xref: /openbmc/linux/mm/compaction.c (revision 3c6a73cc)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
20 
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item)
23 {
24 	count_vm_event(item);
25 }
26 
27 static inline void count_compact_events(enum vm_event_item item, long delta)
28 {
29 	count_vm_events(item, delta);
30 }
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
35 
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/compaction.h>
40 
41 static unsigned long release_freepages(struct list_head *freelist)
42 {
43 	struct page *page, *next;
44 	unsigned long count = 0;
45 
46 	list_for_each_entry_safe(page, next, freelist, lru) {
47 		list_del(&page->lru);
48 		__free_page(page);
49 		count++;
50 	}
51 
52 	return count;
53 }
54 
55 static void map_pages(struct list_head *list)
56 {
57 	struct page *page;
58 
59 	list_for_each_entry(page, list, lru) {
60 		arch_alloc_page(page, 0);
61 		kernel_map_pages(page, 1, 1);
62 	}
63 }
64 
65 static inline bool migrate_async_suitable(int migratetype)
66 {
67 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
68 }
69 
70 /*
71  * Check that the whole (or subset of) a pageblock given by the interval of
72  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
73  * with the migration of free compaction scanner. The scanners then need to
74  * use only pfn_valid_within() check for arches that allow holes within
75  * pageblocks.
76  *
77  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
78  *
79  * It's possible on some configurations to have a setup like node0 node1 node0
80  * i.e. it's possible that all pages within a zones range of pages do not
81  * belong to a single zone. We assume that a border between node0 and node1
82  * can occur within a single pageblock, but not a node0 node1 node0
83  * interleaving within a single pageblock. It is therefore sufficient to check
84  * the first and last page of a pageblock and avoid checking each individual
85  * page in a pageblock.
86  */
87 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
88 				unsigned long end_pfn, struct zone *zone)
89 {
90 	struct page *start_page;
91 	struct page *end_page;
92 
93 	/* end_pfn is one past the range we are checking */
94 	end_pfn--;
95 
96 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
97 		return NULL;
98 
99 	start_page = pfn_to_page(start_pfn);
100 
101 	if (page_zone(start_page) != zone)
102 		return NULL;
103 
104 	end_page = pfn_to_page(end_pfn);
105 
106 	/* This gives a shorter code than deriving page_zone(end_page) */
107 	if (page_zone_id(start_page) != page_zone_id(end_page))
108 		return NULL;
109 
110 	return start_page;
111 }
112 
113 #ifdef CONFIG_COMPACTION
114 /* Returns true if the pageblock should be scanned for pages to isolate. */
115 static inline bool isolation_suitable(struct compact_control *cc,
116 					struct page *page)
117 {
118 	if (cc->ignore_skip_hint)
119 		return true;
120 
121 	return !get_pageblock_skip(page);
122 }
123 
124 /*
125  * This function is called to clear all cached information on pageblocks that
126  * should be skipped for page isolation when the migrate and free page scanner
127  * meet.
128  */
129 static void __reset_isolation_suitable(struct zone *zone)
130 {
131 	unsigned long start_pfn = zone->zone_start_pfn;
132 	unsigned long end_pfn = zone_end_pfn(zone);
133 	unsigned long pfn;
134 
135 	zone->compact_cached_migrate_pfn[0] = start_pfn;
136 	zone->compact_cached_migrate_pfn[1] = start_pfn;
137 	zone->compact_cached_free_pfn = end_pfn;
138 	zone->compact_blockskip_flush = false;
139 
140 	/* Walk the zone and mark every pageblock as suitable for isolation */
141 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
142 		struct page *page;
143 
144 		cond_resched();
145 
146 		if (!pfn_valid(pfn))
147 			continue;
148 
149 		page = pfn_to_page(pfn);
150 		if (zone != page_zone(page))
151 			continue;
152 
153 		clear_pageblock_skip(page);
154 	}
155 }
156 
157 void reset_isolation_suitable(pg_data_t *pgdat)
158 {
159 	int zoneid;
160 
161 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
162 		struct zone *zone = &pgdat->node_zones[zoneid];
163 		if (!populated_zone(zone))
164 			continue;
165 
166 		/* Only flush if a full compaction finished recently */
167 		if (zone->compact_blockskip_flush)
168 			__reset_isolation_suitable(zone);
169 	}
170 }
171 
172 /*
173  * If no pages were isolated then mark this pageblock to be skipped in the
174  * future. The information is later cleared by __reset_isolation_suitable().
175  */
176 static void update_pageblock_skip(struct compact_control *cc,
177 			struct page *page, unsigned long nr_isolated,
178 			bool migrate_scanner)
179 {
180 	struct zone *zone = cc->zone;
181 	unsigned long pfn;
182 
183 	if (cc->ignore_skip_hint)
184 		return;
185 
186 	if (!page)
187 		return;
188 
189 	if (nr_isolated)
190 		return;
191 
192 	set_pageblock_skip(page);
193 
194 	pfn = page_to_pfn(page);
195 
196 	/* Update where async and sync compaction should restart */
197 	if (migrate_scanner) {
198 		if (cc->finished_update_migrate)
199 			return;
200 		if (pfn > zone->compact_cached_migrate_pfn[0])
201 			zone->compact_cached_migrate_pfn[0] = pfn;
202 		if (cc->mode != MIGRATE_ASYNC &&
203 		    pfn > zone->compact_cached_migrate_pfn[1])
204 			zone->compact_cached_migrate_pfn[1] = pfn;
205 	} else {
206 		if (cc->finished_update_free)
207 			return;
208 		if (pfn < zone->compact_cached_free_pfn)
209 			zone->compact_cached_free_pfn = pfn;
210 	}
211 }
212 #else
213 static inline bool isolation_suitable(struct compact_control *cc,
214 					struct page *page)
215 {
216 	return true;
217 }
218 
219 static void update_pageblock_skip(struct compact_control *cc,
220 			struct page *page, unsigned long nr_isolated,
221 			bool migrate_scanner)
222 {
223 }
224 #endif /* CONFIG_COMPACTION */
225 
226 /*
227  * Compaction requires the taking of some coarse locks that are potentially
228  * very heavily contended. For async compaction, back out if the lock cannot
229  * be taken immediately. For sync compaction, spin on the lock if needed.
230  *
231  * Returns true if the lock is held
232  * Returns false if the lock is not held and compaction should abort
233  */
234 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
235 						struct compact_control *cc)
236 {
237 	if (cc->mode == MIGRATE_ASYNC) {
238 		if (!spin_trylock_irqsave(lock, *flags)) {
239 			cc->contended = COMPACT_CONTENDED_LOCK;
240 			return false;
241 		}
242 	} else {
243 		spin_lock_irqsave(lock, *flags);
244 	}
245 
246 	return true;
247 }
248 
249 /*
250  * Compaction requires the taking of some coarse locks that are potentially
251  * very heavily contended. The lock should be periodically unlocked to avoid
252  * having disabled IRQs for a long time, even when there is nobody waiting on
253  * the lock. It might also be that allowing the IRQs will result in
254  * need_resched() becoming true. If scheduling is needed, async compaction
255  * aborts. Sync compaction schedules.
256  * Either compaction type will also abort if a fatal signal is pending.
257  * In either case if the lock was locked, it is dropped and not regained.
258  *
259  * Returns true if compaction should abort due to fatal signal pending, or
260  *		async compaction due to need_resched()
261  * Returns false when compaction can continue (sync compaction might have
262  *		scheduled)
263  */
264 static bool compact_unlock_should_abort(spinlock_t *lock,
265 		unsigned long flags, bool *locked, struct compact_control *cc)
266 {
267 	if (*locked) {
268 		spin_unlock_irqrestore(lock, flags);
269 		*locked = false;
270 	}
271 
272 	if (fatal_signal_pending(current)) {
273 		cc->contended = COMPACT_CONTENDED_SCHED;
274 		return true;
275 	}
276 
277 	if (need_resched()) {
278 		if (cc->mode == MIGRATE_ASYNC) {
279 			cc->contended = COMPACT_CONTENDED_SCHED;
280 			return true;
281 		}
282 		cond_resched();
283 	}
284 
285 	return false;
286 }
287 
288 /*
289  * Aside from avoiding lock contention, compaction also periodically checks
290  * need_resched() and either schedules in sync compaction or aborts async
291  * compaction. This is similar to what compact_unlock_should_abort() does, but
292  * is used where no lock is concerned.
293  *
294  * Returns false when no scheduling was needed, or sync compaction scheduled.
295  * Returns true when async compaction should abort.
296  */
297 static inline bool compact_should_abort(struct compact_control *cc)
298 {
299 	/* async compaction aborts if contended */
300 	if (need_resched()) {
301 		if (cc->mode == MIGRATE_ASYNC) {
302 			cc->contended = COMPACT_CONTENDED_SCHED;
303 			return true;
304 		}
305 
306 		cond_resched();
307 	}
308 
309 	return false;
310 }
311 
312 /* Returns true if the page is within a block suitable for migration to */
313 static bool suitable_migration_target(struct page *page)
314 {
315 	/* If the page is a large free page, then disallow migration */
316 	if (PageBuddy(page)) {
317 		/*
318 		 * We are checking page_order without zone->lock taken. But
319 		 * the only small danger is that we skip a potentially suitable
320 		 * pageblock, so it's not worth to check order for valid range.
321 		 */
322 		if (page_order_unsafe(page) >= pageblock_order)
323 			return false;
324 	}
325 
326 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
327 	if (migrate_async_suitable(get_pageblock_migratetype(page)))
328 		return true;
329 
330 	/* Otherwise skip the block */
331 	return false;
332 }
333 
334 /*
335  * Isolate free pages onto a private freelist. If @strict is true, will abort
336  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
337  * (even though it may still end up isolating some pages).
338  */
339 static unsigned long isolate_freepages_block(struct compact_control *cc,
340 				unsigned long *start_pfn,
341 				unsigned long end_pfn,
342 				struct list_head *freelist,
343 				bool strict)
344 {
345 	int nr_scanned = 0, total_isolated = 0;
346 	struct page *cursor, *valid_page = NULL;
347 	unsigned long flags = 0;
348 	bool locked = false;
349 	unsigned long blockpfn = *start_pfn;
350 
351 	cursor = pfn_to_page(blockpfn);
352 
353 	/* Isolate free pages. */
354 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
355 		int isolated, i;
356 		struct page *page = cursor;
357 
358 		/*
359 		 * Periodically drop the lock (if held) regardless of its
360 		 * contention, to give chance to IRQs. Abort if fatal signal
361 		 * pending or async compaction detects need_resched()
362 		 */
363 		if (!(blockpfn % SWAP_CLUSTER_MAX)
364 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
365 								&locked, cc))
366 			break;
367 
368 		nr_scanned++;
369 		if (!pfn_valid_within(blockpfn))
370 			goto isolate_fail;
371 
372 		if (!valid_page)
373 			valid_page = page;
374 		if (!PageBuddy(page))
375 			goto isolate_fail;
376 
377 		/*
378 		 * If we already hold the lock, we can skip some rechecking.
379 		 * Note that if we hold the lock now, checked_pageblock was
380 		 * already set in some previous iteration (or strict is true),
381 		 * so it is correct to skip the suitable migration target
382 		 * recheck as well.
383 		 */
384 		if (!locked) {
385 			/*
386 			 * The zone lock must be held to isolate freepages.
387 			 * Unfortunately this is a very coarse lock and can be
388 			 * heavily contended if there are parallel allocations
389 			 * or parallel compactions. For async compaction do not
390 			 * spin on the lock and we acquire the lock as late as
391 			 * possible.
392 			 */
393 			locked = compact_trylock_irqsave(&cc->zone->lock,
394 								&flags, cc);
395 			if (!locked)
396 				break;
397 
398 			/* Recheck this is a buddy page under lock */
399 			if (!PageBuddy(page))
400 				goto isolate_fail;
401 		}
402 
403 		/* Found a free page, break it into order-0 pages */
404 		isolated = split_free_page(page);
405 		total_isolated += isolated;
406 		for (i = 0; i < isolated; i++) {
407 			list_add(&page->lru, freelist);
408 			page++;
409 		}
410 
411 		/* If a page was split, advance to the end of it */
412 		if (isolated) {
413 			blockpfn += isolated - 1;
414 			cursor += isolated - 1;
415 			continue;
416 		}
417 
418 isolate_fail:
419 		if (strict)
420 			break;
421 		else
422 			continue;
423 
424 	}
425 
426 	/* Record how far we have got within the block */
427 	*start_pfn = blockpfn;
428 
429 	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
430 
431 	/*
432 	 * If strict isolation is requested by CMA then check that all the
433 	 * pages requested were isolated. If there were any failures, 0 is
434 	 * returned and CMA will fail.
435 	 */
436 	if (strict && blockpfn < end_pfn)
437 		total_isolated = 0;
438 
439 	if (locked)
440 		spin_unlock_irqrestore(&cc->zone->lock, flags);
441 
442 	/* Update the pageblock-skip if the whole pageblock was scanned */
443 	if (blockpfn == end_pfn)
444 		update_pageblock_skip(cc, valid_page, total_isolated, false);
445 
446 	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
447 	if (total_isolated)
448 		count_compact_events(COMPACTISOLATED, total_isolated);
449 	return total_isolated;
450 }
451 
452 /**
453  * isolate_freepages_range() - isolate free pages.
454  * @start_pfn: The first PFN to start isolating.
455  * @end_pfn:   The one-past-last PFN.
456  *
457  * Non-free pages, invalid PFNs, or zone boundaries within the
458  * [start_pfn, end_pfn) range are considered errors, cause function to
459  * undo its actions and return zero.
460  *
461  * Otherwise, function returns one-past-the-last PFN of isolated page
462  * (which may be greater then end_pfn if end fell in a middle of
463  * a free page).
464  */
465 unsigned long
466 isolate_freepages_range(struct compact_control *cc,
467 			unsigned long start_pfn, unsigned long end_pfn)
468 {
469 	unsigned long isolated, pfn, block_end_pfn;
470 	LIST_HEAD(freelist);
471 
472 	pfn = start_pfn;
473 	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
474 
475 	for (; pfn < end_pfn; pfn += isolated,
476 				block_end_pfn += pageblock_nr_pages) {
477 		/* Protect pfn from changing by isolate_freepages_block */
478 		unsigned long isolate_start_pfn = pfn;
479 
480 		block_end_pfn = min(block_end_pfn, end_pfn);
481 
482 		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
483 			break;
484 
485 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
486 						block_end_pfn, &freelist, true);
487 
488 		/*
489 		 * In strict mode, isolate_freepages_block() returns 0 if
490 		 * there are any holes in the block (ie. invalid PFNs or
491 		 * non-free pages).
492 		 */
493 		if (!isolated)
494 			break;
495 
496 		/*
497 		 * If we managed to isolate pages, it is always (1 << n) *
498 		 * pageblock_nr_pages for some non-negative n.  (Max order
499 		 * page may span two pageblocks).
500 		 */
501 	}
502 
503 	/* split_free_page does not map the pages */
504 	map_pages(&freelist);
505 
506 	if (pfn < end_pfn) {
507 		/* Loop terminated early, cleanup. */
508 		release_freepages(&freelist);
509 		return 0;
510 	}
511 
512 	/* We don't use freelists for anything. */
513 	return pfn;
514 }
515 
516 /* Update the number of anon and file isolated pages in the zone */
517 static void acct_isolated(struct zone *zone, struct compact_control *cc)
518 {
519 	struct page *page;
520 	unsigned int count[2] = { 0, };
521 
522 	if (list_empty(&cc->migratepages))
523 		return;
524 
525 	list_for_each_entry(page, &cc->migratepages, lru)
526 		count[!!page_is_file_cache(page)]++;
527 
528 	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
529 	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
530 }
531 
532 /* Similar to reclaim, but different enough that they don't share logic */
533 static bool too_many_isolated(struct zone *zone)
534 {
535 	unsigned long active, inactive, isolated;
536 
537 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
538 					zone_page_state(zone, NR_INACTIVE_ANON);
539 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
540 					zone_page_state(zone, NR_ACTIVE_ANON);
541 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
542 					zone_page_state(zone, NR_ISOLATED_ANON);
543 
544 	return isolated > (inactive + active) / 2;
545 }
546 
547 /**
548  * isolate_migratepages_block() - isolate all migrate-able pages within
549  *				  a single pageblock
550  * @cc:		Compaction control structure.
551  * @low_pfn:	The first PFN to isolate
552  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
553  * @isolate_mode: Isolation mode to be used.
554  *
555  * Isolate all pages that can be migrated from the range specified by
556  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
557  * Returns zero if there is a fatal signal pending, otherwise PFN of the
558  * first page that was not scanned (which may be both less, equal to or more
559  * than end_pfn).
560  *
561  * The pages are isolated on cc->migratepages list (not required to be empty),
562  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
563  * is neither read nor updated.
564  */
565 static unsigned long
566 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
567 			unsigned long end_pfn, isolate_mode_t isolate_mode)
568 {
569 	struct zone *zone = cc->zone;
570 	unsigned long nr_scanned = 0, nr_isolated = 0;
571 	struct list_head *migratelist = &cc->migratepages;
572 	struct lruvec *lruvec;
573 	unsigned long flags = 0;
574 	bool locked = false;
575 	struct page *page = NULL, *valid_page = NULL;
576 
577 	/*
578 	 * Ensure that there are not too many pages isolated from the LRU
579 	 * list by either parallel reclaimers or compaction. If there are,
580 	 * delay for some time until fewer pages are isolated
581 	 */
582 	while (unlikely(too_many_isolated(zone))) {
583 		/* async migration should just abort */
584 		if (cc->mode == MIGRATE_ASYNC)
585 			return 0;
586 
587 		congestion_wait(BLK_RW_ASYNC, HZ/10);
588 
589 		if (fatal_signal_pending(current))
590 			return 0;
591 	}
592 
593 	if (compact_should_abort(cc))
594 		return 0;
595 
596 	/* Time to isolate some pages for migration */
597 	for (; low_pfn < end_pfn; low_pfn++) {
598 		/*
599 		 * Periodically drop the lock (if held) regardless of its
600 		 * contention, to give chance to IRQs. Abort async compaction
601 		 * if contended.
602 		 */
603 		if (!(low_pfn % SWAP_CLUSTER_MAX)
604 		    && compact_unlock_should_abort(&zone->lru_lock, flags,
605 								&locked, cc))
606 			break;
607 
608 		if (!pfn_valid_within(low_pfn))
609 			continue;
610 		nr_scanned++;
611 
612 		page = pfn_to_page(low_pfn);
613 
614 		if (!valid_page)
615 			valid_page = page;
616 
617 		/*
618 		 * Skip if free. We read page order here without zone lock
619 		 * which is generally unsafe, but the race window is small and
620 		 * the worst thing that can happen is that we skip some
621 		 * potential isolation targets.
622 		 */
623 		if (PageBuddy(page)) {
624 			unsigned long freepage_order = page_order_unsafe(page);
625 
626 			/*
627 			 * Without lock, we cannot be sure that what we got is
628 			 * a valid page order. Consider only values in the
629 			 * valid order range to prevent low_pfn overflow.
630 			 */
631 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
632 				low_pfn += (1UL << freepage_order) - 1;
633 			continue;
634 		}
635 
636 		/*
637 		 * Check may be lockless but that's ok as we recheck later.
638 		 * It's possible to migrate LRU pages and balloon pages
639 		 * Skip any other type of page
640 		 */
641 		if (!PageLRU(page)) {
642 			if (unlikely(balloon_page_movable(page))) {
643 				if (balloon_page_isolate(page)) {
644 					/* Successfully isolated */
645 					goto isolate_success;
646 				}
647 			}
648 			continue;
649 		}
650 
651 		/*
652 		 * PageLRU is set. lru_lock normally excludes isolation
653 		 * splitting and collapsing (collapsing has already happened
654 		 * if PageLRU is set) but the lock is not necessarily taken
655 		 * here and it is wasteful to take it just to check transhuge.
656 		 * Check TransHuge without lock and skip the whole pageblock if
657 		 * it's either a transhuge or hugetlbfs page, as calling
658 		 * compound_order() without preventing THP from splitting the
659 		 * page underneath us may return surprising results.
660 		 */
661 		if (PageTransHuge(page)) {
662 			if (!locked)
663 				low_pfn = ALIGN(low_pfn + 1,
664 						pageblock_nr_pages) - 1;
665 			else
666 				low_pfn += (1 << compound_order(page)) - 1;
667 
668 			continue;
669 		}
670 
671 		/*
672 		 * Migration will fail if an anonymous page is pinned in memory,
673 		 * so avoid taking lru_lock and isolating it unnecessarily in an
674 		 * admittedly racy check.
675 		 */
676 		if (!page_mapping(page) &&
677 		    page_count(page) > page_mapcount(page))
678 			continue;
679 
680 		/* If we already hold the lock, we can skip some rechecking */
681 		if (!locked) {
682 			locked = compact_trylock_irqsave(&zone->lru_lock,
683 								&flags, cc);
684 			if (!locked)
685 				break;
686 
687 			/* Recheck PageLRU and PageTransHuge under lock */
688 			if (!PageLRU(page))
689 				continue;
690 			if (PageTransHuge(page)) {
691 				low_pfn += (1 << compound_order(page)) - 1;
692 				continue;
693 			}
694 		}
695 
696 		lruvec = mem_cgroup_page_lruvec(page, zone);
697 
698 		/* Try isolate the page */
699 		if (__isolate_lru_page(page, isolate_mode) != 0)
700 			continue;
701 
702 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
703 
704 		/* Successfully isolated */
705 		del_page_from_lru_list(page, lruvec, page_lru(page));
706 
707 isolate_success:
708 		cc->finished_update_migrate = true;
709 		list_add(&page->lru, migratelist);
710 		cc->nr_migratepages++;
711 		nr_isolated++;
712 
713 		/* Avoid isolating too much */
714 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
715 			++low_pfn;
716 			break;
717 		}
718 	}
719 
720 	/*
721 	 * The PageBuddy() check could have potentially brought us outside
722 	 * the range to be scanned.
723 	 */
724 	if (unlikely(low_pfn > end_pfn))
725 		low_pfn = end_pfn;
726 
727 	if (locked)
728 		spin_unlock_irqrestore(&zone->lru_lock, flags);
729 
730 	/*
731 	 * Update the pageblock-skip information and cached scanner pfn,
732 	 * if the whole pageblock was scanned without isolating any page.
733 	 */
734 	if (low_pfn == end_pfn)
735 		update_pageblock_skip(cc, valid_page, nr_isolated, true);
736 
737 	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
738 
739 	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
740 	if (nr_isolated)
741 		count_compact_events(COMPACTISOLATED, nr_isolated);
742 
743 	return low_pfn;
744 }
745 
746 /**
747  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
748  * @cc:        Compaction control structure.
749  * @start_pfn: The first PFN to start isolating.
750  * @end_pfn:   The one-past-last PFN.
751  *
752  * Returns zero if isolation fails fatally due to e.g. pending signal.
753  * Otherwise, function returns one-past-the-last PFN of isolated page
754  * (which may be greater than end_pfn if end fell in a middle of a THP page).
755  */
756 unsigned long
757 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
758 							unsigned long end_pfn)
759 {
760 	unsigned long pfn, block_end_pfn;
761 
762 	/* Scan block by block. First and last block may be incomplete */
763 	pfn = start_pfn;
764 	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
765 
766 	for (; pfn < end_pfn; pfn = block_end_pfn,
767 				block_end_pfn += pageblock_nr_pages) {
768 
769 		block_end_pfn = min(block_end_pfn, end_pfn);
770 
771 		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
772 			continue;
773 
774 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
775 							ISOLATE_UNEVICTABLE);
776 
777 		/*
778 		 * In case of fatal failure, release everything that might
779 		 * have been isolated in the previous iteration, and signal
780 		 * the failure back to caller.
781 		 */
782 		if (!pfn) {
783 			putback_movable_pages(&cc->migratepages);
784 			cc->nr_migratepages = 0;
785 			break;
786 		}
787 	}
788 	acct_isolated(cc->zone, cc);
789 
790 	return pfn;
791 }
792 
793 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
794 #ifdef CONFIG_COMPACTION
795 /*
796  * Based on information in the current compact_control, find blocks
797  * suitable for isolating free pages from and then isolate them.
798  */
799 static void isolate_freepages(struct compact_control *cc)
800 {
801 	struct zone *zone = cc->zone;
802 	struct page *page;
803 	unsigned long block_start_pfn;	/* start of current pageblock */
804 	unsigned long isolate_start_pfn; /* exact pfn we start at */
805 	unsigned long block_end_pfn;	/* end of current pageblock */
806 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
807 	int nr_freepages = cc->nr_freepages;
808 	struct list_head *freelist = &cc->freepages;
809 
810 	/*
811 	 * Initialise the free scanner. The starting point is where we last
812 	 * successfully isolated from, zone-cached value, or the end of the
813 	 * zone when isolating for the first time. For looping we also need
814 	 * this pfn aligned down to the pageblock boundary, because we do
815 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
816 	 * For ending point, take care when isolating in last pageblock of a
817 	 * a zone which ends in the middle of a pageblock.
818 	 * The low boundary is the end of the pageblock the migration scanner
819 	 * is using.
820 	 */
821 	isolate_start_pfn = cc->free_pfn;
822 	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
823 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
824 						zone_end_pfn(zone));
825 	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
826 
827 	/*
828 	 * Isolate free pages until enough are available to migrate the
829 	 * pages on cc->migratepages. We stop searching if the migrate
830 	 * and free page scanners meet or enough free pages are isolated.
831 	 */
832 	for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
833 				block_end_pfn = block_start_pfn,
834 				block_start_pfn -= pageblock_nr_pages,
835 				isolate_start_pfn = block_start_pfn) {
836 		unsigned long isolated;
837 
838 		/*
839 		 * This can iterate a massively long zone without finding any
840 		 * suitable migration targets, so periodically check if we need
841 		 * to schedule, or even abort async compaction.
842 		 */
843 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
844 						&& compact_should_abort(cc))
845 			break;
846 
847 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
848 									zone);
849 		if (!page)
850 			continue;
851 
852 		/* Check the block is suitable for migration */
853 		if (!suitable_migration_target(page))
854 			continue;
855 
856 		/* If isolation recently failed, do not retry */
857 		if (!isolation_suitable(cc, page))
858 			continue;
859 
860 		/* Found a block suitable for isolating free pages from. */
861 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
862 					block_end_pfn, freelist, false);
863 		nr_freepages += isolated;
864 
865 		/*
866 		 * Remember where the free scanner should restart next time,
867 		 * which is where isolate_freepages_block() left off.
868 		 * But if it scanned the whole pageblock, isolate_start_pfn
869 		 * now points at block_end_pfn, which is the start of the next
870 		 * pageblock.
871 		 * In that case we will however want to restart at the start
872 		 * of the previous pageblock.
873 		 */
874 		cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
875 				isolate_start_pfn :
876 				block_start_pfn - pageblock_nr_pages;
877 
878 		/*
879 		 * Set a flag that we successfully isolated in this pageblock.
880 		 * In the next loop iteration, zone->compact_cached_free_pfn
881 		 * will not be updated and thus it will effectively contain the
882 		 * highest pageblock we isolated pages from.
883 		 */
884 		if (isolated)
885 			cc->finished_update_free = true;
886 
887 		/*
888 		 * isolate_freepages_block() might have aborted due to async
889 		 * compaction being contended
890 		 */
891 		if (cc->contended)
892 			break;
893 	}
894 
895 	/* split_free_page does not map the pages */
896 	map_pages(freelist);
897 
898 	/*
899 	 * If we crossed the migrate scanner, we want to keep it that way
900 	 * so that compact_finished() may detect this
901 	 */
902 	if (block_start_pfn < low_pfn)
903 		cc->free_pfn = cc->migrate_pfn;
904 
905 	cc->nr_freepages = nr_freepages;
906 }
907 
908 /*
909  * This is a migrate-callback that "allocates" freepages by taking pages
910  * from the isolated freelists in the block we are migrating to.
911  */
912 static struct page *compaction_alloc(struct page *migratepage,
913 					unsigned long data,
914 					int **result)
915 {
916 	struct compact_control *cc = (struct compact_control *)data;
917 	struct page *freepage;
918 
919 	/*
920 	 * Isolate free pages if necessary, and if we are not aborting due to
921 	 * contention.
922 	 */
923 	if (list_empty(&cc->freepages)) {
924 		if (!cc->contended)
925 			isolate_freepages(cc);
926 
927 		if (list_empty(&cc->freepages))
928 			return NULL;
929 	}
930 
931 	freepage = list_entry(cc->freepages.next, struct page, lru);
932 	list_del(&freepage->lru);
933 	cc->nr_freepages--;
934 
935 	return freepage;
936 }
937 
938 /*
939  * This is a migrate-callback that "frees" freepages back to the isolated
940  * freelist.  All pages on the freelist are from the same zone, so there is no
941  * special handling needed for NUMA.
942  */
943 static void compaction_free(struct page *page, unsigned long data)
944 {
945 	struct compact_control *cc = (struct compact_control *)data;
946 
947 	list_add(&page->lru, &cc->freepages);
948 	cc->nr_freepages++;
949 }
950 
951 /* possible outcome of isolate_migratepages */
952 typedef enum {
953 	ISOLATE_ABORT,		/* Abort compaction now */
954 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
955 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
956 } isolate_migrate_t;
957 
958 /*
959  * Isolate all pages that can be migrated from the first suitable block,
960  * starting at the block pointed to by the migrate scanner pfn within
961  * compact_control.
962  */
963 static isolate_migrate_t isolate_migratepages(struct zone *zone,
964 					struct compact_control *cc)
965 {
966 	unsigned long low_pfn, end_pfn;
967 	struct page *page;
968 	const isolate_mode_t isolate_mode =
969 		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
970 
971 	/*
972 	 * Start at where we last stopped, or beginning of the zone as
973 	 * initialized by compact_zone()
974 	 */
975 	low_pfn = cc->migrate_pfn;
976 
977 	/* Only scan within a pageblock boundary */
978 	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
979 
980 	/*
981 	 * Iterate over whole pageblocks until we find the first suitable.
982 	 * Do not cross the free scanner.
983 	 */
984 	for (; end_pfn <= cc->free_pfn;
985 			low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
986 
987 		/*
988 		 * This can potentially iterate a massively long zone with
989 		 * many pageblocks unsuitable, so periodically check if we
990 		 * need to schedule, or even abort async compaction.
991 		 */
992 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
993 						&& compact_should_abort(cc))
994 			break;
995 
996 		page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
997 		if (!page)
998 			continue;
999 
1000 		/* If isolation recently failed, do not retry */
1001 		if (!isolation_suitable(cc, page))
1002 			continue;
1003 
1004 		/*
1005 		 * For async compaction, also only scan in MOVABLE blocks.
1006 		 * Async compaction is optimistic to see if the minimum amount
1007 		 * of work satisfies the allocation.
1008 		 */
1009 		if (cc->mode == MIGRATE_ASYNC &&
1010 		    !migrate_async_suitable(get_pageblock_migratetype(page)))
1011 			continue;
1012 
1013 		/* Perform the isolation */
1014 		low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1015 								isolate_mode);
1016 
1017 		if (!low_pfn || cc->contended)
1018 			return ISOLATE_ABORT;
1019 
1020 		/*
1021 		 * Either we isolated something and proceed with migration. Or
1022 		 * we failed and compact_zone should decide if we should
1023 		 * continue or not.
1024 		 */
1025 		break;
1026 	}
1027 
1028 	acct_isolated(zone, cc);
1029 	/* Record where migration scanner will be restarted */
1030 	cc->migrate_pfn = low_pfn;
1031 
1032 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1033 }
1034 
1035 static int compact_finished(struct zone *zone, struct compact_control *cc,
1036 			    const int migratetype)
1037 {
1038 	unsigned int order;
1039 	unsigned long watermark;
1040 
1041 	if (cc->contended || fatal_signal_pending(current))
1042 		return COMPACT_PARTIAL;
1043 
1044 	/* Compaction run completes if the migrate and free scanner meet */
1045 	if (cc->free_pfn <= cc->migrate_pfn) {
1046 		/* Let the next compaction start anew. */
1047 		zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
1048 		zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1049 		zone->compact_cached_free_pfn = zone_end_pfn(zone);
1050 
1051 		/*
1052 		 * Mark that the PG_migrate_skip information should be cleared
1053 		 * by kswapd when it goes to sleep. kswapd does not set the
1054 		 * flag itself as the decision to be clear should be directly
1055 		 * based on an allocation request.
1056 		 */
1057 		if (!current_is_kswapd())
1058 			zone->compact_blockskip_flush = true;
1059 
1060 		return COMPACT_COMPLETE;
1061 	}
1062 
1063 	/*
1064 	 * order == -1 is expected when compacting via
1065 	 * /proc/sys/vm/compact_memory
1066 	 */
1067 	if (cc->order == -1)
1068 		return COMPACT_CONTINUE;
1069 
1070 	/* Compaction run is not finished if the watermark is not met */
1071 	watermark = low_wmark_pages(zone);
1072 	watermark += (1 << cc->order);
1073 
1074 	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
1075 		return COMPACT_CONTINUE;
1076 
1077 	/* Direct compactor: Is a suitable page free? */
1078 	for (order = cc->order; order < MAX_ORDER; order++) {
1079 		struct free_area *area = &zone->free_area[order];
1080 
1081 		/* Job done if page is free of the right migratetype */
1082 		if (!list_empty(&area->free_list[migratetype]))
1083 			return COMPACT_PARTIAL;
1084 
1085 		/* Job done if allocation would set block type */
1086 		if (cc->order >= pageblock_order && area->nr_free)
1087 			return COMPACT_PARTIAL;
1088 	}
1089 
1090 	return COMPACT_CONTINUE;
1091 }
1092 
1093 /*
1094  * compaction_suitable: Is this suitable to run compaction on this zone now?
1095  * Returns
1096  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1097  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1098  *   COMPACT_CONTINUE - If compaction should run now
1099  */
1100 unsigned long compaction_suitable(struct zone *zone, int order)
1101 {
1102 	int fragindex;
1103 	unsigned long watermark;
1104 
1105 	/*
1106 	 * order == -1 is expected when compacting via
1107 	 * /proc/sys/vm/compact_memory
1108 	 */
1109 	if (order == -1)
1110 		return COMPACT_CONTINUE;
1111 
1112 	/*
1113 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1114 	 * This is because during migration, copies of pages need to be
1115 	 * allocated and for a short time, the footprint is higher
1116 	 */
1117 	watermark = low_wmark_pages(zone) + (2UL << order);
1118 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1119 		return COMPACT_SKIPPED;
1120 
1121 	/*
1122 	 * fragmentation index determines if allocation failures are due to
1123 	 * low memory or external fragmentation
1124 	 *
1125 	 * index of -1000 implies allocations might succeed depending on
1126 	 * watermarks
1127 	 * index towards 0 implies failure is due to lack of memory
1128 	 * index towards 1000 implies failure is due to fragmentation
1129 	 *
1130 	 * Only compact if a failure would be due to fragmentation.
1131 	 */
1132 	fragindex = fragmentation_index(zone, order);
1133 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1134 		return COMPACT_SKIPPED;
1135 
1136 	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
1137 	    0, 0))
1138 		return COMPACT_PARTIAL;
1139 
1140 	return COMPACT_CONTINUE;
1141 }
1142 
1143 static int compact_zone(struct zone *zone, struct compact_control *cc)
1144 {
1145 	int ret;
1146 	unsigned long start_pfn = zone->zone_start_pfn;
1147 	unsigned long end_pfn = zone_end_pfn(zone);
1148 	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1149 	const bool sync = cc->mode != MIGRATE_ASYNC;
1150 
1151 	ret = compaction_suitable(zone, cc->order);
1152 	switch (ret) {
1153 	case COMPACT_PARTIAL:
1154 	case COMPACT_SKIPPED:
1155 		/* Compaction is likely to fail */
1156 		return ret;
1157 	case COMPACT_CONTINUE:
1158 		/* Fall through to compaction */
1159 		;
1160 	}
1161 
1162 	/*
1163 	 * Clear pageblock skip if there were failures recently and compaction
1164 	 * is about to be retried after being deferred. kswapd does not do
1165 	 * this reset as it'll reset the cached information when going to sleep.
1166 	 */
1167 	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1168 		__reset_isolation_suitable(zone);
1169 
1170 	/*
1171 	 * Setup to move all movable pages to the end of the zone. Used cached
1172 	 * information on where the scanners should start but check that it
1173 	 * is initialised by ensuring the values are within zone boundaries.
1174 	 */
1175 	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1176 	cc->free_pfn = zone->compact_cached_free_pfn;
1177 	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1178 		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1179 		zone->compact_cached_free_pfn = cc->free_pfn;
1180 	}
1181 	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1182 		cc->migrate_pfn = start_pfn;
1183 		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1184 		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1185 	}
1186 
1187 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
1188 
1189 	migrate_prep_local();
1190 
1191 	while ((ret = compact_finished(zone, cc, migratetype)) ==
1192 						COMPACT_CONTINUE) {
1193 		int err;
1194 
1195 		switch (isolate_migratepages(zone, cc)) {
1196 		case ISOLATE_ABORT:
1197 			ret = COMPACT_PARTIAL;
1198 			putback_movable_pages(&cc->migratepages);
1199 			cc->nr_migratepages = 0;
1200 			goto out;
1201 		case ISOLATE_NONE:
1202 			continue;
1203 		case ISOLATE_SUCCESS:
1204 			;
1205 		}
1206 
1207 		err = migrate_pages(&cc->migratepages, compaction_alloc,
1208 				compaction_free, (unsigned long)cc, cc->mode,
1209 				MR_COMPACTION);
1210 
1211 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1212 							&cc->migratepages);
1213 
1214 		/* All pages were either migrated or will be released */
1215 		cc->nr_migratepages = 0;
1216 		if (err) {
1217 			putback_movable_pages(&cc->migratepages);
1218 			/*
1219 			 * migrate_pages() may return -ENOMEM when scanners meet
1220 			 * and we want compact_finished() to detect it
1221 			 */
1222 			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1223 				ret = COMPACT_PARTIAL;
1224 				goto out;
1225 			}
1226 		}
1227 	}
1228 
1229 out:
1230 	/* Release free pages and check accounting */
1231 	cc->nr_freepages -= release_freepages(&cc->freepages);
1232 	VM_BUG_ON(cc->nr_freepages != 0);
1233 
1234 	trace_mm_compaction_end(ret);
1235 
1236 	return ret;
1237 }
1238 
1239 static unsigned long compact_zone_order(struct zone *zone, int order,
1240 		gfp_t gfp_mask, enum migrate_mode mode, int *contended)
1241 {
1242 	unsigned long ret;
1243 	struct compact_control cc = {
1244 		.nr_freepages = 0,
1245 		.nr_migratepages = 0,
1246 		.order = order,
1247 		.gfp_mask = gfp_mask,
1248 		.zone = zone,
1249 		.mode = mode,
1250 	};
1251 	INIT_LIST_HEAD(&cc.freepages);
1252 	INIT_LIST_HEAD(&cc.migratepages);
1253 
1254 	ret = compact_zone(zone, &cc);
1255 
1256 	VM_BUG_ON(!list_empty(&cc.freepages));
1257 	VM_BUG_ON(!list_empty(&cc.migratepages));
1258 
1259 	*contended = cc.contended;
1260 	return ret;
1261 }
1262 
1263 int sysctl_extfrag_threshold = 500;
1264 
1265 /**
1266  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1267  * @zonelist: The zonelist used for the current allocation
1268  * @order: The order of the current allocation
1269  * @gfp_mask: The GFP mask of the current allocation
1270  * @nodemask: The allowed nodes to allocate from
1271  * @mode: The migration mode for async, sync light, or sync migration
1272  * @contended: Return value that determines if compaction was aborted due to
1273  *	       need_resched() or lock contention
1274  * @candidate_zone: Return the zone where we think allocation should succeed
1275  *
1276  * This is the main entry point for direct page compaction.
1277  */
1278 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1279 			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1280 			enum migrate_mode mode, int *contended,
1281 			struct zone **candidate_zone)
1282 {
1283 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1284 	int may_enter_fs = gfp_mask & __GFP_FS;
1285 	int may_perform_io = gfp_mask & __GFP_IO;
1286 	struct zoneref *z;
1287 	struct zone *zone;
1288 	int rc = COMPACT_DEFERRED;
1289 	int alloc_flags = 0;
1290 	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1291 
1292 	*contended = COMPACT_CONTENDED_NONE;
1293 
1294 	/* Check if the GFP flags allow compaction */
1295 	if (!order || !may_enter_fs || !may_perform_io)
1296 		return COMPACT_SKIPPED;
1297 
1298 #ifdef CONFIG_CMA
1299 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1300 		alloc_flags |= ALLOC_CMA;
1301 #endif
1302 	/* Compact each zone in the list */
1303 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1304 								nodemask) {
1305 		int status;
1306 		int zone_contended;
1307 
1308 		if (compaction_deferred(zone, order))
1309 			continue;
1310 
1311 		status = compact_zone_order(zone, order, gfp_mask, mode,
1312 							&zone_contended);
1313 		rc = max(status, rc);
1314 		/*
1315 		 * It takes at least one zone that wasn't lock contended
1316 		 * to clear all_zones_contended.
1317 		 */
1318 		all_zones_contended &= zone_contended;
1319 
1320 		/* If a normal allocation would succeed, stop compacting */
1321 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1322 				      alloc_flags)) {
1323 			*candidate_zone = zone;
1324 			/*
1325 			 * We think the allocation will succeed in this zone,
1326 			 * but it is not certain, hence the false. The caller
1327 			 * will repeat this with true if allocation indeed
1328 			 * succeeds in this zone.
1329 			 */
1330 			compaction_defer_reset(zone, order, false);
1331 			/*
1332 			 * It is possible that async compaction aborted due to
1333 			 * need_resched() and the watermarks were ok thanks to
1334 			 * somebody else freeing memory. The allocation can
1335 			 * however still fail so we better signal the
1336 			 * need_resched() contention anyway (this will not
1337 			 * prevent the allocation attempt).
1338 			 */
1339 			if (zone_contended == COMPACT_CONTENDED_SCHED)
1340 				*contended = COMPACT_CONTENDED_SCHED;
1341 
1342 			goto break_loop;
1343 		}
1344 
1345 		if (mode != MIGRATE_ASYNC) {
1346 			/*
1347 			 * We think that allocation won't succeed in this zone
1348 			 * so we defer compaction there. If it ends up
1349 			 * succeeding after all, it will be reset.
1350 			 */
1351 			defer_compaction(zone, order);
1352 		}
1353 
1354 		/*
1355 		 * We might have stopped compacting due to need_resched() in
1356 		 * async compaction, or due to a fatal signal detected. In that
1357 		 * case do not try further zones and signal need_resched()
1358 		 * contention.
1359 		 */
1360 		if ((zone_contended == COMPACT_CONTENDED_SCHED)
1361 					|| fatal_signal_pending(current)) {
1362 			*contended = COMPACT_CONTENDED_SCHED;
1363 			goto break_loop;
1364 		}
1365 
1366 		continue;
1367 break_loop:
1368 		/*
1369 		 * We might not have tried all the zones, so  be conservative
1370 		 * and assume they are not all lock contended.
1371 		 */
1372 		all_zones_contended = 0;
1373 		break;
1374 	}
1375 
1376 	/*
1377 	 * If at least one zone wasn't deferred or skipped, we report if all
1378 	 * zones that were tried were lock contended.
1379 	 */
1380 	if (rc > COMPACT_SKIPPED && all_zones_contended)
1381 		*contended = COMPACT_CONTENDED_LOCK;
1382 
1383 	return rc;
1384 }
1385 
1386 
1387 /* Compact all zones within a node */
1388 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1389 {
1390 	int zoneid;
1391 	struct zone *zone;
1392 
1393 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1394 
1395 		zone = &pgdat->node_zones[zoneid];
1396 		if (!populated_zone(zone))
1397 			continue;
1398 
1399 		cc->nr_freepages = 0;
1400 		cc->nr_migratepages = 0;
1401 		cc->zone = zone;
1402 		INIT_LIST_HEAD(&cc->freepages);
1403 		INIT_LIST_HEAD(&cc->migratepages);
1404 
1405 		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1406 			compact_zone(zone, cc);
1407 
1408 		if (cc->order > 0) {
1409 			if (zone_watermark_ok(zone, cc->order,
1410 						low_wmark_pages(zone), 0, 0))
1411 				compaction_defer_reset(zone, cc->order, false);
1412 		}
1413 
1414 		VM_BUG_ON(!list_empty(&cc->freepages));
1415 		VM_BUG_ON(!list_empty(&cc->migratepages));
1416 	}
1417 }
1418 
1419 void compact_pgdat(pg_data_t *pgdat, int order)
1420 {
1421 	struct compact_control cc = {
1422 		.order = order,
1423 		.mode = MIGRATE_ASYNC,
1424 	};
1425 
1426 	if (!order)
1427 		return;
1428 
1429 	__compact_pgdat(pgdat, &cc);
1430 }
1431 
1432 static void compact_node(int nid)
1433 {
1434 	struct compact_control cc = {
1435 		.order = -1,
1436 		.mode = MIGRATE_SYNC,
1437 		.ignore_skip_hint = true,
1438 	};
1439 
1440 	__compact_pgdat(NODE_DATA(nid), &cc);
1441 }
1442 
1443 /* Compact all nodes in the system */
1444 static void compact_nodes(void)
1445 {
1446 	int nid;
1447 
1448 	/* Flush pending updates to the LRU lists */
1449 	lru_add_drain_all();
1450 
1451 	for_each_online_node(nid)
1452 		compact_node(nid);
1453 }
1454 
1455 /* The written value is actually unused, all memory is compacted */
1456 int sysctl_compact_memory;
1457 
1458 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1459 int sysctl_compaction_handler(struct ctl_table *table, int write,
1460 			void __user *buffer, size_t *length, loff_t *ppos)
1461 {
1462 	if (write)
1463 		compact_nodes();
1464 
1465 	return 0;
1466 }
1467 
1468 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1469 			void __user *buffer, size_t *length, loff_t *ppos)
1470 {
1471 	proc_dointvec_minmax(table, write, buffer, length, ppos);
1472 
1473 	return 0;
1474 }
1475 
1476 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1477 static ssize_t sysfs_compact_node(struct device *dev,
1478 			struct device_attribute *attr,
1479 			const char *buf, size_t count)
1480 {
1481 	int nid = dev->id;
1482 
1483 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1484 		/* Flush pending updates to the LRU lists */
1485 		lru_add_drain_all();
1486 
1487 		compact_node(nid);
1488 	}
1489 
1490 	return count;
1491 }
1492 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1493 
1494 int compaction_register_node(struct node *node)
1495 {
1496 	return device_create_file(&node->dev, &dev_attr_compact);
1497 }
1498 
1499 void compaction_unregister_node(struct node *node)
1500 {
1501 	return device_remove_file(&node->dev, &dev_attr_compact);
1502 }
1503 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1504 
1505 #endif /* CONFIG_COMPACTION */
1506