio_lruvec(page_folio(page));
1055 
1056 		/* If we already hold the lock, we can skip some rechecking */
1057 		if (lruvec != locked) {
1058 			if (locked)
1059 				unlock_page_lruvec_irqrestore(locked, flags);
1060 
1061 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1062 			locked = lruvec;
1063 
1064 			lruvec_memcg_debug(lruvec, page_folio(page));
1065 
1066 			/* Try get exclusive access under lock */
1067 			if (!skip_updated) {
1068 				skip_updated = true;
1069 				if (test_and_set_skip(cc, page, low_pfn))
1070 					goto isolate_abort;
1071 			}
1072 
1073 			/*
1074 			 * Page become compound since the non-locked check,
1075 			 * and it's on LRU. It can only be a THP so the order
1076 			 * is safe to read and it's 0 for tail pages.
1077 			 */
1078 			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1079 				low_pfn += compound_nr(page) - 1;
1080 				SetPageLRU(page);
1081 				goto isolate_fail_put;
1082 			}
1083 		}
1084 
1085 		/* The whole page is taken off the LRU; skip the tail pages. */
1086 		if (PageCompound(page))
1087 			low_pfn += compound_nr(page) - 1;
1088 
1089 		/* Successfully isolated */
1090 		del_page_from_lru_list(page, lruvec);
1091 		mod_node_page_state(page_pgdat(page),
1092 				NR_ISOLATED_ANON + page_is_file_lru(page),
1093 				thp_nr_pages(page));
1094 
1095 isolate_success:
1096 		list_add(&page->lru, &cc->migratepages);
1097 isolate_success_no_list:
1098 		cc->nr_migratepages += compound_nr(page);
1099 		nr_isolated += compound_nr(page);
1100 		nr_scanned += compound_nr(page) - 1;
1101 
1102 		/*
1103 		 * Avoid isolating too much unless this block is being
1104 		 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1105 		 * or a lock is contended. For contention, isolate quickly to
1106 		 * potentially remove one source of contention.
1107 		 */
1108 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1109 		    !cc->finish_pageblock && !cc->contended) {
1110 			++low_pfn;
1111 			break;
1112 		}
1113 
1114 		continue;
1115 
1116 isolate_fail_put:
1117 		/* Avoid potential deadlock in freeing page under lru_lock */
1118 		if (locked) {
1119 			unlock_page_lruvec_irqrestore(locked, flags);
1120 			locked = NULL;
1121 		}
1122 		put_page(page);
1123 
1124 isolate_fail:
1125 		if (!skip_on_failure && ret != -ENOMEM)
1126 			continue;
1127 
1128 		/*
1129 		 * We have isolated some pages, but then failed. Release them
1130 		 * instead of migrating, as we cannot form the cc->order buddy
1131 		 * page anyway.
1132 		 */
1133 		if (nr_isolated) {
1134 			if (locked) {
1135 				unlock_page_lruvec_irqrestore(locked, flags);
1136 				locked = NULL;
1137 			}
1138 			putback_movable_pages(&cc->migratepages);
1139 			cc->nr_migratepages = 0;
1140 			nr_isolated = 0;
1141 		}
1142 
1143 		if (low_pfn < next_skip_pfn) {
1144 			low_pfn = next_skip_pfn - 1;
1145 			/*
1146 			 * The check near the loop beginning would have updated
1147 			 * next_skip_pfn too, but this is a bit simpler.
1148 			 */
1149 			next_skip_pfn += 1UL << cc->order;
1150 		}
1151 
1152 		if (ret == -ENOMEM)
1153 			break;
1154 	}
1155 
1156 	/*
1157 	 * The PageBuddy() check could have potentially brought us outside
1158 	 * the range to be scanned.
1159 	 */
1160 	if (unlikely(low_pfn > end_pfn))
1161 		low_pfn = end_pfn;
1162 
1163 	page = NULL;
1164 
1165 isolate_abort:
1166 	if (locked)
1167 		unlock_page_lruvec_irqrestore(locked, flags);
1168 	if (page) {
1169 		SetPageLRU(page);
1170 		put_page(page);
1171 	}
1172 
1173 	/*
1174 	 * Update the cached scanner pfn once the pageblock has been scanned.
1175 	 * Pages will either be migrated in which case there is no point
1176 	 * scanning in the near future or migration failed in which case the
1177 	 * failure reason may persist. The block is marked for skipping if
1178 	 * there were no pages isolated in the block or if the block is
1179 	 * rescanned twice in a row.
1180 	 */
1181 	if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1182 		if (valid_page && !skip_updated)
1183 			set_pageblock_skip(valid_page);
1184 		update_cached_migrate(cc, low_pfn);
1185 	}
1186 
1187 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1188 						nr_scanned, nr_isolated);
1189 
1190 fatal_pending:
1191 	cc->total_migrate_scanned += nr_scanned;
1192 	if (nr_isolated)
1193 		count_compact_events(COMPACTISOLATED, nr_isolated);
1194 
1195 	cc->migrate_pfn = low_pfn;
1196 
1197 	return ret;
1198 }
1199 
1200 /**
1201  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1202  * @cc:        Compaction control structure.
1203  * @start_pfn: The first PFN to start isolating.
1204  * @end_pfn:   The one-past-last PFN.
1205  *
1206  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1207  * in case we could not allocate a page, or 0.
1208  */
1209 int
1210 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1211 							unsigned long end_pfn)
1212 {
1213 	unsigned long pfn, block_start_pfn, block_end_pfn;
1214 	int ret = 0;
1215 
1216 	/* Scan block by block. First and last block may be incomplete */
1217 	pfn = start_pfn;
1218 	block_start_pfn = pageblock_start_pfn(pfn);
1219 	if (block_start_pfn < cc->zone->zone_start_pfn)
1220 		block_start_pfn = cc->zone->zone_start_pfn;
1221 	block_end_pfn = pageblock_end_pfn(pfn);
1222 
1223 	for (; pfn < end_pfn; pfn = block_end_pfn,
1224 				block_start_pfn = block_end_pfn,
1225 				block_end_pfn += pageblock_nr_pages) {
1226 
1227 		block_end_pfn = min(block_end_pfn, end_pfn);
1228 
1229 		if (!pageblock_pfn_to_page(block_start_pfn,
1230 					block_end_pfn, cc->zone))
1231 			continue;
1232 
1233 		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1234 						 ISOLATE_UNEVICTABLE);
1235 
1236 		if (ret)
1237 			break;
1238 
1239 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1240 			break;
1241 	}
1242 
1243 	return ret;
1244 }
1245 
1246 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1247 #ifdef CONFIG_COMPACTION
1248 
1249 static bool suitable_migration_source(struct compact_control *cc,
1250 							struct page *page)
1251 {
1252 	int block_mt;
1253 
1254 	if (pageblock_skip_persistent(page))
1255 		return false;
1256 
1257 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1258 		return true;
1259 
1260 	block_mt = get_pageblock_migratetype(page);
1261 
1262 	if (cc->migratetype == MIGRATE_MOVABLE)
1263 		return is_migrate_movable(block_mt);
1264 	else
1265 		return block_mt == cc->migratetype;
1266 }
1267 
1268 /* Returns true if the page is within a block suitable for migration to */
1269 static bool suitable_migration_target(struct compact_control *cc,
1270 							struct page *page)
1271 {
1272 	/* If the page is a large free page, then disallow migration */
1273 	if (PageBuddy(page)) {
1274 		/*
1275 		 * We are checking page_order without zone->lock taken. But
1276 		 * the only small danger is that we skip a potentially suitable
1277 		 * pageblock, so it's not worth to check order for valid range.
1278 		 */
1279 		if (buddy_order_unsafe(page) >= pageblock_order)
1280 			return false;
1281 	}
1282 
1283 	if (cc->ignore_block_suitable)
1284 		return true;
1285 
1286 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1287 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1288 		return true;
1289 
1290 	/* Otherwise skip the block */
1291 	return false;
1292 }
1293 
1294 static inline unsigned int
1295 freelist_scan_limit(struct compact_control *cc)
1296 {
1297 	unsigned short shift = BITS_PER_LONG - 1;
1298 
1299 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1300 }
1301 
1302 /*
1303  * Test whether the free scanner has reached the same or lower pageblock than
1304  * the migration scanner, and compaction should thus terminate.
1305  */
1306 static inline bool compact_scanners_met(struct compact_control *cc)
1307 {
1308 	return (cc->free_pfn >> pageblock_order)
1309 		<= (cc->migrate_pfn >> pageblock_order);
1310 }
1311 
1312 /*
1313  * Used when scanning for a suitable migration target which scans freelists
1314  * in reverse. Reorders the list such as the unscanned pages are scanned
1315  * first on the next iteration of the free scanner
1316  */
1317 static void
1318 move_freelist_head(struct list_head *freelist, struct page *freepage)
1319 {
1320 	LIST_HEAD(sublist);
1321 
1322 	if (!list_is_last(freelist, &freepage->lru)) {
1323 		list_cut_before(&sublist, freelist, &freepage->lru);
1324 		list_splice_tail(&sublist, freelist);
1325 	}
1326 }
1327 
1328 /*
1329  * Similar to move_freelist_head except used by the migration scanner
1330  * when scanning forward. It's possible for these list operations to
1331  * move against each other if they search the free list exactly in
1332  * lockstep.
1333  */
1334 static void
1335 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1336 {
1337 	LIST_HEAD(sublist);
1338 
1339 	if (!list_is_first(freelist, &freepage->lru)) {
1340 		list_cut_position(&sublist, freelist, &freepage->lru);
1341 		list_splice_tail(&sublist, freelist);
1342 	}
1343 }
1344 
1345 static void
1346 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1347 {
1348 	unsigned long start_pfn, end_pfn;
1349 	struct page *page;
1350 
1351 	/* Do not search around if there are enough pages already */
1352 	if (cc->nr_freepages >= cc->nr_migratepages)
1353 		return;
1354 
1355 	/* Minimise scanning during async compaction */
1356 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1357 		return;
1358 
1359 	/* Pageblock boundaries */
1360 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1361 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1362 
1363 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1364 	if (!page)
1365 		return;
1366 
1367 	isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1368 
1369 	/* Skip this pageblock in the future as it's full or nearly full */
1370 	if (cc->nr_freepages < cc->nr_migratepages)
1371 		set_pageblock_skip(page);
1372 
1373 	return;
1374 }
1375 
1376 /* Search orders in round-robin fashion */
1377 static int next_search_order(struct compact_control *cc, int order)
1378 {
1379 	order--;
1380 	if (order < 0)
1381 		order = cc->order - 1;
1382 
1383 	/* Search wrapped around? */
1384 	if (order == cc->search_order) {
1385 		cc->search_order--;
1386 		if (cc->search_order < 0)
1387 			cc->search_order = cc->order - 1;
1388 		return -1;
1389 	}
1390 
1391 	return order;
1392 }
1393 
1394 static unsigned long
1395 fast_isolate_freepages(struct compact_control *cc)
1396 {
1397 	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1398 	unsigned int nr_scanned = 0;
1399 	unsigned long low_pfn, min_pfn, highest = 0;
1400 	unsigned long nr_isolated = 0;
1401 	unsigned long distance;
1402 	struct page *page = NULL;
1403 	bool scan_start = false;
1404 	int order;
1405 
1406 	/* Full compaction passes in a negative order */
1407 	if (cc->order <= 0)
1408 		return cc->free_pfn;
1409 
1410 	/*
1411 	 * If starting the scan, use a deeper search and use the highest
1412 	 * PFN found if a suitable one is not found.
1413 	 */
1414 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1415 		limit = pageblock_nr_pages >> 1;
1416 		scan_start = true;
1417 	}
1418 
1419 	/*
1420 	 * Preferred point is in the top quarter of the scan space but take
1421 	 * a pfn from the top half if the search is problematic.
1422 	 */
1423 	distance = (cc->free_pfn - cc->migrate_pfn);
1424 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1425 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1426 
1427 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1428 		low_pfn = min_pfn;
1429 
1430 	/*
1431 	 * Search starts from the last successful isolation order or the next
1432 	 * order to search after a previous failure
1433 	 */
1434 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1435 
1436 	for (order = cc->search_order;
1437 	     !page && order >= 0;
1438 	     order = next_search_order(cc, order)) {
1439 		struct free_area *area = &cc->zone->free_area[order];
1440 		struct list_head *freelist;
1441 		struct page *freepage;
1442 		unsigned long flags;
1443 		unsigned int order_scanned = 0;
1444 		unsigned long high_pfn = 0;
1445 
1446 		if (!area->nr_free)
1447 			continue;
1448 
1449 		spin_lock_irqsave(&cc->zone->lock, flags);
1450 		freelist = &area->free_list[MIGRATE_MOVABLE];
1451 		list_for_each_entry_reverse(freepage, freelist, lru) {
1452 			unsigned long pfn;
1453 
1454 			order_scanned++;
1455 			nr_scanned++;
1456 			pfn = page_to_pfn(freepage);
1457 
1458 			if (pfn >= highest)
1459 				highest = max(pageblock_start_pfn(pfn),
1460 					      cc->zone->zone_start_pfn);
1461 
1462 			if (pfn >= low_pfn) {
1463 				cc->fast_search_fail = 0;
1464 				cc->search_order = order;
1465 				page = freepage;
1466 				break;
1467 			}
1468 
1469 			if (pfn >= min_pfn && pfn > high_pfn) {
1470 				high_pfn = pfn;
1471 
1472 				/* Shorten the scan if a candidate is found */
1473 				limit >>= 1;
1474 			}
1475 
1476 			if (order_scanned >= limit)
1477 				break;
1478 		}
1479 
1480 		/* Use a minimum pfn if a preferred one was not found */
1481 		if (!page && high_pfn) {
1482 			page = pfn_to_page(high_pfn);
1483 
1484 			/* Update freepage for the list reorder below */
1485 			freepage = page;
1486 		}
1487 
1488 		/* Reorder to so a future search skips recent pages */
1489 		move_freelist_head(freelist, freepage);
1490 
1491 		/* Isolate the page if available */
1492 		if (page) {
1493 			if (__isolate_free_page(page, order)) {
1494 				set_page_private(page, order);
1495 				nr_isolated = 1 << order;
1496 				nr_scanned += nr_isolated - 1;
1497 				cc->nr_freepages += nr_isolated;
1498 				list_add_tail(&page->lru, &cc->freepages);
1499 				count_compact_events(COMPACTISOLATED, nr_isolated);
1500 			} else {
1501 				/* If isolation fails, abort the search */
1502 				order = cc->search_order + 1;
1503 				page = NULL;
1504 			}
1505 		}
1506 
1507 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1508 
1509 		/*
1510 		 * Smaller scan on next order so the total scan is related
1511 		 * to freelist_scan_limit.
1512 		 */
1513 		if (order_scanned >= limit)
1514 			limit = max(1U, limit >> 1);
1515 	}
1516 
1517 	if (!page) {
1518 		cc->fast_search_fail++;
1519 		if (scan_start) {
1520 			/*
1521 			 * Use the highest PFN found above min. If one was
1522 			 * not found, be pessimistic for direct compaction
1523 			 * and use the min mark.
1524 			 */
1525 			if (highest >= min_pfn) {
1526 				page = pfn_to_page(highest);
1527 				cc->free_pfn = highest;
1528 			} else {
1529 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1530 					page = pageblock_pfn_to_page(min_pfn,
1531 						min(pageblock_end_pfn(min_pfn),
1532 						    zone_end_pfn(cc->zone)),
1533 						cc->zone);
1534 					cc->free_pfn = min_pfn;
1535 				}
1536 			}
1537 		}
1538 	}
1539 
1540 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1541 		highest -= pageblock_nr_pages;
1542 		cc->zone->compact_cached_free_pfn = highest;
1543 	}
1544 
1545 	cc->total_free_scanned += nr_scanned;
1546 	if (!page)
1547 		return cc->free_pfn;
1548 
1549 	low_pfn = page_to_pfn(page);
1550 	fast_isolate_around(cc, low_pfn);
1551 	return low_pfn;
1552 }
1553 
1554 /*
1555  * Based on information in the current compact_control, find blocks
1556  * suitable for isolating free pages from and then isolate them.
1557  */
1558 static void isolate_freepages(struct compact_control *cc)
1559 {
1560 	struct zone *zone = cc->zone;
1561 	struct page *page;
1562 	unsigned long block_start_pfn;	/* start of current pageblock */
1563 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1564 	unsigned long block_end_pfn;	/* end of current pageblock */
1565 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1566 	struct list_head *freelist = &cc->freepages;
1567 	unsigned int stride;
1568 
1569 	/* Try a small search of the free lists for a candidate */
1570 	fast_isolate_freepages(cc);
1571 	if (cc->nr_freepages)
1572 		goto splitmap;
1573 
1574 	/*
1575 	 * Initialise the free scanner. The starting point is where we last
1576 	 * successfully isolated from, zone-cached value, or the end of the
1577 	 * zone when isolating for the first time. For looping we also need
1578 	 * this pfn aligned down to the pageblock boundary, because we do
1579 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1580 	 * For ending point, take care when isolating in last pageblock of a
1581 	 * zone which ends in the middle of a pageblock.
1582 	 * The low boundary is the end of the pageblock the migration scanner
1583 	 * is using.
1584 	 */
1585 	isolate_start_pfn = cc->free_pfn;
1586 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1587 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1588 						zone_end_pfn(zone));
1589 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1590 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1591 
1592 	/*
1593 	 * Isolate free pages until enough are available to migrate the
1594 	 * pages on cc->migratepages. We stop searching if the migrate
1595 	 * and free page scanners meet or enough free pages are isolated.
1596 	 */
1597 	for (; block_start_pfn >= low_pfn;
1598 				block_end_pfn = block_start_pfn,
1599 				block_start_pfn -= pageblock_nr_pages,
1600 				isolate_start_pfn = block_start_pfn) {
1601 		unsigned long nr_isolated;
1602 
1603 		/*
1604 		 * This can iterate a massively long zone without finding any
1605 		 * suitable migration targets, so periodically check resched.
1606 		 */
1607 		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1608 			cond_resched();
1609 
1610 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1611 									zone);
1612 		if (!page)
1613 			continue;
1614 
1615 		/* Check the block is suitable for migration */
1616 		if (!suitable_migration_target(cc, page))
1617 			continue;
1618 
1619 		/* If isolation recently failed, do not retry */
1620 		if (!isolation_suitable(cc, page))
1621 			continue;
1622 
1623 		/* Found a block suitable for isolating free pages from. */
1624 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1625 					block_end_pfn, freelist, stride, false);
1626 
1627 		/* Update the skip hint if the full pageblock was scanned */
1628 		if (isolate_start_pfn == block_end_pfn)
1629 			update_pageblock_skip(cc, page, block_start_pfn);
1630 
1631 		/* Are enough freepages isolated? */
1632 		if (cc->nr_freepages >= cc->nr_migratepages) {
1633 			if (isolate_start_pfn >= block_end_pfn) {
1634 				/*
1635 				 * Restart at previous pageblock if more
1636 				 * freepages can be isolated next time.
1637 				 */
1638 				isolate_start_pfn =
1639 					block_start_pfn - pageblock_nr_pages;
1640 			}
1641 			break;
1642 		} else if (isolate_start_pfn < block_end_pfn) {
1643 			/*
1644 			 * If isolation failed early, do not continue
1645 			 * needlessly.
1646 			 */
1647 			break;
1648 		}
1649 
1650 		/* Adjust stride depending on isolation */
1651 		if (nr_isolated) {
1652 			stride = 1;
1653 			continue;
1654 		}
1655 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1656 	}
1657 
1658 	/*
1659 	 * Record where the free scanner will restart next time. Either we
1660 	 * broke from the loop and set isolate_start_pfn based on the last
1661 	 * call to isolate_freepages_block(), or we met the migration scanner
1662 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1663 	 */
1664 	cc->free_pfn = isolate_start_pfn;
1665 
1666 splitmap:
1667 	/* __isolate_free_page() does not map the pages */
1668 	split_map_pages(freelist);
1669 }
1670 
1671 /*
1672  * This is a migrate-callback that "allocates" freepages by taking pages
1673  * from the isolated freelists in the block we are migrating to.
1674  */
1675 static struct page *compaction_alloc(struct page *migratepage,
1676 					unsigned long data)
1677 {
1678 	struct compact_control *cc = (struct compact_control *)data;
1679 	struct page *freepage;
1680 
1681 	if (list_empty(&cc->freepages)) {
1682 		isolate_freepages(cc);
1683 
1684 		if (list_empty(&cc->freepages))
1685 			return NULL;
1686 	}
1687 
1688 	freepage = list_entry(cc->freepages.next, struct page, lru);
1689 	list_del(&freepage->lru);
1690 	cc->nr_freepages--;
1691 
1692 	return freepage;
1693 }
1694 
1695 /*
1696  * This is a migrate-callback that "frees" freepages back to the isolated
1697  * freelist.  All pages on the freelist are from the same zone, so there is no
1698  * special handling needed for NUMA.
1699  */
1700 static void compaction_free(struct page *page, unsigned long data)
1701 {
1702 	struct compact_control *cc = (struct compact_control *)data;
1703 
1704 	list_add(&page->lru, &cc->freepages);
1705 	cc->nr_freepages++;
1706 }
1707 
1708 /* possible outcome of isolate_migratepages */
1709 typedef enum {
1710 	ISOLATE_ABORT,		/* Abort compaction now */
1711 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1712 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1713 } isolate_migrate_t;
1714 
1715 /*
1716  * Allow userspace to control policy on scanning the unevictable LRU for
1717  * compactable pages.
1718  */
1719 int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1720 
1721 static inline void
1722 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1723 {
1724 	if (cc->fast_start_pfn == ULONG_MAX)
1725 		return;
1726 
1727 	if (!cc->fast_start_pfn)
1728 		cc->fast_start_pfn = pfn;
1729 
1730 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1731 }
1732 
1733 static inline unsigned long
1734 reinit_migrate_pfn(struct compact_control *cc)
1735 {
1736 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1737 		return cc->migrate_pfn;
1738 
1739 	cc->migrate_pfn = cc->fast_start_pfn;
1740 	cc->fast_start_pfn = ULONG_MAX;
1741 
1742 	return cc->migrate_pfn;
1743 }
1744 
1745 /*
1746  * Briefly search the free lists for a migration source that already has
1747  * some free pages to reduce the number of pages that need migration
1748  * before a pageblock is free.
1749  */
1750 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1751 {
1752 	unsigned int limit = freelist_scan_limit(cc);
1753 	unsigned int nr_scanned = 0;
1754 	unsigned long distance;
1755 	unsigned long pfn = cc->migrate_pfn;
1756 	unsigned long high_pfn;
1757 	int order;
1758 	bool found_block = false;
1759 
1760 	/* Skip hints are relied on to avoid repeats on the fast search */
1761 	if (cc->ignore_skip_hint)
1762 		return pfn;
1763 
1764 	/*
1765 	 * If the pageblock should be finished then do not select a different
1766 	 * pageblock.
1767 	 */
1768 	if (cc->finish_pageblock)
1769 		return pfn;
1770 
1771 	/*
1772 	 * If the migrate_pfn is not at the start of a zone or the start
1773 	 * of a pageblock then assume this is a continuation of a previous
1774 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1775 	 */
1776 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1777 		return pfn;
1778 
1779 	/*
1780 	 * For smaller orders, just linearly scan as the number of pages
1781 	 * to migrate should be relatively small and does not necessarily
1782 	 * justify freeing up a large block for a small allocation.
1783 	 */
1784 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1785 		return pfn;
1786 
1787 	/*
1788 	 * Only allow kcompactd and direct requests for movable pages to
1789 	 * quickly clear out a MOVABLE pageblock for allocation. This
1790 	 * reduces the risk that a large movable pageblock is freed for
1791 	 * an unmovable/reclaimable small allocation.
1792 	 */
1793 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1794 		return pfn;
1795 
1796 	/*
1797 	 * When starting the migration scanner, pick any pageblock within the
1798 	 * first half of the search space. Otherwise try and pick a pageblock
1799 	 * within the first eighth to reduce the chances that a migration
1800 	 * target later becomes a source.
1801 	 */
1802 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1803 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1804 		distance >>= 2;
1805 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1806 
1807 	for (order = cc->order - 1;
1808 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1809 	     order--) {
1810 		struct free_area *area = &cc->zone->free_area[order];
1811 		struct list_head *freelist;
1812 		unsigned long flags;
1813 		struct page *freepage;
1814 
1815 		if (!area->nr_free)
1816 			continue;
1817 
1818 		spin_lock_irqsave(&cc->zone->lock, flags);
1819 		freelist = &area->free_list[MIGRATE_MOVABLE];
1820 		list_for_each_entry(freepage, freelist, lru) {
1821 			unsigned long free_pfn;
1822 
1823 			if (nr_scanned++ >= limit) {
1824 				move_freelist_tail(freelist, freepage);
1825 				break;
1826 			}
1827 
1828 			free_pfn = page_to_pfn(freepage);
1829 			if (free_pfn < high_pfn) {
1830 				/*
1831 				 * Avoid if skipped recently. Ideally it would
1832 				 * move to the tail but even safe iteration of
1833 				 * the list assumes an entry is deleted, not
1834 				 * reordered.
1835 				 */
1836 				if (get_pageblock_skip(freepage))
1837 					continue;
1838 
1839 				/* Reorder to so a future search skips recent pages */
1840 				move_freelist_tail(freelist, freepage);
1841 
1842 				update_fast_start_pfn(cc, free_pfn);
1843 				pfn = pageblock_start_pfn(free_pfn);
1844 				if (pfn < cc->zone->zone_start_pfn)
1845 					pfn = cc->zone->zone_start_pfn;
1846 				cc->fast_search_fail = 0;
1847 				found_block = true;
1848 				set_pageblock_skip(freepage);
1849 				break;
1850 			}
1851 		}
1852 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1853 	}
1854 
1855 	cc->total_migrate_scanned += nr_scanned;
1856 
1857 	/*
1858 	 * If fast scanning failed then use a cached entry for a page block
1859 	 * that had free pages as the basis for starting a linear scan.
1860 	 */
1861 	if (!found_block) {
1862 		cc->fast_search_fail++;
1863 		pfn = reinit_migrate_pfn(cc);
1864 	}
1865 	return pfn;
1866 }
1867 
1868 /*
1869  * Isolate all pages that can be migrated from the first suitable block,
1870  * starting at the block pointed to by the migrate scanner pfn within
1871  * compact_control.
1872  */
1873 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1874 {
1875 	unsigned long block_start_pfn;
1876 	unsigned long block_end_pfn;
1877 	unsigned long low_pfn;
1878 	struct page *page;
1879 	const isolate_mode_t isolate_mode =
1880 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1881 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1882 	bool fast_find_block;
1883 
1884 	/*
1885 	 * Start at where we last stopped, or beginning of the zone as
1886 	 * initialized by compact_zone(). The first failure will use
1887 	 * the lowest PFN as the starting point for linear scanning.
1888 	 */
1889 	low_pfn = fast_find_migrateblock(cc);
1890 	block_start_pfn = pageblock_start_pfn(low_pfn);
1891 	if (block_start_pfn < cc->zone->zone_start_pfn)
1892 		block_start_pfn = cc->zone->zone_start_pfn;
1893 
1894 	/*
1895 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1896 	 * the isolation_suitable check below, check whether the fast
1897 	 * search was successful.
1898 	 */
1899 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1900 
1901 	/* Only scan within a pageblock boundary */
1902 	block_end_pfn = pageblock_end_pfn(low_pfn);
1903 
1904 	/*
1905 	 * Iterate over whole pageblocks until we find the first suitable.
1906 	 * Do not cross the free scanner.
1907 	 */
1908 	for (; block_end_pfn <= cc->free_pfn;
1909 			fast_find_block = false,
1910 			cc->migrate_pfn = low_pfn = block_end_pfn,
1911 			block_start_pfn = block_end_pfn,
1912 			block_end_pfn += pageblock_nr_pages) {
1913 
1914 		/*
1915 		 * This can potentially iterate a massively long zone with
1916 		 * many pageblocks unsuitable, so periodically check if we
1917 		 * need to schedule.
1918 		 */
1919 		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1920 			cond_resched();
1921 
1922 		page = pageblock_pfn_to_page(block_start_pfn,
1923 						block_end_pfn, cc->zone);
1924 		if (!page)
1925 			continue;
1926 
1927 		/*
1928 		 * If isolation recently failed, do not retry. Only check the
1929 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1930 		 * to be visited multiple times. Assume skip was checked
1931 		 * before making it "skip" so other compaction instances do
1932 		 * not scan the same block.
1933 		 */
1934 		if (pageblock_aligned(low_pfn) &&
1935 		    !fast_find_block && !isolation_suitable(cc, page))
1936 			continue;
1937 
1938 		/*
1939 		 * For async direct compaction, only scan the pageblocks of the
1940 		 * same migratetype without huge pages. Async direct compaction
1941 		 * is optimistic to see if the minimum amount of work satisfies
1942 		 * the allocation. The cached PFN is updated as it's possible
1943 		 * that all remaining blocks between source and target are
1944 		 * unsuitable and the compaction scanners fail to meet.
1945 		 */
1946 		if (!suitable_migration_source(cc, page)) {
1947 			update_cached_migrate(cc, block_end_pfn);
1948 			continue;
1949 		}
1950 
1951 		/* Perform the isolation */
1952 		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1953 						isolate_mode))
1954 			return ISOLATE_ABORT;
1955 
1956 		/*
1957 		 * Either we isolated something and proceed with migration. Or
1958 		 * we failed and compact_zone should decide if we should
1959 		 * continue or not.
1960 		 */
1961 		break;
1962 	}
1963 
1964 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1965 }
1966 
1967 /*
1968  * order == -1 is expected when compacting via
1969  * /proc/sys/vm/compact_memory
1970  */
1971 static inline bool is_via_compact_memory(int order)
1972 {
1973 	return order == -1;
1974 }
1975 
1976 /*
1977  * Determine whether kswapd is (or recently was!) running on this node.
1978  *
1979  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
1980  * zero it.
1981  */
1982 static bool kswapd_is_running(pg_data_t *pgdat)
1983 {
1984 	bool running;
1985 
1986 	pgdat_kswapd_lock(pgdat);
1987 	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
1988 	pgdat_kswapd_unlock(pgdat);
1989 
1990 	return running;
1991 }
1992 
1993 /*
1994  * A zone's fragmentation score is the external fragmentation wrt to the
1995  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1996  */
1997 static unsigned int fragmentation_score_zone(struct zone *zone)
1998 {
1999 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2000 }
2001 
2002 /*
2003  * A weighted zone's fragmentation score is the external fragmentation
2004  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2005  * returns a value in the range [0, 100].
2006  *
2007  * The scaling factor ensures that proactive compaction focuses on larger
2008  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2009  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2010  * and thus never exceeds the high threshold for proactive compaction.
2011  */
2012 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2013 {
2014 	unsigned long score;
2015 
2016 	score = zone->present_pages * fragmentation_score_zone(zone);
2017 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2018 }
2019 
2020 /*
2021  * The per-node proactive (background) compaction process is started by its
2022  * corresponding kcompactd thread when the node's fragmentation score
2023  * exceeds the high threshold. The compaction process remains active till
2024  * the node's score falls below the low threshold, or one of the back-off
2025  * conditions is met.
2026  */
2027 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2028 {
2029 	unsigned int score = 0;
2030 	int zoneid;
2031 
2032 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2033 		struct zone *zone;
2034 
2035 		zone = &pgdat->node_zones[zoneid];
2036 		if (!populated_zone(zone))
2037 			continue;
2038 		score += fragmentation_score_zone_weighted(zone);
2039 	}
2040 
2041 	return score;
2042 }
2043 
2044 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2045 {
2046 	unsigned int wmark_low;
2047 
2048 	/*
2049 	 * Cap the low watermark to avoid excessive compaction
2050 	 * activity in case a user sets the proactiveness tunable
2051 	 * close to 100 (maximum).
2052 	 */
2053 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2054 	return low ? wmark_low : min(wmark_low + 10, 100U);
2055 }
2056 
2057 static bool should_proactive_compact_node(pg_data_t *pgdat)
2058 {
2059 	int wmark_high;
2060 
2061 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2062 		return false;
2063 
2064 	wmark_high = fragmentation_score_wmark(pgdat, false);
2065 	return fragmentation_score_node(pgdat) > wmark_high;
2066 }
2067 
2068 static enum compact_result __compact_finished(struct compact_control *cc)
2069 {
2070 	unsigned int order;
2071 	const int migratetype = cc->migratetype;
2072 	int ret;
2073 
2074 	/* Compaction run completes if the migrate and free scanner meet */
2075 	if (compact_scanners_met(cc)) {
2076 		/* Let the next compaction start anew. */
2077 		reset_cached_positions(cc->zone);
2078 
2079 		/*
2080 		 * Mark that the PG_migrate_skip information should be cleared
2081 		 * by kswapd when it goes to sleep. kcompactd does not set the
2082 		 * flag itself as the decision to be clear should be directly
2083 		 * based on an allocation request.
2084 		 */
2085 		if (cc->direct_compaction)
2086 			cc->zone->compact_blockskip_flush = true;
2087 
2088 		if (cc->whole_zone)
2089 			return COMPACT_COMPLETE;
2090 		else
2091 			return COMPACT_PARTIAL_SKIPPED;
2092 	}
2093 
2094 	if (cc->proactive_compaction) {
2095 		int score, wmark_low;
2096 		pg_data_t *pgdat;
2097 
2098 		pgdat = cc->zone->zone_pgdat;
2099 		if (kswapd_is_running(pgdat))
2100 			return COMPACT_PARTIAL_SKIPPED;
2101 
2102 		score = fragmentation_score_zone(cc->zone);
2103 		wmark_low = fragmentation_score_wmark(pgdat, true);
2104 
2105 		if (score > wmark_low)
2106 			ret = COMPACT_CONTINUE;
2107 		else
2108 			ret = COMPACT_SUCCESS;
2109 
2110 		goto out;
2111 	}
2112 
2113 	if (is_via_compact_memory(cc->order))
2114 		return COMPACT_CONTINUE;
2115 
2116 	/*
2117 	 * Always finish scanning a pageblock to reduce the possibility of
2118 	 * fallbacks in the future. This is particularly important when
2119 	 * migration source is unmovable/reclaimable but it's not worth
2120 	 * special casing.
2121 	 */
2122 	if (!pageblock_aligned(cc->migrate_pfn))
2123 		return COMPACT_CONTINUE;
2124 
2125 	/* Direct compactor: Is a suitable page free? */
2126 	ret = COMPACT_NO_SUITABLE_PAGE;
2127 	for (order = cc->order; order < MAX_ORDER; order++) {
2128 		struct free_area *area = &cc->zone->free_area[order];
2129 		bool can_steal;
2130 
2131 		/* Job done if page is free of the right migratetype */
2132 		if (!free_area_empty(area, migratetype))
2133 			return COMPACT_SUCCESS;
2134 
2135 #ifdef CONFIG_CMA
2136 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2137 		if (migratetype == MIGRATE_MOVABLE &&
2138 			!free_area_empty(area, MIGRATE_CMA))
2139 			return COMPACT_SUCCESS;
2140 #endif
2141 		/*
2142 		 * Job done if allocation would steal freepages from
2143 		 * other migratetype buddy lists.
2144 		 */
2145 		if (find_suitable_fallback(area, order, migratetype,
2146 						true, &can_steal) != -1)
2147 			/*
2148 			 * Movable pages are OK in any pageblock. If we are
2149 			 * stealing for a non-movable allocation, make sure
2150 			 * we finish compacting the current pageblock first
2151 			 * (which is assured by the above migrate_pfn align
2152 			 * check) so it is as free as possible and we won't
2153 			 * have to steal another one soon.
2154 			 */
2155 			return COMPACT_SUCCESS;
2156 	}
2157 
2158 out:
2159 	if (cc->contended || fatal_signal_pending(current))
2160 		ret = COMPACT_CONTENDED;
2161 
2162 	return ret;
2163 }
2164 
2165 static enum compact_result compact_finished(struct compact_control *cc)
2166 {
2167 	int ret;
2168 
2169 	ret = __compact_finished(cc);
2170 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2171 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2172 		ret = COMPACT_CONTINUE;
2173 
2174 	return ret;
2175 }
2176 
2177 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2178 					unsigned int alloc_flags,
2179 					int highest_zoneidx,
2180 					unsigned long wmark_target)
2181 {
2182 	unsigned long watermark;
2183 
2184 	if (is_via_compact_memory(order))
2185 		return COMPACT_CONTINUE;
2186 
2187 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2188 	/*
2189 	 * If watermarks for high-order allocation are already met, there
2190 	 * should be no need for compaction at all.
2191 	 */
2192 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2193 								alloc_flags))
2194 		return COMPACT_SUCCESS;
2195 
2196 	/*
2197 	 * Watermarks for order-0 must be met for compaction to be able to
2198 	 * isolate free pages for migration targets. This means that the
2199 	 * watermark and alloc_flags have to match, or be more pessimistic than
2200 	 * the check in __isolate_free_page(). We don't use the direct
2201 	 * compactor's alloc_flags, as they are not relevant for freepage
2202 	 * isolation. We however do use the direct compactor's highest_zoneidx
2203 	 * to skip over zones where lowmem reserves would prevent allocation
2204 	 * even if compaction succeeds.
2205 	 * For costly orders, we require low watermark instead of min for
2206 	 * compaction to proceed to increase its chances.
2207 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2208 	 * suitable migration targets
2209 	 */
2210 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2211 				low_wmark_pages(zone) : min_wmark_pages(zone);
2212 	watermark += compact_gap(order);
2213 	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2214 						ALLOC_CMA, wmark_target))
2215 		return COMPACT_SKIPPED;
2216 
2217 	return COMPACT_CONTINUE;
2218 }
2219 
2220 /*
2221  * compaction_suitable: Is this suitable to run compaction on this zone now?
2222  * Returns
2223  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2224  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2225  *   COMPACT_CONTINUE - If compaction should run now
2226  */
2227 enum compact_result compaction_suitable(struct zone *zone, int order,
2228 					unsigned int alloc_flags,
2229 					int highest_zoneidx)
2230 {
2231 	enum compact_result ret;
2232 	int fragindex;
2233 
2234 	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2235 				    zone_page_state(zone, NR_FREE_PAGES));
2236 	/*
2237 	 * fragmentation index determines if allocation failures are due to
2238 	 * low memory or external fragmentation
2239 	 *
2240 	 * index of -1000 would imply allocations might succeed depending on
2241 	 * watermarks, but we already failed the high-order watermark check
2242 	 * index towards 0 implies failure is due to lack of memory
2243 	 * index towards 1000 implies failure is due to fragmentation
2244 	 *
2245 	 * Only compact if a failure would be due to fragmentation. Also
2246 	 * ignore fragindex for non-costly orders where the alternative to
2247 	 * a successful reclaim/compaction is OOM. Fragindex and the
2248 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2249 	 * excessive compaction for costly orders, but it should not be at the
2250 	 * expense of system stability.
2251 	 */
2252 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2253 		fragindex = fragmentation_index(zone, order);
2254 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2255 			ret = COMPACT_NOT_SUITABLE_ZONE;
2256 	}
2257 
2258 	trace_mm_compaction_suitable(zone, order, ret);
2259 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2260 		ret = COMPACT_SKIPPED;
2261 
2262 	return ret;
2263 }
2264 
2265 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2266 		int alloc_flags)
2267 {
2268 	struct zone *zone;
2269 	struct zoneref *z;
2270 
2271 	/*
2272 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2273 	 * retrying the reclaim.
2274 	 */
2275 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2276 				ac->highest_zoneidx, ac->nodemask) {
2277 		unsigned long available;
2278 		enum compact_result compact_result;
2279 
2280 		/*
2281 		 * Do not consider all the reclaimable memory because we do not
2282 		 * want to trash just for a single high order allocation which
2283 		 * is even not guaranteed to appear even if __compaction_suitable
2284 		 * is happy about the watermark check.
2285 		 */
2286 		available = zone_reclaimable_pages(zone) / order;
2287 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2288 		compact_result = __compaction_suitable(zone, order, alloc_flags,
2289 				ac->highest_zoneidx, available);
2290 		if (compact_result == COMPACT_CONTINUE)
2291 			return true;
2292 	}
2293 
2294 	return false;
2295 }
2296 
2297 static enum compact_result
2298 compact_zone(struct compact_control *cc, struct capture_control *capc)
2299 {
2300 	enum compact_result ret;
2301 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2302 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2303 	unsigned long last_migrated_pfn;
2304 	const bool sync = cc->mode != MIGRATE_ASYNC;
2305 	bool update_cached;
2306 	unsigned int nr_succeeded = 0;
2307 
2308 	/*
2309 	 * These counters track activities during zone compaction.  Initialize
2310 	 * them before compacting a new zone.
2311 	 */
2312 	cc->total_migrate_scanned = 0;
2313 	cc->total_free_scanned = 0;
2314 	cc->nr_migratepages = 0;
2315 	cc->nr_freepages = 0;
2316 	INIT_LIST_HEAD(&cc->freepages);
2317 	INIT_LIST_HEAD(&cc->migratepages);
2318 
2319 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2320 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2321 							cc->highest_zoneidx);
2322 	/* Compaction is likely to fail */
2323 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2324 		return ret;
2325 
2326 	/*
2327 	 * Clear pageblock skip if there were failures recently and compaction
2328 	 * is about to be retried after being deferred.
2329 	 */
2330 	if (compaction_restarting(cc->zone, cc->order))
2331 		__reset_isolation_suitable(cc->zone);
2332 
2333 	/*
2334 	 * Setup to move all movable pages to the end of the zone. Used cached
2335 	 * information on where the scanners should start (unless we explicitly
2336 	 * want to compact the whole zone), but check that it is initialised
2337 	 * by ensuring the values are within zone boundaries.
2338 	 */
2339 	cc->fast_start_pfn = 0;
2340 	if (cc->whole_zone) {
2341 		cc->migrate_pfn = start_pfn;
2342 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2343 	} else {
2344 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2345 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2346 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2347 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2348 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2349 		}
2350 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2351 			cc->migrate_pfn = start_pfn;
2352 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2353 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2354 		}
2355 
2356 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2357 			cc->whole_zone = true;
2358 	}
2359 
2360 	last_migrated_pfn = 0;
2361 
2362 	/*
2363 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2364 	 * the basis that some migrations will fail in ASYNC mode. However,
2365 	 * if the cached PFNs match and pageblocks are skipped due to having
2366 	 * no isolation candidates, then the sync state does not matter.
2367 	 * Until a pageblock with isolation candidates is found, keep the
2368 	 * cached PFNs in sync to avoid revisiting the same blocks.
2369 	 */
2370 	update_cached = !sync &&
2371 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2372 
2373 	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2374 
2375 	/* lru_add_drain_all could be expensive with involving other CPUs */
2376 	lru_add_drain();
2377 
2378 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2379 		int err;
2380 		unsigned long iteration_start_pfn = cc->migrate_pfn;
2381 
2382 		/*
2383 		 * Avoid multiple rescans of the same pageblock which can
2384 		 * happen if a page cannot be isolated (dirty/writeback in
2385 		 * async mode) or if the migrated pages are being allocated
2386 		 * before the pageblock is cleared.  The first rescan will
2387 		 * capture the entire pageblock for migration. If it fails,
2388 		 * it'll be marked skip and scanning will proceed as normal.
2389 		 */
2390 		cc->finish_pageblock = false;
2391 		if (pageblock_start_pfn(last_migrated_pfn) ==
2392 		    pageblock_start_pfn(iteration_start_pfn)) {
2393 			cc->finish_pageblock = true;
2394 		}
2395 
2396 rescan:
2397 		switch (isolate_migratepages(cc)) {
2398 		case ISOLATE_ABORT:
2399 			ret = COMPACT_CONTENDED;
2400 			putback_movable_pages(&cc->migratepages);
2401 			cc->nr_migratepages = 0;
2402 			goto out;
2403 		case ISOLATE_NONE:
2404 			if (update_cached) {
2405 				cc->zone->compact_cached_migrate_pfn[1] =
2406 					cc->zone->compact_cached_migrate_pfn[0];
2407 			}
2408 
2409 			/*
2410 			 * We haven't isolated and migrated anything, but
2411 			 * there might still be unflushed migrations from
2412 			 * previous cc->order aligned block.
2413 			 */
2414 			goto check_drain;
2415 		case ISOLATE_SUCCESS:
2416 			update_cached = false;
2417 			last_migrated_pfn = iteration_start_pfn;
2418 		}
2419 
2420 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2421 				compaction_free, (unsigned long)cc, cc->mode,
2422 				MR_COMPACTION, &nr_succeeded);
2423 
2424 		trace_mm_compaction_migratepages(cc, nr_succeeded);
2425 
2426 		/* All pages were either migrated or will be released */
2427 		cc->nr_migratepages = 0;
2428 		if (err) {
2429 			putback_movable_pages(&cc->migratepages);
2430 			/*
2431 			 * migrate_pages() may return -ENOMEM when scanners meet
2432 			 * and we want compact_finished() to detect it
2433 			 */
2434 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2435 				ret = COMPACT_CONTENDED;
2436 				goto out;
2437 			}
2438 			/*
2439 			 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2440 			 * within the current order-aligned block, scan the
2441 			 * remainder of the pageblock. This will mark the
2442 			 * pageblock "skip" to avoid rescanning in the near
2443 			 * future. This will isolate more pages than necessary
2444 			 * for the request but avoid loops due to
2445 			 * fast_find_migrateblock revisiting blocks that were
2446 			 * recently partially scanned.
2447 			 */
2448 			if (cc->direct_compaction && !cc->finish_pageblock &&
2449 						(cc->mode < MIGRATE_SYNC)) {
2450 				cc->finish_pageblock = true;
2451 
2452 				/*
2453 				 * Draining pcplists does not help THP if
2454 				 * any page failed to migrate. Even after
2455 				 * drain, the pageblock will not be free.
2456 				 */
2457 				if (cc->order == COMPACTION_HPAGE_ORDER)
2458 					last_migrated_pfn = 0;
2459 
2460 				goto rescan;
2461 			}
2462 		}
2463 
2464 		/* Stop if a page has been captured */
2465 		if (capc && capc->page) {
2466 			ret = COMPACT_SUCCESS;
2467 			break;
2468 		}
2469 
2470 check_drain:
2471 		/*
2472 		 * Has the migration scanner moved away from the previous
2473 		 * cc->order aligned block where we migrated from? If yes,
2474 		 * flush the pages that were freed, so that they can merge and
2475 		 * compact_finished() can detect immediately if allocation
2476 		 * would succeed.
2477 		 */
2478 		if (cc->order > 0 && last_migrated_pfn) {
2479 			unsigned long current_block_start =
2480 				block_start_pfn(cc->migrate_pfn, cc->order);
2481 
2482 			if (last_migrated_pfn < current_block_start) {
2483 				lru_add_drain_cpu_zone(cc->zone);
2484 				/* No more flushing until we migrate again */
2485 				last_migrated_pfn = 0;
2486 			}
2487 		}
2488 	}
2489 
2490 out:
2491 	/*
2492 	 * Release free pages and update where the free scanner should restart,
2493 	 * so we don't leave any returned pages behind in the next attempt.
2494 	 */
2495 	if (cc->nr_freepages > 0) {
2496 		unsigned long free_pfn = release_freepages(&cc->freepages);
2497 
2498 		cc->nr_freepages = 0;
2499 		VM_BUG_ON(free_pfn == 0);
2500 		/* The cached pfn is always the first in a pageblock */
2501 		free_pfn = pageblock_start_pfn(free_pfn);
2502 		/*
2503 		 * Only go back, not forward. The cached pfn might have been
2504 		 * already reset to zone end in compact_finished()
2505 		 */
2506 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2507 			cc->zone->compact_cached_free_pfn = free_pfn;
2508 	}
2509 
2510 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2511 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2512 
2513 	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2514 
2515 	VM_BUG_ON(!list_empty(&cc->freepages));
2516 	VM_BUG_ON(!list_empty(&cc->migratepages));
2517 
2518 	return ret;
2519 }
2520 
2521 static enum compact_result compact_zone_order(struct zone *zone, int order,
2522 		gfp_t gfp_mask, enum compact_priority prio,
2523 		unsigned int alloc_flags, int highest_zoneidx,
2524 		struct page **capture)
2525 {
2526 	enum compact_result ret;
2527 	struct compact_control cc = {
2528 		.order = order,
2529 		.search_order = order,
2530 		.gfp_mask = gfp_mask,
2531 		.zone = zone,
2532 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2533 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2534 		.alloc_flags = alloc_flags,
2535 		.highest_zoneidx = highest_zoneidx,
2536 		.direct_compaction = true,
2537 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2538 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2539 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2540 	};
2541 	struct capture_control capc = {
2542 		.cc = &cc,
2543 		.page = NULL,
2544 	};
2545 
2546 	/*
2547 	 * Make sure the structs are really initialized before we expose the
2548 	 * capture control, in case we are interrupted and the interrupt handler
2549 	 * frees a page.
2550 	 */
2551 	barrier();
2552 	WRITE_ONCE(current->capture_control, &capc);
2553 
2554 	ret = compact_zone(&cc, &capc);
2555 
2556 	/*
2557 	 * Make sure we hide capture control first before we read the captured
2558 	 * page pointer, otherwise an interrupt could free and capture a page
2559 	 * and we would leak it.
2560 	 */
2561 	WRITE_ONCE(current->capture_control, NULL);
2562 	*capture = READ_ONCE(capc.page);
2563 	/*
2564 	 * Technically, it is also possible that compaction is skipped but
2565 	 * the page is still captured out of luck(IRQ came and freed the page).
2566 	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2567 	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2568 	 */
2569 	if (*capture)
2570 		ret = COMPACT_SUCCESS;
2571 
2572 	return ret;
2573 }
2574 
2575 int sysctl_extfrag_threshold = 500;
2576 
2577 /**
2578  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2579  * @gfp_mask: The GFP mask of the current allocation
2580  * @order: The order of the current allocation
2581  * @alloc_flags: The allocation flags of the current allocation
2582  * @ac: The context of current allocation
2583  * @prio: Determines how hard direct compaction should try to succeed
2584  * @capture: Pointer to free page created by compaction will be stored here
2585  *
2586  * This is the main entry point for direct page compaction.
2587  */
2588 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2589 		unsigned int alloc_flags, const struct alloc_context *ac,
2590 		enum compact_priority prio, struct page **capture)
2591 {
2592 	int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2593 	struct zoneref *z;
2594 	struct zone *zone;
2595 	enum compact_result rc = COMPACT_SKIPPED;
2596 
2597 	/*
2598 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2599 	 * tricky context because the migration might require IO
2600 	 */
2601 	if (!may_perform_io)
2602 		return COMPACT_SKIPPED;
2603 
2604 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2605 
2606 	/* Compact each zone in the list */
2607 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2608 					ac->highest_zoneidx, ac->nodemask) {
2609 		enum compact_result status;
2610 
2611 		if (prio > MIN_COMPACT_PRIORITY
2612 					&& compaction_deferred(zone, order)) {
2613 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2614 			continue;
2615 		}
2616 
2617 		status = compact_zone_order(zone, order, gfp_mask, prio,
2618 				alloc_flags, ac->highest_zoneidx, capture);
2619 		rc = max(status, rc);
2620 
2621 		/* The allocation should succeed, stop compacting */
2622 		if (status == COMPACT_SUCCESS) {
2623 			/*
2624 			 * We think the allocation will succeed in this zone,
2625 			 * but it is not certain, hence the false. The caller
2626 			 * will repeat this with true if allocation indeed
2627 			 * succeeds in this zone.
2628 			 */
2629 			compaction_defer_reset(zone, order, false);
2630 
2631 			break;
2632 		}
2633 
2634 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2635 					status == COMPACT_PARTIAL_SKIPPED))
2636 			/*
2637 			 * We think that allocation won't succeed in this zone
2638 			 * so we defer compaction there. If it ends up
2639 			 * succeeding after all, it will be reset.
2640 			 */
2641 			defer_compaction(zone, order);
2642 
2643 		/*
2644 		 * We might have stopped compacting due to need_resched() in
2645 		 * async compaction, or due to a fatal signal detected. In that
2646 		 * case do not try further zones
2647 		 */
2648 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2649 					|| fatal_signal_pending(current))
2650 			break;
2651 	}
2652 
2653 	return rc;
2654 }
2655 
2656 /*
2657  * Compact all zones within a node till each zone's fragmentation score
2658  * reaches within proactive compaction thresholds (as determined by the
2659  * proactiveness tunable).
2660  *
2661  * It is possible that the function returns before reaching score targets
2662  * due to various back-off conditions, such as, contention on per-node or
2663  * per-zone locks.
2664  */
2665 static void proactive_compact_node(pg_data_t *pgdat)
2666 {
2667 	int zoneid;
2668 	struct zone *zone;
2669 	struct compact_control cc = {
2670 		.order = -1,
2671 		.mode = MIGRATE_SYNC_LIGHT,
2672 		.ignore_skip_hint = true,
2673 		.whole_zone = true,
2674 		.gfp_mask = GFP_KERNEL,
2675 		.proactive_compaction = true,
2676 	};
2677 
2678 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2679 		zone = &pgdat->node_zones[zoneid];
2680 		if (!populated_zone(zone))
2681 			continue;
2682 
2683 		cc.zone = zone;
2684 
2685 		compact_zone(&cc, NULL);
2686 
2687 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2688 				     cc.total_migrate_scanned);
2689 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2690 				     cc.total_free_scanned);
2691 	}
2692 }
2693 
2694 /* Compact all zones within a node */
2695 static void compact_node(int nid)
2696 {
2697 	pg_data_t *pgdat = NODE_DATA(nid);
2698 	int zoneid;
2699 	struct zone *zone;
2700 	struct compact_control cc = {
2701 		.order = -1,
2702 		.mode = MIGRATE_SYNC,
2703 		.ignore_skip_hint = true,
2704 		.whole_zone = true,
2705 		.gfp_mask = GFP_KERNEL,
2706 	};
2707 
2708 
2709 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2710 
2711 		zone = &pgdat->node_zones[zoneid];
2712 		if (!populated_zone(zone))
2713 			continue;
2714 
2715 		cc.zone = zone;
2716 
2717 		compact_zone(&cc, NULL);
2718 	}
2719 }
2720 
2721 /* Compact all nodes in the system */
2722 static void compact_nodes(void)
2723 {
2724 	int nid;
2725 
2726 	/* Flush pending updates to the LRU lists */
2727 	lru_add_drain_all();
2728 
2729 	for_each_online_node(nid)
2730 		compact_node(nid);
2731 }
2732 
2733 /*
2734  * Tunable for proactive compaction. It determines how
2735  * aggressively the kernel should compact memory in the
2736  * background. It takes values in the range [0, 100].
2737  */
2738 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2739 
2740 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2741 		void *buffer, size_t *length, loff_t *ppos)
2742 {
2743 	int rc, nid;
2744 
2745 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2746 	if (rc)
2747 		return rc;
2748 
2749 	if (write && sysctl_compaction_proactiveness) {
2750 		for_each_online_node(nid) {
2751 			pg_data_t *pgdat = NODE_DATA(nid);
2752 
2753 			if (pgdat->proactive_compact_trigger)
2754 				continue;
2755 
2756 			pgdat->proactive_compact_trigger = true;
2757 			trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2758 							     pgdat->nr_zones - 1);
2759 			wake_up_interruptible(&pgdat->kcompactd_wait);
2760 		}
2761 	}
2762 
2763 	return 0;
2764 }
2765 
2766 /*
2767  * This is the entry point for compacting all nodes via
2768  * /proc/sys/vm/compact_memory
2769  */
2770 int sysctl_compaction_handler(struct ctl_table *table, int write,
2771 			void *buffer, size_t *length, loff_t *ppos)
2772 {
2773 	if (write)
2774 		compact_nodes();
2775 
2776 	return 0;
2777 }
2778 
2779 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2780 static ssize_t compact_store(struct device *dev,
2781 			     struct device_attribute *attr,
2782 			     const char *buf, size_t count)
2783 {
2784 	int nid = dev->id;
2785 
2786 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2787 		/* Flush pending updates to the LRU lists */
2788 		lru_add_drain_all();
2789 
2790 		compact_node(nid);
2791 	}
2792 
2793 	return count;
2794 }
2795 static DEVICE_ATTR_WO(compact);
2796 
2797 int compaction_register_node(struct node *node)
2798 {
2799 	return device_create_file(&node->dev, &dev_attr_compact);
2800 }
2801 
2802 void compaction_unregister_node(struct node *node)
2803 {
2804 	return device_remove_file(&node->dev, &dev_attr_compact);
2805 }
2806 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2807 
2808 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2809 {
2810 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2811 		pgdat->proactive_compact_trigger;
2812 }
2813 
2814 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2815 {
2816 	int zoneid;
2817 	struct zone *zone;
2818 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2819 
2820 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2821 		zone = &pgdat->node_zones[zoneid];
2822 
2823 		if (!populated_zone(zone))
2824 			continue;
2825 
2826 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2827 					highest_zoneidx) == COMPACT_CONTINUE)
2828 			return true;
2829 	}
2830 
2831 	return false;
2832 }
2833 
2834 static void kcompactd_do_work(pg_data_t *pgdat)
2835 {
2836 	/*
2837 	 * With no special task, compact all zones so that a page of requested
2838 	 * order is allocatable.
2839 	 */
2840 	int zoneid;
2841 	struct zone *zone;
2842 	struct compact_control cc = {
2843 		.order = pgdat->kcompactd_max_order,
2844 		.search_order = pgdat->kcompactd_max_order,
2845 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2846 		.mode = MIGRATE_SYNC_LIGHT,
2847 		.ignore_skip_hint = false,
2848 		.gfp_mask = GFP_KERNEL,
2849 	};
2850 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2851 							cc.highest_zoneidx);
2852 	count_compact_event(KCOMPACTD_WAKE);
2853 
2854 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2855 		int status;
2856 
2857 		zone = &pgdat->node_zones[zoneid];
2858 		if (!populated_zone(zone))
2859 			continue;
2860 
2861 		if (compaction_deferred(zone, cc.order))
2862 			continue;
2863 
2864 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2865 							COMPACT_CONTINUE)
2866 			continue;
2867 
2868 		if (kthread_should_stop())
2869 			return;
2870 
2871 		cc.zone = zone;
2872 		status = compact_zone(&cc, NULL);
2873 
2874 		if (status == COMPACT_SUCCESS) {
2875 			compaction_defer_reset(zone, cc.order, false);
2876 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2877 			/*
2878 			 * Buddy pages may become stranded on pcps that could
2879 			 * otherwise coalesce on the zone's free area for
2880 			 * order >= cc.order.  This is ratelimited by the
2881 			 * upcoming deferral.
2882 			 */
2883 			drain_all_pages(zone);
2884 
2885 			/*
2886 			 * We use sync migration mode here, so we defer like
2887 			 * sync direct compaction does.
2888 			 */
2889 			defer_compaction(zone, cc.order);
2890 		}
2891 
2892 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2893 				     cc.total_migrate_scanned);
2894 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2895 				     cc.total_free_scanned);
2896 	}
2897 
2898 	/*
2899 	 * Regardless of success, we are done until woken up next. But remember
2900 	 * the requested order/highest_zoneidx in case it was higher/tighter
2901 	 * than our current ones
2902 	 */
2903 	if (pgdat->kcompactd_max_order <= cc.order)
2904 		pgdat->kcompactd_max_order = 0;
2905 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2906 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2907 }
2908 
2909 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2910 {
2911 	if (!order)
2912 		return;
2913 
2914 	if (pgdat->kcompactd_max_order < order)
2915 		pgdat->kcompactd_max_order = order;
2916 
2917 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2918 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2919 
2920 	/*
2921 	 * Pairs with implicit barrier in wait_event_freezable()
2922 	 * such that wakeups are not missed.
2923 	 */
2924 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2925 		return;
2926 
2927 	if (!kcompactd_node_suitable(pgdat))
2928 		return;
2929 
2930 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2931 							highest_zoneidx);
2932 	wake_up_interruptible(&pgdat->kcompactd_wait);
2933 }
2934 
2935 /*
2936  * The background compaction daemon, started as a kernel thread
2937  * from the init process.
2938  */
2939 static int kcompactd(void *p)
2940 {
2941 	pg_data_t *pgdat = (pg_data_t *)p;
2942 	struct task_struct *tsk = current;
2943 	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2944 	long timeout = default_timeout;
2945 
2946 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2947 
2948 	if (!cpumask_empty(cpumask))
2949 		set_cpus_allowed_ptr(tsk, cpumask);
2950 
2951 	set_freezable();
2952 
2953 	pgdat->kcompactd_max_order = 0;
2954 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2955 
2956 	while (!kthread_should_stop()) {
2957 		unsigned long pflags;
2958 
2959 		/*
2960 		 * Avoid the unnecessary wakeup for proactive compaction
2961 		 * when it is disabled.
2962 		 */
2963 		if (!sysctl_compaction_proactiveness)
2964 			timeout = MAX_SCHEDULE_TIMEOUT;
2965 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2966 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2967 			kcompactd_work_requested(pgdat), timeout) &&
2968 			!pgdat->proactive_compact_trigger) {
2969 
2970 			psi_memstall_enter(&pflags);
2971 			kcompactd_do_work(pgdat);
2972 			psi_memstall_leave(&pflags);
2973 			/*
2974 			 * Reset the timeout value. The defer timeout from
2975 			 * proactive compaction is lost here but that is fine
2976 			 * as the condition of the zone changing substantionally
2977 			 * then carrying on with the previous defer interval is
2978 			 * not useful.
2979 			 */
2980 			timeout = default_timeout;
2981 			continue;
2982 		}
2983 
2984 		/*
2985 		 * Start the proactive work with default timeout. Based
2986 		 * on the fragmentation score, this timeout is updated.
2987 		 */
2988 		timeout = default_timeout;
2989 		if (should_proactive_compact_node(pgdat)) {
2990 			unsigned int prev_score, score;
2991 
2992 			prev_score = fragmentation_score_node(pgdat);
2993 			proactive_compact_node(pgdat);
2994 			score = fragmentation_score_node(pgdat);
2995 			/*
2996 			 * Defer proactive compaction if the fragmentation
2997 			 * score did not go down i.e. no progress made.
2998 			 */
2999 			if (unlikely(score >= prev_score))
3000 				timeout =
3001 				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
3002 		}
3003 		if (unlikely(pgdat->proactive_compact_trigger))
3004 			pgdat->proactive_compact_trigger = false;
3005 	}
3006 
3007 	return 0;
3008 }
3009 
3010 /*
3011  * This kcompactd start function will be called by init and node-hot-add.
3012  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3013  */
3014 void kcompactd_run(int nid)
3015 {
3016 	pg_data_t *pgdat = NODE_DATA(nid);
3017 
3018 	if (pgdat->kcompactd)
3019 		return;
3020 
3021 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3022 	if (IS_ERR(pgdat->kcompactd)) {
3023 		pr_err("Failed to start kcompactd on node %d\n", nid);
3024 		pgdat->kcompactd = NULL;
3025 	}
3026 }
3027 
3028 /*
3029  * Called by memory hotplug when all memory in a node is offlined. Caller must
3030  * be holding mem_hotplug_begin/done().
3031  */
3032 void kcompactd_stop(int nid)
3033 {
3034 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3035 
3036 	if (kcompactd) {
3037 		kthread_stop(kcompactd);
3038 		NODE_DATA(nid)->kcompactd = NULL;
3039 	}
3040 }
3041 
3042 /*
3043  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3044  * not required for correctness. So if the last cpu in a node goes
3045  * away, we get changed to run anywhere: as the first one comes back,
3046  * restore their cpu bindings.
3047  */
3048 static int kcompactd_cpu_online(unsigned int cpu)
3049 {
3050 	int nid;
3051 
3052 	for_each_node_state(nid, N_MEMORY) {
3053 		pg_data_t *pgdat = NODE_DATA(nid);
3054 		const struct cpumask *mask;
3055 
3056 		mask = cpumask_of_node(pgdat->node_id);
3057 
3058 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3059 			/* One of our CPUs online: restore mask */
3060 			if (pgdat->kcompactd)
3061 				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3062 	}
3063 	return 0;
3064 }
3065 
3066 static int __init kcompactd_init(void)
3067 {
3068 	int nid;
3069 	int ret;
3070 
3071 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3072 					"mm/compaction:online",
3073 					kcompactd_cpu_online, NULL);
3074 	if (ret < 0) {
3075 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3076 		return ret;
3077 	}
3078 
3079 	for_each_node_state(nid, N_MEMORY)
3080 		kcompactd_run(nid);
3081 	return 0;
3082 }
3083 subsys_initcall(kcompactd_init)
3084 
3085 #endif /* CONFIG_COMPACTION */
3086