1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 static inline void count_compact_event(enum vm_event_item item) 30 { 31 count_vm_event(item); 32 } 33 34 static inline void count_compact_events(enum vm_event_item item, long delta) 35 { 36 count_vm_events(item, delta); 37 } 38 #else 39 #define count_compact_event(item) do { } while (0) 40 #define count_compact_events(item, delta) do { } while (0) 41 #endif 42 43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/compaction.h> 47 48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 52 53 static unsigned long release_freepages(struct list_head *freelist) 54 { 55 struct page *page, *next; 56 unsigned long high_pfn = 0; 57 58 list_for_each_entry_safe(page, next, freelist, lru) { 59 unsigned long pfn = page_to_pfn(page); 60 list_del(&page->lru); 61 __free_page(page); 62 if (pfn > high_pfn) 63 high_pfn = pfn; 64 } 65 66 return high_pfn; 67 } 68 69 static void split_map_pages(struct list_head *list) 70 { 71 unsigned int i, order, nr_pages; 72 struct page *page, *next; 73 LIST_HEAD(tmp_list); 74 75 list_for_each_entry_safe(page, next, list, lru) { 76 list_del(&page->lru); 77 78 order = page_private(page); 79 nr_pages = 1 << order; 80 81 post_alloc_hook(page, order, __GFP_MOVABLE); 82 if (order) 83 split_page(page, order); 84 85 for (i = 0; i < nr_pages; i++) { 86 list_add(&page->lru, &tmp_list); 87 page++; 88 } 89 } 90 91 list_splice(&tmp_list, list); 92 } 93 94 #ifdef CONFIG_COMPACTION 95 96 int PageMovable(struct page *page) 97 { 98 struct address_space *mapping; 99 100 VM_BUG_ON_PAGE(!PageLocked(page), page); 101 if (!__PageMovable(page)) 102 return 0; 103 104 mapping = page_mapping(page); 105 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 106 return 1; 107 108 return 0; 109 } 110 EXPORT_SYMBOL(PageMovable); 111 112 void __SetPageMovable(struct page *page, struct address_space *mapping) 113 { 114 VM_BUG_ON_PAGE(!PageLocked(page), page); 115 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 116 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 117 } 118 EXPORT_SYMBOL(__SetPageMovable); 119 120 void __ClearPageMovable(struct page *page) 121 { 122 VM_BUG_ON_PAGE(!PageLocked(page), page); 123 VM_BUG_ON_PAGE(!PageMovable(page), page); 124 /* 125 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 126 * flag so that VM can catch up released page by driver after isolation. 127 * With it, VM migration doesn't try to put it back. 128 */ 129 page->mapping = (void *)((unsigned long)page->mapping & 130 PAGE_MAPPING_MOVABLE); 131 } 132 EXPORT_SYMBOL(__ClearPageMovable); 133 134 /* Do not skip compaction more than 64 times */ 135 #define COMPACT_MAX_DEFER_SHIFT 6 136 137 /* 138 * Compaction is deferred when compaction fails to result in a page 139 * allocation success. 1 << compact_defer_limit compactions are skipped up 140 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 141 */ 142 void defer_compaction(struct zone *zone, int order) 143 { 144 zone->compact_considered = 0; 145 zone->compact_defer_shift++; 146 147 if (order < zone->compact_order_failed) 148 zone->compact_order_failed = order; 149 150 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 151 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 152 153 trace_mm_compaction_defer_compaction(zone, order); 154 } 155 156 /* Returns true if compaction should be skipped this time */ 157 bool compaction_deferred(struct zone *zone, int order) 158 { 159 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 160 161 if (order < zone->compact_order_failed) 162 return false; 163 164 /* Avoid possible overflow */ 165 if (++zone->compact_considered > defer_limit) 166 zone->compact_considered = defer_limit; 167 168 if (zone->compact_considered >= defer_limit) 169 return false; 170 171 trace_mm_compaction_deferred(zone, order); 172 173 return true; 174 } 175 176 /* 177 * Update defer tracking counters after successful compaction of given order, 178 * which means an allocation either succeeded (alloc_success == true) or is 179 * expected to succeed. 180 */ 181 void compaction_defer_reset(struct zone *zone, int order, 182 bool alloc_success) 183 { 184 if (alloc_success) { 185 zone->compact_considered = 0; 186 zone->compact_defer_shift = 0; 187 } 188 if (order >= zone->compact_order_failed) 189 zone->compact_order_failed = order + 1; 190 191 trace_mm_compaction_defer_reset(zone, order); 192 } 193 194 /* Returns true if restarting compaction after many failures */ 195 bool compaction_restarting(struct zone *zone, int order) 196 { 197 if (order < zone->compact_order_failed) 198 return false; 199 200 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 201 zone->compact_considered >= 1UL << zone->compact_defer_shift; 202 } 203 204 /* Returns true if the pageblock should be scanned for pages to isolate. */ 205 static inline bool isolation_suitable(struct compact_control *cc, 206 struct page *page) 207 { 208 if (cc->ignore_skip_hint) 209 return true; 210 211 return !get_pageblock_skip(page); 212 } 213 214 static void reset_cached_positions(struct zone *zone) 215 { 216 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 217 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 218 zone->compact_cached_free_pfn = 219 pageblock_start_pfn(zone_end_pfn(zone) - 1); 220 } 221 222 /* 223 * Compound pages of >= pageblock_order should consistenly be skipped until 224 * released. It is always pointless to compact pages of such order (if they are 225 * migratable), and the pageblocks they occupy cannot contain any free pages. 226 */ 227 static bool pageblock_skip_persistent(struct page *page) 228 { 229 if (!PageCompound(page)) 230 return false; 231 232 page = compound_head(page); 233 234 if (compound_order(page) >= pageblock_order) 235 return true; 236 237 return false; 238 } 239 240 static bool 241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 242 bool check_target) 243 { 244 struct page *page = pfn_to_online_page(pfn); 245 struct page *block_page; 246 struct page *end_page; 247 unsigned long block_pfn; 248 249 if (!page) 250 return false; 251 if (zone != page_zone(page)) 252 return false; 253 if (pageblock_skip_persistent(page)) 254 return false; 255 256 /* 257 * If skip is already cleared do no further checking once the 258 * restart points have been set. 259 */ 260 if (check_source && check_target && !get_pageblock_skip(page)) 261 return true; 262 263 /* 264 * If clearing skip for the target scanner, do not select a 265 * non-movable pageblock as the starting point. 266 */ 267 if (!check_source && check_target && 268 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 269 return false; 270 271 /* Ensure the start of the pageblock or zone is online and valid */ 272 block_pfn = pageblock_start_pfn(pfn); 273 block_page = pfn_to_online_page(max(block_pfn, zone->zone_start_pfn)); 274 if (block_page) { 275 page = block_page; 276 pfn = block_pfn; 277 } 278 279 /* Ensure the end of the pageblock or zone is online and valid */ 280 block_pfn += pageblock_nr_pages; 281 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 282 end_page = pfn_to_online_page(block_pfn); 283 if (!end_page) 284 return false; 285 286 /* 287 * Only clear the hint if a sample indicates there is either a 288 * free page or an LRU page in the block. One or other condition 289 * is necessary for the block to be a migration source/target. 290 */ 291 do { 292 if (pfn_valid_within(pfn)) { 293 if (check_source && PageLRU(page)) { 294 clear_pageblock_skip(page); 295 return true; 296 } 297 298 if (check_target && PageBuddy(page)) { 299 clear_pageblock_skip(page); 300 return true; 301 } 302 } 303 304 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 305 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER); 306 } while (page < end_page); 307 308 return false; 309 } 310 311 /* 312 * This function is called to clear all cached information on pageblocks that 313 * should be skipped for page isolation when the migrate and free page scanner 314 * meet. 315 */ 316 static void __reset_isolation_suitable(struct zone *zone) 317 { 318 unsigned long migrate_pfn = zone->zone_start_pfn; 319 unsigned long free_pfn = zone_end_pfn(zone) - 1; 320 unsigned long reset_migrate = free_pfn; 321 unsigned long reset_free = migrate_pfn; 322 bool source_set = false; 323 bool free_set = false; 324 325 if (!zone->compact_blockskip_flush) 326 return; 327 328 zone->compact_blockskip_flush = false; 329 330 /* 331 * Walk the zone and update pageblock skip information. Source looks 332 * for PageLRU while target looks for PageBuddy. When the scanner 333 * is found, both PageBuddy and PageLRU are checked as the pageblock 334 * is suitable as both source and target. 335 */ 336 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 337 free_pfn -= pageblock_nr_pages) { 338 cond_resched(); 339 340 /* Update the migrate PFN */ 341 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 342 migrate_pfn < reset_migrate) { 343 source_set = true; 344 reset_migrate = migrate_pfn; 345 zone->compact_init_migrate_pfn = reset_migrate; 346 zone->compact_cached_migrate_pfn[0] = reset_migrate; 347 zone->compact_cached_migrate_pfn[1] = reset_migrate; 348 } 349 350 /* Update the free PFN */ 351 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 352 free_pfn > reset_free) { 353 free_set = true; 354 reset_free = free_pfn; 355 zone->compact_init_free_pfn = reset_free; 356 zone->compact_cached_free_pfn = reset_free; 357 } 358 } 359 360 /* Leave no distance if no suitable block was reset */ 361 if (reset_migrate >= reset_free) { 362 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 363 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 364 zone->compact_cached_free_pfn = free_pfn; 365 } 366 } 367 368 void reset_isolation_suitable(pg_data_t *pgdat) 369 { 370 int zoneid; 371 372 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 373 struct zone *zone = &pgdat->node_zones[zoneid]; 374 if (!populated_zone(zone)) 375 continue; 376 377 /* Only flush if a full compaction finished recently */ 378 if (zone->compact_blockskip_flush) 379 __reset_isolation_suitable(zone); 380 } 381 } 382 383 /* 384 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 385 * locks are not required for read/writers. Returns true if it was already set. 386 */ 387 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 388 unsigned long pfn) 389 { 390 bool skip; 391 392 /* Do no update if skip hint is being ignored */ 393 if (cc->ignore_skip_hint) 394 return false; 395 396 if (!IS_ALIGNED(pfn, pageblock_nr_pages)) 397 return false; 398 399 skip = get_pageblock_skip(page); 400 if (!skip && !cc->no_set_skip_hint) 401 set_pageblock_skip(page); 402 403 return skip; 404 } 405 406 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 407 { 408 struct zone *zone = cc->zone; 409 410 pfn = pageblock_end_pfn(pfn); 411 412 /* Set for isolation rather than compaction */ 413 if (cc->no_set_skip_hint) 414 return; 415 416 if (pfn > zone->compact_cached_migrate_pfn[0]) 417 zone->compact_cached_migrate_pfn[0] = pfn; 418 if (cc->mode != MIGRATE_ASYNC && 419 pfn > zone->compact_cached_migrate_pfn[1]) 420 zone->compact_cached_migrate_pfn[1] = pfn; 421 } 422 423 /* 424 * If no pages were isolated then mark this pageblock to be skipped in the 425 * future. The information is later cleared by __reset_isolation_suitable(). 426 */ 427 static void update_pageblock_skip(struct compact_control *cc, 428 struct page *page, unsigned long pfn) 429 { 430 struct zone *zone = cc->zone; 431 432 if (cc->no_set_skip_hint) 433 return; 434 435 if (!page) 436 return; 437 438 set_pageblock_skip(page); 439 440 /* Update where async and sync compaction should restart */ 441 if (pfn < zone->compact_cached_free_pfn) 442 zone->compact_cached_free_pfn = pfn; 443 } 444 #else 445 static inline bool isolation_suitable(struct compact_control *cc, 446 struct page *page) 447 { 448 return true; 449 } 450 451 static inline bool pageblock_skip_persistent(struct page *page) 452 { 453 return false; 454 } 455 456 static inline void update_pageblock_skip(struct compact_control *cc, 457 struct page *page, unsigned long pfn) 458 { 459 } 460 461 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 462 { 463 } 464 465 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 466 unsigned long pfn) 467 { 468 return false; 469 } 470 #endif /* CONFIG_COMPACTION */ 471 472 /* 473 * Compaction requires the taking of some coarse locks that are potentially 474 * very heavily contended. For async compaction, trylock and record if the 475 * lock is contended. The lock will still be acquired but compaction will 476 * abort when the current block is finished regardless of success rate. 477 * Sync compaction acquires the lock. 478 * 479 * Always returns true which makes it easier to track lock state in callers. 480 */ 481 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 482 struct compact_control *cc) 483 { 484 /* Track if the lock is contended in async mode */ 485 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 486 if (spin_trylock_irqsave(lock, *flags)) 487 return true; 488 489 cc->contended = true; 490 } 491 492 spin_lock_irqsave(lock, *flags); 493 return true; 494 } 495 496 /* 497 * Compaction requires the taking of some coarse locks that are potentially 498 * very heavily contended. The lock should be periodically unlocked to avoid 499 * having disabled IRQs for a long time, even when there is nobody waiting on 500 * the lock. It might also be that allowing the IRQs will result in 501 * need_resched() becoming true. If scheduling is needed, async compaction 502 * aborts. Sync compaction schedules. 503 * Either compaction type will also abort if a fatal signal is pending. 504 * In either case if the lock was locked, it is dropped and not regained. 505 * 506 * Returns true if compaction should abort due to fatal signal pending, or 507 * async compaction due to need_resched() 508 * Returns false when compaction can continue (sync compaction might have 509 * scheduled) 510 */ 511 static bool compact_unlock_should_abort(spinlock_t *lock, 512 unsigned long flags, bool *locked, struct compact_control *cc) 513 { 514 if (*locked) { 515 spin_unlock_irqrestore(lock, flags); 516 *locked = false; 517 } 518 519 if (fatal_signal_pending(current)) { 520 cc->contended = true; 521 return true; 522 } 523 524 cond_resched(); 525 526 return false; 527 } 528 529 /* 530 * Isolate free pages onto a private freelist. If @strict is true, will abort 531 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 532 * (even though it may still end up isolating some pages). 533 */ 534 static unsigned long isolate_freepages_block(struct compact_control *cc, 535 unsigned long *start_pfn, 536 unsigned long end_pfn, 537 struct list_head *freelist, 538 unsigned int stride, 539 bool strict) 540 { 541 int nr_scanned = 0, total_isolated = 0; 542 struct page *cursor; 543 unsigned long flags = 0; 544 bool locked = false; 545 unsigned long blockpfn = *start_pfn; 546 unsigned int order; 547 548 /* Strict mode is for isolation, speed is secondary */ 549 if (strict) 550 stride = 1; 551 552 cursor = pfn_to_page(blockpfn); 553 554 /* Isolate free pages. */ 555 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 556 int isolated; 557 struct page *page = cursor; 558 559 /* 560 * Periodically drop the lock (if held) regardless of its 561 * contention, to give chance to IRQs. Abort if fatal signal 562 * pending or async compaction detects need_resched() 563 */ 564 if (!(blockpfn % SWAP_CLUSTER_MAX) 565 && compact_unlock_should_abort(&cc->zone->lock, flags, 566 &locked, cc)) 567 break; 568 569 nr_scanned++; 570 if (!pfn_valid_within(blockpfn)) 571 goto isolate_fail; 572 573 /* 574 * For compound pages such as THP and hugetlbfs, we can save 575 * potentially a lot of iterations if we skip them at once. 576 * The check is racy, but we can consider only valid values 577 * and the only danger is skipping too much. 578 */ 579 if (PageCompound(page)) { 580 const unsigned int order = compound_order(page); 581 582 if (likely(order < MAX_ORDER)) { 583 blockpfn += (1UL << order) - 1; 584 cursor += (1UL << order) - 1; 585 } 586 goto isolate_fail; 587 } 588 589 if (!PageBuddy(page)) 590 goto isolate_fail; 591 592 /* 593 * If we already hold the lock, we can skip some rechecking. 594 * Note that if we hold the lock now, checked_pageblock was 595 * already set in some previous iteration (or strict is true), 596 * so it is correct to skip the suitable migration target 597 * recheck as well. 598 */ 599 if (!locked) { 600 locked = compact_lock_irqsave(&cc->zone->lock, 601 &flags, cc); 602 603 /* Recheck this is a buddy page under lock */ 604 if (!PageBuddy(page)) 605 goto isolate_fail; 606 } 607 608 /* Found a free page, will break it into order-0 pages */ 609 order = page_order(page); 610 isolated = __isolate_free_page(page, order); 611 if (!isolated) 612 break; 613 set_page_private(page, order); 614 615 total_isolated += isolated; 616 cc->nr_freepages += isolated; 617 list_add_tail(&page->lru, freelist); 618 619 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 620 blockpfn += isolated; 621 break; 622 } 623 /* Advance to the end of split page */ 624 blockpfn += isolated - 1; 625 cursor += isolated - 1; 626 continue; 627 628 isolate_fail: 629 if (strict) 630 break; 631 else 632 continue; 633 634 } 635 636 if (locked) 637 spin_unlock_irqrestore(&cc->zone->lock, flags); 638 639 /* 640 * There is a tiny chance that we have read bogus compound_order(), 641 * so be careful to not go outside of the pageblock. 642 */ 643 if (unlikely(blockpfn > end_pfn)) 644 blockpfn = end_pfn; 645 646 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 647 nr_scanned, total_isolated); 648 649 /* Record how far we have got within the block */ 650 *start_pfn = blockpfn; 651 652 /* 653 * If strict isolation is requested by CMA then check that all the 654 * pages requested were isolated. If there were any failures, 0 is 655 * returned and CMA will fail. 656 */ 657 if (strict && blockpfn < end_pfn) 658 total_isolated = 0; 659 660 cc->total_free_scanned += nr_scanned; 661 if (total_isolated) 662 count_compact_events(COMPACTISOLATED, total_isolated); 663 return total_isolated; 664 } 665 666 /** 667 * isolate_freepages_range() - isolate free pages. 668 * @cc: Compaction control structure. 669 * @start_pfn: The first PFN to start isolating. 670 * @end_pfn: The one-past-last PFN. 671 * 672 * Non-free pages, invalid PFNs, or zone boundaries within the 673 * [start_pfn, end_pfn) range are considered errors, cause function to 674 * undo its actions and return zero. 675 * 676 * Otherwise, function returns one-past-the-last PFN of isolated page 677 * (which may be greater then end_pfn if end fell in a middle of 678 * a free page). 679 */ 680 unsigned long 681 isolate_freepages_range(struct compact_control *cc, 682 unsigned long start_pfn, unsigned long end_pfn) 683 { 684 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 685 LIST_HEAD(freelist); 686 687 pfn = start_pfn; 688 block_start_pfn = pageblock_start_pfn(pfn); 689 if (block_start_pfn < cc->zone->zone_start_pfn) 690 block_start_pfn = cc->zone->zone_start_pfn; 691 block_end_pfn = pageblock_end_pfn(pfn); 692 693 for (; pfn < end_pfn; pfn += isolated, 694 block_start_pfn = block_end_pfn, 695 block_end_pfn += pageblock_nr_pages) { 696 /* Protect pfn from changing by isolate_freepages_block */ 697 unsigned long isolate_start_pfn = pfn; 698 699 block_end_pfn = min(block_end_pfn, end_pfn); 700 701 /* 702 * pfn could pass the block_end_pfn if isolated freepage 703 * is more than pageblock order. In this case, we adjust 704 * scanning range to right one. 705 */ 706 if (pfn >= block_end_pfn) { 707 block_start_pfn = pageblock_start_pfn(pfn); 708 block_end_pfn = pageblock_end_pfn(pfn); 709 block_end_pfn = min(block_end_pfn, end_pfn); 710 } 711 712 if (!pageblock_pfn_to_page(block_start_pfn, 713 block_end_pfn, cc->zone)) 714 break; 715 716 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 717 block_end_pfn, &freelist, 0, true); 718 719 /* 720 * In strict mode, isolate_freepages_block() returns 0 if 721 * there are any holes in the block (ie. invalid PFNs or 722 * non-free pages). 723 */ 724 if (!isolated) 725 break; 726 727 /* 728 * If we managed to isolate pages, it is always (1 << n) * 729 * pageblock_nr_pages for some non-negative n. (Max order 730 * page may span two pageblocks). 731 */ 732 } 733 734 /* __isolate_free_page() does not map the pages */ 735 split_map_pages(&freelist); 736 737 if (pfn < end_pfn) { 738 /* Loop terminated early, cleanup. */ 739 release_freepages(&freelist); 740 return 0; 741 } 742 743 /* We don't use freelists for anything. */ 744 return pfn; 745 } 746 747 /* Similar to reclaim, but different enough that they don't share logic */ 748 static bool too_many_isolated(pg_data_t *pgdat) 749 { 750 unsigned long active, inactive, isolated; 751 752 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 753 node_page_state(pgdat, NR_INACTIVE_ANON); 754 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 755 node_page_state(pgdat, NR_ACTIVE_ANON); 756 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 757 node_page_state(pgdat, NR_ISOLATED_ANON); 758 759 return isolated > (inactive + active) / 2; 760 } 761 762 /** 763 * isolate_migratepages_block() - isolate all migrate-able pages within 764 * a single pageblock 765 * @cc: Compaction control structure. 766 * @low_pfn: The first PFN to isolate 767 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 768 * @isolate_mode: Isolation mode to be used. 769 * 770 * Isolate all pages that can be migrated from the range specified by 771 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 772 * Returns zero if there is a fatal signal pending, otherwise PFN of the 773 * first page that was not scanned (which may be both less, equal to or more 774 * than end_pfn). 775 * 776 * The pages are isolated on cc->migratepages list (not required to be empty), 777 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 778 * is neither read nor updated. 779 */ 780 static unsigned long 781 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 782 unsigned long end_pfn, isolate_mode_t isolate_mode) 783 { 784 pg_data_t *pgdat = cc->zone->zone_pgdat; 785 unsigned long nr_scanned = 0, nr_isolated = 0; 786 struct lruvec *lruvec; 787 unsigned long flags = 0; 788 bool locked = false; 789 struct page *page = NULL, *valid_page = NULL; 790 unsigned long start_pfn = low_pfn; 791 bool skip_on_failure = false; 792 unsigned long next_skip_pfn = 0; 793 bool skip_updated = false; 794 795 /* 796 * Ensure that there are not too many pages isolated from the LRU 797 * list by either parallel reclaimers or compaction. If there are, 798 * delay for some time until fewer pages are isolated 799 */ 800 while (unlikely(too_many_isolated(pgdat))) { 801 /* async migration should just abort */ 802 if (cc->mode == MIGRATE_ASYNC) 803 return 0; 804 805 congestion_wait(BLK_RW_ASYNC, HZ/10); 806 807 if (fatal_signal_pending(current)) 808 return 0; 809 } 810 811 cond_resched(); 812 813 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 814 skip_on_failure = true; 815 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 816 } 817 818 /* Time to isolate some pages for migration */ 819 for (; low_pfn < end_pfn; low_pfn++) { 820 821 if (skip_on_failure && low_pfn >= next_skip_pfn) { 822 /* 823 * We have isolated all migration candidates in the 824 * previous order-aligned block, and did not skip it due 825 * to failure. We should migrate the pages now and 826 * hopefully succeed compaction. 827 */ 828 if (nr_isolated) 829 break; 830 831 /* 832 * We failed to isolate in the previous order-aligned 833 * block. Set the new boundary to the end of the 834 * current block. Note we can't simply increase 835 * next_skip_pfn by 1 << order, as low_pfn might have 836 * been incremented by a higher number due to skipping 837 * a compound or a high-order buddy page in the 838 * previous loop iteration. 839 */ 840 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 841 } 842 843 /* 844 * Periodically drop the lock (if held) regardless of its 845 * contention, to give chance to IRQs. Abort async compaction 846 * if contended. 847 */ 848 if (!(low_pfn % SWAP_CLUSTER_MAX) 849 && compact_unlock_should_abort(&pgdat->lru_lock, 850 flags, &locked, cc)) 851 break; 852 853 if (!pfn_valid_within(low_pfn)) 854 goto isolate_fail; 855 nr_scanned++; 856 857 page = pfn_to_page(low_pfn); 858 859 /* 860 * Check if the pageblock has already been marked skipped. 861 * Only the aligned PFN is checked as the caller isolates 862 * COMPACT_CLUSTER_MAX at a time so the second call must 863 * not falsely conclude that the block should be skipped. 864 */ 865 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) { 866 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) { 867 low_pfn = end_pfn; 868 goto isolate_abort; 869 } 870 valid_page = page; 871 } 872 873 /* 874 * Skip if free. We read page order here without zone lock 875 * which is generally unsafe, but the race window is small and 876 * the worst thing that can happen is that we skip some 877 * potential isolation targets. 878 */ 879 if (PageBuddy(page)) { 880 unsigned long freepage_order = page_order_unsafe(page); 881 882 /* 883 * Without lock, we cannot be sure that what we got is 884 * a valid page order. Consider only values in the 885 * valid order range to prevent low_pfn overflow. 886 */ 887 if (freepage_order > 0 && freepage_order < MAX_ORDER) 888 low_pfn += (1UL << freepage_order) - 1; 889 continue; 890 } 891 892 /* 893 * Regardless of being on LRU, compound pages such as THP and 894 * hugetlbfs are not to be compacted. We can potentially save 895 * a lot of iterations if we skip them at once. The check is 896 * racy, but we can consider only valid values and the only 897 * danger is skipping too much. 898 */ 899 if (PageCompound(page)) { 900 const unsigned int order = compound_order(page); 901 902 if (likely(order < MAX_ORDER)) 903 low_pfn += (1UL << order) - 1; 904 goto isolate_fail; 905 } 906 907 /* 908 * Check may be lockless but that's ok as we recheck later. 909 * It's possible to migrate LRU and non-lru movable pages. 910 * Skip any other type of page 911 */ 912 if (!PageLRU(page)) { 913 /* 914 * __PageMovable can return false positive so we need 915 * to verify it under page_lock. 916 */ 917 if (unlikely(__PageMovable(page)) && 918 !PageIsolated(page)) { 919 if (locked) { 920 spin_unlock_irqrestore(&pgdat->lru_lock, 921 flags); 922 locked = false; 923 } 924 925 if (!isolate_movable_page(page, isolate_mode)) 926 goto isolate_success; 927 } 928 929 goto isolate_fail; 930 } 931 932 /* 933 * Migration will fail if an anonymous page is pinned in memory, 934 * so avoid taking lru_lock and isolating it unnecessarily in an 935 * admittedly racy check. 936 */ 937 if (!page_mapping(page) && 938 page_count(page) > page_mapcount(page)) 939 goto isolate_fail; 940 941 /* 942 * Only allow to migrate anonymous pages in GFP_NOFS context 943 * because those do not depend on fs locks. 944 */ 945 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page)) 946 goto isolate_fail; 947 948 /* If we already hold the lock, we can skip some rechecking */ 949 if (!locked) { 950 locked = compact_lock_irqsave(&pgdat->lru_lock, 951 &flags, cc); 952 953 /* Try get exclusive access under lock */ 954 if (!skip_updated) { 955 skip_updated = true; 956 if (test_and_set_skip(cc, page, low_pfn)) 957 goto isolate_abort; 958 } 959 960 /* Recheck PageLRU and PageCompound under lock */ 961 if (!PageLRU(page)) 962 goto isolate_fail; 963 964 /* 965 * Page become compound since the non-locked check, 966 * and it's on LRU. It can only be a THP so the order 967 * is safe to read and it's 0 for tail pages. 968 */ 969 if (unlikely(PageCompound(page))) { 970 low_pfn += (1UL << compound_order(page)) - 1; 971 goto isolate_fail; 972 } 973 } 974 975 lruvec = mem_cgroup_page_lruvec(page, pgdat); 976 977 /* Try isolate the page */ 978 if (__isolate_lru_page(page, isolate_mode) != 0) 979 goto isolate_fail; 980 981 VM_BUG_ON_PAGE(PageCompound(page), page); 982 983 /* Successfully isolated */ 984 del_page_from_lru_list(page, lruvec, page_lru(page)); 985 inc_node_page_state(page, 986 NR_ISOLATED_ANON + page_is_file_cache(page)); 987 988 isolate_success: 989 list_add(&page->lru, &cc->migratepages); 990 cc->nr_migratepages++; 991 nr_isolated++; 992 993 /* 994 * Avoid isolating too much unless this block is being 995 * rescanned (e.g. dirty/writeback pages, parallel allocation) 996 * or a lock is contended. For contention, isolate quickly to 997 * potentially remove one source of contention. 998 */ 999 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX && 1000 !cc->rescan && !cc->contended) { 1001 ++low_pfn; 1002 break; 1003 } 1004 1005 continue; 1006 isolate_fail: 1007 if (!skip_on_failure) 1008 continue; 1009 1010 /* 1011 * We have isolated some pages, but then failed. Release them 1012 * instead of migrating, as we cannot form the cc->order buddy 1013 * page anyway. 1014 */ 1015 if (nr_isolated) { 1016 if (locked) { 1017 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1018 locked = false; 1019 } 1020 putback_movable_pages(&cc->migratepages); 1021 cc->nr_migratepages = 0; 1022 nr_isolated = 0; 1023 } 1024 1025 if (low_pfn < next_skip_pfn) { 1026 low_pfn = next_skip_pfn - 1; 1027 /* 1028 * The check near the loop beginning would have updated 1029 * next_skip_pfn too, but this is a bit simpler. 1030 */ 1031 next_skip_pfn += 1UL << cc->order; 1032 } 1033 } 1034 1035 /* 1036 * The PageBuddy() check could have potentially brought us outside 1037 * the range to be scanned. 1038 */ 1039 if (unlikely(low_pfn > end_pfn)) 1040 low_pfn = end_pfn; 1041 1042 isolate_abort: 1043 if (locked) 1044 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1045 1046 /* 1047 * Updated the cached scanner pfn once the pageblock has been scanned 1048 * Pages will either be migrated in which case there is no point 1049 * scanning in the near future or migration failed in which case the 1050 * failure reason may persist. The block is marked for skipping if 1051 * there were no pages isolated in the block or if the block is 1052 * rescanned twice in a row. 1053 */ 1054 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) { 1055 if (valid_page && !skip_updated) 1056 set_pageblock_skip(valid_page); 1057 update_cached_migrate(cc, low_pfn); 1058 } 1059 1060 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1061 nr_scanned, nr_isolated); 1062 1063 cc->total_migrate_scanned += nr_scanned; 1064 if (nr_isolated) 1065 count_compact_events(COMPACTISOLATED, nr_isolated); 1066 1067 return low_pfn; 1068 } 1069 1070 /** 1071 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1072 * @cc: Compaction control structure. 1073 * @start_pfn: The first PFN to start isolating. 1074 * @end_pfn: The one-past-last PFN. 1075 * 1076 * Returns zero if isolation fails fatally due to e.g. pending signal. 1077 * Otherwise, function returns one-past-the-last PFN of isolated page 1078 * (which may be greater than end_pfn if end fell in a middle of a THP page). 1079 */ 1080 unsigned long 1081 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1082 unsigned long end_pfn) 1083 { 1084 unsigned long pfn, block_start_pfn, block_end_pfn; 1085 1086 /* Scan block by block. First and last block may be incomplete */ 1087 pfn = start_pfn; 1088 block_start_pfn = pageblock_start_pfn(pfn); 1089 if (block_start_pfn < cc->zone->zone_start_pfn) 1090 block_start_pfn = cc->zone->zone_start_pfn; 1091 block_end_pfn = pageblock_end_pfn(pfn); 1092 1093 for (; pfn < end_pfn; pfn = block_end_pfn, 1094 block_start_pfn = block_end_pfn, 1095 block_end_pfn += pageblock_nr_pages) { 1096 1097 block_end_pfn = min(block_end_pfn, end_pfn); 1098 1099 if (!pageblock_pfn_to_page(block_start_pfn, 1100 block_end_pfn, cc->zone)) 1101 continue; 1102 1103 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 1104 ISOLATE_UNEVICTABLE); 1105 1106 if (!pfn) 1107 break; 1108 1109 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 1110 break; 1111 } 1112 1113 return pfn; 1114 } 1115 1116 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1117 #ifdef CONFIG_COMPACTION 1118 1119 static bool suitable_migration_source(struct compact_control *cc, 1120 struct page *page) 1121 { 1122 int block_mt; 1123 1124 if (pageblock_skip_persistent(page)) 1125 return false; 1126 1127 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1128 return true; 1129 1130 block_mt = get_pageblock_migratetype(page); 1131 1132 if (cc->migratetype == MIGRATE_MOVABLE) 1133 return is_migrate_movable(block_mt); 1134 else 1135 return block_mt == cc->migratetype; 1136 } 1137 1138 /* Returns true if the page is within a block suitable for migration to */ 1139 static bool suitable_migration_target(struct compact_control *cc, 1140 struct page *page) 1141 { 1142 /* If the page is a large free page, then disallow migration */ 1143 if (PageBuddy(page)) { 1144 /* 1145 * We are checking page_order without zone->lock taken. But 1146 * the only small danger is that we skip a potentially suitable 1147 * pageblock, so it's not worth to check order for valid range. 1148 */ 1149 if (page_order_unsafe(page) >= pageblock_order) 1150 return false; 1151 } 1152 1153 if (cc->ignore_block_suitable) 1154 return true; 1155 1156 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1157 if (is_migrate_movable(get_pageblock_migratetype(page))) 1158 return true; 1159 1160 /* Otherwise skip the block */ 1161 return false; 1162 } 1163 1164 static inline unsigned int 1165 freelist_scan_limit(struct compact_control *cc) 1166 { 1167 return (COMPACT_CLUSTER_MAX >> cc->fast_search_fail) + 1; 1168 } 1169 1170 /* 1171 * Test whether the free scanner has reached the same or lower pageblock than 1172 * the migration scanner, and compaction should thus terminate. 1173 */ 1174 static inline bool compact_scanners_met(struct compact_control *cc) 1175 { 1176 return (cc->free_pfn >> pageblock_order) 1177 <= (cc->migrate_pfn >> pageblock_order); 1178 } 1179 1180 /* 1181 * Used when scanning for a suitable migration target which scans freelists 1182 * in reverse. Reorders the list such as the unscanned pages are scanned 1183 * first on the next iteration of the free scanner 1184 */ 1185 static void 1186 move_freelist_head(struct list_head *freelist, struct page *freepage) 1187 { 1188 LIST_HEAD(sublist); 1189 1190 if (!list_is_last(freelist, &freepage->lru)) { 1191 list_cut_before(&sublist, freelist, &freepage->lru); 1192 if (!list_empty(&sublist)) 1193 list_splice_tail(&sublist, freelist); 1194 } 1195 } 1196 1197 /* 1198 * Similar to move_freelist_head except used by the migration scanner 1199 * when scanning forward. It's possible for these list operations to 1200 * move against each other if they search the free list exactly in 1201 * lockstep. 1202 */ 1203 static void 1204 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1205 { 1206 LIST_HEAD(sublist); 1207 1208 if (!list_is_first(freelist, &freepage->lru)) { 1209 list_cut_position(&sublist, freelist, &freepage->lru); 1210 if (!list_empty(&sublist)) 1211 list_splice_tail(&sublist, freelist); 1212 } 1213 } 1214 1215 static void 1216 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated) 1217 { 1218 unsigned long start_pfn, end_pfn; 1219 struct page *page = pfn_to_page(pfn); 1220 1221 /* Do not search around if there are enough pages already */ 1222 if (cc->nr_freepages >= cc->nr_migratepages) 1223 return; 1224 1225 /* Minimise scanning during async compaction */ 1226 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1227 return; 1228 1229 /* Pageblock boundaries */ 1230 start_pfn = pageblock_start_pfn(pfn); 1231 end_pfn = min(start_pfn + pageblock_nr_pages, zone_end_pfn(cc->zone)); 1232 1233 /* Scan before */ 1234 if (start_pfn != pfn) { 1235 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false); 1236 if (cc->nr_freepages >= cc->nr_migratepages) 1237 return; 1238 } 1239 1240 /* Scan after */ 1241 start_pfn = pfn + nr_isolated; 1242 if (start_pfn != end_pfn) 1243 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1244 1245 /* Skip this pageblock in the future as it's full or nearly full */ 1246 if (cc->nr_freepages < cc->nr_migratepages) 1247 set_pageblock_skip(page); 1248 } 1249 1250 /* Search orders in round-robin fashion */ 1251 static int next_search_order(struct compact_control *cc, int order) 1252 { 1253 order--; 1254 if (order < 0) 1255 order = cc->order - 1; 1256 1257 /* Search wrapped around? */ 1258 if (order == cc->search_order) { 1259 cc->search_order--; 1260 if (cc->search_order < 0) 1261 cc->search_order = cc->order - 1; 1262 return -1; 1263 } 1264 1265 return order; 1266 } 1267 1268 static unsigned long 1269 fast_isolate_freepages(struct compact_control *cc) 1270 { 1271 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1); 1272 unsigned int nr_scanned = 0; 1273 unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0; 1274 unsigned long nr_isolated = 0; 1275 unsigned long distance; 1276 struct page *page = NULL; 1277 bool scan_start = false; 1278 int order; 1279 1280 /* Full compaction passes in a negative order */ 1281 if (cc->order <= 0) 1282 return cc->free_pfn; 1283 1284 /* 1285 * If starting the scan, use a deeper search and use the highest 1286 * PFN found if a suitable one is not found. 1287 */ 1288 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1289 limit = pageblock_nr_pages >> 1; 1290 scan_start = true; 1291 } 1292 1293 /* 1294 * Preferred point is in the top quarter of the scan space but take 1295 * a pfn from the top half if the search is problematic. 1296 */ 1297 distance = (cc->free_pfn - cc->migrate_pfn); 1298 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1299 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1300 1301 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1302 low_pfn = min_pfn; 1303 1304 /* 1305 * Search starts from the last successful isolation order or the next 1306 * order to search after a previous failure 1307 */ 1308 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1309 1310 for (order = cc->search_order; 1311 !page && order >= 0; 1312 order = next_search_order(cc, order)) { 1313 struct free_area *area = &cc->zone->free_area[order]; 1314 struct list_head *freelist; 1315 struct page *freepage; 1316 unsigned long flags; 1317 unsigned int order_scanned = 0; 1318 1319 if (!area->nr_free) 1320 continue; 1321 1322 spin_lock_irqsave(&cc->zone->lock, flags); 1323 freelist = &area->free_list[MIGRATE_MOVABLE]; 1324 list_for_each_entry_reverse(freepage, freelist, lru) { 1325 unsigned long pfn; 1326 1327 order_scanned++; 1328 nr_scanned++; 1329 pfn = page_to_pfn(freepage); 1330 1331 if (pfn >= highest) 1332 highest = pageblock_start_pfn(pfn); 1333 1334 if (pfn >= low_pfn) { 1335 cc->fast_search_fail = 0; 1336 cc->search_order = order; 1337 page = freepage; 1338 break; 1339 } 1340 1341 if (pfn >= min_pfn && pfn > high_pfn) { 1342 high_pfn = pfn; 1343 1344 /* Shorten the scan if a candidate is found */ 1345 limit >>= 1; 1346 } 1347 1348 if (order_scanned >= limit) 1349 break; 1350 } 1351 1352 /* Use a minimum pfn if a preferred one was not found */ 1353 if (!page && high_pfn) { 1354 page = pfn_to_page(high_pfn); 1355 1356 /* Update freepage for the list reorder below */ 1357 freepage = page; 1358 } 1359 1360 /* Reorder to so a future search skips recent pages */ 1361 move_freelist_head(freelist, freepage); 1362 1363 /* Isolate the page if available */ 1364 if (page) { 1365 if (__isolate_free_page(page, order)) { 1366 set_page_private(page, order); 1367 nr_isolated = 1 << order; 1368 cc->nr_freepages += nr_isolated; 1369 list_add_tail(&page->lru, &cc->freepages); 1370 count_compact_events(COMPACTISOLATED, nr_isolated); 1371 } else { 1372 /* If isolation fails, abort the search */ 1373 order = cc->search_order + 1; 1374 page = NULL; 1375 } 1376 } 1377 1378 spin_unlock_irqrestore(&cc->zone->lock, flags); 1379 1380 /* 1381 * Smaller scan on next order so the total scan ig related 1382 * to freelist_scan_limit. 1383 */ 1384 if (order_scanned >= limit) 1385 limit = min(1U, limit >> 1); 1386 } 1387 1388 if (!page) { 1389 cc->fast_search_fail++; 1390 if (scan_start) { 1391 /* 1392 * Use the highest PFN found above min. If one was 1393 * not found, be pessemistic for direct compaction 1394 * and use the min mark. 1395 */ 1396 if (highest) { 1397 page = pfn_to_page(highest); 1398 cc->free_pfn = highest; 1399 } else { 1400 if (cc->direct_compaction) { 1401 page = pfn_to_page(min_pfn); 1402 cc->free_pfn = min_pfn; 1403 } 1404 } 1405 } 1406 } 1407 1408 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1409 highest -= pageblock_nr_pages; 1410 cc->zone->compact_cached_free_pfn = highest; 1411 } 1412 1413 cc->total_free_scanned += nr_scanned; 1414 if (!page) 1415 return cc->free_pfn; 1416 1417 low_pfn = page_to_pfn(page); 1418 fast_isolate_around(cc, low_pfn, nr_isolated); 1419 return low_pfn; 1420 } 1421 1422 /* 1423 * Based on information in the current compact_control, find blocks 1424 * suitable for isolating free pages from and then isolate them. 1425 */ 1426 static void isolate_freepages(struct compact_control *cc) 1427 { 1428 struct zone *zone = cc->zone; 1429 struct page *page; 1430 unsigned long block_start_pfn; /* start of current pageblock */ 1431 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1432 unsigned long block_end_pfn; /* end of current pageblock */ 1433 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1434 struct list_head *freelist = &cc->freepages; 1435 unsigned int stride; 1436 1437 /* Try a small search of the free lists for a candidate */ 1438 isolate_start_pfn = fast_isolate_freepages(cc); 1439 if (cc->nr_freepages) 1440 goto splitmap; 1441 1442 /* 1443 * Initialise the free scanner. The starting point is where we last 1444 * successfully isolated from, zone-cached value, or the end of the 1445 * zone when isolating for the first time. For looping we also need 1446 * this pfn aligned down to the pageblock boundary, because we do 1447 * block_start_pfn -= pageblock_nr_pages in the for loop. 1448 * For ending point, take care when isolating in last pageblock of a 1449 * a zone which ends in the middle of a pageblock. 1450 * The low boundary is the end of the pageblock the migration scanner 1451 * is using. 1452 */ 1453 isolate_start_pfn = cc->free_pfn; 1454 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1455 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1456 zone_end_pfn(zone)); 1457 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1458 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1459 1460 /* 1461 * Isolate free pages until enough are available to migrate the 1462 * pages on cc->migratepages. We stop searching if the migrate 1463 * and free page scanners meet or enough free pages are isolated. 1464 */ 1465 for (; block_start_pfn >= low_pfn; 1466 block_end_pfn = block_start_pfn, 1467 block_start_pfn -= pageblock_nr_pages, 1468 isolate_start_pfn = block_start_pfn) { 1469 unsigned long nr_isolated; 1470 1471 /* 1472 * This can iterate a massively long zone without finding any 1473 * suitable migration targets, so periodically check resched. 1474 */ 1475 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1476 cond_resched(); 1477 1478 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1479 zone); 1480 if (!page) 1481 continue; 1482 1483 /* Check the block is suitable for migration */ 1484 if (!suitable_migration_target(cc, page)) 1485 continue; 1486 1487 /* If isolation recently failed, do not retry */ 1488 if (!isolation_suitable(cc, page)) 1489 continue; 1490 1491 /* Found a block suitable for isolating free pages from. */ 1492 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1493 block_end_pfn, freelist, stride, false); 1494 1495 /* Update the skip hint if the full pageblock was scanned */ 1496 if (isolate_start_pfn == block_end_pfn) 1497 update_pageblock_skip(cc, page, block_start_pfn); 1498 1499 /* Are enough freepages isolated? */ 1500 if (cc->nr_freepages >= cc->nr_migratepages) { 1501 if (isolate_start_pfn >= block_end_pfn) { 1502 /* 1503 * Restart at previous pageblock if more 1504 * freepages can be isolated next time. 1505 */ 1506 isolate_start_pfn = 1507 block_start_pfn - pageblock_nr_pages; 1508 } 1509 break; 1510 } else if (isolate_start_pfn < block_end_pfn) { 1511 /* 1512 * If isolation failed early, do not continue 1513 * needlessly. 1514 */ 1515 break; 1516 } 1517 1518 /* Adjust stride depending on isolation */ 1519 if (nr_isolated) { 1520 stride = 1; 1521 continue; 1522 } 1523 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1524 } 1525 1526 /* 1527 * Record where the free scanner will restart next time. Either we 1528 * broke from the loop and set isolate_start_pfn based on the last 1529 * call to isolate_freepages_block(), or we met the migration scanner 1530 * and the loop terminated due to isolate_start_pfn < low_pfn 1531 */ 1532 cc->free_pfn = isolate_start_pfn; 1533 1534 splitmap: 1535 /* __isolate_free_page() does not map the pages */ 1536 split_map_pages(freelist); 1537 } 1538 1539 /* 1540 * This is a migrate-callback that "allocates" freepages by taking pages 1541 * from the isolated freelists in the block we are migrating to. 1542 */ 1543 static struct page *compaction_alloc(struct page *migratepage, 1544 unsigned long data) 1545 { 1546 struct compact_control *cc = (struct compact_control *)data; 1547 struct page *freepage; 1548 1549 if (list_empty(&cc->freepages)) { 1550 isolate_freepages(cc); 1551 1552 if (list_empty(&cc->freepages)) 1553 return NULL; 1554 } 1555 1556 freepage = list_entry(cc->freepages.next, struct page, lru); 1557 list_del(&freepage->lru); 1558 cc->nr_freepages--; 1559 1560 return freepage; 1561 } 1562 1563 /* 1564 * This is a migrate-callback that "frees" freepages back to the isolated 1565 * freelist. All pages on the freelist are from the same zone, so there is no 1566 * special handling needed for NUMA. 1567 */ 1568 static void compaction_free(struct page *page, unsigned long data) 1569 { 1570 struct compact_control *cc = (struct compact_control *)data; 1571 1572 list_add(&page->lru, &cc->freepages); 1573 cc->nr_freepages++; 1574 } 1575 1576 /* possible outcome of isolate_migratepages */ 1577 typedef enum { 1578 ISOLATE_ABORT, /* Abort compaction now */ 1579 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1580 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1581 } isolate_migrate_t; 1582 1583 /* 1584 * Allow userspace to control policy on scanning the unevictable LRU for 1585 * compactable pages. 1586 */ 1587 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1588 1589 static inline void 1590 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1591 { 1592 if (cc->fast_start_pfn == ULONG_MAX) 1593 return; 1594 1595 if (!cc->fast_start_pfn) 1596 cc->fast_start_pfn = pfn; 1597 1598 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1599 } 1600 1601 static inline unsigned long 1602 reinit_migrate_pfn(struct compact_control *cc) 1603 { 1604 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1605 return cc->migrate_pfn; 1606 1607 cc->migrate_pfn = cc->fast_start_pfn; 1608 cc->fast_start_pfn = ULONG_MAX; 1609 1610 return cc->migrate_pfn; 1611 } 1612 1613 /* 1614 * Briefly search the free lists for a migration source that already has 1615 * some free pages to reduce the number of pages that need migration 1616 * before a pageblock is free. 1617 */ 1618 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1619 { 1620 unsigned int limit = freelist_scan_limit(cc); 1621 unsigned int nr_scanned = 0; 1622 unsigned long distance; 1623 unsigned long pfn = cc->migrate_pfn; 1624 unsigned long high_pfn; 1625 int order; 1626 1627 /* Skip hints are relied on to avoid repeats on the fast search */ 1628 if (cc->ignore_skip_hint) 1629 return pfn; 1630 1631 /* 1632 * If the migrate_pfn is not at the start of a zone or the start 1633 * of a pageblock then assume this is a continuation of a previous 1634 * scan restarted due to COMPACT_CLUSTER_MAX. 1635 */ 1636 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1637 return pfn; 1638 1639 /* 1640 * For smaller orders, just linearly scan as the number of pages 1641 * to migrate should be relatively small and does not necessarily 1642 * justify freeing up a large block for a small allocation. 1643 */ 1644 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1645 return pfn; 1646 1647 /* 1648 * Only allow kcompactd and direct requests for movable pages to 1649 * quickly clear out a MOVABLE pageblock for allocation. This 1650 * reduces the risk that a large movable pageblock is freed for 1651 * an unmovable/reclaimable small allocation. 1652 */ 1653 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1654 return pfn; 1655 1656 /* 1657 * When starting the migration scanner, pick any pageblock within the 1658 * first half of the search space. Otherwise try and pick a pageblock 1659 * within the first eighth to reduce the chances that a migration 1660 * target later becomes a source. 1661 */ 1662 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1663 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1664 distance >>= 2; 1665 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1666 1667 for (order = cc->order - 1; 1668 order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit; 1669 order--) { 1670 struct free_area *area = &cc->zone->free_area[order]; 1671 struct list_head *freelist; 1672 unsigned long flags; 1673 struct page *freepage; 1674 1675 if (!area->nr_free) 1676 continue; 1677 1678 spin_lock_irqsave(&cc->zone->lock, flags); 1679 freelist = &area->free_list[MIGRATE_MOVABLE]; 1680 list_for_each_entry(freepage, freelist, lru) { 1681 unsigned long free_pfn; 1682 1683 nr_scanned++; 1684 free_pfn = page_to_pfn(freepage); 1685 if (free_pfn < high_pfn) { 1686 /* 1687 * Avoid if skipped recently. Ideally it would 1688 * move to the tail but even safe iteration of 1689 * the list assumes an entry is deleted, not 1690 * reordered. 1691 */ 1692 if (get_pageblock_skip(freepage)) { 1693 if (list_is_last(freelist, &freepage->lru)) 1694 break; 1695 1696 continue; 1697 } 1698 1699 /* Reorder to so a future search skips recent pages */ 1700 move_freelist_tail(freelist, freepage); 1701 1702 update_fast_start_pfn(cc, free_pfn); 1703 pfn = pageblock_start_pfn(free_pfn); 1704 cc->fast_search_fail = 0; 1705 set_pageblock_skip(freepage); 1706 break; 1707 } 1708 1709 if (nr_scanned >= limit) { 1710 cc->fast_search_fail++; 1711 move_freelist_tail(freelist, freepage); 1712 break; 1713 } 1714 } 1715 spin_unlock_irqrestore(&cc->zone->lock, flags); 1716 } 1717 1718 cc->total_migrate_scanned += nr_scanned; 1719 1720 /* 1721 * If fast scanning failed then use a cached entry for a page block 1722 * that had free pages as the basis for starting a linear scan. 1723 */ 1724 if (pfn == cc->migrate_pfn) 1725 pfn = reinit_migrate_pfn(cc); 1726 1727 return pfn; 1728 } 1729 1730 /* 1731 * Isolate all pages that can be migrated from the first suitable block, 1732 * starting at the block pointed to by the migrate scanner pfn within 1733 * compact_control. 1734 */ 1735 static isolate_migrate_t isolate_migratepages(struct zone *zone, 1736 struct compact_control *cc) 1737 { 1738 unsigned long block_start_pfn; 1739 unsigned long block_end_pfn; 1740 unsigned long low_pfn; 1741 struct page *page; 1742 const isolate_mode_t isolate_mode = 1743 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1744 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1745 bool fast_find_block; 1746 1747 /* 1748 * Start at where we last stopped, or beginning of the zone as 1749 * initialized by compact_zone(). The first failure will use 1750 * the lowest PFN as the starting point for linear scanning. 1751 */ 1752 low_pfn = fast_find_migrateblock(cc); 1753 block_start_pfn = pageblock_start_pfn(low_pfn); 1754 if (block_start_pfn < zone->zone_start_pfn) 1755 block_start_pfn = zone->zone_start_pfn; 1756 1757 /* 1758 * fast_find_migrateblock marks a pageblock skipped so to avoid 1759 * the isolation_suitable check below, check whether the fast 1760 * search was successful. 1761 */ 1762 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1763 1764 /* Only scan within a pageblock boundary */ 1765 block_end_pfn = pageblock_end_pfn(low_pfn); 1766 1767 /* 1768 * Iterate over whole pageblocks until we find the first suitable. 1769 * Do not cross the free scanner. 1770 */ 1771 for (; block_end_pfn <= cc->free_pfn; 1772 fast_find_block = false, 1773 low_pfn = block_end_pfn, 1774 block_start_pfn = block_end_pfn, 1775 block_end_pfn += pageblock_nr_pages) { 1776 1777 /* 1778 * This can potentially iterate a massively long zone with 1779 * many pageblocks unsuitable, so periodically check if we 1780 * need to schedule. 1781 */ 1782 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1783 cond_resched(); 1784 1785 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1786 zone); 1787 if (!page) 1788 continue; 1789 1790 /* 1791 * If isolation recently failed, do not retry. Only check the 1792 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1793 * to be visited multiple times. Assume skip was checked 1794 * before making it "skip" so other compaction instances do 1795 * not scan the same block. 1796 */ 1797 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) && 1798 !fast_find_block && !isolation_suitable(cc, page)) 1799 continue; 1800 1801 /* 1802 * For async compaction, also only scan in MOVABLE blocks 1803 * without huge pages. Async compaction is optimistic to see 1804 * if the minimum amount of work satisfies the allocation. 1805 * The cached PFN is updated as it's possible that all 1806 * remaining blocks between source and target are unsuitable 1807 * and the compaction scanners fail to meet. 1808 */ 1809 if (!suitable_migration_source(cc, page)) { 1810 update_cached_migrate(cc, block_end_pfn); 1811 continue; 1812 } 1813 1814 /* Perform the isolation */ 1815 low_pfn = isolate_migratepages_block(cc, low_pfn, 1816 block_end_pfn, isolate_mode); 1817 1818 if (!low_pfn) 1819 return ISOLATE_ABORT; 1820 1821 /* 1822 * Either we isolated something and proceed with migration. Or 1823 * we failed and compact_zone should decide if we should 1824 * continue or not. 1825 */ 1826 break; 1827 } 1828 1829 /* Record where migration scanner will be restarted. */ 1830 cc->migrate_pfn = low_pfn; 1831 1832 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1833 } 1834 1835 /* 1836 * order == -1 is expected when compacting via 1837 * /proc/sys/vm/compact_memory 1838 */ 1839 static inline bool is_via_compact_memory(int order) 1840 { 1841 return order == -1; 1842 } 1843 1844 static enum compact_result __compact_finished(struct compact_control *cc) 1845 { 1846 unsigned int order; 1847 const int migratetype = cc->migratetype; 1848 int ret; 1849 1850 /* Compaction run completes if the migrate and free scanner meet */ 1851 if (compact_scanners_met(cc)) { 1852 /* Let the next compaction start anew. */ 1853 reset_cached_positions(cc->zone); 1854 1855 /* 1856 * Mark that the PG_migrate_skip information should be cleared 1857 * by kswapd when it goes to sleep. kcompactd does not set the 1858 * flag itself as the decision to be clear should be directly 1859 * based on an allocation request. 1860 */ 1861 if (cc->direct_compaction) 1862 cc->zone->compact_blockskip_flush = true; 1863 1864 if (cc->whole_zone) 1865 return COMPACT_COMPLETE; 1866 else 1867 return COMPACT_PARTIAL_SKIPPED; 1868 } 1869 1870 if (is_via_compact_memory(cc->order)) 1871 return COMPACT_CONTINUE; 1872 1873 /* 1874 * Always finish scanning a pageblock to reduce the possibility of 1875 * fallbacks in the future. This is particularly important when 1876 * migration source is unmovable/reclaimable but it's not worth 1877 * special casing. 1878 */ 1879 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages)) 1880 return COMPACT_CONTINUE; 1881 1882 /* Direct compactor: Is a suitable page free? */ 1883 ret = COMPACT_NO_SUITABLE_PAGE; 1884 for (order = cc->order; order < MAX_ORDER; order++) { 1885 struct free_area *area = &cc->zone->free_area[order]; 1886 bool can_steal; 1887 1888 /* Job done if page is free of the right migratetype */ 1889 if (!list_empty(&area->free_list[migratetype])) 1890 return COMPACT_SUCCESS; 1891 1892 #ifdef CONFIG_CMA 1893 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 1894 if (migratetype == MIGRATE_MOVABLE && 1895 !list_empty(&area->free_list[MIGRATE_CMA])) 1896 return COMPACT_SUCCESS; 1897 #endif 1898 /* 1899 * Job done if allocation would steal freepages from 1900 * other migratetype buddy lists. 1901 */ 1902 if (find_suitable_fallback(area, order, migratetype, 1903 true, &can_steal) != -1) { 1904 1905 /* movable pages are OK in any pageblock */ 1906 if (migratetype == MIGRATE_MOVABLE) 1907 return COMPACT_SUCCESS; 1908 1909 /* 1910 * We are stealing for a non-movable allocation. Make 1911 * sure we finish compacting the current pageblock 1912 * first so it is as free as possible and we won't 1913 * have to steal another one soon. This only applies 1914 * to sync compaction, as async compaction operates 1915 * on pageblocks of the same migratetype. 1916 */ 1917 if (cc->mode == MIGRATE_ASYNC || 1918 IS_ALIGNED(cc->migrate_pfn, 1919 pageblock_nr_pages)) { 1920 return COMPACT_SUCCESS; 1921 } 1922 1923 ret = COMPACT_CONTINUE; 1924 break; 1925 } 1926 } 1927 1928 if (cc->contended || fatal_signal_pending(current)) 1929 ret = COMPACT_CONTENDED; 1930 1931 return ret; 1932 } 1933 1934 static enum compact_result compact_finished(struct compact_control *cc) 1935 { 1936 int ret; 1937 1938 ret = __compact_finished(cc); 1939 trace_mm_compaction_finished(cc->zone, cc->order, ret); 1940 if (ret == COMPACT_NO_SUITABLE_PAGE) 1941 ret = COMPACT_CONTINUE; 1942 1943 return ret; 1944 } 1945 1946 /* 1947 * compaction_suitable: Is this suitable to run compaction on this zone now? 1948 * Returns 1949 * COMPACT_SKIPPED - If there are too few free pages for compaction 1950 * COMPACT_SUCCESS - If the allocation would succeed without compaction 1951 * COMPACT_CONTINUE - If compaction should run now 1952 */ 1953 static enum compact_result __compaction_suitable(struct zone *zone, int order, 1954 unsigned int alloc_flags, 1955 int classzone_idx, 1956 unsigned long wmark_target) 1957 { 1958 unsigned long watermark; 1959 1960 if (is_via_compact_memory(order)) 1961 return COMPACT_CONTINUE; 1962 1963 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 1964 /* 1965 * If watermarks for high-order allocation are already met, there 1966 * should be no need for compaction at all. 1967 */ 1968 if (zone_watermark_ok(zone, order, watermark, classzone_idx, 1969 alloc_flags)) 1970 return COMPACT_SUCCESS; 1971 1972 /* 1973 * Watermarks for order-0 must be met for compaction to be able to 1974 * isolate free pages for migration targets. This means that the 1975 * watermark and alloc_flags have to match, or be more pessimistic than 1976 * the check in __isolate_free_page(). We don't use the direct 1977 * compactor's alloc_flags, as they are not relevant for freepage 1978 * isolation. We however do use the direct compactor's classzone_idx to 1979 * skip over zones where lowmem reserves would prevent allocation even 1980 * if compaction succeeds. 1981 * For costly orders, we require low watermark instead of min for 1982 * compaction to proceed to increase its chances. 1983 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 1984 * suitable migration targets 1985 */ 1986 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 1987 low_wmark_pages(zone) : min_wmark_pages(zone); 1988 watermark += compact_gap(order); 1989 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx, 1990 ALLOC_CMA, wmark_target)) 1991 return COMPACT_SKIPPED; 1992 1993 return COMPACT_CONTINUE; 1994 } 1995 1996 enum compact_result compaction_suitable(struct zone *zone, int order, 1997 unsigned int alloc_flags, 1998 int classzone_idx) 1999 { 2000 enum compact_result ret; 2001 int fragindex; 2002 2003 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx, 2004 zone_page_state(zone, NR_FREE_PAGES)); 2005 /* 2006 * fragmentation index determines if allocation failures are due to 2007 * low memory or external fragmentation 2008 * 2009 * index of -1000 would imply allocations might succeed depending on 2010 * watermarks, but we already failed the high-order watermark check 2011 * index towards 0 implies failure is due to lack of memory 2012 * index towards 1000 implies failure is due to fragmentation 2013 * 2014 * Only compact if a failure would be due to fragmentation. Also 2015 * ignore fragindex for non-costly orders where the alternative to 2016 * a successful reclaim/compaction is OOM. Fragindex and the 2017 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2018 * excessive compaction for costly orders, but it should not be at the 2019 * expense of system stability. 2020 */ 2021 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2022 fragindex = fragmentation_index(zone, order); 2023 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2024 ret = COMPACT_NOT_SUITABLE_ZONE; 2025 } 2026 2027 trace_mm_compaction_suitable(zone, order, ret); 2028 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2029 ret = COMPACT_SKIPPED; 2030 2031 return ret; 2032 } 2033 2034 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2035 int alloc_flags) 2036 { 2037 struct zone *zone; 2038 struct zoneref *z; 2039 2040 /* 2041 * Make sure at least one zone would pass __compaction_suitable if we continue 2042 * retrying the reclaim. 2043 */ 2044 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 2045 ac->nodemask) { 2046 unsigned long available; 2047 enum compact_result compact_result; 2048 2049 /* 2050 * Do not consider all the reclaimable memory because we do not 2051 * want to trash just for a single high order allocation which 2052 * is even not guaranteed to appear even if __compaction_suitable 2053 * is happy about the watermark check. 2054 */ 2055 available = zone_reclaimable_pages(zone) / order; 2056 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2057 compact_result = __compaction_suitable(zone, order, alloc_flags, 2058 ac_classzone_idx(ac), available); 2059 if (compact_result != COMPACT_SKIPPED) 2060 return true; 2061 } 2062 2063 return false; 2064 } 2065 2066 static enum compact_result 2067 compact_zone(struct compact_control *cc, struct capture_control *capc) 2068 { 2069 enum compact_result ret; 2070 unsigned long start_pfn = cc->zone->zone_start_pfn; 2071 unsigned long end_pfn = zone_end_pfn(cc->zone); 2072 unsigned long last_migrated_pfn; 2073 const bool sync = cc->mode != MIGRATE_ASYNC; 2074 bool update_cached; 2075 2076 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask); 2077 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2078 cc->classzone_idx); 2079 /* Compaction is likely to fail */ 2080 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2081 return ret; 2082 2083 /* huh, compaction_suitable is returning something unexpected */ 2084 VM_BUG_ON(ret != COMPACT_CONTINUE); 2085 2086 /* 2087 * Clear pageblock skip if there were failures recently and compaction 2088 * is about to be retried after being deferred. 2089 */ 2090 if (compaction_restarting(cc->zone, cc->order)) 2091 __reset_isolation_suitable(cc->zone); 2092 2093 /* 2094 * Setup to move all movable pages to the end of the zone. Used cached 2095 * information on where the scanners should start (unless we explicitly 2096 * want to compact the whole zone), but check that it is initialised 2097 * by ensuring the values are within zone boundaries. 2098 */ 2099 cc->fast_start_pfn = 0; 2100 if (cc->whole_zone) { 2101 cc->migrate_pfn = start_pfn; 2102 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2103 } else { 2104 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2105 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2106 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2107 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2108 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2109 } 2110 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2111 cc->migrate_pfn = start_pfn; 2112 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2113 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2114 } 2115 2116 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2117 cc->whole_zone = true; 2118 } 2119 2120 last_migrated_pfn = 0; 2121 2122 /* 2123 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2124 * the basis that some migrations will fail in ASYNC mode. However, 2125 * if the cached PFNs match and pageblocks are skipped due to having 2126 * no isolation candidates, then the sync state does not matter. 2127 * Until a pageblock with isolation candidates is found, keep the 2128 * cached PFNs in sync to avoid revisiting the same blocks. 2129 */ 2130 update_cached = !sync && 2131 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2132 2133 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 2134 cc->free_pfn, end_pfn, sync); 2135 2136 migrate_prep_local(); 2137 2138 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2139 int err; 2140 unsigned long start_pfn = cc->migrate_pfn; 2141 2142 /* 2143 * Avoid multiple rescans which can happen if a page cannot be 2144 * isolated (dirty/writeback in async mode) or if the migrated 2145 * pages are being allocated before the pageblock is cleared. 2146 * The first rescan will capture the entire pageblock for 2147 * migration. If it fails, it'll be marked skip and scanning 2148 * will proceed as normal. 2149 */ 2150 cc->rescan = false; 2151 if (pageblock_start_pfn(last_migrated_pfn) == 2152 pageblock_start_pfn(start_pfn)) { 2153 cc->rescan = true; 2154 } 2155 2156 switch (isolate_migratepages(cc->zone, cc)) { 2157 case ISOLATE_ABORT: 2158 ret = COMPACT_CONTENDED; 2159 putback_movable_pages(&cc->migratepages); 2160 cc->nr_migratepages = 0; 2161 last_migrated_pfn = 0; 2162 goto out; 2163 case ISOLATE_NONE: 2164 if (update_cached) { 2165 cc->zone->compact_cached_migrate_pfn[1] = 2166 cc->zone->compact_cached_migrate_pfn[0]; 2167 } 2168 2169 /* 2170 * We haven't isolated and migrated anything, but 2171 * there might still be unflushed migrations from 2172 * previous cc->order aligned block. 2173 */ 2174 goto check_drain; 2175 case ISOLATE_SUCCESS: 2176 update_cached = false; 2177 last_migrated_pfn = start_pfn; 2178 ; 2179 } 2180 2181 err = migrate_pages(&cc->migratepages, compaction_alloc, 2182 compaction_free, (unsigned long)cc, cc->mode, 2183 MR_COMPACTION); 2184 2185 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 2186 &cc->migratepages); 2187 2188 /* All pages were either migrated or will be released */ 2189 cc->nr_migratepages = 0; 2190 if (err) { 2191 putback_movable_pages(&cc->migratepages); 2192 /* 2193 * migrate_pages() may return -ENOMEM when scanners meet 2194 * and we want compact_finished() to detect it 2195 */ 2196 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2197 ret = COMPACT_CONTENDED; 2198 goto out; 2199 } 2200 /* 2201 * We failed to migrate at least one page in the current 2202 * order-aligned block, so skip the rest of it. 2203 */ 2204 if (cc->direct_compaction && 2205 (cc->mode == MIGRATE_ASYNC)) { 2206 cc->migrate_pfn = block_end_pfn( 2207 cc->migrate_pfn - 1, cc->order); 2208 /* Draining pcplists is useless in this case */ 2209 last_migrated_pfn = 0; 2210 } 2211 } 2212 2213 check_drain: 2214 /* 2215 * Has the migration scanner moved away from the previous 2216 * cc->order aligned block where we migrated from? If yes, 2217 * flush the pages that were freed, so that they can merge and 2218 * compact_finished() can detect immediately if allocation 2219 * would succeed. 2220 */ 2221 if (cc->order > 0 && last_migrated_pfn) { 2222 int cpu; 2223 unsigned long current_block_start = 2224 block_start_pfn(cc->migrate_pfn, cc->order); 2225 2226 if (last_migrated_pfn < current_block_start) { 2227 cpu = get_cpu(); 2228 lru_add_drain_cpu(cpu); 2229 drain_local_pages(cc->zone); 2230 put_cpu(); 2231 /* No more flushing until we migrate again */ 2232 last_migrated_pfn = 0; 2233 } 2234 } 2235 2236 /* Stop if a page has been captured */ 2237 if (capc && capc->page) { 2238 ret = COMPACT_SUCCESS; 2239 break; 2240 } 2241 } 2242 2243 out: 2244 /* 2245 * Release free pages and update where the free scanner should restart, 2246 * so we don't leave any returned pages behind in the next attempt. 2247 */ 2248 if (cc->nr_freepages > 0) { 2249 unsigned long free_pfn = release_freepages(&cc->freepages); 2250 2251 cc->nr_freepages = 0; 2252 VM_BUG_ON(free_pfn == 0); 2253 /* The cached pfn is always the first in a pageblock */ 2254 free_pfn = pageblock_start_pfn(free_pfn); 2255 /* 2256 * Only go back, not forward. The cached pfn might have been 2257 * already reset to zone end in compact_finished() 2258 */ 2259 if (free_pfn > cc->zone->compact_cached_free_pfn) 2260 cc->zone->compact_cached_free_pfn = free_pfn; 2261 } 2262 2263 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2264 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2265 2266 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 2267 cc->free_pfn, end_pfn, sync, ret); 2268 2269 return ret; 2270 } 2271 2272 static enum compact_result compact_zone_order(struct zone *zone, int order, 2273 gfp_t gfp_mask, enum compact_priority prio, 2274 unsigned int alloc_flags, int classzone_idx, 2275 struct page **capture) 2276 { 2277 enum compact_result ret; 2278 struct compact_control cc = { 2279 .nr_freepages = 0, 2280 .nr_migratepages = 0, 2281 .total_migrate_scanned = 0, 2282 .total_free_scanned = 0, 2283 .order = order, 2284 .search_order = order, 2285 .gfp_mask = gfp_mask, 2286 .zone = zone, 2287 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2288 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2289 .alloc_flags = alloc_flags, 2290 .classzone_idx = classzone_idx, 2291 .direct_compaction = true, 2292 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2293 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2294 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2295 }; 2296 struct capture_control capc = { 2297 .cc = &cc, 2298 .page = NULL, 2299 }; 2300 2301 if (capture) 2302 current->capture_control = &capc; 2303 INIT_LIST_HEAD(&cc.freepages); 2304 INIT_LIST_HEAD(&cc.migratepages); 2305 2306 ret = compact_zone(&cc, &capc); 2307 2308 VM_BUG_ON(!list_empty(&cc.freepages)); 2309 VM_BUG_ON(!list_empty(&cc.migratepages)); 2310 2311 *capture = capc.page; 2312 current->capture_control = NULL; 2313 2314 return ret; 2315 } 2316 2317 int sysctl_extfrag_threshold = 500; 2318 2319 /** 2320 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2321 * @gfp_mask: The GFP mask of the current allocation 2322 * @order: The order of the current allocation 2323 * @alloc_flags: The allocation flags of the current allocation 2324 * @ac: The context of current allocation 2325 * @prio: Determines how hard direct compaction should try to succeed 2326 * 2327 * This is the main entry point for direct page compaction. 2328 */ 2329 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2330 unsigned int alloc_flags, const struct alloc_context *ac, 2331 enum compact_priority prio, struct page **capture) 2332 { 2333 int may_perform_io = gfp_mask & __GFP_IO; 2334 struct zoneref *z; 2335 struct zone *zone; 2336 enum compact_result rc = COMPACT_SKIPPED; 2337 2338 /* 2339 * Check if the GFP flags allow compaction - GFP_NOIO is really 2340 * tricky context because the migration might require IO 2341 */ 2342 if (!may_perform_io) 2343 return COMPACT_SKIPPED; 2344 2345 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2346 2347 /* Compact each zone in the list */ 2348 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 2349 ac->nodemask) { 2350 enum compact_result status; 2351 2352 if (prio > MIN_COMPACT_PRIORITY 2353 && compaction_deferred(zone, order)) { 2354 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2355 continue; 2356 } 2357 2358 status = compact_zone_order(zone, order, gfp_mask, prio, 2359 alloc_flags, ac_classzone_idx(ac), capture); 2360 rc = max(status, rc); 2361 2362 /* The allocation should succeed, stop compacting */ 2363 if (status == COMPACT_SUCCESS) { 2364 /* 2365 * We think the allocation will succeed in this zone, 2366 * but it is not certain, hence the false. The caller 2367 * will repeat this with true if allocation indeed 2368 * succeeds in this zone. 2369 */ 2370 compaction_defer_reset(zone, order, false); 2371 2372 break; 2373 } 2374 2375 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2376 status == COMPACT_PARTIAL_SKIPPED)) 2377 /* 2378 * We think that allocation won't succeed in this zone 2379 * so we defer compaction there. If it ends up 2380 * succeeding after all, it will be reset. 2381 */ 2382 defer_compaction(zone, order); 2383 2384 /* 2385 * We might have stopped compacting due to need_resched() in 2386 * async compaction, or due to a fatal signal detected. In that 2387 * case do not try further zones 2388 */ 2389 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2390 || fatal_signal_pending(current)) 2391 break; 2392 } 2393 2394 return rc; 2395 } 2396 2397 2398 /* Compact all zones within a node */ 2399 static void compact_node(int nid) 2400 { 2401 pg_data_t *pgdat = NODE_DATA(nid); 2402 int zoneid; 2403 struct zone *zone; 2404 struct compact_control cc = { 2405 .order = -1, 2406 .total_migrate_scanned = 0, 2407 .total_free_scanned = 0, 2408 .mode = MIGRATE_SYNC, 2409 .ignore_skip_hint = true, 2410 .whole_zone = true, 2411 .gfp_mask = GFP_KERNEL, 2412 }; 2413 2414 2415 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2416 2417 zone = &pgdat->node_zones[zoneid]; 2418 if (!populated_zone(zone)) 2419 continue; 2420 2421 cc.nr_freepages = 0; 2422 cc.nr_migratepages = 0; 2423 cc.zone = zone; 2424 INIT_LIST_HEAD(&cc.freepages); 2425 INIT_LIST_HEAD(&cc.migratepages); 2426 2427 compact_zone(&cc, NULL); 2428 2429 VM_BUG_ON(!list_empty(&cc.freepages)); 2430 VM_BUG_ON(!list_empty(&cc.migratepages)); 2431 } 2432 } 2433 2434 /* Compact all nodes in the system */ 2435 static void compact_nodes(void) 2436 { 2437 int nid; 2438 2439 /* Flush pending updates to the LRU lists */ 2440 lru_add_drain_all(); 2441 2442 for_each_online_node(nid) 2443 compact_node(nid); 2444 } 2445 2446 /* The written value is actually unused, all memory is compacted */ 2447 int sysctl_compact_memory; 2448 2449 /* 2450 * This is the entry point for compacting all nodes via 2451 * /proc/sys/vm/compact_memory 2452 */ 2453 int sysctl_compaction_handler(struct ctl_table *table, int write, 2454 void __user *buffer, size_t *length, loff_t *ppos) 2455 { 2456 if (write) 2457 compact_nodes(); 2458 2459 return 0; 2460 } 2461 2462 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2463 static ssize_t sysfs_compact_node(struct device *dev, 2464 struct device_attribute *attr, 2465 const char *buf, size_t count) 2466 { 2467 int nid = dev->id; 2468 2469 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2470 /* Flush pending updates to the LRU lists */ 2471 lru_add_drain_all(); 2472 2473 compact_node(nid); 2474 } 2475 2476 return count; 2477 } 2478 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node); 2479 2480 int compaction_register_node(struct node *node) 2481 { 2482 return device_create_file(&node->dev, &dev_attr_compact); 2483 } 2484 2485 void compaction_unregister_node(struct node *node) 2486 { 2487 return device_remove_file(&node->dev, &dev_attr_compact); 2488 } 2489 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2490 2491 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2492 { 2493 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 2494 } 2495 2496 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2497 { 2498 int zoneid; 2499 struct zone *zone; 2500 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx; 2501 2502 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) { 2503 zone = &pgdat->node_zones[zoneid]; 2504 2505 if (!populated_zone(zone)) 2506 continue; 2507 2508 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2509 classzone_idx) == COMPACT_CONTINUE) 2510 return true; 2511 } 2512 2513 return false; 2514 } 2515 2516 static void kcompactd_do_work(pg_data_t *pgdat) 2517 { 2518 /* 2519 * With no special task, compact all zones so that a page of requested 2520 * order is allocatable. 2521 */ 2522 int zoneid; 2523 struct zone *zone; 2524 struct compact_control cc = { 2525 .order = pgdat->kcompactd_max_order, 2526 .search_order = pgdat->kcompactd_max_order, 2527 .total_migrate_scanned = 0, 2528 .total_free_scanned = 0, 2529 .classzone_idx = pgdat->kcompactd_classzone_idx, 2530 .mode = MIGRATE_SYNC_LIGHT, 2531 .ignore_skip_hint = false, 2532 .gfp_mask = GFP_KERNEL, 2533 }; 2534 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2535 cc.classzone_idx); 2536 count_compact_event(KCOMPACTD_WAKE); 2537 2538 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) { 2539 int status; 2540 2541 zone = &pgdat->node_zones[zoneid]; 2542 if (!populated_zone(zone)) 2543 continue; 2544 2545 if (compaction_deferred(zone, cc.order)) 2546 continue; 2547 2548 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2549 COMPACT_CONTINUE) 2550 continue; 2551 2552 cc.nr_freepages = 0; 2553 cc.nr_migratepages = 0; 2554 cc.total_migrate_scanned = 0; 2555 cc.total_free_scanned = 0; 2556 cc.zone = zone; 2557 INIT_LIST_HEAD(&cc.freepages); 2558 INIT_LIST_HEAD(&cc.migratepages); 2559 2560 if (kthread_should_stop()) 2561 return; 2562 status = compact_zone(&cc, NULL); 2563 2564 if (status == COMPACT_SUCCESS) { 2565 compaction_defer_reset(zone, cc.order, false); 2566 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2567 /* 2568 * Buddy pages may become stranded on pcps that could 2569 * otherwise coalesce on the zone's free area for 2570 * order >= cc.order. This is ratelimited by the 2571 * upcoming deferral. 2572 */ 2573 drain_all_pages(zone); 2574 2575 /* 2576 * We use sync migration mode here, so we defer like 2577 * sync direct compaction does. 2578 */ 2579 defer_compaction(zone, cc.order); 2580 } 2581 2582 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2583 cc.total_migrate_scanned); 2584 count_compact_events(KCOMPACTD_FREE_SCANNED, 2585 cc.total_free_scanned); 2586 2587 VM_BUG_ON(!list_empty(&cc.freepages)); 2588 VM_BUG_ON(!list_empty(&cc.migratepages)); 2589 } 2590 2591 /* 2592 * Regardless of success, we are done until woken up next. But remember 2593 * the requested order/classzone_idx in case it was higher/tighter than 2594 * our current ones 2595 */ 2596 if (pgdat->kcompactd_max_order <= cc.order) 2597 pgdat->kcompactd_max_order = 0; 2598 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx) 2599 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 2600 } 2601 2602 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx) 2603 { 2604 if (!order) 2605 return; 2606 2607 if (pgdat->kcompactd_max_order < order) 2608 pgdat->kcompactd_max_order = order; 2609 2610 if (pgdat->kcompactd_classzone_idx > classzone_idx) 2611 pgdat->kcompactd_classzone_idx = classzone_idx; 2612 2613 /* 2614 * Pairs with implicit barrier in wait_event_freezable() 2615 * such that wakeups are not missed. 2616 */ 2617 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2618 return; 2619 2620 if (!kcompactd_node_suitable(pgdat)) 2621 return; 2622 2623 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2624 classzone_idx); 2625 wake_up_interruptible(&pgdat->kcompactd_wait); 2626 } 2627 2628 /* 2629 * The background compaction daemon, started as a kernel thread 2630 * from the init process. 2631 */ 2632 static int kcompactd(void *p) 2633 { 2634 pg_data_t *pgdat = (pg_data_t*)p; 2635 struct task_struct *tsk = current; 2636 2637 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2638 2639 if (!cpumask_empty(cpumask)) 2640 set_cpus_allowed_ptr(tsk, cpumask); 2641 2642 set_freezable(); 2643 2644 pgdat->kcompactd_max_order = 0; 2645 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 2646 2647 while (!kthread_should_stop()) { 2648 unsigned long pflags; 2649 2650 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2651 wait_event_freezable(pgdat->kcompactd_wait, 2652 kcompactd_work_requested(pgdat)); 2653 2654 psi_memstall_enter(&pflags); 2655 kcompactd_do_work(pgdat); 2656 psi_memstall_leave(&pflags); 2657 } 2658 2659 return 0; 2660 } 2661 2662 /* 2663 * This kcompactd start function will be called by init and node-hot-add. 2664 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2665 */ 2666 int kcompactd_run(int nid) 2667 { 2668 pg_data_t *pgdat = NODE_DATA(nid); 2669 int ret = 0; 2670 2671 if (pgdat->kcompactd) 2672 return 0; 2673 2674 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2675 if (IS_ERR(pgdat->kcompactd)) { 2676 pr_err("Failed to start kcompactd on node %d\n", nid); 2677 ret = PTR_ERR(pgdat->kcompactd); 2678 pgdat->kcompactd = NULL; 2679 } 2680 return ret; 2681 } 2682 2683 /* 2684 * Called by memory hotplug when all memory in a node is offlined. Caller must 2685 * hold mem_hotplug_begin/end(). 2686 */ 2687 void kcompactd_stop(int nid) 2688 { 2689 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2690 2691 if (kcompactd) { 2692 kthread_stop(kcompactd); 2693 NODE_DATA(nid)->kcompactd = NULL; 2694 } 2695 } 2696 2697 /* 2698 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2699 * not required for correctness. So if the last cpu in a node goes 2700 * away, we get changed to run anywhere: as the first one comes back, 2701 * restore their cpu bindings. 2702 */ 2703 static int kcompactd_cpu_online(unsigned int cpu) 2704 { 2705 int nid; 2706 2707 for_each_node_state(nid, N_MEMORY) { 2708 pg_data_t *pgdat = NODE_DATA(nid); 2709 const struct cpumask *mask; 2710 2711 mask = cpumask_of_node(pgdat->node_id); 2712 2713 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2714 /* One of our CPUs online: restore mask */ 2715 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2716 } 2717 return 0; 2718 } 2719 2720 static int __init kcompactd_init(void) 2721 { 2722 int nid; 2723 int ret; 2724 2725 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 2726 "mm/compaction:online", 2727 kcompactd_cpu_online, NULL); 2728 if (ret < 0) { 2729 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 2730 return ret; 2731 } 2732 2733 for_each_node_state(nid, N_MEMORY) 2734 kcompactd_run(nid); 2735 return 0; 2736 } 2737 subsys_initcall(kcompactd_init) 2738 2739 #endif /* CONFIG_COMPACTION */ 2740