xref: /openbmc/linux/mm/compaction.c (revision 363737d6)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include "internal.h"
18 
19 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
20 
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/compaction.h>
23 
24 static unsigned long release_freepages(struct list_head *freelist)
25 {
26 	struct page *page, *next;
27 	unsigned long count = 0;
28 
29 	list_for_each_entry_safe(page, next, freelist, lru) {
30 		list_del(&page->lru);
31 		__free_page(page);
32 		count++;
33 	}
34 
35 	return count;
36 }
37 
38 static void map_pages(struct list_head *list)
39 {
40 	struct page *page;
41 
42 	list_for_each_entry(page, list, lru) {
43 		arch_alloc_page(page, 0);
44 		kernel_map_pages(page, 1, 1);
45 	}
46 }
47 
48 static inline bool migrate_async_suitable(int migratetype)
49 {
50 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
51 }
52 
53 /*
54  * Isolate free pages onto a private freelist. Caller must hold zone->lock.
55  * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
56  * pages inside of the pageblock (even though it may still end up isolating
57  * some pages).
58  */
59 static unsigned long isolate_freepages_block(unsigned long blockpfn,
60 				unsigned long end_pfn,
61 				struct list_head *freelist,
62 				bool strict)
63 {
64 	int nr_scanned = 0, total_isolated = 0;
65 	struct page *cursor;
66 
67 	cursor = pfn_to_page(blockpfn);
68 
69 	/* Isolate free pages. This assumes the block is valid */
70 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
71 		int isolated, i;
72 		struct page *page = cursor;
73 
74 		if (!pfn_valid_within(blockpfn)) {
75 			if (strict)
76 				return 0;
77 			continue;
78 		}
79 		nr_scanned++;
80 
81 		if (!PageBuddy(page)) {
82 			if (strict)
83 				return 0;
84 			continue;
85 		}
86 
87 		/* Found a free page, break it into order-0 pages */
88 		isolated = split_free_page(page);
89 		if (!isolated && strict)
90 			return 0;
91 		total_isolated += isolated;
92 		for (i = 0; i < isolated; i++) {
93 			list_add(&page->lru, freelist);
94 			page++;
95 		}
96 
97 		/* If a page was split, advance to the end of it */
98 		if (isolated) {
99 			blockpfn += isolated - 1;
100 			cursor += isolated - 1;
101 		}
102 	}
103 
104 	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
105 	return total_isolated;
106 }
107 
108 /**
109  * isolate_freepages_range() - isolate free pages.
110  * @start_pfn: The first PFN to start isolating.
111  * @end_pfn:   The one-past-last PFN.
112  *
113  * Non-free pages, invalid PFNs, or zone boundaries within the
114  * [start_pfn, end_pfn) range are considered errors, cause function to
115  * undo its actions and return zero.
116  *
117  * Otherwise, function returns one-past-the-last PFN of isolated page
118  * (which may be greater then end_pfn if end fell in a middle of
119  * a free page).
120  */
121 unsigned long
122 isolate_freepages_range(unsigned long start_pfn, unsigned long end_pfn)
123 {
124 	unsigned long isolated, pfn, block_end_pfn, flags;
125 	struct zone *zone = NULL;
126 	LIST_HEAD(freelist);
127 
128 	if (pfn_valid(start_pfn))
129 		zone = page_zone(pfn_to_page(start_pfn));
130 
131 	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
132 		if (!pfn_valid(pfn) || zone != page_zone(pfn_to_page(pfn)))
133 			break;
134 
135 		/*
136 		 * On subsequent iterations ALIGN() is actually not needed,
137 		 * but we keep it that we not to complicate the code.
138 		 */
139 		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
140 		block_end_pfn = min(block_end_pfn, end_pfn);
141 
142 		spin_lock_irqsave(&zone->lock, flags);
143 		isolated = isolate_freepages_block(pfn, block_end_pfn,
144 						   &freelist, true);
145 		spin_unlock_irqrestore(&zone->lock, flags);
146 
147 		/*
148 		 * In strict mode, isolate_freepages_block() returns 0 if
149 		 * there are any holes in the block (ie. invalid PFNs or
150 		 * non-free pages).
151 		 */
152 		if (!isolated)
153 			break;
154 
155 		/*
156 		 * If we managed to isolate pages, it is always (1 << n) *
157 		 * pageblock_nr_pages for some non-negative n.  (Max order
158 		 * page may span two pageblocks).
159 		 */
160 	}
161 
162 	/* split_free_page does not map the pages */
163 	map_pages(&freelist);
164 
165 	if (pfn < end_pfn) {
166 		/* Loop terminated early, cleanup. */
167 		release_freepages(&freelist);
168 		return 0;
169 	}
170 
171 	/* We don't use freelists for anything. */
172 	return pfn;
173 }
174 
175 /* Update the number of anon and file isolated pages in the zone */
176 static void acct_isolated(struct zone *zone, struct compact_control *cc)
177 {
178 	struct page *page;
179 	unsigned int count[2] = { 0, };
180 
181 	list_for_each_entry(page, &cc->migratepages, lru)
182 		count[!!page_is_file_cache(page)]++;
183 
184 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
185 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
186 }
187 
188 /* Similar to reclaim, but different enough that they don't share logic */
189 static bool too_many_isolated(struct zone *zone)
190 {
191 	unsigned long active, inactive, isolated;
192 
193 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
194 					zone_page_state(zone, NR_INACTIVE_ANON);
195 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
196 					zone_page_state(zone, NR_ACTIVE_ANON);
197 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
198 					zone_page_state(zone, NR_ISOLATED_ANON);
199 
200 	return isolated > (inactive + active) / 2;
201 }
202 
203 /**
204  * isolate_migratepages_range() - isolate all migrate-able pages in range.
205  * @zone:	Zone pages are in.
206  * @cc:		Compaction control structure.
207  * @low_pfn:	The first PFN of the range.
208  * @end_pfn:	The one-past-the-last PFN of the range.
209  *
210  * Isolate all pages that can be migrated from the range specified by
211  * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
212  * pending), otherwise PFN of the first page that was not scanned
213  * (which may be both less, equal to or more then end_pfn).
214  *
215  * Assumes that cc->migratepages is empty and cc->nr_migratepages is
216  * zero.
217  *
218  * Apart from cc->migratepages and cc->nr_migratetypes this function
219  * does not modify any cc's fields, in particular it does not modify
220  * (or read for that matter) cc->migrate_pfn.
221  */
222 unsigned long
223 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
224 			   unsigned long low_pfn, unsigned long end_pfn)
225 {
226 	unsigned long last_pageblock_nr = 0, pageblock_nr;
227 	unsigned long nr_scanned = 0, nr_isolated = 0;
228 	struct list_head *migratelist = &cc->migratepages;
229 	isolate_mode_t mode = 0;
230 	struct lruvec *lruvec;
231 
232 	/*
233 	 * Ensure that there are not too many pages isolated from the LRU
234 	 * list by either parallel reclaimers or compaction. If there are,
235 	 * delay for some time until fewer pages are isolated
236 	 */
237 	while (unlikely(too_many_isolated(zone))) {
238 		/* async migration should just abort */
239 		if (cc->mode != COMPACT_SYNC)
240 			return 0;
241 
242 		congestion_wait(BLK_RW_ASYNC, HZ/10);
243 
244 		if (fatal_signal_pending(current))
245 			return 0;
246 	}
247 
248 	/* Time to isolate some pages for migration */
249 	cond_resched();
250 	spin_lock_irq(&zone->lru_lock);
251 	for (; low_pfn < end_pfn; low_pfn++) {
252 		struct page *page;
253 		bool locked = true;
254 
255 		/* give a chance to irqs before checking need_resched() */
256 		if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
257 			spin_unlock_irq(&zone->lru_lock);
258 			locked = false;
259 		}
260 		if (need_resched() || spin_is_contended(&zone->lru_lock)) {
261 			if (locked)
262 				spin_unlock_irq(&zone->lru_lock);
263 			cond_resched();
264 			spin_lock_irq(&zone->lru_lock);
265 			if (fatal_signal_pending(current))
266 				break;
267 		} else if (!locked)
268 			spin_lock_irq(&zone->lru_lock);
269 
270 		/*
271 		 * migrate_pfn does not necessarily start aligned to a
272 		 * pageblock. Ensure that pfn_valid is called when moving
273 		 * into a new MAX_ORDER_NR_PAGES range in case of large
274 		 * memory holes within the zone
275 		 */
276 		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
277 			if (!pfn_valid(low_pfn)) {
278 				low_pfn += MAX_ORDER_NR_PAGES - 1;
279 				continue;
280 			}
281 		}
282 
283 		if (!pfn_valid_within(low_pfn))
284 			continue;
285 		nr_scanned++;
286 
287 		/*
288 		 * Get the page and ensure the page is within the same zone.
289 		 * See the comment in isolate_freepages about overlapping
290 		 * nodes. It is deliberate that the new zone lock is not taken
291 		 * as memory compaction should not move pages between nodes.
292 		 */
293 		page = pfn_to_page(low_pfn);
294 		if (page_zone(page) != zone)
295 			continue;
296 
297 		/* Skip if free */
298 		if (PageBuddy(page))
299 			continue;
300 
301 		/*
302 		 * For async migration, also only scan in MOVABLE blocks. Async
303 		 * migration is optimistic to see if the minimum amount of work
304 		 * satisfies the allocation
305 		 */
306 		pageblock_nr = low_pfn >> pageblock_order;
307 		if (cc->mode != COMPACT_SYNC &&
308 		    last_pageblock_nr != pageblock_nr &&
309 		    !migrate_async_suitable(get_pageblock_migratetype(page))) {
310 			low_pfn += pageblock_nr_pages;
311 			low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
312 			last_pageblock_nr = pageblock_nr;
313 			continue;
314 		}
315 
316 		if (!PageLRU(page))
317 			continue;
318 
319 		/*
320 		 * PageLRU is set, and lru_lock excludes isolation,
321 		 * splitting and collapsing (collapsing has already
322 		 * happened if PageLRU is set).
323 		 */
324 		if (PageTransHuge(page)) {
325 			low_pfn += (1 << compound_order(page)) - 1;
326 			continue;
327 		}
328 
329 		if (cc->mode != COMPACT_SYNC)
330 			mode |= ISOLATE_ASYNC_MIGRATE;
331 
332 		lruvec = mem_cgroup_page_lruvec(page, zone);
333 
334 		/* Try isolate the page */
335 		if (__isolate_lru_page(page, mode) != 0)
336 			continue;
337 
338 		VM_BUG_ON(PageTransCompound(page));
339 
340 		/* Successfully isolated */
341 		del_page_from_lru_list(page, lruvec, page_lru(page));
342 		list_add(&page->lru, migratelist);
343 		cc->nr_migratepages++;
344 		nr_isolated++;
345 
346 		/* Avoid isolating too much */
347 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
348 			++low_pfn;
349 			break;
350 		}
351 	}
352 
353 	acct_isolated(zone, cc);
354 
355 	spin_unlock_irq(&zone->lru_lock);
356 
357 	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
358 
359 	return low_pfn;
360 }
361 
362 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
363 #ifdef CONFIG_COMPACTION
364 /*
365  * Returns true if MIGRATE_UNMOVABLE pageblock was successfully
366  * converted to MIGRATE_MOVABLE type, false otherwise.
367  */
368 static bool rescue_unmovable_pageblock(struct page *page)
369 {
370 	unsigned long pfn, start_pfn, end_pfn;
371 	struct page *start_page, *end_page;
372 
373 	pfn = page_to_pfn(page);
374 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
375 	end_pfn = start_pfn + pageblock_nr_pages;
376 
377 	start_page = pfn_to_page(start_pfn);
378 	end_page = pfn_to_page(end_pfn);
379 
380 	/* Do not deal with pageblocks that overlap zones */
381 	if (page_zone(start_page) != page_zone(end_page))
382 		return false;
383 
384 	for (page = start_page, pfn = start_pfn; page < end_page; pfn++,
385 								  page++) {
386 		if (!pfn_valid_within(pfn))
387 			continue;
388 
389 		if (PageBuddy(page)) {
390 			int order = page_order(page);
391 
392 			pfn += (1 << order) - 1;
393 			page += (1 << order) - 1;
394 
395 			continue;
396 		} else if (page_count(page) == 0 || PageLRU(page))
397 			continue;
398 
399 		return false;
400 	}
401 
402 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
403 	move_freepages_block(page_zone(page), page, MIGRATE_MOVABLE);
404 	return true;
405 }
406 
407 enum smt_result {
408 	GOOD_AS_MIGRATION_TARGET,
409 	FAIL_UNMOVABLE_TARGET,
410 	FAIL_BAD_TARGET,
411 };
412 
413 /*
414  * Returns GOOD_AS_MIGRATION_TARGET if the page is within a block
415  * suitable for migration to, FAIL_UNMOVABLE_TARGET if the page
416  * is within a MIGRATE_UNMOVABLE block, FAIL_BAD_TARGET otherwise.
417  */
418 static enum smt_result suitable_migration_target(struct page *page,
419 				      struct compact_control *cc)
420 {
421 
422 	int migratetype = get_pageblock_migratetype(page);
423 
424 	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
425 	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
426 		return FAIL_BAD_TARGET;
427 
428 	/* If the page is a large free page, then allow migration */
429 	if (PageBuddy(page) && page_order(page) >= pageblock_order)
430 		return GOOD_AS_MIGRATION_TARGET;
431 
432 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
433 	if (cc->mode != COMPACT_ASYNC_UNMOVABLE &&
434 	    migrate_async_suitable(migratetype))
435 		return GOOD_AS_MIGRATION_TARGET;
436 
437 	if (cc->mode == COMPACT_ASYNC_MOVABLE &&
438 	    migratetype == MIGRATE_UNMOVABLE)
439 		return FAIL_UNMOVABLE_TARGET;
440 
441 	if (cc->mode != COMPACT_ASYNC_MOVABLE &&
442 	    migratetype == MIGRATE_UNMOVABLE &&
443 	    rescue_unmovable_pageblock(page))
444 		return GOOD_AS_MIGRATION_TARGET;
445 
446 	/* Otherwise skip the block */
447 	return FAIL_BAD_TARGET;
448 }
449 
450 /*
451  * Based on information in the current compact_control, find blocks
452  * suitable for isolating free pages from and then isolate them.
453  */
454 static void isolate_freepages(struct zone *zone,
455 				struct compact_control *cc)
456 {
457 	struct page *page;
458 	unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
459 	unsigned long flags;
460 	int nr_freepages = cc->nr_freepages;
461 	struct list_head *freelist = &cc->freepages;
462 
463 	/*
464 	 * Initialise the free scanner. The starting point is where we last
465 	 * scanned from (or the end of the zone if starting). The low point
466 	 * is the end of the pageblock the migration scanner is using.
467 	 */
468 	pfn = cc->free_pfn;
469 	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
470 
471 	/*
472 	 * Take care that if the migration scanner is at the end of the zone
473 	 * that the free scanner does not accidentally move to the next zone
474 	 * in the next isolation cycle.
475 	 */
476 	high_pfn = min(low_pfn, pfn);
477 
478 	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
479 
480 	/*
481 	 * isolate_freepages() may be called more than once during
482 	 * compact_zone_order() run and we want only the most recent
483 	 * count.
484 	 */
485 	cc->nr_pageblocks_skipped = 0;
486 
487 	/*
488 	 * Isolate free pages until enough are available to migrate the
489 	 * pages on cc->migratepages. We stop searching if the migrate
490 	 * and free page scanners meet or enough free pages are isolated.
491 	 */
492 	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
493 					pfn -= pageblock_nr_pages) {
494 		unsigned long isolated;
495 		enum smt_result ret;
496 
497 		if (!pfn_valid(pfn))
498 			continue;
499 
500 		/*
501 		 * Check for overlapping nodes/zones. It's possible on some
502 		 * configurations to have a setup like
503 		 * node0 node1 node0
504 		 * i.e. it's possible that all pages within a zones range of
505 		 * pages do not belong to a single zone.
506 		 */
507 		page = pfn_to_page(pfn);
508 		if (page_zone(page) != zone)
509 			continue;
510 
511 		/* Check the block is suitable for migration */
512 		ret = suitable_migration_target(page, cc);
513 		if (ret != GOOD_AS_MIGRATION_TARGET) {
514 			if (ret == FAIL_UNMOVABLE_TARGET)
515 				cc->nr_pageblocks_skipped++;
516 			continue;
517 		}
518 		/*
519 		 * Found a block suitable for isolating free pages from. Now
520 		 * we disabled interrupts, double check things are ok and
521 		 * isolate the pages. This is to minimise the time IRQs
522 		 * are disabled
523 		 */
524 		isolated = 0;
525 		spin_lock_irqsave(&zone->lock, flags);
526 		ret = suitable_migration_target(page, cc);
527 		if (ret == GOOD_AS_MIGRATION_TARGET) {
528 			end_pfn = min(pfn + pageblock_nr_pages, zone_end_pfn);
529 			isolated = isolate_freepages_block(pfn, end_pfn,
530 							   freelist, false);
531 			nr_freepages += isolated;
532 		} else if (ret == FAIL_UNMOVABLE_TARGET)
533 			cc->nr_pageblocks_skipped++;
534 		spin_unlock_irqrestore(&zone->lock, flags);
535 
536 		/*
537 		 * Record the highest PFN we isolated pages from. When next
538 		 * looking for free pages, the search will restart here as
539 		 * page migration may have returned some pages to the allocator
540 		 */
541 		if (isolated)
542 			high_pfn = max(high_pfn, pfn);
543 	}
544 
545 	/* split_free_page does not map the pages */
546 	map_pages(freelist);
547 
548 	cc->free_pfn = high_pfn;
549 	cc->nr_freepages = nr_freepages;
550 }
551 
552 /*
553  * This is a migrate-callback that "allocates" freepages by taking pages
554  * from the isolated freelists in the block we are migrating to.
555  */
556 static struct page *compaction_alloc(struct page *migratepage,
557 					unsigned long data,
558 					int **result)
559 {
560 	struct compact_control *cc = (struct compact_control *)data;
561 	struct page *freepage;
562 
563 	/* Isolate free pages if necessary */
564 	if (list_empty(&cc->freepages)) {
565 		isolate_freepages(cc->zone, cc);
566 
567 		if (list_empty(&cc->freepages))
568 			return NULL;
569 	}
570 
571 	freepage = list_entry(cc->freepages.next, struct page, lru);
572 	list_del(&freepage->lru);
573 	cc->nr_freepages--;
574 
575 	return freepage;
576 }
577 
578 /*
579  * We cannot control nr_migratepages and nr_freepages fully when migration is
580  * running as migrate_pages() has no knowledge of compact_control. When
581  * migration is complete, we count the number of pages on the lists by hand.
582  */
583 static void update_nr_listpages(struct compact_control *cc)
584 {
585 	int nr_migratepages = 0;
586 	int nr_freepages = 0;
587 	struct page *page;
588 
589 	list_for_each_entry(page, &cc->migratepages, lru)
590 		nr_migratepages++;
591 	list_for_each_entry(page, &cc->freepages, lru)
592 		nr_freepages++;
593 
594 	cc->nr_migratepages = nr_migratepages;
595 	cc->nr_freepages = nr_freepages;
596 }
597 
598 /* possible outcome of isolate_migratepages */
599 typedef enum {
600 	ISOLATE_ABORT,		/* Abort compaction now */
601 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
602 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
603 } isolate_migrate_t;
604 
605 /*
606  * Isolate all pages that can be migrated from the block pointed to by
607  * the migrate scanner within compact_control.
608  */
609 static isolate_migrate_t isolate_migratepages(struct zone *zone,
610 					struct compact_control *cc)
611 {
612 	unsigned long low_pfn, end_pfn;
613 
614 	/* Do not scan outside zone boundaries */
615 	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
616 
617 	/* Only scan within a pageblock boundary */
618 	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
619 
620 	/* Do not cross the free scanner or scan within a memory hole */
621 	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
622 		cc->migrate_pfn = end_pfn;
623 		return ISOLATE_NONE;
624 	}
625 
626 	/* Perform the isolation */
627 	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn);
628 	if (!low_pfn)
629 		return ISOLATE_ABORT;
630 
631 	cc->migrate_pfn = low_pfn;
632 
633 	return ISOLATE_SUCCESS;
634 }
635 
636 static int compact_finished(struct zone *zone,
637 			    struct compact_control *cc)
638 {
639 	unsigned int order;
640 	unsigned long watermark;
641 
642 	if (fatal_signal_pending(current))
643 		return COMPACT_PARTIAL;
644 
645 	/* Compaction run completes if the migrate and free scanner meet */
646 	if (cc->free_pfn <= cc->migrate_pfn)
647 		return COMPACT_COMPLETE;
648 
649 	/*
650 	 * order == -1 is expected when compacting via
651 	 * /proc/sys/vm/compact_memory
652 	 */
653 	if (cc->order == -1)
654 		return COMPACT_CONTINUE;
655 
656 	/* Compaction run is not finished if the watermark is not met */
657 	watermark = low_wmark_pages(zone);
658 	watermark += (1 << cc->order);
659 
660 	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
661 		return COMPACT_CONTINUE;
662 
663 	/* Direct compactor: Is a suitable page free? */
664 	for (order = cc->order; order < MAX_ORDER; order++) {
665 		/* Job done if page is free of the right migratetype */
666 		if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
667 			return COMPACT_PARTIAL;
668 
669 		/* Job done if allocation would set block type */
670 		if (order >= pageblock_order && zone->free_area[order].nr_free)
671 			return COMPACT_PARTIAL;
672 	}
673 
674 	return COMPACT_CONTINUE;
675 }
676 
677 /*
678  * compaction_suitable: Is this suitable to run compaction on this zone now?
679  * Returns
680  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
681  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
682  *   COMPACT_CONTINUE - If compaction should run now
683  */
684 unsigned long compaction_suitable(struct zone *zone, int order)
685 {
686 	int fragindex;
687 	unsigned long watermark;
688 
689 	/*
690 	 * order == -1 is expected when compacting via
691 	 * /proc/sys/vm/compact_memory
692 	 */
693 	if (order == -1)
694 		return COMPACT_CONTINUE;
695 
696 	/*
697 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
698 	 * This is because during migration, copies of pages need to be
699 	 * allocated and for a short time, the footprint is higher
700 	 */
701 	watermark = low_wmark_pages(zone) + (2UL << order);
702 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
703 		return COMPACT_SKIPPED;
704 
705 	/*
706 	 * fragmentation index determines if allocation failures are due to
707 	 * low memory or external fragmentation
708 	 *
709 	 * index of -1000 implies allocations might succeed depending on
710 	 * watermarks
711 	 * index towards 0 implies failure is due to lack of memory
712 	 * index towards 1000 implies failure is due to fragmentation
713 	 *
714 	 * Only compact if a failure would be due to fragmentation.
715 	 */
716 	fragindex = fragmentation_index(zone, order);
717 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
718 		return COMPACT_SKIPPED;
719 
720 	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
721 	    0, 0))
722 		return COMPACT_PARTIAL;
723 
724 	return COMPACT_CONTINUE;
725 }
726 
727 static int compact_zone(struct zone *zone, struct compact_control *cc)
728 {
729 	int ret;
730 
731 	ret = compaction_suitable(zone, cc->order);
732 	switch (ret) {
733 	case COMPACT_PARTIAL:
734 	case COMPACT_SKIPPED:
735 		/* Compaction is likely to fail */
736 		return ret;
737 	case COMPACT_CONTINUE:
738 		/* Fall through to compaction */
739 		;
740 	}
741 
742 	/* Setup to move all movable pages to the end of the zone */
743 	cc->migrate_pfn = zone->zone_start_pfn;
744 	cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
745 	cc->free_pfn &= ~(pageblock_nr_pages-1);
746 
747 	migrate_prep_local();
748 
749 	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
750 		unsigned long nr_migrate, nr_remaining;
751 		int err;
752 
753 		switch (isolate_migratepages(zone, cc)) {
754 		case ISOLATE_ABORT:
755 			ret = COMPACT_PARTIAL;
756 			goto out;
757 		case ISOLATE_NONE:
758 			continue;
759 		case ISOLATE_SUCCESS:
760 			;
761 		}
762 
763 		nr_migrate = cc->nr_migratepages;
764 		err = migrate_pages(&cc->migratepages, compaction_alloc,
765 			(unsigned long)&cc->freepages, false,
766 			(cc->mode == COMPACT_SYNC) ? MIGRATE_SYNC_LIGHT
767 						      : MIGRATE_ASYNC);
768 		update_nr_listpages(cc);
769 		nr_remaining = cc->nr_migratepages;
770 
771 		count_vm_event(COMPACTBLOCKS);
772 		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
773 		if (nr_remaining)
774 			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
775 		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
776 						nr_remaining);
777 
778 		/* Release LRU pages not migrated */
779 		if (err) {
780 			putback_lru_pages(&cc->migratepages);
781 			cc->nr_migratepages = 0;
782 		}
783 
784 	}
785 
786 out:
787 	/* Release free pages and check accounting */
788 	cc->nr_freepages -= release_freepages(&cc->freepages);
789 	VM_BUG_ON(cc->nr_freepages != 0);
790 
791 	return ret;
792 }
793 
794 static unsigned long compact_zone_order(struct zone *zone,
795 				 int order, gfp_t gfp_mask,
796 				 enum compact_mode mode,
797 				 unsigned long *nr_pageblocks_skipped)
798 {
799 	struct compact_control cc = {
800 		.nr_freepages = 0,
801 		.nr_migratepages = 0,
802 		.order = order,
803 		.migratetype = allocflags_to_migratetype(gfp_mask),
804 		.zone = zone,
805 		.mode = mode,
806 	};
807 	unsigned long rc;
808 
809 	INIT_LIST_HEAD(&cc.freepages);
810 	INIT_LIST_HEAD(&cc.migratepages);
811 
812 	rc = compact_zone(zone, &cc);
813 	*nr_pageblocks_skipped = cc.nr_pageblocks_skipped;
814 
815 	return rc;
816 }
817 
818 int sysctl_extfrag_threshold = 500;
819 
820 /**
821  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
822  * @zonelist: The zonelist used for the current allocation
823  * @order: The order of the current allocation
824  * @gfp_mask: The GFP mask of the current allocation
825  * @nodemask: The allowed nodes to allocate from
826  * @sync: Whether migration is synchronous or not
827  *
828  * This is the main entry point for direct page compaction.
829  */
830 unsigned long try_to_compact_pages(struct zonelist *zonelist,
831 			int order, gfp_t gfp_mask, nodemask_t *nodemask,
832 			bool sync)
833 {
834 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
835 	int may_enter_fs = gfp_mask & __GFP_FS;
836 	int may_perform_io = gfp_mask & __GFP_IO;
837 	struct zoneref *z;
838 	struct zone *zone;
839 	int rc = COMPACT_SKIPPED;
840 	unsigned long nr_pageblocks_skipped;
841 	enum compact_mode mode;
842 
843 	/*
844 	 * Check whether it is worth even starting compaction. The order check is
845 	 * made because an assumption is made that the page allocator can satisfy
846 	 * the "cheaper" orders without taking special steps
847 	 */
848 	if (!order || !may_enter_fs || !may_perform_io)
849 		return rc;
850 
851 	count_vm_event(COMPACTSTALL);
852 
853 	/* Compact each zone in the list */
854 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
855 								nodemask) {
856 		int status;
857 
858 		mode = sync ? COMPACT_SYNC : COMPACT_ASYNC_MOVABLE;
859 retry:
860 		status = compact_zone_order(zone, order, gfp_mask, mode,
861 						&nr_pageblocks_skipped);
862 		rc = max(status, rc);
863 
864 		/* If a normal allocation would succeed, stop compacting */
865 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
866 			break;
867 
868 		if (rc == COMPACT_COMPLETE && mode == COMPACT_ASYNC_MOVABLE) {
869 			if (nr_pageblocks_skipped) {
870 				mode = COMPACT_ASYNC_UNMOVABLE;
871 				goto retry;
872 			}
873 		}
874 	}
875 
876 	return rc;
877 }
878 
879 
880 /* Compact all zones within a node */
881 static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
882 {
883 	int zoneid;
884 	struct zone *zone;
885 
886 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
887 
888 		zone = &pgdat->node_zones[zoneid];
889 		if (!populated_zone(zone))
890 			continue;
891 
892 		cc->nr_freepages = 0;
893 		cc->nr_migratepages = 0;
894 		cc->zone = zone;
895 		INIT_LIST_HEAD(&cc->freepages);
896 		INIT_LIST_HEAD(&cc->migratepages);
897 
898 		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
899 			compact_zone(zone, cc);
900 
901 		if (cc->order > 0) {
902 			int ok = zone_watermark_ok(zone, cc->order,
903 						low_wmark_pages(zone), 0, 0);
904 			if (ok && cc->order > zone->compact_order_failed)
905 				zone->compact_order_failed = cc->order + 1;
906 			/* Currently async compaction is never deferred. */
907 			else if (!ok && cc->mode == COMPACT_SYNC)
908 				defer_compaction(zone, cc->order);
909 		}
910 
911 		VM_BUG_ON(!list_empty(&cc->freepages));
912 		VM_BUG_ON(!list_empty(&cc->migratepages));
913 	}
914 
915 	return 0;
916 }
917 
918 int compact_pgdat(pg_data_t *pgdat, int order)
919 {
920 	struct compact_control cc = {
921 		.order = order,
922 		.mode = COMPACT_ASYNC_MOVABLE,
923 	};
924 
925 	return __compact_pgdat(pgdat, &cc);
926 }
927 
928 static int compact_node(int nid)
929 {
930 	struct compact_control cc = {
931 		.order = -1,
932 		.mode = COMPACT_SYNC,
933 	};
934 
935 	return __compact_pgdat(NODE_DATA(nid), &cc);
936 }
937 
938 /* Compact all nodes in the system */
939 static int compact_nodes(void)
940 {
941 	int nid;
942 
943 	/* Flush pending updates to the LRU lists */
944 	lru_add_drain_all();
945 
946 	for_each_online_node(nid)
947 		compact_node(nid);
948 
949 	return COMPACT_COMPLETE;
950 }
951 
952 /* The written value is actually unused, all memory is compacted */
953 int sysctl_compact_memory;
954 
955 /* This is the entry point for compacting all nodes via /proc/sys/vm */
956 int sysctl_compaction_handler(struct ctl_table *table, int write,
957 			void __user *buffer, size_t *length, loff_t *ppos)
958 {
959 	if (write)
960 		return compact_nodes();
961 
962 	return 0;
963 }
964 
965 int sysctl_extfrag_handler(struct ctl_table *table, int write,
966 			void __user *buffer, size_t *length, loff_t *ppos)
967 {
968 	proc_dointvec_minmax(table, write, buffer, length, ppos);
969 
970 	return 0;
971 }
972 
973 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
974 ssize_t sysfs_compact_node(struct device *dev,
975 			struct device_attribute *attr,
976 			const char *buf, size_t count)
977 {
978 	int nid = dev->id;
979 
980 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
981 		/* Flush pending updates to the LRU lists */
982 		lru_add_drain_all();
983 
984 		compact_node(nid);
985 	}
986 
987 	return count;
988 }
989 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
990 
991 int compaction_register_node(struct node *node)
992 {
993 	return device_create_file(&node->dev, &dev_attr_compact);
994 }
995 
996 void compaction_unregister_node(struct node *node)
997 {
998 	return device_remove_file(&node->dev, &dev_attr_compact);
999 }
1000 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1001 
1002 #endif /* CONFIG_COMPACTION */
1003