xref: /openbmc/linux/mm/compaction.c (revision 2b1b1267080fe822789d0845a58ebb452724736b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 	count_vm_event(item);
32 }
33 
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 	count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42 
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47 
48 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
52 
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55 	struct page *page, *next;
56 	unsigned long high_pfn = 0;
57 
58 	list_for_each_entry_safe(page, next, freelist, lru) {
59 		unsigned long pfn = page_to_pfn(page);
60 		list_del(&page->lru);
61 		__free_page(page);
62 		if (pfn > high_pfn)
63 			high_pfn = pfn;
64 	}
65 
66 	return high_pfn;
67 }
68 
69 static void split_map_pages(struct list_head *list)
70 {
71 	unsigned int i, order, nr_pages;
72 	struct page *page, *next;
73 	LIST_HEAD(tmp_list);
74 
75 	list_for_each_entry_safe(page, next, list, lru) {
76 		list_del(&page->lru);
77 
78 		order = page_private(page);
79 		nr_pages = 1 << order;
80 
81 		post_alloc_hook(page, order, __GFP_MOVABLE);
82 		if (order)
83 			split_page(page, order);
84 
85 		for (i = 0; i < nr_pages; i++) {
86 			list_add(&page->lru, &tmp_list);
87 			page++;
88 		}
89 	}
90 
91 	list_splice(&tmp_list, list);
92 }
93 
94 #ifdef CONFIG_COMPACTION
95 
96 int PageMovable(struct page *page)
97 {
98 	struct address_space *mapping;
99 
100 	VM_BUG_ON_PAGE(!PageLocked(page), page);
101 	if (!__PageMovable(page))
102 		return 0;
103 
104 	mapping = page_mapping(page);
105 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
106 		return 1;
107 
108 	return 0;
109 }
110 EXPORT_SYMBOL(PageMovable);
111 
112 void __SetPageMovable(struct page *page, struct address_space *mapping)
113 {
114 	VM_BUG_ON_PAGE(!PageLocked(page), page);
115 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
116 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
117 }
118 EXPORT_SYMBOL(__SetPageMovable);
119 
120 void __ClearPageMovable(struct page *page)
121 {
122 	VM_BUG_ON_PAGE(!PageLocked(page), page);
123 	VM_BUG_ON_PAGE(!PageMovable(page), page);
124 	/*
125 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126 	 * flag so that VM can catch up released page by driver after isolation.
127 	 * With it, VM migration doesn't try to put it back.
128 	 */
129 	page->mapping = (void *)((unsigned long)page->mapping &
130 				PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__ClearPageMovable);
133 
134 /* Do not skip compaction more than 64 times */
135 #define COMPACT_MAX_DEFER_SHIFT 6
136 
137 /*
138  * Compaction is deferred when compaction fails to result in a page
139  * allocation success. 1 << compact_defer_limit compactions are skipped up
140  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141  */
142 void defer_compaction(struct zone *zone, int order)
143 {
144 	zone->compact_considered = 0;
145 	zone->compact_defer_shift++;
146 
147 	if (order < zone->compact_order_failed)
148 		zone->compact_order_failed = order;
149 
150 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
151 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
152 
153 	trace_mm_compaction_defer_compaction(zone, order);
154 }
155 
156 /* Returns true if compaction should be skipped this time */
157 bool compaction_deferred(struct zone *zone, int order)
158 {
159 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
160 
161 	if (order < zone->compact_order_failed)
162 		return false;
163 
164 	/* Avoid possible overflow */
165 	if (++zone->compact_considered > defer_limit)
166 		zone->compact_considered = defer_limit;
167 
168 	if (zone->compact_considered >= defer_limit)
169 		return false;
170 
171 	trace_mm_compaction_deferred(zone, order);
172 
173 	return true;
174 }
175 
176 /*
177  * Update defer tracking counters after successful compaction of given order,
178  * which means an allocation either succeeded (alloc_success == true) or is
179  * expected to succeed.
180  */
181 void compaction_defer_reset(struct zone *zone, int order,
182 		bool alloc_success)
183 {
184 	if (alloc_success) {
185 		zone->compact_considered = 0;
186 		zone->compact_defer_shift = 0;
187 	}
188 	if (order >= zone->compact_order_failed)
189 		zone->compact_order_failed = order + 1;
190 
191 	trace_mm_compaction_defer_reset(zone, order);
192 }
193 
194 /* Returns true if restarting compaction after many failures */
195 bool compaction_restarting(struct zone *zone, int order)
196 {
197 	if (order < zone->compact_order_failed)
198 		return false;
199 
200 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
201 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
202 }
203 
204 /* Returns true if the pageblock should be scanned for pages to isolate. */
205 static inline bool isolation_suitable(struct compact_control *cc,
206 					struct page *page)
207 {
208 	if (cc->ignore_skip_hint)
209 		return true;
210 
211 	return !get_pageblock_skip(page);
212 }
213 
214 static void reset_cached_positions(struct zone *zone)
215 {
216 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
217 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218 	zone->compact_cached_free_pfn =
219 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 }
221 
222 /*
223  * Compound pages of >= pageblock_order should consistenly be skipped until
224  * released. It is always pointless to compact pages of such order (if they are
225  * migratable), and the pageblocks they occupy cannot contain any free pages.
226  */
227 static bool pageblock_skip_persistent(struct page *page)
228 {
229 	if (!PageCompound(page))
230 		return false;
231 
232 	page = compound_head(page);
233 
234 	if (compound_order(page) >= pageblock_order)
235 		return true;
236 
237 	return false;
238 }
239 
240 static bool
241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
242 							bool check_target)
243 {
244 	struct page *page = pfn_to_online_page(pfn);
245 	struct page *block_page;
246 	struct page *end_page;
247 	unsigned long block_pfn;
248 
249 	if (!page)
250 		return false;
251 	if (zone != page_zone(page))
252 		return false;
253 	if (pageblock_skip_persistent(page))
254 		return false;
255 
256 	/*
257 	 * If skip is already cleared do no further checking once the
258 	 * restart points have been set.
259 	 */
260 	if (check_source && check_target && !get_pageblock_skip(page))
261 		return true;
262 
263 	/*
264 	 * If clearing skip for the target scanner, do not select a
265 	 * non-movable pageblock as the starting point.
266 	 */
267 	if (!check_source && check_target &&
268 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
269 		return false;
270 
271 	/* Ensure the start of the pageblock or zone is online and valid */
272 	block_pfn = pageblock_start_pfn(pfn);
273 	block_pfn = max(block_pfn, zone->zone_start_pfn);
274 	block_page = pfn_to_online_page(block_pfn);
275 	if (block_page) {
276 		page = block_page;
277 		pfn = block_pfn;
278 	}
279 
280 	/* Ensure the end of the pageblock or zone is online and valid */
281 	block_pfn = pageblock_end_pfn(pfn) - 1;
282 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
283 	end_page = pfn_to_online_page(block_pfn);
284 	if (!end_page)
285 		return false;
286 
287 	/*
288 	 * Only clear the hint if a sample indicates there is either a
289 	 * free page or an LRU page in the block. One or other condition
290 	 * is necessary for the block to be a migration source/target.
291 	 */
292 	do {
293 		if (pfn_valid_within(pfn)) {
294 			if (check_source && PageLRU(page)) {
295 				clear_pageblock_skip(page);
296 				return true;
297 			}
298 
299 			if (check_target && PageBuddy(page)) {
300 				clear_pageblock_skip(page);
301 				return true;
302 			}
303 		}
304 
305 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
306 		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
307 	} while (page <= end_page);
308 
309 	return false;
310 }
311 
312 /*
313  * This function is called to clear all cached information on pageblocks that
314  * should be skipped for page isolation when the migrate and free page scanner
315  * meet.
316  */
317 static void __reset_isolation_suitable(struct zone *zone)
318 {
319 	unsigned long migrate_pfn = zone->zone_start_pfn;
320 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
321 	unsigned long reset_migrate = free_pfn;
322 	unsigned long reset_free = migrate_pfn;
323 	bool source_set = false;
324 	bool free_set = false;
325 
326 	if (!zone->compact_blockskip_flush)
327 		return;
328 
329 	zone->compact_blockskip_flush = false;
330 
331 	/*
332 	 * Walk the zone and update pageblock skip information. Source looks
333 	 * for PageLRU while target looks for PageBuddy. When the scanner
334 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
335 	 * is suitable as both source and target.
336 	 */
337 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
338 					free_pfn -= pageblock_nr_pages) {
339 		cond_resched();
340 
341 		/* Update the migrate PFN */
342 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
343 		    migrate_pfn < reset_migrate) {
344 			source_set = true;
345 			reset_migrate = migrate_pfn;
346 			zone->compact_init_migrate_pfn = reset_migrate;
347 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
348 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
349 		}
350 
351 		/* Update the free PFN */
352 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
353 		    free_pfn > reset_free) {
354 			free_set = true;
355 			reset_free = free_pfn;
356 			zone->compact_init_free_pfn = reset_free;
357 			zone->compact_cached_free_pfn = reset_free;
358 		}
359 	}
360 
361 	/* Leave no distance if no suitable block was reset */
362 	if (reset_migrate >= reset_free) {
363 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
364 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
365 		zone->compact_cached_free_pfn = free_pfn;
366 	}
367 }
368 
369 void reset_isolation_suitable(pg_data_t *pgdat)
370 {
371 	int zoneid;
372 
373 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
374 		struct zone *zone = &pgdat->node_zones[zoneid];
375 		if (!populated_zone(zone))
376 			continue;
377 
378 		/* Only flush if a full compaction finished recently */
379 		if (zone->compact_blockskip_flush)
380 			__reset_isolation_suitable(zone);
381 	}
382 }
383 
384 /*
385  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
386  * locks are not required for read/writers. Returns true if it was already set.
387  */
388 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
389 							unsigned long pfn)
390 {
391 	bool skip;
392 
393 	/* Do no update if skip hint is being ignored */
394 	if (cc->ignore_skip_hint)
395 		return false;
396 
397 	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
398 		return false;
399 
400 	skip = get_pageblock_skip(page);
401 	if (!skip && !cc->no_set_skip_hint)
402 		set_pageblock_skip(page);
403 
404 	return skip;
405 }
406 
407 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
408 {
409 	struct zone *zone = cc->zone;
410 
411 	pfn = pageblock_end_pfn(pfn);
412 
413 	/* Set for isolation rather than compaction */
414 	if (cc->no_set_skip_hint)
415 		return;
416 
417 	if (pfn > zone->compact_cached_migrate_pfn[0])
418 		zone->compact_cached_migrate_pfn[0] = pfn;
419 	if (cc->mode != MIGRATE_ASYNC &&
420 	    pfn > zone->compact_cached_migrate_pfn[1])
421 		zone->compact_cached_migrate_pfn[1] = pfn;
422 }
423 
424 /*
425  * If no pages were isolated then mark this pageblock to be skipped in the
426  * future. The information is later cleared by __reset_isolation_suitable().
427  */
428 static void update_pageblock_skip(struct compact_control *cc,
429 			struct page *page, unsigned long pfn)
430 {
431 	struct zone *zone = cc->zone;
432 
433 	if (cc->no_set_skip_hint)
434 		return;
435 
436 	if (!page)
437 		return;
438 
439 	set_pageblock_skip(page);
440 
441 	/* Update where async and sync compaction should restart */
442 	if (pfn < zone->compact_cached_free_pfn)
443 		zone->compact_cached_free_pfn = pfn;
444 }
445 #else
446 static inline bool isolation_suitable(struct compact_control *cc,
447 					struct page *page)
448 {
449 	return true;
450 }
451 
452 static inline bool pageblock_skip_persistent(struct page *page)
453 {
454 	return false;
455 }
456 
457 static inline void update_pageblock_skip(struct compact_control *cc,
458 			struct page *page, unsigned long pfn)
459 {
460 }
461 
462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
463 {
464 }
465 
466 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
467 							unsigned long pfn)
468 {
469 	return false;
470 }
471 #endif /* CONFIG_COMPACTION */
472 
473 /*
474  * Compaction requires the taking of some coarse locks that are potentially
475  * very heavily contended. For async compaction, trylock and record if the
476  * lock is contended. The lock will still be acquired but compaction will
477  * abort when the current block is finished regardless of success rate.
478  * Sync compaction acquires the lock.
479  *
480  * Always returns true which makes it easier to track lock state in callers.
481  */
482 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
483 						struct compact_control *cc)
484 	__acquires(lock)
485 {
486 	/* Track if the lock is contended in async mode */
487 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
488 		if (spin_trylock_irqsave(lock, *flags))
489 			return true;
490 
491 		cc->contended = true;
492 	}
493 
494 	spin_lock_irqsave(lock, *flags);
495 	return true;
496 }
497 
498 /*
499  * Compaction requires the taking of some coarse locks that are potentially
500  * very heavily contended. The lock should be periodically unlocked to avoid
501  * having disabled IRQs for a long time, even when there is nobody waiting on
502  * the lock. It might also be that allowing the IRQs will result in
503  * need_resched() becoming true. If scheduling is needed, async compaction
504  * aborts. Sync compaction schedules.
505  * Either compaction type will also abort if a fatal signal is pending.
506  * In either case if the lock was locked, it is dropped and not regained.
507  *
508  * Returns true if compaction should abort due to fatal signal pending, or
509  *		async compaction due to need_resched()
510  * Returns false when compaction can continue (sync compaction might have
511  *		scheduled)
512  */
513 static bool compact_unlock_should_abort(spinlock_t *lock,
514 		unsigned long flags, bool *locked, struct compact_control *cc)
515 {
516 	if (*locked) {
517 		spin_unlock_irqrestore(lock, flags);
518 		*locked = false;
519 	}
520 
521 	if (fatal_signal_pending(current)) {
522 		cc->contended = true;
523 		return true;
524 	}
525 
526 	cond_resched();
527 
528 	return false;
529 }
530 
531 /*
532  * Isolate free pages onto a private freelist. If @strict is true, will abort
533  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
534  * (even though it may still end up isolating some pages).
535  */
536 static unsigned long isolate_freepages_block(struct compact_control *cc,
537 				unsigned long *start_pfn,
538 				unsigned long end_pfn,
539 				struct list_head *freelist,
540 				unsigned int stride,
541 				bool strict)
542 {
543 	int nr_scanned = 0, total_isolated = 0;
544 	struct page *cursor;
545 	unsigned long flags = 0;
546 	bool locked = false;
547 	unsigned long blockpfn = *start_pfn;
548 	unsigned int order;
549 
550 	/* Strict mode is for isolation, speed is secondary */
551 	if (strict)
552 		stride = 1;
553 
554 	cursor = pfn_to_page(blockpfn);
555 
556 	/* Isolate free pages. */
557 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
558 		int isolated;
559 		struct page *page = cursor;
560 
561 		/*
562 		 * Periodically drop the lock (if held) regardless of its
563 		 * contention, to give chance to IRQs. Abort if fatal signal
564 		 * pending or async compaction detects need_resched()
565 		 */
566 		if (!(blockpfn % SWAP_CLUSTER_MAX)
567 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
568 								&locked, cc))
569 			break;
570 
571 		nr_scanned++;
572 		if (!pfn_valid_within(blockpfn))
573 			goto isolate_fail;
574 
575 		/*
576 		 * For compound pages such as THP and hugetlbfs, we can save
577 		 * potentially a lot of iterations if we skip them at once.
578 		 * The check is racy, but we can consider only valid values
579 		 * and the only danger is skipping too much.
580 		 */
581 		if (PageCompound(page)) {
582 			const unsigned int order = compound_order(page);
583 
584 			if (likely(order < MAX_ORDER)) {
585 				blockpfn += (1UL << order) - 1;
586 				cursor += (1UL << order) - 1;
587 			}
588 			goto isolate_fail;
589 		}
590 
591 		if (!PageBuddy(page))
592 			goto isolate_fail;
593 
594 		/*
595 		 * If we already hold the lock, we can skip some rechecking.
596 		 * Note that if we hold the lock now, checked_pageblock was
597 		 * already set in some previous iteration (or strict is true),
598 		 * so it is correct to skip the suitable migration target
599 		 * recheck as well.
600 		 */
601 		if (!locked) {
602 			locked = compact_lock_irqsave(&cc->zone->lock,
603 								&flags, cc);
604 
605 			/* Recheck this is a buddy page under lock */
606 			if (!PageBuddy(page))
607 				goto isolate_fail;
608 		}
609 
610 		/* Found a free page, will break it into order-0 pages */
611 		order = page_order(page);
612 		isolated = __isolate_free_page(page, order);
613 		if (!isolated)
614 			break;
615 		set_page_private(page, order);
616 
617 		total_isolated += isolated;
618 		cc->nr_freepages += isolated;
619 		list_add_tail(&page->lru, freelist);
620 
621 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
622 			blockpfn += isolated;
623 			break;
624 		}
625 		/* Advance to the end of split page */
626 		blockpfn += isolated - 1;
627 		cursor += isolated - 1;
628 		continue;
629 
630 isolate_fail:
631 		if (strict)
632 			break;
633 		else
634 			continue;
635 
636 	}
637 
638 	if (locked)
639 		spin_unlock_irqrestore(&cc->zone->lock, flags);
640 
641 	/*
642 	 * There is a tiny chance that we have read bogus compound_order(),
643 	 * so be careful to not go outside of the pageblock.
644 	 */
645 	if (unlikely(blockpfn > end_pfn))
646 		blockpfn = end_pfn;
647 
648 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
649 					nr_scanned, total_isolated);
650 
651 	/* Record how far we have got within the block */
652 	*start_pfn = blockpfn;
653 
654 	/*
655 	 * If strict isolation is requested by CMA then check that all the
656 	 * pages requested were isolated. If there were any failures, 0 is
657 	 * returned and CMA will fail.
658 	 */
659 	if (strict && blockpfn < end_pfn)
660 		total_isolated = 0;
661 
662 	cc->total_free_scanned += nr_scanned;
663 	if (total_isolated)
664 		count_compact_events(COMPACTISOLATED, total_isolated);
665 	return total_isolated;
666 }
667 
668 /**
669  * isolate_freepages_range() - isolate free pages.
670  * @cc:        Compaction control structure.
671  * @start_pfn: The first PFN to start isolating.
672  * @end_pfn:   The one-past-last PFN.
673  *
674  * Non-free pages, invalid PFNs, or zone boundaries within the
675  * [start_pfn, end_pfn) range are considered errors, cause function to
676  * undo its actions and return zero.
677  *
678  * Otherwise, function returns one-past-the-last PFN of isolated page
679  * (which may be greater then end_pfn if end fell in a middle of
680  * a free page).
681  */
682 unsigned long
683 isolate_freepages_range(struct compact_control *cc,
684 			unsigned long start_pfn, unsigned long end_pfn)
685 {
686 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
687 	LIST_HEAD(freelist);
688 
689 	pfn = start_pfn;
690 	block_start_pfn = pageblock_start_pfn(pfn);
691 	if (block_start_pfn < cc->zone->zone_start_pfn)
692 		block_start_pfn = cc->zone->zone_start_pfn;
693 	block_end_pfn = pageblock_end_pfn(pfn);
694 
695 	for (; pfn < end_pfn; pfn += isolated,
696 				block_start_pfn = block_end_pfn,
697 				block_end_pfn += pageblock_nr_pages) {
698 		/* Protect pfn from changing by isolate_freepages_block */
699 		unsigned long isolate_start_pfn = pfn;
700 
701 		block_end_pfn = min(block_end_pfn, end_pfn);
702 
703 		/*
704 		 * pfn could pass the block_end_pfn if isolated freepage
705 		 * is more than pageblock order. In this case, we adjust
706 		 * scanning range to right one.
707 		 */
708 		if (pfn >= block_end_pfn) {
709 			block_start_pfn = pageblock_start_pfn(pfn);
710 			block_end_pfn = pageblock_end_pfn(pfn);
711 			block_end_pfn = min(block_end_pfn, end_pfn);
712 		}
713 
714 		if (!pageblock_pfn_to_page(block_start_pfn,
715 					block_end_pfn, cc->zone))
716 			break;
717 
718 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
719 					block_end_pfn, &freelist, 0, true);
720 
721 		/*
722 		 * In strict mode, isolate_freepages_block() returns 0 if
723 		 * there are any holes in the block (ie. invalid PFNs or
724 		 * non-free pages).
725 		 */
726 		if (!isolated)
727 			break;
728 
729 		/*
730 		 * If we managed to isolate pages, it is always (1 << n) *
731 		 * pageblock_nr_pages for some non-negative n.  (Max order
732 		 * page may span two pageblocks).
733 		 */
734 	}
735 
736 	/* __isolate_free_page() does not map the pages */
737 	split_map_pages(&freelist);
738 
739 	if (pfn < end_pfn) {
740 		/* Loop terminated early, cleanup. */
741 		release_freepages(&freelist);
742 		return 0;
743 	}
744 
745 	/* We don't use freelists for anything. */
746 	return pfn;
747 }
748 
749 /* Similar to reclaim, but different enough that they don't share logic */
750 static bool too_many_isolated(pg_data_t *pgdat)
751 {
752 	unsigned long active, inactive, isolated;
753 
754 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
755 			node_page_state(pgdat, NR_INACTIVE_ANON);
756 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
757 			node_page_state(pgdat, NR_ACTIVE_ANON);
758 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
759 			node_page_state(pgdat, NR_ISOLATED_ANON);
760 
761 	return isolated > (inactive + active) / 2;
762 }
763 
764 /**
765  * isolate_migratepages_block() - isolate all migrate-able pages within
766  *				  a single pageblock
767  * @cc:		Compaction control structure.
768  * @low_pfn:	The first PFN to isolate
769  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
770  * @isolate_mode: Isolation mode to be used.
771  *
772  * Isolate all pages that can be migrated from the range specified by
773  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
774  * Returns zero if there is a fatal signal pending, otherwise PFN of the
775  * first page that was not scanned (which may be both less, equal to or more
776  * than end_pfn).
777  *
778  * The pages are isolated on cc->migratepages list (not required to be empty),
779  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
780  * is neither read nor updated.
781  */
782 static unsigned long
783 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
784 			unsigned long end_pfn, isolate_mode_t isolate_mode)
785 {
786 	pg_data_t *pgdat = cc->zone->zone_pgdat;
787 	unsigned long nr_scanned = 0, nr_isolated = 0;
788 	struct lruvec *lruvec;
789 	unsigned long flags = 0;
790 	bool locked = false;
791 	struct page *page = NULL, *valid_page = NULL;
792 	unsigned long start_pfn = low_pfn;
793 	bool skip_on_failure = false;
794 	unsigned long next_skip_pfn = 0;
795 	bool skip_updated = false;
796 
797 	/*
798 	 * Ensure that there are not too many pages isolated from the LRU
799 	 * list by either parallel reclaimers or compaction. If there are,
800 	 * delay for some time until fewer pages are isolated
801 	 */
802 	while (unlikely(too_many_isolated(pgdat))) {
803 		/* async migration should just abort */
804 		if (cc->mode == MIGRATE_ASYNC)
805 			return 0;
806 
807 		congestion_wait(BLK_RW_ASYNC, HZ/10);
808 
809 		if (fatal_signal_pending(current))
810 			return 0;
811 	}
812 
813 	cond_resched();
814 
815 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
816 		skip_on_failure = true;
817 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
818 	}
819 
820 	/* Time to isolate some pages for migration */
821 	for (; low_pfn < end_pfn; low_pfn++) {
822 
823 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
824 			/*
825 			 * We have isolated all migration candidates in the
826 			 * previous order-aligned block, and did not skip it due
827 			 * to failure. We should migrate the pages now and
828 			 * hopefully succeed compaction.
829 			 */
830 			if (nr_isolated)
831 				break;
832 
833 			/*
834 			 * We failed to isolate in the previous order-aligned
835 			 * block. Set the new boundary to the end of the
836 			 * current block. Note we can't simply increase
837 			 * next_skip_pfn by 1 << order, as low_pfn might have
838 			 * been incremented by a higher number due to skipping
839 			 * a compound or a high-order buddy page in the
840 			 * previous loop iteration.
841 			 */
842 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
843 		}
844 
845 		/*
846 		 * Periodically drop the lock (if held) regardless of its
847 		 * contention, to give chance to IRQs. Abort completely if
848 		 * a fatal signal is pending.
849 		 */
850 		if (!(low_pfn % SWAP_CLUSTER_MAX)
851 		    && compact_unlock_should_abort(&pgdat->lru_lock,
852 					    flags, &locked, cc)) {
853 			low_pfn = 0;
854 			goto fatal_pending;
855 		}
856 
857 		if (!pfn_valid_within(low_pfn))
858 			goto isolate_fail;
859 		nr_scanned++;
860 
861 		page = pfn_to_page(low_pfn);
862 
863 		/*
864 		 * Check if the pageblock has already been marked skipped.
865 		 * Only the aligned PFN is checked as the caller isolates
866 		 * COMPACT_CLUSTER_MAX at a time so the second call must
867 		 * not falsely conclude that the block should be skipped.
868 		 */
869 		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
870 			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
871 				low_pfn = end_pfn;
872 				goto isolate_abort;
873 			}
874 			valid_page = page;
875 		}
876 
877 		/*
878 		 * Skip if free. We read page order here without zone lock
879 		 * which is generally unsafe, but the race window is small and
880 		 * the worst thing that can happen is that we skip some
881 		 * potential isolation targets.
882 		 */
883 		if (PageBuddy(page)) {
884 			unsigned long freepage_order = page_order_unsafe(page);
885 
886 			/*
887 			 * Without lock, we cannot be sure that what we got is
888 			 * a valid page order. Consider only values in the
889 			 * valid order range to prevent low_pfn overflow.
890 			 */
891 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
892 				low_pfn += (1UL << freepage_order) - 1;
893 			continue;
894 		}
895 
896 		/*
897 		 * Regardless of being on LRU, compound pages such as THP and
898 		 * hugetlbfs are not to be compacted unless we are attempting
899 		 * an allocation much larger than the huge page size (eg CMA).
900 		 * We can potentially save a lot of iterations if we skip them
901 		 * at once. The check is racy, but we can consider only valid
902 		 * values and the only danger is skipping too much.
903 		 */
904 		if (PageCompound(page) && !cc->alloc_contig) {
905 			const unsigned int order = compound_order(page);
906 
907 			if (likely(order < MAX_ORDER))
908 				low_pfn += (1UL << order) - 1;
909 			goto isolate_fail;
910 		}
911 
912 		/*
913 		 * Check may be lockless but that's ok as we recheck later.
914 		 * It's possible to migrate LRU and non-lru movable pages.
915 		 * Skip any other type of page
916 		 */
917 		if (!PageLRU(page)) {
918 			/*
919 			 * __PageMovable can return false positive so we need
920 			 * to verify it under page_lock.
921 			 */
922 			if (unlikely(__PageMovable(page)) &&
923 					!PageIsolated(page)) {
924 				if (locked) {
925 					spin_unlock_irqrestore(&pgdat->lru_lock,
926 									flags);
927 					locked = false;
928 				}
929 
930 				if (!isolate_movable_page(page, isolate_mode))
931 					goto isolate_success;
932 			}
933 
934 			goto isolate_fail;
935 		}
936 
937 		/*
938 		 * Migration will fail if an anonymous page is pinned in memory,
939 		 * so avoid taking lru_lock and isolating it unnecessarily in an
940 		 * admittedly racy check.
941 		 */
942 		if (!page_mapping(page) &&
943 		    page_count(page) > page_mapcount(page))
944 			goto isolate_fail;
945 
946 		/*
947 		 * Only allow to migrate anonymous pages in GFP_NOFS context
948 		 * because those do not depend on fs locks.
949 		 */
950 		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
951 			goto isolate_fail;
952 
953 		/* If we already hold the lock, we can skip some rechecking */
954 		if (!locked) {
955 			locked = compact_lock_irqsave(&pgdat->lru_lock,
956 								&flags, cc);
957 
958 			/* Try get exclusive access under lock */
959 			if (!skip_updated) {
960 				skip_updated = true;
961 				if (test_and_set_skip(cc, page, low_pfn))
962 					goto isolate_abort;
963 			}
964 
965 			/* Recheck PageLRU and PageCompound under lock */
966 			if (!PageLRU(page))
967 				goto isolate_fail;
968 
969 			/*
970 			 * Page become compound since the non-locked check,
971 			 * and it's on LRU. It can only be a THP so the order
972 			 * is safe to read and it's 0 for tail pages.
973 			 */
974 			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
975 				low_pfn += compound_nr(page) - 1;
976 				goto isolate_fail;
977 			}
978 		}
979 
980 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
981 
982 		/* Try isolate the page */
983 		if (__isolate_lru_page(page, isolate_mode) != 0)
984 			goto isolate_fail;
985 
986 		/* The whole page is taken off the LRU; skip the tail pages. */
987 		if (PageCompound(page))
988 			low_pfn += compound_nr(page) - 1;
989 
990 		/* Successfully isolated */
991 		del_page_from_lru_list(page, lruvec, page_lru(page));
992 		mod_node_page_state(page_pgdat(page),
993 				NR_ISOLATED_ANON + page_is_file_lru(page),
994 				hpage_nr_pages(page));
995 
996 isolate_success:
997 		list_add(&page->lru, &cc->migratepages);
998 		cc->nr_migratepages++;
999 		nr_isolated++;
1000 
1001 		/*
1002 		 * Avoid isolating too much unless this block is being
1003 		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1004 		 * or a lock is contended. For contention, isolate quickly to
1005 		 * potentially remove one source of contention.
1006 		 */
1007 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1008 		    !cc->rescan && !cc->contended) {
1009 			++low_pfn;
1010 			break;
1011 		}
1012 
1013 		continue;
1014 isolate_fail:
1015 		if (!skip_on_failure)
1016 			continue;
1017 
1018 		/*
1019 		 * We have isolated some pages, but then failed. Release them
1020 		 * instead of migrating, as we cannot form the cc->order buddy
1021 		 * page anyway.
1022 		 */
1023 		if (nr_isolated) {
1024 			if (locked) {
1025 				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1026 				locked = false;
1027 			}
1028 			putback_movable_pages(&cc->migratepages);
1029 			cc->nr_migratepages = 0;
1030 			nr_isolated = 0;
1031 		}
1032 
1033 		if (low_pfn < next_skip_pfn) {
1034 			low_pfn = next_skip_pfn - 1;
1035 			/*
1036 			 * The check near the loop beginning would have updated
1037 			 * next_skip_pfn too, but this is a bit simpler.
1038 			 */
1039 			next_skip_pfn += 1UL << cc->order;
1040 		}
1041 	}
1042 
1043 	/*
1044 	 * The PageBuddy() check could have potentially brought us outside
1045 	 * the range to be scanned.
1046 	 */
1047 	if (unlikely(low_pfn > end_pfn))
1048 		low_pfn = end_pfn;
1049 
1050 isolate_abort:
1051 	if (locked)
1052 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1053 
1054 	/*
1055 	 * Updated the cached scanner pfn once the pageblock has been scanned
1056 	 * Pages will either be migrated in which case there is no point
1057 	 * scanning in the near future or migration failed in which case the
1058 	 * failure reason may persist. The block is marked for skipping if
1059 	 * there were no pages isolated in the block or if the block is
1060 	 * rescanned twice in a row.
1061 	 */
1062 	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1063 		if (valid_page && !skip_updated)
1064 			set_pageblock_skip(valid_page);
1065 		update_cached_migrate(cc, low_pfn);
1066 	}
1067 
1068 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1069 						nr_scanned, nr_isolated);
1070 
1071 fatal_pending:
1072 	cc->total_migrate_scanned += nr_scanned;
1073 	if (nr_isolated)
1074 		count_compact_events(COMPACTISOLATED, nr_isolated);
1075 
1076 	return low_pfn;
1077 }
1078 
1079 /**
1080  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1081  * @cc:        Compaction control structure.
1082  * @start_pfn: The first PFN to start isolating.
1083  * @end_pfn:   The one-past-last PFN.
1084  *
1085  * Returns zero if isolation fails fatally due to e.g. pending signal.
1086  * Otherwise, function returns one-past-the-last PFN of isolated page
1087  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1088  */
1089 unsigned long
1090 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1091 							unsigned long end_pfn)
1092 {
1093 	unsigned long pfn, block_start_pfn, block_end_pfn;
1094 
1095 	/* Scan block by block. First and last block may be incomplete */
1096 	pfn = start_pfn;
1097 	block_start_pfn = pageblock_start_pfn(pfn);
1098 	if (block_start_pfn < cc->zone->zone_start_pfn)
1099 		block_start_pfn = cc->zone->zone_start_pfn;
1100 	block_end_pfn = pageblock_end_pfn(pfn);
1101 
1102 	for (; pfn < end_pfn; pfn = block_end_pfn,
1103 				block_start_pfn = block_end_pfn,
1104 				block_end_pfn += pageblock_nr_pages) {
1105 
1106 		block_end_pfn = min(block_end_pfn, end_pfn);
1107 
1108 		if (!pageblock_pfn_to_page(block_start_pfn,
1109 					block_end_pfn, cc->zone))
1110 			continue;
1111 
1112 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1113 							ISOLATE_UNEVICTABLE);
1114 
1115 		if (!pfn)
1116 			break;
1117 
1118 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1119 			break;
1120 	}
1121 
1122 	return pfn;
1123 }
1124 
1125 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1126 #ifdef CONFIG_COMPACTION
1127 
1128 static bool suitable_migration_source(struct compact_control *cc,
1129 							struct page *page)
1130 {
1131 	int block_mt;
1132 
1133 	if (pageblock_skip_persistent(page))
1134 		return false;
1135 
1136 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1137 		return true;
1138 
1139 	block_mt = get_pageblock_migratetype(page);
1140 
1141 	if (cc->migratetype == MIGRATE_MOVABLE)
1142 		return is_migrate_movable(block_mt);
1143 	else
1144 		return block_mt == cc->migratetype;
1145 }
1146 
1147 /* Returns true if the page is within a block suitable for migration to */
1148 static bool suitable_migration_target(struct compact_control *cc,
1149 							struct page *page)
1150 {
1151 	/* If the page is a large free page, then disallow migration */
1152 	if (PageBuddy(page)) {
1153 		/*
1154 		 * We are checking page_order without zone->lock taken. But
1155 		 * the only small danger is that we skip a potentially suitable
1156 		 * pageblock, so it's not worth to check order for valid range.
1157 		 */
1158 		if (page_order_unsafe(page) >= pageblock_order)
1159 			return false;
1160 	}
1161 
1162 	if (cc->ignore_block_suitable)
1163 		return true;
1164 
1165 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1166 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1167 		return true;
1168 
1169 	/* Otherwise skip the block */
1170 	return false;
1171 }
1172 
1173 static inline unsigned int
1174 freelist_scan_limit(struct compact_control *cc)
1175 {
1176 	unsigned short shift = BITS_PER_LONG - 1;
1177 
1178 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1179 }
1180 
1181 /*
1182  * Test whether the free scanner has reached the same or lower pageblock than
1183  * the migration scanner, and compaction should thus terminate.
1184  */
1185 static inline bool compact_scanners_met(struct compact_control *cc)
1186 {
1187 	return (cc->free_pfn >> pageblock_order)
1188 		<= (cc->migrate_pfn >> pageblock_order);
1189 }
1190 
1191 /*
1192  * Used when scanning for a suitable migration target which scans freelists
1193  * in reverse. Reorders the list such as the unscanned pages are scanned
1194  * first on the next iteration of the free scanner
1195  */
1196 static void
1197 move_freelist_head(struct list_head *freelist, struct page *freepage)
1198 {
1199 	LIST_HEAD(sublist);
1200 
1201 	if (!list_is_last(freelist, &freepage->lru)) {
1202 		list_cut_before(&sublist, freelist, &freepage->lru);
1203 		if (!list_empty(&sublist))
1204 			list_splice_tail(&sublist, freelist);
1205 	}
1206 }
1207 
1208 /*
1209  * Similar to move_freelist_head except used by the migration scanner
1210  * when scanning forward. It's possible for these list operations to
1211  * move against each other if they search the free list exactly in
1212  * lockstep.
1213  */
1214 static void
1215 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1216 {
1217 	LIST_HEAD(sublist);
1218 
1219 	if (!list_is_first(freelist, &freepage->lru)) {
1220 		list_cut_position(&sublist, freelist, &freepage->lru);
1221 		if (!list_empty(&sublist))
1222 			list_splice_tail(&sublist, freelist);
1223 	}
1224 }
1225 
1226 static void
1227 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1228 {
1229 	unsigned long start_pfn, end_pfn;
1230 	struct page *page = pfn_to_page(pfn);
1231 
1232 	/* Do not search around if there are enough pages already */
1233 	if (cc->nr_freepages >= cc->nr_migratepages)
1234 		return;
1235 
1236 	/* Minimise scanning during async compaction */
1237 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1238 		return;
1239 
1240 	/* Pageblock boundaries */
1241 	start_pfn = pageblock_start_pfn(pfn);
1242 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1243 
1244 	/* Scan before */
1245 	if (start_pfn != pfn) {
1246 		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1247 		if (cc->nr_freepages >= cc->nr_migratepages)
1248 			return;
1249 	}
1250 
1251 	/* Scan after */
1252 	start_pfn = pfn + nr_isolated;
1253 	if (start_pfn < end_pfn)
1254 		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1255 
1256 	/* Skip this pageblock in the future as it's full or nearly full */
1257 	if (cc->nr_freepages < cc->nr_migratepages)
1258 		set_pageblock_skip(page);
1259 }
1260 
1261 /* Search orders in round-robin fashion */
1262 static int next_search_order(struct compact_control *cc, int order)
1263 {
1264 	order--;
1265 	if (order < 0)
1266 		order = cc->order - 1;
1267 
1268 	/* Search wrapped around? */
1269 	if (order == cc->search_order) {
1270 		cc->search_order--;
1271 		if (cc->search_order < 0)
1272 			cc->search_order = cc->order - 1;
1273 		return -1;
1274 	}
1275 
1276 	return order;
1277 }
1278 
1279 static unsigned long
1280 fast_isolate_freepages(struct compact_control *cc)
1281 {
1282 	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1283 	unsigned int nr_scanned = 0;
1284 	unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1285 	unsigned long nr_isolated = 0;
1286 	unsigned long distance;
1287 	struct page *page = NULL;
1288 	bool scan_start = false;
1289 	int order;
1290 
1291 	/* Full compaction passes in a negative order */
1292 	if (cc->order <= 0)
1293 		return cc->free_pfn;
1294 
1295 	/*
1296 	 * If starting the scan, use a deeper search and use the highest
1297 	 * PFN found if a suitable one is not found.
1298 	 */
1299 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1300 		limit = pageblock_nr_pages >> 1;
1301 		scan_start = true;
1302 	}
1303 
1304 	/*
1305 	 * Preferred point is in the top quarter of the scan space but take
1306 	 * a pfn from the top half if the search is problematic.
1307 	 */
1308 	distance = (cc->free_pfn - cc->migrate_pfn);
1309 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1310 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1311 
1312 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1313 		low_pfn = min_pfn;
1314 
1315 	/*
1316 	 * Search starts from the last successful isolation order or the next
1317 	 * order to search after a previous failure
1318 	 */
1319 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1320 
1321 	for (order = cc->search_order;
1322 	     !page && order >= 0;
1323 	     order = next_search_order(cc, order)) {
1324 		struct free_area *area = &cc->zone->free_area[order];
1325 		struct list_head *freelist;
1326 		struct page *freepage;
1327 		unsigned long flags;
1328 		unsigned int order_scanned = 0;
1329 
1330 		if (!area->nr_free)
1331 			continue;
1332 
1333 		spin_lock_irqsave(&cc->zone->lock, flags);
1334 		freelist = &area->free_list[MIGRATE_MOVABLE];
1335 		list_for_each_entry_reverse(freepage, freelist, lru) {
1336 			unsigned long pfn;
1337 
1338 			order_scanned++;
1339 			nr_scanned++;
1340 			pfn = page_to_pfn(freepage);
1341 
1342 			if (pfn >= highest)
1343 				highest = pageblock_start_pfn(pfn);
1344 
1345 			if (pfn >= low_pfn) {
1346 				cc->fast_search_fail = 0;
1347 				cc->search_order = order;
1348 				page = freepage;
1349 				break;
1350 			}
1351 
1352 			if (pfn >= min_pfn && pfn > high_pfn) {
1353 				high_pfn = pfn;
1354 
1355 				/* Shorten the scan if a candidate is found */
1356 				limit >>= 1;
1357 			}
1358 
1359 			if (order_scanned >= limit)
1360 				break;
1361 		}
1362 
1363 		/* Use a minimum pfn if a preferred one was not found */
1364 		if (!page && high_pfn) {
1365 			page = pfn_to_page(high_pfn);
1366 
1367 			/* Update freepage for the list reorder below */
1368 			freepage = page;
1369 		}
1370 
1371 		/* Reorder to so a future search skips recent pages */
1372 		move_freelist_head(freelist, freepage);
1373 
1374 		/* Isolate the page if available */
1375 		if (page) {
1376 			if (__isolate_free_page(page, order)) {
1377 				set_page_private(page, order);
1378 				nr_isolated = 1 << order;
1379 				cc->nr_freepages += nr_isolated;
1380 				list_add_tail(&page->lru, &cc->freepages);
1381 				count_compact_events(COMPACTISOLATED, nr_isolated);
1382 			} else {
1383 				/* If isolation fails, abort the search */
1384 				order = cc->search_order + 1;
1385 				page = NULL;
1386 			}
1387 		}
1388 
1389 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1390 
1391 		/*
1392 		 * Smaller scan on next order so the total scan ig related
1393 		 * to freelist_scan_limit.
1394 		 */
1395 		if (order_scanned >= limit)
1396 			limit = min(1U, limit >> 1);
1397 	}
1398 
1399 	if (!page) {
1400 		cc->fast_search_fail++;
1401 		if (scan_start) {
1402 			/*
1403 			 * Use the highest PFN found above min. If one was
1404 			 * not found, be pessimistic for direct compaction
1405 			 * and use the min mark.
1406 			 */
1407 			if (highest) {
1408 				page = pfn_to_page(highest);
1409 				cc->free_pfn = highest;
1410 			} else {
1411 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1412 					page = pageblock_pfn_to_page(min_pfn,
1413 						pageblock_end_pfn(min_pfn),
1414 						cc->zone);
1415 					cc->free_pfn = min_pfn;
1416 				}
1417 			}
1418 		}
1419 	}
1420 
1421 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1422 		highest -= pageblock_nr_pages;
1423 		cc->zone->compact_cached_free_pfn = highest;
1424 	}
1425 
1426 	cc->total_free_scanned += nr_scanned;
1427 	if (!page)
1428 		return cc->free_pfn;
1429 
1430 	low_pfn = page_to_pfn(page);
1431 	fast_isolate_around(cc, low_pfn, nr_isolated);
1432 	return low_pfn;
1433 }
1434 
1435 /*
1436  * Based on information in the current compact_control, find blocks
1437  * suitable for isolating free pages from and then isolate them.
1438  */
1439 static void isolate_freepages(struct compact_control *cc)
1440 {
1441 	struct zone *zone = cc->zone;
1442 	struct page *page;
1443 	unsigned long block_start_pfn;	/* start of current pageblock */
1444 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1445 	unsigned long block_end_pfn;	/* end of current pageblock */
1446 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1447 	struct list_head *freelist = &cc->freepages;
1448 	unsigned int stride;
1449 
1450 	/* Try a small search of the free lists for a candidate */
1451 	isolate_start_pfn = fast_isolate_freepages(cc);
1452 	if (cc->nr_freepages)
1453 		goto splitmap;
1454 
1455 	/*
1456 	 * Initialise the free scanner. The starting point is where we last
1457 	 * successfully isolated from, zone-cached value, or the end of the
1458 	 * zone when isolating for the first time. For looping we also need
1459 	 * this pfn aligned down to the pageblock boundary, because we do
1460 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1461 	 * For ending point, take care when isolating in last pageblock of a
1462 	 * a zone which ends in the middle of a pageblock.
1463 	 * The low boundary is the end of the pageblock the migration scanner
1464 	 * is using.
1465 	 */
1466 	isolate_start_pfn = cc->free_pfn;
1467 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1468 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1469 						zone_end_pfn(zone));
1470 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1471 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1472 
1473 	/*
1474 	 * Isolate free pages until enough are available to migrate the
1475 	 * pages on cc->migratepages. We stop searching if the migrate
1476 	 * and free page scanners meet or enough free pages are isolated.
1477 	 */
1478 	for (; block_start_pfn >= low_pfn;
1479 				block_end_pfn = block_start_pfn,
1480 				block_start_pfn -= pageblock_nr_pages,
1481 				isolate_start_pfn = block_start_pfn) {
1482 		unsigned long nr_isolated;
1483 
1484 		/*
1485 		 * This can iterate a massively long zone without finding any
1486 		 * suitable migration targets, so periodically check resched.
1487 		 */
1488 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1489 			cond_resched();
1490 
1491 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1492 									zone);
1493 		if (!page)
1494 			continue;
1495 
1496 		/* Check the block is suitable for migration */
1497 		if (!suitable_migration_target(cc, page))
1498 			continue;
1499 
1500 		/* If isolation recently failed, do not retry */
1501 		if (!isolation_suitable(cc, page))
1502 			continue;
1503 
1504 		/* Found a block suitable for isolating free pages from. */
1505 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1506 					block_end_pfn, freelist, stride, false);
1507 
1508 		/* Update the skip hint if the full pageblock was scanned */
1509 		if (isolate_start_pfn == block_end_pfn)
1510 			update_pageblock_skip(cc, page, block_start_pfn);
1511 
1512 		/* Are enough freepages isolated? */
1513 		if (cc->nr_freepages >= cc->nr_migratepages) {
1514 			if (isolate_start_pfn >= block_end_pfn) {
1515 				/*
1516 				 * Restart at previous pageblock if more
1517 				 * freepages can be isolated next time.
1518 				 */
1519 				isolate_start_pfn =
1520 					block_start_pfn - pageblock_nr_pages;
1521 			}
1522 			break;
1523 		} else if (isolate_start_pfn < block_end_pfn) {
1524 			/*
1525 			 * If isolation failed early, do not continue
1526 			 * needlessly.
1527 			 */
1528 			break;
1529 		}
1530 
1531 		/* Adjust stride depending on isolation */
1532 		if (nr_isolated) {
1533 			stride = 1;
1534 			continue;
1535 		}
1536 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1537 	}
1538 
1539 	/*
1540 	 * Record where the free scanner will restart next time. Either we
1541 	 * broke from the loop and set isolate_start_pfn based on the last
1542 	 * call to isolate_freepages_block(), or we met the migration scanner
1543 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1544 	 */
1545 	cc->free_pfn = isolate_start_pfn;
1546 
1547 splitmap:
1548 	/* __isolate_free_page() does not map the pages */
1549 	split_map_pages(freelist);
1550 }
1551 
1552 /*
1553  * This is a migrate-callback that "allocates" freepages by taking pages
1554  * from the isolated freelists in the block we are migrating to.
1555  */
1556 static struct page *compaction_alloc(struct page *migratepage,
1557 					unsigned long data)
1558 {
1559 	struct compact_control *cc = (struct compact_control *)data;
1560 	struct page *freepage;
1561 
1562 	if (list_empty(&cc->freepages)) {
1563 		isolate_freepages(cc);
1564 
1565 		if (list_empty(&cc->freepages))
1566 			return NULL;
1567 	}
1568 
1569 	freepage = list_entry(cc->freepages.next, struct page, lru);
1570 	list_del(&freepage->lru);
1571 	cc->nr_freepages--;
1572 
1573 	return freepage;
1574 }
1575 
1576 /*
1577  * This is a migrate-callback that "frees" freepages back to the isolated
1578  * freelist.  All pages on the freelist are from the same zone, so there is no
1579  * special handling needed for NUMA.
1580  */
1581 static void compaction_free(struct page *page, unsigned long data)
1582 {
1583 	struct compact_control *cc = (struct compact_control *)data;
1584 
1585 	list_add(&page->lru, &cc->freepages);
1586 	cc->nr_freepages++;
1587 }
1588 
1589 /* possible outcome of isolate_migratepages */
1590 typedef enum {
1591 	ISOLATE_ABORT,		/* Abort compaction now */
1592 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1593 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1594 } isolate_migrate_t;
1595 
1596 /*
1597  * Allow userspace to control policy on scanning the unevictable LRU for
1598  * compactable pages.
1599  */
1600 #ifdef CONFIG_PREEMPT_RT
1601 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1602 #else
1603 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1604 #endif
1605 
1606 static inline void
1607 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1608 {
1609 	if (cc->fast_start_pfn == ULONG_MAX)
1610 		return;
1611 
1612 	if (!cc->fast_start_pfn)
1613 		cc->fast_start_pfn = pfn;
1614 
1615 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1616 }
1617 
1618 static inline unsigned long
1619 reinit_migrate_pfn(struct compact_control *cc)
1620 {
1621 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1622 		return cc->migrate_pfn;
1623 
1624 	cc->migrate_pfn = cc->fast_start_pfn;
1625 	cc->fast_start_pfn = ULONG_MAX;
1626 
1627 	return cc->migrate_pfn;
1628 }
1629 
1630 /*
1631  * Briefly search the free lists for a migration source that already has
1632  * some free pages to reduce the number of pages that need migration
1633  * before a pageblock is free.
1634  */
1635 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1636 {
1637 	unsigned int limit = freelist_scan_limit(cc);
1638 	unsigned int nr_scanned = 0;
1639 	unsigned long distance;
1640 	unsigned long pfn = cc->migrate_pfn;
1641 	unsigned long high_pfn;
1642 	int order;
1643 
1644 	/* Skip hints are relied on to avoid repeats on the fast search */
1645 	if (cc->ignore_skip_hint)
1646 		return pfn;
1647 
1648 	/*
1649 	 * If the migrate_pfn is not at the start of a zone or the start
1650 	 * of a pageblock then assume this is a continuation of a previous
1651 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1652 	 */
1653 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1654 		return pfn;
1655 
1656 	/*
1657 	 * For smaller orders, just linearly scan as the number of pages
1658 	 * to migrate should be relatively small and does not necessarily
1659 	 * justify freeing up a large block for a small allocation.
1660 	 */
1661 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1662 		return pfn;
1663 
1664 	/*
1665 	 * Only allow kcompactd and direct requests for movable pages to
1666 	 * quickly clear out a MOVABLE pageblock for allocation. This
1667 	 * reduces the risk that a large movable pageblock is freed for
1668 	 * an unmovable/reclaimable small allocation.
1669 	 */
1670 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1671 		return pfn;
1672 
1673 	/*
1674 	 * When starting the migration scanner, pick any pageblock within the
1675 	 * first half of the search space. Otherwise try and pick a pageblock
1676 	 * within the first eighth to reduce the chances that a migration
1677 	 * target later becomes a source.
1678 	 */
1679 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1680 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1681 		distance >>= 2;
1682 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1683 
1684 	for (order = cc->order - 1;
1685 	     order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1686 	     order--) {
1687 		struct free_area *area = &cc->zone->free_area[order];
1688 		struct list_head *freelist;
1689 		unsigned long flags;
1690 		struct page *freepage;
1691 
1692 		if (!area->nr_free)
1693 			continue;
1694 
1695 		spin_lock_irqsave(&cc->zone->lock, flags);
1696 		freelist = &area->free_list[MIGRATE_MOVABLE];
1697 		list_for_each_entry(freepage, freelist, lru) {
1698 			unsigned long free_pfn;
1699 
1700 			nr_scanned++;
1701 			free_pfn = page_to_pfn(freepage);
1702 			if (free_pfn < high_pfn) {
1703 				/*
1704 				 * Avoid if skipped recently. Ideally it would
1705 				 * move to the tail but even safe iteration of
1706 				 * the list assumes an entry is deleted, not
1707 				 * reordered.
1708 				 */
1709 				if (get_pageblock_skip(freepage)) {
1710 					if (list_is_last(freelist, &freepage->lru))
1711 						break;
1712 
1713 					continue;
1714 				}
1715 
1716 				/* Reorder to so a future search skips recent pages */
1717 				move_freelist_tail(freelist, freepage);
1718 
1719 				update_fast_start_pfn(cc, free_pfn);
1720 				pfn = pageblock_start_pfn(free_pfn);
1721 				cc->fast_search_fail = 0;
1722 				set_pageblock_skip(freepage);
1723 				break;
1724 			}
1725 
1726 			if (nr_scanned >= limit) {
1727 				cc->fast_search_fail++;
1728 				move_freelist_tail(freelist, freepage);
1729 				break;
1730 			}
1731 		}
1732 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1733 	}
1734 
1735 	cc->total_migrate_scanned += nr_scanned;
1736 
1737 	/*
1738 	 * If fast scanning failed then use a cached entry for a page block
1739 	 * that had free pages as the basis for starting a linear scan.
1740 	 */
1741 	if (pfn == cc->migrate_pfn)
1742 		pfn = reinit_migrate_pfn(cc);
1743 
1744 	return pfn;
1745 }
1746 
1747 /*
1748  * Isolate all pages that can be migrated from the first suitable block,
1749  * starting at the block pointed to by the migrate scanner pfn within
1750  * compact_control.
1751  */
1752 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1753 {
1754 	unsigned long block_start_pfn;
1755 	unsigned long block_end_pfn;
1756 	unsigned long low_pfn;
1757 	struct page *page;
1758 	const isolate_mode_t isolate_mode =
1759 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1760 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1761 	bool fast_find_block;
1762 
1763 	/*
1764 	 * Start at where we last stopped, or beginning of the zone as
1765 	 * initialized by compact_zone(). The first failure will use
1766 	 * the lowest PFN as the starting point for linear scanning.
1767 	 */
1768 	low_pfn = fast_find_migrateblock(cc);
1769 	block_start_pfn = pageblock_start_pfn(low_pfn);
1770 	if (block_start_pfn < cc->zone->zone_start_pfn)
1771 		block_start_pfn = cc->zone->zone_start_pfn;
1772 
1773 	/*
1774 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1775 	 * the isolation_suitable check below, check whether the fast
1776 	 * search was successful.
1777 	 */
1778 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1779 
1780 	/* Only scan within a pageblock boundary */
1781 	block_end_pfn = pageblock_end_pfn(low_pfn);
1782 
1783 	/*
1784 	 * Iterate over whole pageblocks until we find the first suitable.
1785 	 * Do not cross the free scanner.
1786 	 */
1787 	for (; block_end_pfn <= cc->free_pfn;
1788 			fast_find_block = false,
1789 			low_pfn = block_end_pfn,
1790 			block_start_pfn = block_end_pfn,
1791 			block_end_pfn += pageblock_nr_pages) {
1792 
1793 		/*
1794 		 * This can potentially iterate a massively long zone with
1795 		 * many pageblocks unsuitable, so periodically check if we
1796 		 * need to schedule.
1797 		 */
1798 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1799 			cond_resched();
1800 
1801 		page = pageblock_pfn_to_page(block_start_pfn,
1802 						block_end_pfn, cc->zone);
1803 		if (!page)
1804 			continue;
1805 
1806 		/*
1807 		 * If isolation recently failed, do not retry. Only check the
1808 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1809 		 * to be visited multiple times. Assume skip was checked
1810 		 * before making it "skip" so other compaction instances do
1811 		 * not scan the same block.
1812 		 */
1813 		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1814 		    !fast_find_block && !isolation_suitable(cc, page))
1815 			continue;
1816 
1817 		/*
1818 		 * For async compaction, also only scan in MOVABLE blocks
1819 		 * without huge pages. Async compaction is optimistic to see
1820 		 * if the minimum amount of work satisfies the allocation.
1821 		 * The cached PFN is updated as it's possible that all
1822 		 * remaining blocks between source and target are unsuitable
1823 		 * and the compaction scanners fail to meet.
1824 		 */
1825 		if (!suitable_migration_source(cc, page)) {
1826 			update_cached_migrate(cc, block_end_pfn);
1827 			continue;
1828 		}
1829 
1830 		/* Perform the isolation */
1831 		low_pfn = isolate_migratepages_block(cc, low_pfn,
1832 						block_end_pfn, isolate_mode);
1833 
1834 		if (!low_pfn)
1835 			return ISOLATE_ABORT;
1836 
1837 		/*
1838 		 * Either we isolated something and proceed with migration. Or
1839 		 * we failed and compact_zone should decide if we should
1840 		 * continue or not.
1841 		 */
1842 		break;
1843 	}
1844 
1845 	/* Record where migration scanner will be restarted. */
1846 	cc->migrate_pfn = low_pfn;
1847 
1848 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1849 }
1850 
1851 /*
1852  * order == -1 is expected when compacting via
1853  * /proc/sys/vm/compact_memory
1854  */
1855 static inline bool is_via_compact_memory(int order)
1856 {
1857 	return order == -1;
1858 }
1859 
1860 static enum compact_result __compact_finished(struct compact_control *cc)
1861 {
1862 	unsigned int order;
1863 	const int migratetype = cc->migratetype;
1864 	int ret;
1865 
1866 	/* Compaction run completes if the migrate and free scanner meet */
1867 	if (compact_scanners_met(cc)) {
1868 		/* Let the next compaction start anew. */
1869 		reset_cached_positions(cc->zone);
1870 
1871 		/*
1872 		 * Mark that the PG_migrate_skip information should be cleared
1873 		 * by kswapd when it goes to sleep. kcompactd does not set the
1874 		 * flag itself as the decision to be clear should be directly
1875 		 * based on an allocation request.
1876 		 */
1877 		if (cc->direct_compaction)
1878 			cc->zone->compact_blockskip_flush = true;
1879 
1880 		if (cc->whole_zone)
1881 			return COMPACT_COMPLETE;
1882 		else
1883 			return COMPACT_PARTIAL_SKIPPED;
1884 	}
1885 
1886 	if (is_via_compact_memory(cc->order))
1887 		return COMPACT_CONTINUE;
1888 
1889 	/*
1890 	 * Always finish scanning a pageblock to reduce the possibility of
1891 	 * fallbacks in the future. This is particularly important when
1892 	 * migration source is unmovable/reclaimable but it's not worth
1893 	 * special casing.
1894 	 */
1895 	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1896 		return COMPACT_CONTINUE;
1897 
1898 	/* Direct compactor: Is a suitable page free? */
1899 	ret = COMPACT_NO_SUITABLE_PAGE;
1900 	for (order = cc->order; order < MAX_ORDER; order++) {
1901 		struct free_area *area = &cc->zone->free_area[order];
1902 		bool can_steal;
1903 
1904 		/* Job done if page is free of the right migratetype */
1905 		if (!free_area_empty(area, migratetype))
1906 			return COMPACT_SUCCESS;
1907 
1908 #ifdef CONFIG_CMA
1909 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1910 		if (migratetype == MIGRATE_MOVABLE &&
1911 			!free_area_empty(area, MIGRATE_CMA))
1912 			return COMPACT_SUCCESS;
1913 #endif
1914 		/*
1915 		 * Job done if allocation would steal freepages from
1916 		 * other migratetype buddy lists.
1917 		 */
1918 		if (find_suitable_fallback(area, order, migratetype,
1919 						true, &can_steal) != -1) {
1920 
1921 			/* movable pages are OK in any pageblock */
1922 			if (migratetype == MIGRATE_MOVABLE)
1923 				return COMPACT_SUCCESS;
1924 
1925 			/*
1926 			 * We are stealing for a non-movable allocation. Make
1927 			 * sure we finish compacting the current pageblock
1928 			 * first so it is as free as possible and we won't
1929 			 * have to steal another one soon. This only applies
1930 			 * to sync compaction, as async compaction operates
1931 			 * on pageblocks of the same migratetype.
1932 			 */
1933 			if (cc->mode == MIGRATE_ASYNC ||
1934 					IS_ALIGNED(cc->migrate_pfn,
1935 							pageblock_nr_pages)) {
1936 				return COMPACT_SUCCESS;
1937 			}
1938 
1939 			ret = COMPACT_CONTINUE;
1940 			break;
1941 		}
1942 	}
1943 
1944 	if (cc->contended || fatal_signal_pending(current))
1945 		ret = COMPACT_CONTENDED;
1946 
1947 	return ret;
1948 }
1949 
1950 static enum compact_result compact_finished(struct compact_control *cc)
1951 {
1952 	int ret;
1953 
1954 	ret = __compact_finished(cc);
1955 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
1956 	if (ret == COMPACT_NO_SUITABLE_PAGE)
1957 		ret = COMPACT_CONTINUE;
1958 
1959 	return ret;
1960 }
1961 
1962 /*
1963  * compaction_suitable: Is this suitable to run compaction on this zone now?
1964  * Returns
1965  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1966  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1967  *   COMPACT_CONTINUE - If compaction should run now
1968  */
1969 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1970 					unsigned int alloc_flags,
1971 					int highest_zoneidx,
1972 					unsigned long wmark_target)
1973 {
1974 	unsigned long watermark;
1975 
1976 	if (is_via_compact_memory(order))
1977 		return COMPACT_CONTINUE;
1978 
1979 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1980 	/*
1981 	 * If watermarks for high-order allocation are already met, there
1982 	 * should be no need for compaction at all.
1983 	 */
1984 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
1985 								alloc_flags))
1986 		return COMPACT_SUCCESS;
1987 
1988 	/*
1989 	 * Watermarks for order-0 must be met for compaction to be able to
1990 	 * isolate free pages for migration targets. This means that the
1991 	 * watermark and alloc_flags have to match, or be more pessimistic than
1992 	 * the check in __isolate_free_page(). We don't use the direct
1993 	 * compactor's alloc_flags, as they are not relevant for freepage
1994 	 * isolation. We however do use the direct compactor's highest_zoneidx
1995 	 * to skip over zones where lowmem reserves would prevent allocation
1996 	 * even if compaction succeeds.
1997 	 * For costly orders, we require low watermark instead of min for
1998 	 * compaction to proceed to increase its chances.
1999 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2000 	 * suitable migration targets
2001 	 */
2002 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2003 				low_wmark_pages(zone) : min_wmark_pages(zone);
2004 	watermark += compact_gap(order);
2005 	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2006 						ALLOC_CMA, wmark_target))
2007 		return COMPACT_SKIPPED;
2008 
2009 	return COMPACT_CONTINUE;
2010 }
2011 
2012 enum compact_result compaction_suitable(struct zone *zone, int order,
2013 					unsigned int alloc_flags,
2014 					int highest_zoneidx)
2015 {
2016 	enum compact_result ret;
2017 	int fragindex;
2018 
2019 	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2020 				    zone_page_state(zone, NR_FREE_PAGES));
2021 	/*
2022 	 * fragmentation index determines if allocation failures are due to
2023 	 * low memory or external fragmentation
2024 	 *
2025 	 * index of -1000 would imply allocations might succeed depending on
2026 	 * watermarks, but we already failed the high-order watermark check
2027 	 * index towards 0 implies failure is due to lack of memory
2028 	 * index towards 1000 implies failure is due to fragmentation
2029 	 *
2030 	 * Only compact if a failure would be due to fragmentation. Also
2031 	 * ignore fragindex for non-costly orders where the alternative to
2032 	 * a successful reclaim/compaction is OOM. Fragindex and the
2033 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2034 	 * excessive compaction for costly orders, but it should not be at the
2035 	 * expense of system stability.
2036 	 */
2037 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2038 		fragindex = fragmentation_index(zone, order);
2039 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2040 			ret = COMPACT_NOT_SUITABLE_ZONE;
2041 	}
2042 
2043 	trace_mm_compaction_suitable(zone, order, ret);
2044 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2045 		ret = COMPACT_SKIPPED;
2046 
2047 	return ret;
2048 }
2049 
2050 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2051 		int alloc_flags)
2052 {
2053 	struct zone *zone;
2054 	struct zoneref *z;
2055 
2056 	/*
2057 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2058 	 * retrying the reclaim.
2059 	 */
2060 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2061 				ac->highest_zoneidx, ac->nodemask) {
2062 		unsigned long available;
2063 		enum compact_result compact_result;
2064 
2065 		/*
2066 		 * Do not consider all the reclaimable memory because we do not
2067 		 * want to trash just for a single high order allocation which
2068 		 * is even not guaranteed to appear even if __compaction_suitable
2069 		 * is happy about the watermark check.
2070 		 */
2071 		available = zone_reclaimable_pages(zone) / order;
2072 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2073 		compact_result = __compaction_suitable(zone, order, alloc_flags,
2074 				ac->highest_zoneidx, available);
2075 		if (compact_result != COMPACT_SKIPPED)
2076 			return true;
2077 	}
2078 
2079 	return false;
2080 }
2081 
2082 static enum compact_result
2083 compact_zone(struct compact_control *cc, struct capture_control *capc)
2084 {
2085 	enum compact_result ret;
2086 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2087 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2088 	unsigned long last_migrated_pfn;
2089 	const bool sync = cc->mode != MIGRATE_ASYNC;
2090 	bool update_cached;
2091 
2092 	/*
2093 	 * These counters track activities during zone compaction.  Initialize
2094 	 * them before compacting a new zone.
2095 	 */
2096 	cc->total_migrate_scanned = 0;
2097 	cc->total_free_scanned = 0;
2098 	cc->nr_migratepages = 0;
2099 	cc->nr_freepages = 0;
2100 	INIT_LIST_HEAD(&cc->freepages);
2101 	INIT_LIST_HEAD(&cc->migratepages);
2102 
2103 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2104 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2105 							cc->highest_zoneidx);
2106 	/* Compaction is likely to fail */
2107 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2108 		return ret;
2109 
2110 	/* huh, compaction_suitable is returning something unexpected */
2111 	VM_BUG_ON(ret != COMPACT_CONTINUE);
2112 
2113 	/*
2114 	 * Clear pageblock skip if there were failures recently and compaction
2115 	 * is about to be retried after being deferred.
2116 	 */
2117 	if (compaction_restarting(cc->zone, cc->order))
2118 		__reset_isolation_suitable(cc->zone);
2119 
2120 	/*
2121 	 * Setup to move all movable pages to the end of the zone. Used cached
2122 	 * information on where the scanners should start (unless we explicitly
2123 	 * want to compact the whole zone), but check that it is initialised
2124 	 * by ensuring the values are within zone boundaries.
2125 	 */
2126 	cc->fast_start_pfn = 0;
2127 	if (cc->whole_zone) {
2128 		cc->migrate_pfn = start_pfn;
2129 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2130 	} else {
2131 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2132 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2133 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2134 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2135 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2136 		}
2137 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2138 			cc->migrate_pfn = start_pfn;
2139 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2140 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2141 		}
2142 
2143 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2144 			cc->whole_zone = true;
2145 	}
2146 
2147 	last_migrated_pfn = 0;
2148 
2149 	/*
2150 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2151 	 * the basis that some migrations will fail in ASYNC mode. However,
2152 	 * if the cached PFNs match and pageblocks are skipped due to having
2153 	 * no isolation candidates, then the sync state does not matter.
2154 	 * Until a pageblock with isolation candidates is found, keep the
2155 	 * cached PFNs in sync to avoid revisiting the same blocks.
2156 	 */
2157 	update_cached = !sync &&
2158 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2159 
2160 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2161 				cc->free_pfn, end_pfn, sync);
2162 
2163 	migrate_prep_local();
2164 
2165 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2166 		int err;
2167 		unsigned long start_pfn = cc->migrate_pfn;
2168 
2169 		/*
2170 		 * Avoid multiple rescans which can happen if a page cannot be
2171 		 * isolated (dirty/writeback in async mode) or if the migrated
2172 		 * pages are being allocated before the pageblock is cleared.
2173 		 * The first rescan will capture the entire pageblock for
2174 		 * migration. If it fails, it'll be marked skip and scanning
2175 		 * will proceed as normal.
2176 		 */
2177 		cc->rescan = false;
2178 		if (pageblock_start_pfn(last_migrated_pfn) ==
2179 		    pageblock_start_pfn(start_pfn)) {
2180 			cc->rescan = true;
2181 		}
2182 
2183 		switch (isolate_migratepages(cc)) {
2184 		case ISOLATE_ABORT:
2185 			ret = COMPACT_CONTENDED;
2186 			putback_movable_pages(&cc->migratepages);
2187 			cc->nr_migratepages = 0;
2188 			goto out;
2189 		case ISOLATE_NONE:
2190 			if (update_cached) {
2191 				cc->zone->compact_cached_migrate_pfn[1] =
2192 					cc->zone->compact_cached_migrate_pfn[0];
2193 			}
2194 
2195 			/*
2196 			 * We haven't isolated and migrated anything, but
2197 			 * there might still be unflushed migrations from
2198 			 * previous cc->order aligned block.
2199 			 */
2200 			goto check_drain;
2201 		case ISOLATE_SUCCESS:
2202 			update_cached = false;
2203 			last_migrated_pfn = start_pfn;
2204 			;
2205 		}
2206 
2207 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2208 				compaction_free, (unsigned long)cc, cc->mode,
2209 				MR_COMPACTION);
2210 
2211 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2212 							&cc->migratepages);
2213 
2214 		/* All pages were either migrated or will be released */
2215 		cc->nr_migratepages = 0;
2216 		if (err) {
2217 			putback_movable_pages(&cc->migratepages);
2218 			/*
2219 			 * migrate_pages() may return -ENOMEM when scanners meet
2220 			 * and we want compact_finished() to detect it
2221 			 */
2222 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2223 				ret = COMPACT_CONTENDED;
2224 				goto out;
2225 			}
2226 			/*
2227 			 * We failed to migrate at least one page in the current
2228 			 * order-aligned block, so skip the rest of it.
2229 			 */
2230 			if (cc->direct_compaction &&
2231 						(cc->mode == MIGRATE_ASYNC)) {
2232 				cc->migrate_pfn = block_end_pfn(
2233 						cc->migrate_pfn - 1, cc->order);
2234 				/* Draining pcplists is useless in this case */
2235 				last_migrated_pfn = 0;
2236 			}
2237 		}
2238 
2239 check_drain:
2240 		/*
2241 		 * Has the migration scanner moved away from the previous
2242 		 * cc->order aligned block where we migrated from? If yes,
2243 		 * flush the pages that were freed, so that they can merge and
2244 		 * compact_finished() can detect immediately if allocation
2245 		 * would succeed.
2246 		 */
2247 		if (cc->order > 0 && last_migrated_pfn) {
2248 			unsigned long current_block_start =
2249 				block_start_pfn(cc->migrate_pfn, cc->order);
2250 
2251 			if (last_migrated_pfn < current_block_start) {
2252 				lru_add_drain_cpu_zone(cc->zone);
2253 				/* No more flushing until we migrate again */
2254 				last_migrated_pfn = 0;
2255 			}
2256 		}
2257 
2258 		/* Stop if a page has been captured */
2259 		if (capc && capc->page) {
2260 			ret = COMPACT_SUCCESS;
2261 			break;
2262 		}
2263 	}
2264 
2265 out:
2266 	/*
2267 	 * Release free pages and update where the free scanner should restart,
2268 	 * so we don't leave any returned pages behind in the next attempt.
2269 	 */
2270 	if (cc->nr_freepages > 0) {
2271 		unsigned long free_pfn = release_freepages(&cc->freepages);
2272 
2273 		cc->nr_freepages = 0;
2274 		VM_BUG_ON(free_pfn == 0);
2275 		/* The cached pfn is always the first in a pageblock */
2276 		free_pfn = pageblock_start_pfn(free_pfn);
2277 		/*
2278 		 * Only go back, not forward. The cached pfn might have been
2279 		 * already reset to zone end in compact_finished()
2280 		 */
2281 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2282 			cc->zone->compact_cached_free_pfn = free_pfn;
2283 	}
2284 
2285 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2286 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2287 
2288 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2289 				cc->free_pfn, end_pfn, sync, ret);
2290 
2291 	return ret;
2292 }
2293 
2294 static enum compact_result compact_zone_order(struct zone *zone, int order,
2295 		gfp_t gfp_mask, enum compact_priority prio,
2296 		unsigned int alloc_flags, int highest_zoneidx,
2297 		struct page **capture)
2298 {
2299 	enum compact_result ret;
2300 	struct compact_control cc = {
2301 		.order = order,
2302 		.search_order = order,
2303 		.gfp_mask = gfp_mask,
2304 		.zone = zone,
2305 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2306 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2307 		.alloc_flags = alloc_flags,
2308 		.highest_zoneidx = highest_zoneidx,
2309 		.direct_compaction = true,
2310 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2311 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2312 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2313 	};
2314 	struct capture_control capc = {
2315 		.cc = &cc,
2316 		.page = NULL,
2317 	};
2318 
2319 	current->capture_control = &capc;
2320 
2321 	ret = compact_zone(&cc, &capc);
2322 
2323 	VM_BUG_ON(!list_empty(&cc.freepages));
2324 	VM_BUG_ON(!list_empty(&cc.migratepages));
2325 
2326 	*capture = capc.page;
2327 	current->capture_control = NULL;
2328 
2329 	return ret;
2330 }
2331 
2332 int sysctl_extfrag_threshold = 500;
2333 
2334 /**
2335  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2336  * @gfp_mask: The GFP mask of the current allocation
2337  * @order: The order of the current allocation
2338  * @alloc_flags: The allocation flags of the current allocation
2339  * @ac: The context of current allocation
2340  * @prio: Determines how hard direct compaction should try to succeed
2341  * @capture: Pointer to free page created by compaction will be stored here
2342  *
2343  * This is the main entry point for direct page compaction.
2344  */
2345 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2346 		unsigned int alloc_flags, const struct alloc_context *ac,
2347 		enum compact_priority prio, struct page **capture)
2348 {
2349 	int may_perform_io = gfp_mask & __GFP_IO;
2350 	struct zoneref *z;
2351 	struct zone *zone;
2352 	enum compact_result rc = COMPACT_SKIPPED;
2353 
2354 	/*
2355 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2356 	 * tricky context because the migration might require IO
2357 	 */
2358 	if (!may_perform_io)
2359 		return COMPACT_SKIPPED;
2360 
2361 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2362 
2363 	/* Compact each zone in the list */
2364 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2365 					ac->highest_zoneidx, ac->nodemask) {
2366 		enum compact_result status;
2367 
2368 		if (prio > MIN_COMPACT_PRIORITY
2369 					&& compaction_deferred(zone, order)) {
2370 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2371 			continue;
2372 		}
2373 
2374 		status = compact_zone_order(zone, order, gfp_mask, prio,
2375 				alloc_flags, ac->highest_zoneidx, capture);
2376 		rc = max(status, rc);
2377 
2378 		/* The allocation should succeed, stop compacting */
2379 		if (status == COMPACT_SUCCESS) {
2380 			/*
2381 			 * We think the allocation will succeed in this zone,
2382 			 * but it is not certain, hence the false. The caller
2383 			 * will repeat this with true if allocation indeed
2384 			 * succeeds in this zone.
2385 			 */
2386 			compaction_defer_reset(zone, order, false);
2387 
2388 			break;
2389 		}
2390 
2391 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2392 					status == COMPACT_PARTIAL_SKIPPED))
2393 			/*
2394 			 * We think that allocation won't succeed in this zone
2395 			 * so we defer compaction there. If it ends up
2396 			 * succeeding after all, it will be reset.
2397 			 */
2398 			defer_compaction(zone, order);
2399 
2400 		/*
2401 		 * We might have stopped compacting due to need_resched() in
2402 		 * async compaction, or due to a fatal signal detected. In that
2403 		 * case do not try further zones
2404 		 */
2405 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2406 					|| fatal_signal_pending(current))
2407 			break;
2408 	}
2409 
2410 	return rc;
2411 }
2412 
2413 
2414 /* Compact all zones within a node */
2415 static void compact_node(int nid)
2416 {
2417 	pg_data_t *pgdat = NODE_DATA(nid);
2418 	int zoneid;
2419 	struct zone *zone;
2420 	struct compact_control cc = {
2421 		.order = -1,
2422 		.mode = MIGRATE_SYNC,
2423 		.ignore_skip_hint = true,
2424 		.whole_zone = true,
2425 		.gfp_mask = GFP_KERNEL,
2426 	};
2427 
2428 
2429 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2430 
2431 		zone = &pgdat->node_zones[zoneid];
2432 		if (!populated_zone(zone))
2433 			continue;
2434 
2435 		cc.zone = zone;
2436 
2437 		compact_zone(&cc, NULL);
2438 
2439 		VM_BUG_ON(!list_empty(&cc.freepages));
2440 		VM_BUG_ON(!list_empty(&cc.migratepages));
2441 	}
2442 }
2443 
2444 /* Compact all nodes in the system */
2445 static void compact_nodes(void)
2446 {
2447 	int nid;
2448 
2449 	/* Flush pending updates to the LRU lists */
2450 	lru_add_drain_all();
2451 
2452 	for_each_online_node(nid)
2453 		compact_node(nid);
2454 }
2455 
2456 /* The written value is actually unused, all memory is compacted */
2457 int sysctl_compact_memory;
2458 
2459 /*
2460  * This is the entry point for compacting all nodes via
2461  * /proc/sys/vm/compact_memory
2462  */
2463 int sysctl_compaction_handler(struct ctl_table *table, int write,
2464 			void *buffer, size_t *length, loff_t *ppos)
2465 {
2466 	if (write)
2467 		compact_nodes();
2468 
2469 	return 0;
2470 }
2471 
2472 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2473 static ssize_t sysfs_compact_node(struct device *dev,
2474 			struct device_attribute *attr,
2475 			const char *buf, size_t count)
2476 {
2477 	int nid = dev->id;
2478 
2479 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2480 		/* Flush pending updates to the LRU lists */
2481 		lru_add_drain_all();
2482 
2483 		compact_node(nid);
2484 	}
2485 
2486 	return count;
2487 }
2488 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2489 
2490 int compaction_register_node(struct node *node)
2491 {
2492 	return device_create_file(&node->dev, &dev_attr_compact);
2493 }
2494 
2495 void compaction_unregister_node(struct node *node)
2496 {
2497 	return device_remove_file(&node->dev, &dev_attr_compact);
2498 }
2499 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2500 
2501 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2502 {
2503 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2504 }
2505 
2506 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2507 {
2508 	int zoneid;
2509 	struct zone *zone;
2510 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2511 
2512 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2513 		zone = &pgdat->node_zones[zoneid];
2514 
2515 		if (!populated_zone(zone))
2516 			continue;
2517 
2518 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2519 					highest_zoneidx) == COMPACT_CONTINUE)
2520 			return true;
2521 	}
2522 
2523 	return false;
2524 }
2525 
2526 static void kcompactd_do_work(pg_data_t *pgdat)
2527 {
2528 	/*
2529 	 * With no special task, compact all zones so that a page of requested
2530 	 * order is allocatable.
2531 	 */
2532 	int zoneid;
2533 	struct zone *zone;
2534 	struct compact_control cc = {
2535 		.order = pgdat->kcompactd_max_order,
2536 		.search_order = pgdat->kcompactd_max_order,
2537 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2538 		.mode = MIGRATE_SYNC_LIGHT,
2539 		.ignore_skip_hint = false,
2540 		.gfp_mask = GFP_KERNEL,
2541 	};
2542 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2543 							cc.highest_zoneidx);
2544 	count_compact_event(KCOMPACTD_WAKE);
2545 
2546 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2547 		int status;
2548 
2549 		zone = &pgdat->node_zones[zoneid];
2550 		if (!populated_zone(zone))
2551 			continue;
2552 
2553 		if (compaction_deferred(zone, cc.order))
2554 			continue;
2555 
2556 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2557 							COMPACT_CONTINUE)
2558 			continue;
2559 
2560 		if (kthread_should_stop())
2561 			return;
2562 
2563 		cc.zone = zone;
2564 		status = compact_zone(&cc, NULL);
2565 
2566 		if (status == COMPACT_SUCCESS) {
2567 			compaction_defer_reset(zone, cc.order, false);
2568 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2569 			/*
2570 			 * Buddy pages may become stranded on pcps that could
2571 			 * otherwise coalesce on the zone's free area for
2572 			 * order >= cc.order.  This is ratelimited by the
2573 			 * upcoming deferral.
2574 			 */
2575 			drain_all_pages(zone);
2576 
2577 			/*
2578 			 * We use sync migration mode here, so we defer like
2579 			 * sync direct compaction does.
2580 			 */
2581 			defer_compaction(zone, cc.order);
2582 		}
2583 
2584 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2585 				     cc.total_migrate_scanned);
2586 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2587 				     cc.total_free_scanned);
2588 
2589 		VM_BUG_ON(!list_empty(&cc.freepages));
2590 		VM_BUG_ON(!list_empty(&cc.migratepages));
2591 	}
2592 
2593 	/*
2594 	 * Regardless of success, we are done until woken up next. But remember
2595 	 * the requested order/highest_zoneidx in case it was higher/tighter
2596 	 * than our current ones
2597 	 */
2598 	if (pgdat->kcompactd_max_order <= cc.order)
2599 		pgdat->kcompactd_max_order = 0;
2600 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2601 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2602 }
2603 
2604 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2605 {
2606 	if (!order)
2607 		return;
2608 
2609 	if (pgdat->kcompactd_max_order < order)
2610 		pgdat->kcompactd_max_order = order;
2611 
2612 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2613 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2614 
2615 	/*
2616 	 * Pairs with implicit barrier in wait_event_freezable()
2617 	 * such that wakeups are not missed.
2618 	 */
2619 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2620 		return;
2621 
2622 	if (!kcompactd_node_suitable(pgdat))
2623 		return;
2624 
2625 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2626 							highest_zoneidx);
2627 	wake_up_interruptible(&pgdat->kcompactd_wait);
2628 }
2629 
2630 /*
2631  * The background compaction daemon, started as a kernel thread
2632  * from the init process.
2633  */
2634 static int kcompactd(void *p)
2635 {
2636 	pg_data_t *pgdat = (pg_data_t*)p;
2637 	struct task_struct *tsk = current;
2638 
2639 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2640 
2641 	if (!cpumask_empty(cpumask))
2642 		set_cpus_allowed_ptr(tsk, cpumask);
2643 
2644 	set_freezable();
2645 
2646 	pgdat->kcompactd_max_order = 0;
2647 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2648 
2649 	while (!kthread_should_stop()) {
2650 		unsigned long pflags;
2651 
2652 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2653 		wait_event_freezable(pgdat->kcompactd_wait,
2654 				kcompactd_work_requested(pgdat));
2655 
2656 		psi_memstall_enter(&pflags);
2657 		kcompactd_do_work(pgdat);
2658 		psi_memstall_leave(&pflags);
2659 	}
2660 
2661 	return 0;
2662 }
2663 
2664 /*
2665  * This kcompactd start function will be called by init and node-hot-add.
2666  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2667  */
2668 int kcompactd_run(int nid)
2669 {
2670 	pg_data_t *pgdat = NODE_DATA(nid);
2671 	int ret = 0;
2672 
2673 	if (pgdat->kcompactd)
2674 		return 0;
2675 
2676 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2677 	if (IS_ERR(pgdat->kcompactd)) {
2678 		pr_err("Failed to start kcompactd on node %d\n", nid);
2679 		ret = PTR_ERR(pgdat->kcompactd);
2680 		pgdat->kcompactd = NULL;
2681 	}
2682 	return ret;
2683 }
2684 
2685 /*
2686  * Called by memory hotplug when all memory in a node is offlined. Caller must
2687  * hold mem_hotplug_begin/end().
2688  */
2689 void kcompactd_stop(int nid)
2690 {
2691 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2692 
2693 	if (kcompactd) {
2694 		kthread_stop(kcompactd);
2695 		NODE_DATA(nid)->kcompactd = NULL;
2696 	}
2697 }
2698 
2699 /*
2700  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2701  * not required for correctness. So if the last cpu in a node goes
2702  * away, we get changed to run anywhere: as the first one comes back,
2703  * restore their cpu bindings.
2704  */
2705 static int kcompactd_cpu_online(unsigned int cpu)
2706 {
2707 	int nid;
2708 
2709 	for_each_node_state(nid, N_MEMORY) {
2710 		pg_data_t *pgdat = NODE_DATA(nid);
2711 		const struct cpumask *mask;
2712 
2713 		mask = cpumask_of_node(pgdat->node_id);
2714 
2715 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2716 			/* One of our CPUs online: restore mask */
2717 			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2718 	}
2719 	return 0;
2720 }
2721 
2722 static int __init kcompactd_init(void)
2723 {
2724 	int nid;
2725 	int ret;
2726 
2727 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2728 					"mm/compaction:online",
2729 					kcompactd_cpu_online, NULL);
2730 	if (ret < 0) {
2731 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
2732 		return ret;
2733 	}
2734 
2735 	for_each_node_state(nid, N_MEMORY)
2736 		kcompactd_run(nid);
2737 	return 0;
2738 }
2739 subsys_initcall(kcompactd_init)
2740 
2741 #endif /* CONFIG_COMPACTION */
2742