1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 /* 30 * Fragmentation score check interval for proactive compaction purposes. 31 */ 32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500) 33 34 static inline void count_compact_event(enum vm_event_item item) 35 { 36 count_vm_event(item); 37 } 38 39 static inline void count_compact_events(enum vm_event_item item, long delta) 40 { 41 count_vm_events(item, delta); 42 } 43 #else 44 #define count_compact_event(item) do { } while (0) 45 #define count_compact_events(item, delta) do { } while (0) 46 #endif 47 48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/compaction.h> 52 53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 55 56 /* 57 * Page order with-respect-to which proactive compaction 58 * calculates external fragmentation, which is used as 59 * the "fragmentation score" of a node/zone. 60 */ 61 #if defined CONFIG_TRANSPARENT_HUGEPAGE 62 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 63 #elif defined CONFIG_HUGETLBFS 64 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 65 #else 66 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 67 #endif 68 69 static unsigned long release_freepages(struct list_head *freelist) 70 { 71 struct page *page, *next; 72 unsigned long high_pfn = 0; 73 74 list_for_each_entry_safe(page, next, freelist, lru) { 75 unsigned long pfn = page_to_pfn(page); 76 list_del(&page->lru); 77 __free_page(page); 78 if (pfn > high_pfn) 79 high_pfn = pfn; 80 } 81 82 return high_pfn; 83 } 84 85 static void split_map_pages(struct list_head *list) 86 { 87 unsigned int i, order, nr_pages; 88 struct page *page, *next; 89 LIST_HEAD(tmp_list); 90 91 list_for_each_entry_safe(page, next, list, lru) { 92 list_del(&page->lru); 93 94 order = page_private(page); 95 nr_pages = 1 << order; 96 97 post_alloc_hook(page, order, __GFP_MOVABLE); 98 if (order) 99 split_page(page, order); 100 101 for (i = 0; i < nr_pages; i++) { 102 list_add(&page->lru, &tmp_list); 103 page++; 104 } 105 } 106 107 list_splice(&tmp_list, list); 108 } 109 110 #ifdef CONFIG_COMPACTION 111 bool PageMovable(struct page *page) 112 { 113 const struct movable_operations *mops; 114 115 VM_BUG_ON_PAGE(!PageLocked(page), page); 116 if (!__PageMovable(page)) 117 return false; 118 119 mops = page_movable_ops(page); 120 if (mops) 121 return true; 122 123 return false; 124 } 125 EXPORT_SYMBOL(PageMovable); 126 127 void __SetPageMovable(struct page *page, const struct movable_operations *mops) 128 { 129 VM_BUG_ON_PAGE(!PageLocked(page), page); 130 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page); 131 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE); 132 } 133 EXPORT_SYMBOL(__SetPageMovable); 134 135 void __ClearPageMovable(struct page *page) 136 { 137 VM_BUG_ON_PAGE(!PageMovable(page), page); 138 /* 139 * This page still has the type of a movable page, but it's 140 * actually not movable any more. 141 */ 142 page->mapping = (void *)PAGE_MAPPING_MOVABLE; 143 } 144 EXPORT_SYMBOL(__ClearPageMovable); 145 146 /* Do not skip compaction more than 64 times */ 147 #define COMPACT_MAX_DEFER_SHIFT 6 148 149 /* 150 * Compaction is deferred when compaction fails to result in a page 151 * allocation success. 1 << compact_defer_shift, compactions are skipped up 152 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 153 */ 154 static void defer_compaction(struct zone *zone, int order) 155 { 156 zone->compact_considered = 0; 157 zone->compact_defer_shift++; 158 159 if (order < zone->compact_order_failed) 160 zone->compact_order_failed = order; 161 162 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 163 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 164 165 trace_mm_compaction_defer_compaction(zone, order); 166 } 167 168 /* Returns true if compaction should be skipped this time */ 169 static bool compaction_deferred(struct zone *zone, int order) 170 { 171 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 172 173 if (order < zone->compact_order_failed) 174 return false; 175 176 /* Avoid possible overflow */ 177 if (++zone->compact_considered >= defer_limit) { 178 zone->compact_considered = defer_limit; 179 return false; 180 } 181 182 trace_mm_compaction_deferred(zone, order); 183 184 return true; 185 } 186 187 /* 188 * Update defer tracking counters after successful compaction of given order, 189 * which means an allocation either succeeded (alloc_success == true) or is 190 * expected to succeed. 191 */ 192 void compaction_defer_reset(struct zone *zone, int order, 193 bool alloc_success) 194 { 195 if (alloc_success) { 196 zone->compact_considered = 0; 197 zone->compact_defer_shift = 0; 198 } 199 if (order >= zone->compact_order_failed) 200 zone->compact_order_failed = order + 1; 201 202 trace_mm_compaction_defer_reset(zone, order); 203 } 204 205 /* Returns true if restarting compaction after many failures */ 206 static bool compaction_restarting(struct zone *zone, int order) 207 { 208 if (order < zone->compact_order_failed) 209 return false; 210 211 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 212 zone->compact_considered >= 1UL << zone->compact_defer_shift; 213 } 214 215 /* Returns true if the pageblock should be scanned for pages to isolate. */ 216 static inline bool isolation_suitable(struct compact_control *cc, 217 struct page *page) 218 { 219 if (cc->ignore_skip_hint) 220 return true; 221 222 return !get_pageblock_skip(page); 223 } 224 225 static void reset_cached_positions(struct zone *zone) 226 { 227 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 228 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 229 zone->compact_cached_free_pfn = 230 pageblock_start_pfn(zone_end_pfn(zone) - 1); 231 } 232 233 /* 234 * Compound pages of >= pageblock_order should consistently be skipped until 235 * released. It is always pointless to compact pages of such order (if they are 236 * migratable), and the pageblocks they occupy cannot contain any free pages. 237 */ 238 static bool pageblock_skip_persistent(struct page *page) 239 { 240 if (!PageCompound(page)) 241 return false; 242 243 page = compound_head(page); 244 245 if (compound_order(page) >= pageblock_order) 246 return true; 247 248 return false; 249 } 250 251 static bool 252 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 253 bool check_target) 254 { 255 struct page *page = pfn_to_online_page(pfn); 256 struct page *block_page; 257 struct page *end_page; 258 unsigned long block_pfn; 259 260 if (!page) 261 return false; 262 if (zone != page_zone(page)) 263 return false; 264 if (pageblock_skip_persistent(page)) 265 return false; 266 267 /* 268 * If skip is already cleared do no further checking once the 269 * restart points have been set. 270 */ 271 if (check_source && check_target && !get_pageblock_skip(page)) 272 return true; 273 274 /* 275 * If clearing skip for the target scanner, do not select a 276 * non-movable pageblock as the starting point. 277 */ 278 if (!check_source && check_target && 279 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 280 return false; 281 282 /* Ensure the start of the pageblock or zone is online and valid */ 283 block_pfn = pageblock_start_pfn(pfn); 284 block_pfn = max(block_pfn, zone->zone_start_pfn); 285 block_page = pfn_to_online_page(block_pfn); 286 if (block_page) { 287 page = block_page; 288 pfn = block_pfn; 289 } 290 291 /* Ensure the end of the pageblock or zone is online and valid */ 292 block_pfn = pageblock_end_pfn(pfn) - 1; 293 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 294 end_page = pfn_to_online_page(block_pfn); 295 if (!end_page) 296 return false; 297 298 /* 299 * Only clear the hint if a sample indicates there is either a 300 * free page or an LRU page in the block. One or other condition 301 * is necessary for the block to be a migration source/target. 302 */ 303 do { 304 if (check_source && PageLRU(page)) { 305 clear_pageblock_skip(page); 306 return true; 307 } 308 309 if (check_target && PageBuddy(page)) { 310 clear_pageblock_skip(page); 311 return true; 312 } 313 314 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 315 } while (page <= end_page); 316 317 return false; 318 } 319 320 /* 321 * This function is called to clear all cached information on pageblocks that 322 * should be skipped for page isolation when the migrate and free page scanner 323 * meet. 324 */ 325 static void __reset_isolation_suitable(struct zone *zone) 326 { 327 unsigned long migrate_pfn = zone->zone_start_pfn; 328 unsigned long free_pfn = zone_end_pfn(zone) - 1; 329 unsigned long reset_migrate = free_pfn; 330 unsigned long reset_free = migrate_pfn; 331 bool source_set = false; 332 bool free_set = false; 333 334 if (!zone->compact_blockskip_flush) 335 return; 336 337 zone->compact_blockskip_flush = false; 338 339 /* 340 * Walk the zone and update pageblock skip information. Source looks 341 * for PageLRU while target looks for PageBuddy. When the scanner 342 * is found, both PageBuddy and PageLRU are checked as the pageblock 343 * is suitable as both source and target. 344 */ 345 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 346 free_pfn -= pageblock_nr_pages) { 347 cond_resched(); 348 349 /* Update the migrate PFN */ 350 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 351 migrate_pfn < reset_migrate) { 352 source_set = true; 353 reset_migrate = migrate_pfn; 354 zone->compact_init_migrate_pfn = reset_migrate; 355 zone->compact_cached_migrate_pfn[0] = reset_migrate; 356 zone->compact_cached_migrate_pfn[1] = reset_migrate; 357 } 358 359 /* Update the free PFN */ 360 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 361 free_pfn > reset_free) { 362 free_set = true; 363 reset_free = free_pfn; 364 zone->compact_init_free_pfn = reset_free; 365 zone->compact_cached_free_pfn = reset_free; 366 } 367 } 368 369 /* Leave no distance if no suitable block was reset */ 370 if (reset_migrate >= reset_free) { 371 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 372 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 373 zone->compact_cached_free_pfn = free_pfn; 374 } 375 } 376 377 void reset_isolation_suitable(pg_data_t *pgdat) 378 { 379 int zoneid; 380 381 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 382 struct zone *zone = &pgdat->node_zones[zoneid]; 383 if (!populated_zone(zone)) 384 continue; 385 386 /* Only flush if a full compaction finished recently */ 387 if (zone->compact_blockskip_flush) 388 __reset_isolation_suitable(zone); 389 } 390 } 391 392 /* 393 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 394 * locks are not required for read/writers. Returns true if it was already set. 395 */ 396 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 397 unsigned long pfn) 398 { 399 bool skip; 400 401 /* Do no update if skip hint is being ignored */ 402 if (cc->ignore_skip_hint) 403 return false; 404 405 if (!pageblock_aligned(pfn)) 406 return false; 407 408 skip = get_pageblock_skip(page); 409 if (!skip && !cc->no_set_skip_hint) 410 set_pageblock_skip(page); 411 412 return skip; 413 } 414 415 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 416 { 417 struct zone *zone = cc->zone; 418 419 pfn = pageblock_end_pfn(pfn); 420 421 /* Set for isolation rather than compaction */ 422 if (cc->no_set_skip_hint) 423 return; 424 425 if (pfn > zone->compact_cached_migrate_pfn[0]) 426 zone->compact_cached_migrate_pfn[0] = pfn; 427 if (cc->mode != MIGRATE_ASYNC && 428 pfn > zone->compact_cached_migrate_pfn[1]) 429 zone->compact_cached_migrate_pfn[1] = pfn; 430 } 431 432 /* 433 * If no pages were isolated then mark this pageblock to be skipped in the 434 * future. The information is later cleared by __reset_isolation_suitable(). 435 */ 436 static void update_pageblock_skip(struct compact_control *cc, 437 struct page *page, unsigned long pfn) 438 { 439 struct zone *zone = cc->zone; 440 441 if (cc->no_set_skip_hint) 442 return; 443 444 if (!page) 445 return; 446 447 set_pageblock_skip(page); 448 449 /* Update where async and sync compaction should restart */ 450 if (pfn < zone->compact_cached_free_pfn) 451 zone->compact_cached_free_pfn = pfn; 452 } 453 #else 454 static inline bool isolation_suitable(struct compact_control *cc, 455 struct page *page) 456 { 457 return true; 458 } 459 460 static inline bool pageblock_skip_persistent(struct page *page) 461 { 462 return false; 463 } 464 465 static inline void update_pageblock_skip(struct compact_control *cc, 466 struct page *page, unsigned long pfn) 467 { 468 } 469 470 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 471 { 472 } 473 474 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 475 unsigned long pfn) 476 { 477 return false; 478 } 479 #endif /* CONFIG_COMPACTION */ 480 481 /* 482 * Compaction requires the taking of some coarse locks that are potentially 483 * very heavily contended. For async compaction, trylock and record if the 484 * lock is contended. The lock will still be acquired but compaction will 485 * abort when the current block is finished regardless of success rate. 486 * Sync compaction acquires the lock. 487 * 488 * Always returns true which makes it easier to track lock state in callers. 489 */ 490 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 491 struct compact_control *cc) 492 __acquires(lock) 493 { 494 /* Track if the lock is contended in async mode */ 495 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 496 if (spin_trylock_irqsave(lock, *flags)) 497 return true; 498 499 cc->contended = true; 500 } 501 502 spin_lock_irqsave(lock, *flags); 503 return true; 504 } 505 506 /* 507 * Compaction requires the taking of some coarse locks that are potentially 508 * very heavily contended. The lock should be periodically unlocked to avoid 509 * having disabled IRQs for a long time, even when there is nobody waiting on 510 * the lock. It might also be that allowing the IRQs will result in 511 * need_resched() becoming true. If scheduling is needed, compaction schedules. 512 * Either compaction type will also abort if a fatal signal is pending. 513 * In either case if the lock was locked, it is dropped and not regained. 514 * 515 * Returns true if compaction should abort due to fatal signal pending. 516 * Returns false when compaction can continue. 517 */ 518 static bool compact_unlock_should_abort(spinlock_t *lock, 519 unsigned long flags, bool *locked, struct compact_control *cc) 520 { 521 if (*locked) { 522 spin_unlock_irqrestore(lock, flags); 523 *locked = false; 524 } 525 526 if (fatal_signal_pending(current)) { 527 cc->contended = true; 528 return true; 529 } 530 531 cond_resched(); 532 533 return false; 534 } 535 536 /* 537 * Isolate free pages onto a private freelist. If @strict is true, will abort 538 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 539 * (even though it may still end up isolating some pages). 540 */ 541 static unsigned long isolate_freepages_block(struct compact_control *cc, 542 unsigned long *start_pfn, 543 unsigned long end_pfn, 544 struct list_head *freelist, 545 unsigned int stride, 546 bool strict) 547 { 548 int nr_scanned = 0, total_isolated = 0; 549 struct page *cursor; 550 unsigned long flags = 0; 551 bool locked = false; 552 unsigned long blockpfn = *start_pfn; 553 unsigned int order; 554 555 /* Strict mode is for isolation, speed is secondary */ 556 if (strict) 557 stride = 1; 558 559 cursor = pfn_to_page(blockpfn); 560 561 /* Isolate free pages. */ 562 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 563 int isolated; 564 struct page *page = cursor; 565 566 /* 567 * Periodically drop the lock (if held) regardless of its 568 * contention, to give chance to IRQs. Abort if fatal signal 569 * pending. 570 */ 571 if (!(blockpfn % COMPACT_CLUSTER_MAX) 572 && compact_unlock_should_abort(&cc->zone->lock, flags, 573 &locked, cc)) 574 break; 575 576 nr_scanned++; 577 578 /* 579 * For compound pages such as THP and hugetlbfs, we can save 580 * potentially a lot of iterations if we skip them at once. 581 * The check is racy, but we can consider only valid values 582 * and the only danger is skipping too much. 583 */ 584 if (PageCompound(page)) { 585 const unsigned int order = compound_order(page); 586 587 if (likely(order < MAX_ORDER)) { 588 blockpfn += (1UL << order) - 1; 589 cursor += (1UL << order) - 1; 590 } 591 goto isolate_fail; 592 } 593 594 if (!PageBuddy(page)) 595 goto isolate_fail; 596 597 /* If we already hold the lock, we can skip some rechecking. */ 598 if (!locked) { 599 locked = compact_lock_irqsave(&cc->zone->lock, 600 &flags, cc); 601 602 /* Recheck this is a buddy page under lock */ 603 if (!PageBuddy(page)) 604 goto isolate_fail; 605 } 606 607 /* Found a free page, will break it into order-0 pages */ 608 order = buddy_order(page); 609 isolated = __isolate_free_page(page, order); 610 if (!isolated) 611 break; 612 set_page_private(page, order); 613 614 nr_scanned += isolated - 1; 615 total_isolated += isolated; 616 cc->nr_freepages += isolated; 617 list_add_tail(&page->lru, freelist); 618 619 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 620 blockpfn += isolated; 621 break; 622 } 623 /* Advance to the end of split page */ 624 blockpfn += isolated - 1; 625 cursor += isolated - 1; 626 continue; 627 628 isolate_fail: 629 if (strict) 630 break; 631 else 632 continue; 633 634 } 635 636 if (locked) 637 spin_unlock_irqrestore(&cc->zone->lock, flags); 638 639 /* 640 * There is a tiny chance that we have read bogus compound_order(), 641 * so be careful to not go outside of the pageblock. 642 */ 643 if (unlikely(blockpfn > end_pfn)) 644 blockpfn = end_pfn; 645 646 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 647 nr_scanned, total_isolated); 648 649 /* Record how far we have got within the block */ 650 *start_pfn = blockpfn; 651 652 /* 653 * If strict isolation is requested by CMA then check that all the 654 * pages requested were isolated. If there were any failures, 0 is 655 * returned and CMA will fail. 656 */ 657 if (strict && blockpfn < end_pfn) 658 total_isolated = 0; 659 660 cc->total_free_scanned += nr_scanned; 661 if (total_isolated) 662 count_compact_events(COMPACTISOLATED, total_isolated); 663 return total_isolated; 664 } 665 666 /** 667 * isolate_freepages_range() - isolate free pages. 668 * @cc: Compaction control structure. 669 * @start_pfn: The first PFN to start isolating. 670 * @end_pfn: The one-past-last PFN. 671 * 672 * Non-free pages, invalid PFNs, or zone boundaries within the 673 * [start_pfn, end_pfn) range are considered errors, cause function to 674 * undo its actions and return zero. 675 * 676 * Otherwise, function returns one-past-the-last PFN of isolated page 677 * (which may be greater then end_pfn if end fell in a middle of 678 * a free page). 679 */ 680 unsigned long 681 isolate_freepages_range(struct compact_control *cc, 682 unsigned long start_pfn, unsigned long end_pfn) 683 { 684 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 685 LIST_HEAD(freelist); 686 687 pfn = start_pfn; 688 block_start_pfn = pageblock_start_pfn(pfn); 689 if (block_start_pfn < cc->zone->zone_start_pfn) 690 block_start_pfn = cc->zone->zone_start_pfn; 691 block_end_pfn = pageblock_end_pfn(pfn); 692 693 for (; pfn < end_pfn; pfn += isolated, 694 block_start_pfn = block_end_pfn, 695 block_end_pfn += pageblock_nr_pages) { 696 /* Protect pfn from changing by isolate_freepages_block */ 697 unsigned long isolate_start_pfn = pfn; 698 699 block_end_pfn = min(block_end_pfn, end_pfn); 700 701 /* 702 * pfn could pass the block_end_pfn if isolated freepage 703 * is more than pageblock order. In this case, we adjust 704 * scanning range to right one. 705 */ 706 if (pfn >= block_end_pfn) { 707 block_start_pfn = pageblock_start_pfn(pfn); 708 block_end_pfn = pageblock_end_pfn(pfn); 709 block_end_pfn = min(block_end_pfn, end_pfn); 710 } 711 712 if (!pageblock_pfn_to_page(block_start_pfn, 713 block_end_pfn, cc->zone)) 714 break; 715 716 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 717 block_end_pfn, &freelist, 0, true); 718 719 /* 720 * In strict mode, isolate_freepages_block() returns 0 if 721 * there are any holes in the block (ie. invalid PFNs or 722 * non-free pages). 723 */ 724 if (!isolated) 725 break; 726 727 /* 728 * If we managed to isolate pages, it is always (1 << n) * 729 * pageblock_nr_pages for some non-negative n. (Max order 730 * page may span two pageblocks). 731 */ 732 } 733 734 /* __isolate_free_page() does not map the pages */ 735 split_map_pages(&freelist); 736 737 if (pfn < end_pfn) { 738 /* Loop terminated early, cleanup. */ 739 release_freepages(&freelist); 740 return 0; 741 } 742 743 /* We don't use freelists for anything. */ 744 return pfn; 745 } 746 747 /* Similar to reclaim, but different enough that they don't share logic */ 748 static bool too_many_isolated(pg_data_t *pgdat) 749 { 750 bool too_many; 751 752 unsigned long active, inactive, isolated; 753 754 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 755 node_page_state(pgdat, NR_INACTIVE_ANON); 756 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 757 node_page_state(pgdat, NR_ACTIVE_ANON); 758 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 759 node_page_state(pgdat, NR_ISOLATED_ANON); 760 761 too_many = isolated > (inactive + active) / 2; 762 if (!too_many) 763 wake_throttle_isolated(pgdat); 764 765 return too_many; 766 } 767 768 /** 769 * isolate_migratepages_block() - isolate all migrate-able pages within 770 * a single pageblock 771 * @cc: Compaction control structure. 772 * @low_pfn: The first PFN to isolate 773 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 774 * @mode: Isolation mode to be used. 775 * 776 * Isolate all pages that can be migrated from the range specified by 777 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 778 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion, 779 * -ENOMEM in case we could not allocate a page, or 0. 780 * cc->migrate_pfn will contain the next pfn to scan. 781 * 782 * The pages are isolated on cc->migratepages list (not required to be empty), 783 * and cc->nr_migratepages is updated accordingly. 784 */ 785 static int 786 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 787 unsigned long end_pfn, isolate_mode_t mode) 788 { 789 pg_data_t *pgdat = cc->zone->zone_pgdat; 790 unsigned long nr_scanned = 0, nr_isolated = 0; 791 struct lruvec *lruvec; 792 unsigned long flags = 0; 793 struct lruvec *locked = NULL; 794 struct page *page = NULL, *valid_page = NULL; 795 struct address_space *mapping; 796 unsigned long start_pfn = low_pfn; 797 bool skip_on_failure = false; 798 unsigned long next_skip_pfn = 0; 799 bool skip_updated = false; 800 int ret = 0; 801 802 cc->migrate_pfn = low_pfn; 803 804 /* 805 * Ensure that there are not too many pages isolated from the LRU 806 * list by either parallel reclaimers or compaction. If there are, 807 * delay for some time until fewer pages are isolated 808 */ 809 while (unlikely(too_many_isolated(pgdat))) { 810 /* stop isolation if there are still pages not migrated */ 811 if (cc->nr_migratepages) 812 return -EAGAIN; 813 814 /* async migration should just abort */ 815 if (cc->mode == MIGRATE_ASYNC) 816 return -EAGAIN; 817 818 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 819 820 if (fatal_signal_pending(current)) 821 return -EINTR; 822 } 823 824 cond_resched(); 825 826 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 827 skip_on_failure = true; 828 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 829 } 830 831 /* Time to isolate some pages for migration */ 832 for (; low_pfn < end_pfn; low_pfn++) { 833 834 if (skip_on_failure && low_pfn >= next_skip_pfn) { 835 /* 836 * We have isolated all migration candidates in the 837 * previous order-aligned block, and did not skip it due 838 * to failure. We should migrate the pages now and 839 * hopefully succeed compaction. 840 */ 841 if (nr_isolated) 842 break; 843 844 /* 845 * We failed to isolate in the previous order-aligned 846 * block. Set the new boundary to the end of the 847 * current block. Note we can't simply increase 848 * next_skip_pfn by 1 << order, as low_pfn might have 849 * been incremented by a higher number due to skipping 850 * a compound or a high-order buddy page in the 851 * previous loop iteration. 852 */ 853 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 854 } 855 856 /* 857 * Periodically drop the lock (if held) regardless of its 858 * contention, to give chance to IRQs. Abort completely if 859 * a fatal signal is pending. 860 */ 861 if (!(low_pfn % COMPACT_CLUSTER_MAX)) { 862 if (locked) { 863 unlock_page_lruvec_irqrestore(locked, flags); 864 locked = NULL; 865 } 866 867 if (fatal_signal_pending(current)) { 868 cc->contended = true; 869 ret = -EINTR; 870 871 goto fatal_pending; 872 } 873 874 cond_resched(); 875 } 876 877 nr_scanned++; 878 879 page = pfn_to_page(low_pfn); 880 881 /* 882 * Check if the pageblock has already been marked skipped. 883 * Only the aligned PFN is checked as the caller isolates 884 * COMPACT_CLUSTER_MAX at a time so the second call must 885 * not falsely conclude that the block should be skipped. 886 */ 887 if (!valid_page && pageblock_aligned(low_pfn)) { 888 if (!isolation_suitable(cc, page)) { 889 low_pfn = end_pfn; 890 page = NULL; 891 goto isolate_abort; 892 } 893 valid_page = page; 894 } 895 896 if (PageHuge(page) && cc->alloc_contig) { 897 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages); 898 899 /* 900 * Fail isolation in case isolate_or_dissolve_huge_page() 901 * reports an error. In case of -ENOMEM, abort right away. 902 */ 903 if (ret < 0) { 904 /* Do not report -EBUSY down the chain */ 905 if (ret == -EBUSY) 906 ret = 0; 907 low_pfn += compound_nr(page) - 1; 908 goto isolate_fail; 909 } 910 911 if (PageHuge(page)) { 912 /* 913 * Hugepage was successfully isolated and placed 914 * on the cc->migratepages list. 915 */ 916 low_pfn += compound_nr(page) - 1; 917 goto isolate_success_no_list; 918 } 919 920 /* 921 * Ok, the hugepage was dissolved. Now these pages are 922 * Buddy and cannot be re-allocated because they are 923 * isolated. Fall-through as the check below handles 924 * Buddy pages. 925 */ 926 } 927 928 /* 929 * Skip if free. We read page order here without zone lock 930 * which is generally unsafe, but the race window is small and 931 * the worst thing that can happen is that we skip some 932 * potential isolation targets. 933 */ 934 if (PageBuddy(page)) { 935 unsigned long freepage_order = buddy_order_unsafe(page); 936 937 /* 938 * Without lock, we cannot be sure that what we got is 939 * a valid page order. Consider only values in the 940 * valid order range to prevent low_pfn overflow. 941 */ 942 if (freepage_order > 0 && freepage_order < MAX_ORDER) 943 low_pfn += (1UL << freepage_order) - 1; 944 continue; 945 } 946 947 /* 948 * Regardless of being on LRU, compound pages such as THP and 949 * hugetlbfs are not to be compacted unless we are attempting 950 * an allocation much larger than the huge page size (eg CMA). 951 * We can potentially save a lot of iterations if we skip them 952 * at once. The check is racy, but we can consider only valid 953 * values and the only danger is skipping too much. 954 */ 955 if (PageCompound(page) && !cc->alloc_contig) { 956 const unsigned int order = compound_order(page); 957 958 if (likely(order < MAX_ORDER)) 959 low_pfn += (1UL << order) - 1; 960 goto isolate_fail; 961 } 962 963 /* 964 * Check may be lockless but that's ok as we recheck later. 965 * It's possible to migrate LRU and non-lru movable pages. 966 * Skip any other type of page 967 */ 968 if (!PageLRU(page)) { 969 /* 970 * __PageMovable can return false positive so we need 971 * to verify it under page_lock. 972 */ 973 if (unlikely(__PageMovable(page)) && 974 !PageIsolated(page)) { 975 if (locked) { 976 unlock_page_lruvec_irqrestore(locked, flags); 977 locked = NULL; 978 } 979 980 if (!isolate_movable_page(page, mode)) 981 goto isolate_success; 982 } 983 984 goto isolate_fail; 985 } 986 987 /* 988 * Be careful not to clear PageLRU until after we're 989 * sure the page is not being freed elsewhere -- the 990 * page release code relies on it. 991 */ 992 if (unlikely(!get_page_unless_zero(page))) 993 goto isolate_fail; 994 995 /* 996 * Migration will fail if an anonymous page is pinned in memory, 997 * so avoid taking lru_lock and isolating it unnecessarily in an 998 * admittedly racy check. 999 */ 1000 mapping = page_mapping(page); 1001 if (!mapping && (page_count(page) - 1) > total_mapcount(page)) 1002 goto isolate_fail_put; 1003 1004 /* 1005 * Only allow to migrate anonymous pages in GFP_NOFS context 1006 * because those do not depend on fs locks. 1007 */ 1008 if (!(cc->gfp_mask & __GFP_FS) && mapping) 1009 goto isolate_fail_put; 1010 1011 /* Only take pages on LRU: a check now makes later tests safe */ 1012 if (!PageLRU(page)) 1013 goto isolate_fail_put; 1014 1015 /* Compaction might skip unevictable pages but CMA takes them */ 1016 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page)) 1017 goto isolate_fail_put; 1018 1019 /* 1020 * To minimise LRU disruption, the caller can indicate with 1021 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages 1022 * it will be able to migrate without blocking - clean pages 1023 * for the most part. PageWriteback would require blocking. 1024 */ 1025 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page)) 1026 goto isolate_fail_put; 1027 1028 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) { 1029 bool migrate_dirty; 1030 1031 /* 1032 * Only pages without mappings or that have a 1033 * ->migrate_folio callback are possible to migrate 1034 * without blocking. However, we can be racing with 1035 * truncation so it's necessary to lock the page 1036 * to stabilise the mapping as truncation holds 1037 * the page lock until after the page is removed 1038 * from the page cache. 1039 */ 1040 if (!trylock_page(page)) 1041 goto isolate_fail_put; 1042 1043 mapping = page_mapping(page); 1044 migrate_dirty = !mapping || 1045 mapping->a_ops->migrate_folio; 1046 unlock_page(page); 1047 if (!migrate_dirty) 1048 goto isolate_fail_put; 1049 } 1050 1051 /* Try isolate the page */ 1052 if (!TestClearPageLRU(page)) 1053 goto isolate_fail_put; 1054 1055 lruvec = folio_lruvec(page_folio(page)); 1056 1057 /* If we already hold the lock, we can skip some rechecking */ 1058 if (lruvec != locked) { 1059 if (locked) 1060 unlock_page_lruvec_irqrestore(locked, flags); 1061 1062 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); 1063 locked = lruvec; 1064 1065 lruvec_memcg_debug(lruvec, page_folio(page)); 1066 1067 /* Try get exclusive access under lock */ 1068 if (!skip_updated) { 1069 skip_updated = true; 1070 if (test_and_set_skip(cc, page, low_pfn)) 1071 goto isolate_abort; 1072 } 1073 1074 /* 1075 * Page become compound since the non-locked check, 1076 * and it's on LRU. It can only be a THP so the order 1077 * is safe to read and it's 0 for tail pages. 1078 */ 1079 if (unlikely(PageCompound(page) && !cc->alloc_contig)) { 1080 low_pfn += compound_nr(page) - 1; 1081 SetPageLRU(page); 1082 goto isolate_fail_put; 1083 } 1084 } 1085 1086 /* The whole page is taken off the LRU; skip the tail pages. */ 1087 if (PageCompound(page)) 1088 low_pfn += compound_nr(page) - 1; 1089 1090 /* Successfully isolated */ 1091 del_page_from_lru_list(page, lruvec); 1092 mod_node_page_state(page_pgdat(page), 1093 NR_ISOLATED_ANON + page_is_file_lru(page), 1094 thp_nr_pages(page)); 1095 1096 isolate_success: 1097 list_add(&page->lru, &cc->migratepages); 1098 isolate_success_no_list: 1099 cc->nr_migratepages += compound_nr(page); 1100 nr_isolated += compound_nr(page); 1101 nr_scanned += compound_nr(page) - 1; 1102 1103 /* 1104 * Avoid isolating too much unless this block is being 1105 * rescanned (e.g. dirty/writeback pages, parallel allocation) 1106 * or a lock is contended. For contention, isolate quickly to 1107 * potentially remove one source of contention. 1108 */ 1109 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1110 !cc->rescan && !cc->contended) { 1111 ++low_pfn; 1112 break; 1113 } 1114 1115 continue; 1116 1117 isolate_fail_put: 1118 /* Avoid potential deadlock in freeing page under lru_lock */ 1119 if (locked) { 1120 unlock_page_lruvec_irqrestore(locked, flags); 1121 locked = NULL; 1122 } 1123 put_page(page); 1124 1125 isolate_fail: 1126 if (!skip_on_failure && ret != -ENOMEM) 1127 continue; 1128 1129 /* 1130 * We have isolated some pages, but then failed. Release them 1131 * instead of migrating, as we cannot form the cc->order buddy 1132 * page anyway. 1133 */ 1134 if (nr_isolated) { 1135 if (locked) { 1136 unlock_page_lruvec_irqrestore(locked, flags); 1137 locked = NULL; 1138 } 1139 putback_movable_pages(&cc->migratepages); 1140 cc->nr_migratepages = 0; 1141 nr_isolated = 0; 1142 } 1143 1144 if (low_pfn < next_skip_pfn) { 1145 low_pfn = next_skip_pfn - 1; 1146 /* 1147 * The check near the loop beginning would have updated 1148 * next_skip_pfn too, but this is a bit simpler. 1149 */ 1150 next_skip_pfn += 1UL << cc->order; 1151 } 1152 1153 if (ret == -ENOMEM) 1154 break; 1155 } 1156 1157 /* 1158 * The PageBuddy() check could have potentially brought us outside 1159 * the range to be scanned. 1160 */ 1161 if (unlikely(low_pfn > end_pfn)) 1162 low_pfn = end_pfn; 1163 1164 page = NULL; 1165 1166 isolate_abort: 1167 if (locked) 1168 unlock_page_lruvec_irqrestore(locked, flags); 1169 if (page) { 1170 SetPageLRU(page); 1171 put_page(page); 1172 } 1173 1174 /* 1175 * Updated the cached scanner pfn once the pageblock has been scanned 1176 * Pages will either be migrated in which case there is no point 1177 * scanning in the near future or migration failed in which case the 1178 * failure reason may persist. The block is marked for skipping if 1179 * there were no pages isolated in the block or if the block is 1180 * rescanned twice in a row. 1181 */ 1182 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) { 1183 if (valid_page && !skip_updated) 1184 set_pageblock_skip(valid_page); 1185 update_cached_migrate(cc, low_pfn); 1186 } 1187 1188 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1189 nr_scanned, nr_isolated); 1190 1191 fatal_pending: 1192 cc->total_migrate_scanned += nr_scanned; 1193 if (nr_isolated) 1194 count_compact_events(COMPACTISOLATED, nr_isolated); 1195 1196 cc->migrate_pfn = low_pfn; 1197 1198 return ret; 1199 } 1200 1201 /** 1202 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1203 * @cc: Compaction control structure. 1204 * @start_pfn: The first PFN to start isolating. 1205 * @end_pfn: The one-past-last PFN. 1206 * 1207 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM 1208 * in case we could not allocate a page, or 0. 1209 */ 1210 int 1211 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1212 unsigned long end_pfn) 1213 { 1214 unsigned long pfn, block_start_pfn, block_end_pfn; 1215 int ret = 0; 1216 1217 /* Scan block by block. First and last block may be incomplete */ 1218 pfn = start_pfn; 1219 block_start_pfn = pageblock_start_pfn(pfn); 1220 if (block_start_pfn < cc->zone->zone_start_pfn) 1221 block_start_pfn = cc->zone->zone_start_pfn; 1222 block_end_pfn = pageblock_end_pfn(pfn); 1223 1224 for (; pfn < end_pfn; pfn = block_end_pfn, 1225 block_start_pfn = block_end_pfn, 1226 block_end_pfn += pageblock_nr_pages) { 1227 1228 block_end_pfn = min(block_end_pfn, end_pfn); 1229 1230 if (!pageblock_pfn_to_page(block_start_pfn, 1231 block_end_pfn, cc->zone)) 1232 continue; 1233 1234 ret = isolate_migratepages_block(cc, pfn, block_end_pfn, 1235 ISOLATE_UNEVICTABLE); 1236 1237 if (ret) 1238 break; 1239 1240 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1241 break; 1242 } 1243 1244 return ret; 1245 } 1246 1247 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1248 #ifdef CONFIG_COMPACTION 1249 1250 static bool suitable_migration_source(struct compact_control *cc, 1251 struct page *page) 1252 { 1253 int block_mt; 1254 1255 if (pageblock_skip_persistent(page)) 1256 return false; 1257 1258 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1259 return true; 1260 1261 block_mt = get_pageblock_migratetype(page); 1262 1263 if (cc->migratetype == MIGRATE_MOVABLE) 1264 return is_migrate_movable(block_mt); 1265 else 1266 return block_mt == cc->migratetype; 1267 } 1268 1269 /* Returns true if the page is within a block suitable for migration to */ 1270 static bool suitable_migration_target(struct compact_control *cc, 1271 struct page *page) 1272 { 1273 /* If the page is a large free page, then disallow migration */ 1274 if (PageBuddy(page)) { 1275 /* 1276 * We are checking page_order without zone->lock taken. But 1277 * the only small danger is that we skip a potentially suitable 1278 * pageblock, so it's not worth to check order for valid range. 1279 */ 1280 if (buddy_order_unsafe(page) >= pageblock_order) 1281 return false; 1282 } 1283 1284 if (cc->ignore_block_suitable) 1285 return true; 1286 1287 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1288 if (is_migrate_movable(get_pageblock_migratetype(page))) 1289 return true; 1290 1291 /* Otherwise skip the block */ 1292 return false; 1293 } 1294 1295 static inline unsigned int 1296 freelist_scan_limit(struct compact_control *cc) 1297 { 1298 unsigned short shift = BITS_PER_LONG - 1; 1299 1300 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1301 } 1302 1303 /* 1304 * Test whether the free scanner has reached the same or lower pageblock than 1305 * the migration scanner, and compaction should thus terminate. 1306 */ 1307 static inline bool compact_scanners_met(struct compact_control *cc) 1308 { 1309 return (cc->free_pfn >> pageblock_order) 1310 <= (cc->migrate_pfn >> pageblock_order); 1311 } 1312 1313 /* 1314 * Used when scanning for a suitable migration target which scans freelists 1315 * in reverse. Reorders the list such as the unscanned pages are scanned 1316 * first on the next iteration of the free scanner 1317 */ 1318 static void 1319 move_freelist_head(struct list_head *freelist, struct page *freepage) 1320 { 1321 LIST_HEAD(sublist); 1322 1323 if (!list_is_last(freelist, &freepage->lru)) { 1324 list_cut_before(&sublist, freelist, &freepage->lru); 1325 list_splice_tail(&sublist, freelist); 1326 } 1327 } 1328 1329 /* 1330 * Similar to move_freelist_head except used by the migration scanner 1331 * when scanning forward. It's possible for these list operations to 1332 * move against each other if they search the free list exactly in 1333 * lockstep. 1334 */ 1335 static void 1336 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1337 { 1338 LIST_HEAD(sublist); 1339 1340 if (!list_is_first(freelist, &freepage->lru)) { 1341 list_cut_position(&sublist, freelist, &freepage->lru); 1342 list_splice_tail(&sublist, freelist); 1343 } 1344 } 1345 1346 static void 1347 fast_isolate_around(struct compact_control *cc, unsigned long pfn) 1348 { 1349 unsigned long start_pfn, end_pfn; 1350 struct page *page; 1351 1352 /* Do not search around if there are enough pages already */ 1353 if (cc->nr_freepages >= cc->nr_migratepages) 1354 return; 1355 1356 /* Minimise scanning during async compaction */ 1357 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1358 return; 1359 1360 /* Pageblock boundaries */ 1361 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn); 1362 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)); 1363 1364 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone); 1365 if (!page) 1366 return; 1367 1368 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1369 1370 /* Skip this pageblock in the future as it's full or nearly full */ 1371 if (cc->nr_freepages < cc->nr_migratepages) 1372 set_pageblock_skip(page); 1373 1374 return; 1375 } 1376 1377 /* Search orders in round-robin fashion */ 1378 static int next_search_order(struct compact_control *cc, int order) 1379 { 1380 order--; 1381 if (order < 0) 1382 order = cc->order - 1; 1383 1384 /* Search wrapped around? */ 1385 if (order == cc->search_order) { 1386 cc->search_order--; 1387 if (cc->search_order < 0) 1388 cc->search_order = cc->order - 1; 1389 return -1; 1390 } 1391 1392 return order; 1393 } 1394 1395 static unsigned long 1396 fast_isolate_freepages(struct compact_control *cc) 1397 { 1398 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1); 1399 unsigned int nr_scanned = 0; 1400 unsigned long low_pfn, min_pfn, highest = 0; 1401 unsigned long nr_isolated = 0; 1402 unsigned long distance; 1403 struct page *page = NULL; 1404 bool scan_start = false; 1405 int order; 1406 1407 /* Full compaction passes in a negative order */ 1408 if (cc->order <= 0) 1409 return cc->free_pfn; 1410 1411 /* 1412 * If starting the scan, use a deeper search and use the highest 1413 * PFN found if a suitable one is not found. 1414 */ 1415 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1416 limit = pageblock_nr_pages >> 1; 1417 scan_start = true; 1418 } 1419 1420 /* 1421 * Preferred point is in the top quarter of the scan space but take 1422 * a pfn from the top half if the search is problematic. 1423 */ 1424 distance = (cc->free_pfn - cc->migrate_pfn); 1425 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1426 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1427 1428 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1429 low_pfn = min_pfn; 1430 1431 /* 1432 * Search starts from the last successful isolation order or the next 1433 * order to search after a previous failure 1434 */ 1435 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1436 1437 for (order = cc->search_order; 1438 !page && order >= 0; 1439 order = next_search_order(cc, order)) { 1440 struct free_area *area = &cc->zone->free_area[order]; 1441 struct list_head *freelist; 1442 struct page *freepage; 1443 unsigned long flags; 1444 unsigned int order_scanned = 0; 1445 unsigned long high_pfn = 0; 1446 1447 if (!area->nr_free) 1448 continue; 1449 1450 spin_lock_irqsave(&cc->zone->lock, flags); 1451 freelist = &area->free_list[MIGRATE_MOVABLE]; 1452 list_for_each_entry_reverse(freepage, freelist, lru) { 1453 unsigned long pfn; 1454 1455 order_scanned++; 1456 nr_scanned++; 1457 pfn = page_to_pfn(freepage); 1458 1459 if (pfn >= highest) 1460 highest = max(pageblock_start_pfn(pfn), 1461 cc->zone->zone_start_pfn); 1462 1463 if (pfn >= low_pfn) { 1464 cc->fast_search_fail = 0; 1465 cc->search_order = order; 1466 page = freepage; 1467 break; 1468 } 1469 1470 if (pfn >= min_pfn && pfn > high_pfn) { 1471 high_pfn = pfn; 1472 1473 /* Shorten the scan if a candidate is found */ 1474 limit >>= 1; 1475 } 1476 1477 if (order_scanned >= limit) 1478 break; 1479 } 1480 1481 /* Use a minimum pfn if a preferred one was not found */ 1482 if (!page && high_pfn) { 1483 page = pfn_to_page(high_pfn); 1484 1485 /* Update freepage for the list reorder below */ 1486 freepage = page; 1487 } 1488 1489 /* Reorder to so a future search skips recent pages */ 1490 move_freelist_head(freelist, freepage); 1491 1492 /* Isolate the page if available */ 1493 if (page) { 1494 if (__isolate_free_page(page, order)) { 1495 set_page_private(page, order); 1496 nr_isolated = 1 << order; 1497 nr_scanned += nr_isolated - 1; 1498 cc->nr_freepages += nr_isolated; 1499 list_add_tail(&page->lru, &cc->freepages); 1500 count_compact_events(COMPACTISOLATED, nr_isolated); 1501 } else { 1502 /* If isolation fails, abort the search */ 1503 order = cc->search_order + 1; 1504 page = NULL; 1505 } 1506 } 1507 1508 spin_unlock_irqrestore(&cc->zone->lock, flags); 1509 1510 /* 1511 * Smaller scan on next order so the total scan is related 1512 * to freelist_scan_limit. 1513 */ 1514 if (order_scanned >= limit) 1515 limit = max(1U, limit >> 1); 1516 } 1517 1518 if (!page) { 1519 cc->fast_search_fail++; 1520 if (scan_start) { 1521 /* 1522 * Use the highest PFN found above min. If one was 1523 * not found, be pessimistic for direct compaction 1524 * and use the min mark. 1525 */ 1526 if (highest >= min_pfn) { 1527 page = pfn_to_page(highest); 1528 cc->free_pfn = highest; 1529 } else { 1530 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1531 page = pageblock_pfn_to_page(min_pfn, 1532 min(pageblock_end_pfn(min_pfn), 1533 zone_end_pfn(cc->zone)), 1534 cc->zone); 1535 cc->free_pfn = min_pfn; 1536 } 1537 } 1538 } 1539 } 1540 1541 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1542 highest -= pageblock_nr_pages; 1543 cc->zone->compact_cached_free_pfn = highest; 1544 } 1545 1546 cc->total_free_scanned += nr_scanned; 1547 if (!page) 1548 return cc->free_pfn; 1549 1550 low_pfn = page_to_pfn(page); 1551 fast_isolate_around(cc, low_pfn); 1552 return low_pfn; 1553 } 1554 1555 /* 1556 * Based on information in the current compact_control, find blocks 1557 * suitable for isolating free pages from and then isolate them. 1558 */ 1559 static void isolate_freepages(struct compact_control *cc) 1560 { 1561 struct zone *zone = cc->zone; 1562 struct page *page; 1563 unsigned long block_start_pfn; /* start of current pageblock */ 1564 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1565 unsigned long block_end_pfn; /* end of current pageblock */ 1566 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1567 struct list_head *freelist = &cc->freepages; 1568 unsigned int stride; 1569 1570 /* Try a small search of the free lists for a candidate */ 1571 fast_isolate_freepages(cc); 1572 if (cc->nr_freepages) 1573 goto splitmap; 1574 1575 /* 1576 * Initialise the free scanner. The starting point is where we last 1577 * successfully isolated from, zone-cached value, or the end of the 1578 * zone when isolating for the first time. For looping we also need 1579 * this pfn aligned down to the pageblock boundary, because we do 1580 * block_start_pfn -= pageblock_nr_pages in the for loop. 1581 * For ending point, take care when isolating in last pageblock of a 1582 * zone which ends in the middle of a pageblock. 1583 * The low boundary is the end of the pageblock the migration scanner 1584 * is using. 1585 */ 1586 isolate_start_pfn = cc->free_pfn; 1587 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1588 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1589 zone_end_pfn(zone)); 1590 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1591 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1592 1593 /* 1594 * Isolate free pages until enough are available to migrate the 1595 * pages on cc->migratepages. We stop searching if the migrate 1596 * and free page scanners meet or enough free pages are isolated. 1597 */ 1598 for (; block_start_pfn >= low_pfn; 1599 block_end_pfn = block_start_pfn, 1600 block_start_pfn -= pageblock_nr_pages, 1601 isolate_start_pfn = block_start_pfn) { 1602 unsigned long nr_isolated; 1603 1604 /* 1605 * This can iterate a massively long zone without finding any 1606 * suitable migration targets, so periodically check resched. 1607 */ 1608 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1609 cond_resched(); 1610 1611 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1612 zone); 1613 if (!page) 1614 continue; 1615 1616 /* Check the block is suitable for migration */ 1617 if (!suitable_migration_target(cc, page)) 1618 continue; 1619 1620 /* If isolation recently failed, do not retry */ 1621 if (!isolation_suitable(cc, page)) 1622 continue; 1623 1624 /* Found a block suitable for isolating free pages from. */ 1625 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1626 block_end_pfn, freelist, stride, false); 1627 1628 /* Update the skip hint if the full pageblock was scanned */ 1629 if (isolate_start_pfn == block_end_pfn) 1630 update_pageblock_skip(cc, page, block_start_pfn); 1631 1632 /* Are enough freepages isolated? */ 1633 if (cc->nr_freepages >= cc->nr_migratepages) { 1634 if (isolate_start_pfn >= block_end_pfn) { 1635 /* 1636 * Restart at previous pageblock if more 1637 * freepages can be isolated next time. 1638 */ 1639 isolate_start_pfn = 1640 block_start_pfn - pageblock_nr_pages; 1641 } 1642 break; 1643 } else if (isolate_start_pfn < block_end_pfn) { 1644 /* 1645 * If isolation failed early, do not continue 1646 * needlessly. 1647 */ 1648 break; 1649 } 1650 1651 /* Adjust stride depending on isolation */ 1652 if (nr_isolated) { 1653 stride = 1; 1654 continue; 1655 } 1656 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1657 } 1658 1659 /* 1660 * Record where the free scanner will restart next time. Either we 1661 * broke from the loop and set isolate_start_pfn based on the last 1662 * call to isolate_freepages_block(), or we met the migration scanner 1663 * and the loop terminated due to isolate_start_pfn < low_pfn 1664 */ 1665 cc->free_pfn = isolate_start_pfn; 1666 1667 splitmap: 1668 /* __isolate_free_page() does not map the pages */ 1669 split_map_pages(freelist); 1670 } 1671 1672 /* 1673 * This is a migrate-callback that "allocates" freepages by taking pages 1674 * from the isolated freelists in the block we are migrating to. 1675 */ 1676 static struct page *compaction_alloc(struct page *migratepage, 1677 unsigned long data) 1678 { 1679 struct compact_control *cc = (struct compact_control *)data; 1680 struct page *freepage; 1681 1682 if (list_empty(&cc->freepages)) { 1683 isolate_freepages(cc); 1684 1685 if (list_empty(&cc->freepages)) 1686 return NULL; 1687 } 1688 1689 freepage = list_entry(cc->freepages.next, struct page, lru); 1690 list_del(&freepage->lru); 1691 cc->nr_freepages--; 1692 1693 return freepage; 1694 } 1695 1696 /* 1697 * This is a migrate-callback that "frees" freepages back to the isolated 1698 * freelist. All pages on the freelist are from the same zone, so there is no 1699 * special handling needed for NUMA. 1700 */ 1701 static void compaction_free(struct page *page, unsigned long data) 1702 { 1703 struct compact_control *cc = (struct compact_control *)data; 1704 1705 list_add(&page->lru, &cc->freepages); 1706 cc->nr_freepages++; 1707 } 1708 1709 /* possible outcome of isolate_migratepages */ 1710 typedef enum { 1711 ISOLATE_ABORT, /* Abort compaction now */ 1712 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1713 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1714 } isolate_migrate_t; 1715 1716 /* 1717 * Allow userspace to control policy on scanning the unevictable LRU for 1718 * compactable pages. 1719 */ 1720 int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT; 1721 1722 static inline void 1723 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1724 { 1725 if (cc->fast_start_pfn == ULONG_MAX) 1726 return; 1727 1728 if (!cc->fast_start_pfn) 1729 cc->fast_start_pfn = pfn; 1730 1731 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1732 } 1733 1734 static inline unsigned long 1735 reinit_migrate_pfn(struct compact_control *cc) 1736 { 1737 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1738 return cc->migrate_pfn; 1739 1740 cc->migrate_pfn = cc->fast_start_pfn; 1741 cc->fast_start_pfn = ULONG_MAX; 1742 1743 return cc->migrate_pfn; 1744 } 1745 1746 /* 1747 * Briefly search the free lists for a migration source that already has 1748 * some free pages to reduce the number of pages that need migration 1749 * before a pageblock is free. 1750 */ 1751 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1752 { 1753 unsigned int limit = freelist_scan_limit(cc); 1754 unsigned int nr_scanned = 0; 1755 unsigned long distance; 1756 unsigned long pfn = cc->migrate_pfn; 1757 unsigned long high_pfn; 1758 int order; 1759 bool found_block = false; 1760 1761 /* Skip hints are relied on to avoid repeats on the fast search */ 1762 if (cc->ignore_skip_hint) 1763 return pfn; 1764 1765 /* 1766 * If the migrate_pfn is not at the start of a zone or the start 1767 * of a pageblock then assume this is a continuation of a previous 1768 * scan restarted due to COMPACT_CLUSTER_MAX. 1769 */ 1770 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1771 return pfn; 1772 1773 /* 1774 * For smaller orders, just linearly scan as the number of pages 1775 * to migrate should be relatively small and does not necessarily 1776 * justify freeing up a large block for a small allocation. 1777 */ 1778 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1779 return pfn; 1780 1781 /* 1782 * Only allow kcompactd and direct requests for movable pages to 1783 * quickly clear out a MOVABLE pageblock for allocation. This 1784 * reduces the risk that a large movable pageblock is freed for 1785 * an unmovable/reclaimable small allocation. 1786 */ 1787 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1788 return pfn; 1789 1790 /* 1791 * When starting the migration scanner, pick any pageblock within the 1792 * first half of the search space. Otherwise try and pick a pageblock 1793 * within the first eighth to reduce the chances that a migration 1794 * target later becomes a source. 1795 */ 1796 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1797 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1798 distance >>= 2; 1799 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1800 1801 for (order = cc->order - 1; 1802 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit; 1803 order--) { 1804 struct free_area *area = &cc->zone->free_area[order]; 1805 struct list_head *freelist; 1806 unsigned long flags; 1807 struct page *freepage; 1808 1809 if (!area->nr_free) 1810 continue; 1811 1812 spin_lock_irqsave(&cc->zone->lock, flags); 1813 freelist = &area->free_list[MIGRATE_MOVABLE]; 1814 list_for_each_entry(freepage, freelist, lru) { 1815 unsigned long free_pfn; 1816 1817 if (nr_scanned++ >= limit) { 1818 move_freelist_tail(freelist, freepage); 1819 break; 1820 } 1821 1822 free_pfn = page_to_pfn(freepage); 1823 if (free_pfn < high_pfn) { 1824 /* 1825 * Avoid if skipped recently. Ideally it would 1826 * move to the tail but even safe iteration of 1827 * the list assumes an entry is deleted, not 1828 * reordered. 1829 */ 1830 if (get_pageblock_skip(freepage)) 1831 continue; 1832 1833 /* Reorder to so a future search skips recent pages */ 1834 move_freelist_tail(freelist, freepage); 1835 1836 update_fast_start_pfn(cc, free_pfn); 1837 pfn = pageblock_start_pfn(free_pfn); 1838 if (pfn < cc->zone->zone_start_pfn) 1839 pfn = cc->zone->zone_start_pfn; 1840 cc->fast_search_fail = 0; 1841 found_block = true; 1842 break; 1843 } 1844 } 1845 spin_unlock_irqrestore(&cc->zone->lock, flags); 1846 } 1847 1848 cc->total_migrate_scanned += nr_scanned; 1849 1850 /* 1851 * If fast scanning failed then use a cached entry for a page block 1852 * that had free pages as the basis for starting a linear scan. 1853 */ 1854 if (!found_block) { 1855 cc->fast_search_fail++; 1856 pfn = reinit_migrate_pfn(cc); 1857 } 1858 return pfn; 1859 } 1860 1861 /* 1862 * Isolate all pages that can be migrated from the first suitable block, 1863 * starting at the block pointed to by the migrate scanner pfn within 1864 * compact_control. 1865 */ 1866 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1867 { 1868 unsigned long block_start_pfn; 1869 unsigned long block_end_pfn; 1870 unsigned long low_pfn; 1871 struct page *page; 1872 const isolate_mode_t isolate_mode = 1873 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1874 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1875 bool fast_find_block; 1876 1877 /* 1878 * Start at where we last stopped, or beginning of the zone as 1879 * initialized by compact_zone(). The first failure will use 1880 * the lowest PFN as the starting point for linear scanning. 1881 */ 1882 low_pfn = fast_find_migrateblock(cc); 1883 block_start_pfn = pageblock_start_pfn(low_pfn); 1884 if (block_start_pfn < cc->zone->zone_start_pfn) 1885 block_start_pfn = cc->zone->zone_start_pfn; 1886 1887 /* 1888 * fast_find_migrateblock marks a pageblock skipped so to avoid 1889 * the isolation_suitable check below, check whether the fast 1890 * search was successful. 1891 */ 1892 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1893 1894 /* Only scan within a pageblock boundary */ 1895 block_end_pfn = pageblock_end_pfn(low_pfn); 1896 1897 /* 1898 * Iterate over whole pageblocks until we find the first suitable. 1899 * Do not cross the free scanner. 1900 */ 1901 for (; block_end_pfn <= cc->free_pfn; 1902 fast_find_block = false, 1903 cc->migrate_pfn = low_pfn = block_end_pfn, 1904 block_start_pfn = block_end_pfn, 1905 block_end_pfn += pageblock_nr_pages) { 1906 1907 /* 1908 * This can potentially iterate a massively long zone with 1909 * many pageblocks unsuitable, so periodically check if we 1910 * need to schedule. 1911 */ 1912 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1913 cond_resched(); 1914 1915 page = pageblock_pfn_to_page(block_start_pfn, 1916 block_end_pfn, cc->zone); 1917 if (!page) 1918 continue; 1919 1920 /* 1921 * If isolation recently failed, do not retry. Only check the 1922 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1923 * to be visited multiple times. Assume skip was checked 1924 * before making it "skip" so other compaction instances do 1925 * not scan the same block. 1926 */ 1927 if (pageblock_aligned(low_pfn) && 1928 !fast_find_block && !isolation_suitable(cc, page)) 1929 continue; 1930 1931 /* 1932 * For async direct compaction, only scan the pageblocks of the 1933 * same migratetype without huge pages. Async direct compaction 1934 * is optimistic to see if the minimum amount of work satisfies 1935 * the allocation. The cached PFN is updated as it's possible 1936 * that all remaining blocks between source and target are 1937 * unsuitable and the compaction scanners fail to meet. 1938 */ 1939 if (!suitable_migration_source(cc, page)) { 1940 update_cached_migrate(cc, block_end_pfn); 1941 continue; 1942 } 1943 1944 /* Perform the isolation */ 1945 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn, 1946 isolate_mode)) 1947 return ISOLATE_ABORT; 1948 1949 /* 1950 * Either we isolated something and proceed with migration. Or 1951 * we failed and compact_zone should decide if we should 1952 * continue or not. 1953 */ 1954 break; 1955 } 1956 1957 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1958 } 1959 1960 /* 1961 * order == -1 is expected when compacting via 1962 * /proc/sys/vm/compact_memory 1963 */ 1964 static inline bool is_via_compact_memory(int order) 1965 { 1966 return order == -1; 1967 } 1968 1969 /* 1970 * Determine whether kswapd is (or recently was!) running on this node. 1971 * 1972 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't 1973 * zero it. 1974 */ 1975 static bool kswapd_is_running(pg_data_t *pgdat) 1976 { 1977 bool running; 1978 1979 pgdat_kswapd_lock(pgdat); 1980 running = pgdat->kswapd && task_is_running(pgdat->kswapd); 1981 pgdat_kswapd_unlock(pgdat); 1982 1983 return running; 1984 } 1985 1986 /* 1987 * A zone's fragmentation score is the external fragmentation wrt to the 1988 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100]. 1989 */ 1990 static unsigned int fragmentation_score_zone(struct zone *zone) 1991 { 1992 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 1993 } 1994 1995 /* 1996 * A weighted zone's fragmentation score is the external fragmentation 1997 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It 1998 * returns a value in the range [0, 100]. 1999 * 2000 * The scaling factor ensures that proactive compaction focuses on larger 2001 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 2002 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 2003 * and thus never exceeds the high threshold for proactive compaction. 2004 */ 2005 static unsigned int fragmentation_score_zone_weighted(struct zone *zone) 2006 { 2007 unsigned long score; 2008 2009 score = zone->present_pages * fragmentation_score_zone(zone); 2010 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 2011 } 2012 2013 /* 2014 * The per-node proactive (background) compaction process is started by its 2015 * corresponding kcompactd thread when the node's fragmentation score 2016 * exceeds the high threshold. The compaction process remains active till 2017 * the node's score falls below the low threshold, or one of the back-off 2018 * conditions is met. 2019 */ 2020 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 2021 { 2022 unsigned int score = 0; 2023 int zoneid; 2024 2025 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2026 struct zone *zone; 2027 2028 zone = &pgdat->node_zones[zoneid]; 2029 score += fragmentation_score_zone_weighted(zone); 2030 } 2031 2032 return score; 2033 } 2034 2035 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low) 2036 { 2037 unsigned int wmark_low; 2038 2039 /* 2040 * Cap the low watermark to avoid excessive compaction 2041 * activity in case a user sets the proactiveness tunable 2042 * close to 100 (maximum). 2043 */ 2044 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 2045 return low ? wmark_low : min(wmark_low + 10, 100U); 2046 } 2047 2048 static bool should_proactive_compact_node(pg_data_t *pgdat) 2049 { 2050 int wmark_high; 2051 2052 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 2053 return false; 2054 2055 wmark_high = fragmentation_score_wmark(pgdat, false); 2056 return fragmentation_score_node(pgdat) > wmark_high; 2057 } 2058 2059 static enum compact_result __compact_finished(struct compact_control *cc) 2060 { 2061 unsigned int order; 2062 const int migratetype = cc->migratetype; 2063 int ret; 2064 2065 /* Compaction run completes if the migrate and free scanner meet */ 2066 if (compact_scanners_met(cc)) { 2067 /* Let the next compaction start anew. */ 2068 reset_cached_positions(cc->zone); 2069 2070 /* 2071 * Mark that the PG_migrate_skip information should be cleared 2072 * by kswapd when it goes to sleep. kcompactd does not set the 2073 * flag itself as the decision to be clear should be directly 2074 * based on an allocation request. 2075 */ 2076 if (cc->direct_compaction) 2077 cc->zone->compact_blockskip_flush = true; 2078 2079 if (cc->whole_zone) 2080 return COMPACT_COMPLETE; 2081 else 2082 return COMPACT_PARTIAL_SKIPPED; 2083 } 2084 2085 if (cc->proactive_compaction) { 2086 int score, wmark_low; 2087 pg_data_t *pgdat; 2088 2089 pgdat = cc->zone->zone_pgdat; 2090 if (kswapd_is_running(pgdat)) 2091 return COMPACT_PARTIAL_SKIPPED; 2092 2093 score = fragmentation_score_zone(cc->zone); 2094 wmark_low = fragmentation_score_wmark(pgdat, true); 2095 2096 if (score > wmark_low) 2097 ret = COMPACT_CONTINUE; 2098 else 2099 ret = COMPACT_SUCCESS; 2100 2101 goto out; 2102 } 2103 2104 if (is_via_compact_memory(cc->order)) 2105 return COMPACT_CONTINUE; 2106 2107 /* 2108 * Always finish scanning a pageblock to reduce the possibility of 2109 * fallbacks in the future. This is particularly important when 2110 * migration source is unmovable/reclaimable but it's not worth 2111 * special casing. 2112 */ 2113 if (!pageblock_aligned(cc->migrate_pfn)) 2114 return COMPACT_CONTINUE; 2115 2116 /* Direct compactor: Is a suitable page free? */ 2117 ret = COMPACT_NO_SUITABLE_PAGE; 2118 for (order = cc->order; order < MAX_ORDER; order++) { 2119 struct free_area *area = &cc->zone->free_area[order]; 2120 bool can_steal; 2121 2122 /* Job done if page is free of the right migratetype */ 2123 if (!free_area_empty(area, migratetype)) 2124 return COMPACT_SUCCESS; 2125 2126 #ifdef CONFIG_CMA 2127 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2128 if (migratetype == MIGRATE_MOVABLE && 2129 !free_area_empty(area, MIGRATE_CMA)) 2130 return COMPACT_SUCCESS; 2131 #endif 2132 /* 2133 * Job done if allocation would steal freepages from 2134 * other migratetype buddy lists. 2135 */ 2136 if (find_suitable_fallback(area, order, migratetype, 2137 true, &can_steal) != -1) 2138 /* 2139 * Movable pages are OK in any pageblock. If we are 2140 * stealing for a non-movable allocation, make sure 2141 * we finish compacting the current pageblock first 2142 * (which is assured by the above migrate_pfn align 2143 * check) so it is as free as possible and we won't 2144 * have to steal another one soon. 2145 */ 2146 return COMPACT_SUCCESS; 2147 } 2148 2149 out: 2150 if (cc->contended || fatal_signal_pending(current)) 2151 ret = COMPACT_CONTENDED; 2152 2153 return ret; 2154 } 2155 2156 static enum compact_result compact_finished(struct compact_control *cc) 2157 { 2158 int ret; 2159 2160 ret = __compact_finished(cc); 2161 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2162 if (ret == COMPACT_NO_SUITABLE_PAGE) 2163 ret = COMPACT_CONTINUE; 2164 2165 return ret; 2166 } 2167 2168 static enum compact_result __compaction_suitable(struct zone *zone, int order, 2169 unsigned int alloc_flags, 2170 int highest_zoneidx, 2171 unsigned long wmark_target) 2172 { 2173 unsigned long watermark; 2174 2175 if (is_via_compact_memory(order)) 2176 return COMPACT_CONTINUE; 2177 2178 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 2179 /* 2180 * If watermarks for high-order allocation are already met, there 2181 * should be no need for compaction at all. 2182 */ 2183 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, 2184 alloc_flags)) 2185 return COMPACT_SUCCESS; 2186 2187 /* 2188 * Watermarks for order-0 must be met for compaction to be able to 2189 * isolate free pages for migration targets. This means that the 2190 * watermark and alloc_flags have to match, or be more pessimistic than 2191 * the check in __isolate_free_page(). We don't use the direct 2192 * compactor's alloc_flags, as they are not relevant for freepage 2193 * isolation. We however do use the direct compactor's highest_zoneidx 2194 * to skip over zones where lowmem reserves would prevent allocation 2195 * even if compaction succeeds. 2196 * For costly orders, we require low watermark instead of min for 2197 * compaction to proceed to increase its chances. 2198 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2199 * suitable migration targets 2200 */ 2201 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2202 low_wmark_pages(zone) : min_wmark_pages(zone); 2203 watermark += compact_gap(order); 2204 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2205 ALLOC_CMA, wmark_target)) 2206 return COMPACT_SKIPPED; 2207 2208 return COMPACT_CONTINUE; 2209 } 2210 2211 /* 2212 * compaction_suitable: Is this suitable to run compaction on this zone now? 2213 * Returns 2214 * COMPACT_SKIPPED - If there are too few free pages for compaction 2215 * COMPACT_SUCCESS - If the allocation would succeed without compaction 2216 * COMPACT_CONTINUE - If compaction should run now 2217 */ 2218 enum compact_result compaction_suitable(struct zone *zone, int order, 2219 unsigned int alloc_flags, 2220 int highest_zoneidx) 2221 { 2222 enum compact_result ret; 2223 int fragindex; 2224 2225 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx, 2226 zone_page_state(zone, NR_FREE_PAGES)); 2227 /* 2228 * fragmentation index determines if allocation failures are due to 2229 * low memory or external fragmentation 2230 * 2231 * index of -1000 would imply allocations might succeed depending on 2232 * watermarks, but we already failed the high-order watermark check 2233 * index towards 0 implies failure is due to lack of memory 2234 * index towards 1000 implies failure is due to fragmentation 2235 * 2236 * Only compact if a failure would be due to fragmentation. Also 2237 * ignore fragindex for non-costly orders where the alternative to 2238 * a successful reclaim/compaction is OOM. Fragindex and the 2239 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2240 * excessive compaction for costly orders, but it should not be at the 2241 * expense of system stability. 2242 */ 2243 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2244 fragindex = fragmentation_index(zone, order); 2245 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2246 ret = COMPACT_NOT_SUITABLE_ZONE; 2247 } 2248 2249 trace_mm_compaction_suitable(zone, order, ret); 2250 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2251 ret = COMPACT_SKIPPED; 2252 2253 return ret; 2254 } 2255 2256 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2257 int alloc_flags) 2258 { 2259 struct zone *zone; 2260 struct zoneref *z; 2261 2262 /* 2263 * Make sure at least one zone would pass __compaction_suitable if we continue 2264 * retrying the reclaim. 2265 */ 2266 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2267 ac->highest_zoneidx, ac->nodemask) { 2268 unsigned long available; 2269 enum compact_result compact_result; 2270 2271 /* 2272 * Do not consider all the reclaimable memory because we do not 2273 * want to trash just for a single high order allocation which 2274 * is even not guaranteed to appear even if __compaction_suitable 2275 * is happy about the watermark check. 2276 */ 2277 available = zone_reclaimable_pages(zone) / order; 2278 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2279 compact_result = __compaction_suitable(zone, order, alloc_flags, 2280 ac->highest_zoneidx, available); 2281 if (compact_result == COMPACT_CONTINUE) 2282 return true; 2283 } 2284 2285 return false; 2286 } 2287 2288 static enum compact_result 2289 compact_zone(struct compact_control *cc, struct capture_control *capc) 2290 { 2291 enum compact_result ret; 2292 unsigned long start_pfn = cc->zone->zone_start_pfn; 2293 unsigned long end_pfn = zone_end_pfn(cc->zone); 2294 unsigned long last_migrated_pfn; 2295 const bool sync = cc->mode != MIGRATE_ASYNC; 2296 bool update_cached; 2297 unsigned int nr_succeeded = 0; 2298 2299 /* 2300 * These counters track activities during zone compaction. Initialize 2301 * them before compacting a new zone. 2302 */ 2303 cc->total_migrate_scanned = 0; 2304 cc->total_free_scanned = 0; 2305 cc->nr_migratepages = 0; 2306 cc->nr_freepages = 0; 2307 INIT_LIST_HEAD(&cc->freepages); 2308 INIT_LIST_HEAD(&cc->migratepages); 2309 2310 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2311 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2312 cc->highest_zoneidx); 2313 /* Compaction is likely to fail */ 2314 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2315 return ret; 2316 2317 /* huh, compaction_suitable is returning something unexpected */ 2318 VM_BUG_ON(ret != COMPACT_CONTINUE); 2319 2320 /* 2321 * Clear pageblock skip if there were failures recently and compaction 2322 * is about to be retried after being deferred. 2323 */ 2324 if (compaction_restarting(cc->zone, cc->order)) 2325 __reset_isolation_suitable(cc->zone); 2326 2327 /* 2328 * Setup to move all movable pages to the end of the zone. Used cached 2329 * information on where the scanners should start (unless we explicitly 2330 * want to compact the whole zone), but check that it is initialised 2331 * by ensuring the values are within zone boundaries. 2332 */ 2333 cc->fast_start_pfn = 0; 2334 if (cc->whole_zone) { 2335 cc->migrate_pfn = start_pfn; 2336 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2337 } else { 2338 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2339 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2340 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2341 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2342 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2343 } 2344 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2345 cc->migrate_pfn = start_pfn; 2346 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2347 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2348 } 2349 2350 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2351 cc->whole_zone = true; 2352 } 2353 2354 last_migrated_pfn = 0; 2355 2356 /* 2357 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2358 * the basis that some migrations will fail in ASYNC mode. However, 2359 * if the cached PFNs match and pageblocks are skipped due to having 2360 * no isolation candidates, then the sync state does not matter. 2361 * Until a pageblock with isolation candidates is found, keep the 2362 * cached PFNs in sync to avoid revisiting the same blocks. 2363 */ 2364 update_cached = !sync && 2365 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2366 2367 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync); 2368 2369 /* lru_add_drain_all could be expensive with involving other CPUs */ 2370 lru_add_drain(); 2371 2372 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2373 int err; 2374 unsigned long iteration_start_pfn = cc->migrate_pfn; 2375 2376 /* 2377 * Avoid multiple rescans which can happen if a page cannot be 2378 * isolated (dirty/writeback in async mode) or if the migrated 2379 * pages are being allocated before the pageblock is cleared. 2380 * The first rescan will capture the entire pageblock for 2381 * migration. If it fails, it'll be marked skip and scanning 2382 * will proceed as normal. 2383 */ 2384 cc->rescan = false; 2385 if (pageblock_start_pfn(last_migrated_pfn) == 2386 pageblock_start_pfn(iteration_start_pfn)) { 2387 cc->rescan = true; 2388 } 2389 2390 switch (isolate_migratepages(cc)) { 2391 case ISOLATE_ABORT: 2392 ret = COMPACT_CONTENDED; 2393 putback_movable_pages(&cc->migratepages); 2394 cc->nr_migratepages = 0; 2395 goto out; 2396 case ISOLATE_NONE: 2397 if (update_cached) { 2398 cc->zone->compact_cached_migrate_pfn[1] = 2399 cc->zone->compact_cached_migrate_pfn[0]; 2400 } 2401 2402 /* 2403 * We haven't isolated and migrated anything, but 2404 * there might still be unflushed migrations from 2405 * previous cc->order aligned block. 2406 */ 2407 goto check_drain; 2408 case ISOLATE_SUCCESS: 2409 update_cached = false; 2410 last_migrated_pfn = iteration_start_pfn; 2411 } 2412 2413 err = migrate_pages(&cc->migratepages, compaction_alloc, 2414 compaction_free, (unsigned long)cc, cc->mode, 2415 MR_COMPACTION, &nr_succeeded); 2416 2417 trace_mm_compaction_migratepages(cc, nr_succeeded); 2418 2419 /* All pages were either migrated or will be released */ 2420 cc->nr_migratepages = 0; 2421 if (err) { 2422 putback_movable_pages(&cc->migratepages); 2423 /* 2424 * migrate_pages() may return -ENOMEM when scanners meet 2425 * and we want compact_finished() to detect it 2426 */ 2427 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2428 ret = COMPACT_CONTENDED; 2429 goto out; 2430 } 2431 /* 2432 * We failed to migrate at least one page in the current 2433 * order-aligned block, so skip the rest of it. 2434 */ 2435 if (cc->direct_compaction && 2436 (cc->mode == MIGRATE_ASYNC)) { 2437 cc->migrate_pfn = block_end_pfn( 2438 cc->migrate_pfn - 1, cc->order); 2439 /* Draining pcplists is useless in this case */ 2440 last_migrated_pfn = 0; 2441 } 2442 } 2443 2444 check_drain: 2445 /* 2446 * Has the migration scanner moved away from the previous 2447 * cc->order aligned block where we migrated from? If yes, 2448 * flush the pages that were freed, so that they can merge and 2449 * compact_finished() can detect immediately if allocation 2450 * would succeed. 2451 */ 2452 if (cc->order > 0 && last_migrated_pfn) { 2453 unsigned long current_block_start = 2454 block_start_pfn(cc->migrate_pfn, cc->order); 2455 2456 if (last_migrated_pfn < current_block_start) { 2457 lru_add_drain_cpu_zone(cc->zone); 2458 /* No more flushing until we migrate again */ 2459 last_migrated_pfn = 0; 2460 } 2461 } 2462 2463 /* Stop if a page has been captured */ 2464 if (capc && capc->page) { 2465 ret = COMPACT_SUCCESS; 2466 break; 2467 } 2468 } 2469 2470 out: 2471 /* 2472 * Release free pages and update where the free scanner should restart, 2473 * so we don't leave any returned pages behind in the next attempt. 2474 */ 2475 if (cc->nr_freepages > 0) { 2476 unsigned long free_pfn = release_freepages(&cc->freepages); 2477 2478 cc->nr_freepages = 0; 2479 VM_BUG_ON(free_pfn == 0); 2480 /* The cached pfn is always the first in a pageblock */ 2481 free_pfn = pageblock_start_pfn(free_pfn); 2482 /* 2483 * Only go back, not forward. The cached pfn might have been 2484 * already reset to zone end in compact_finished() 2485 */ 2486 if (free_pfn > cc->zone->compact_cached_free_pfn) 2487 cc->zone->compact_cached_free_pfn = free_pfn; 2488 } 2489 2490 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2491 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2492 2493 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret); 2494 2495 return ret; 2496 } 2497 2498 static enum compact_result compact_zone_order(struct zone *zone, int order, 2499 gfp_t gfp_mask, enum compact_priority prio, 2500 unsigned int alloc_flags, int highest_zoneidx, 2501 struct page **capture) 2502 { 2503 enum compact_result ret; 2504 struct compact_control cc = { 2505 .order = order, 2506 .search_order = order, 2507 .gfp_mask = gfp_mask, 2508 .zone = zone, 2509 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2510 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2511 .alloc_flags = alloc_flags, 2512 .highest_zoneidx = highest_zoneidx, 2513 .direct_compaction = true, 2514 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2515 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2516 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2517 }; 2518 struct capture_control capc = { 2519 .cc = &cc, 2520 .page = NULL, 2521 }; 2522 2523 /* 2524 * Make sure the structs are really initialized before we expose the 2525 * capture control, in case we are interrupted and the interrupt handler 2526 * frees a page. 2527 */ 2528 barrier(); 2529 WRITE_ONCE(current->capture_control, &capc); 2530 2531 ret = compact_zone(&cc, &capc); 2532 2533 VM_BUG_ON(!list_empty(&cc.freepages)); 2534 VM_BUG_ON(!list_empty(&cc.migratepages)); 2535 2536 /* 2537 * Make sure we hide capture control first before we read the captured 2538 * page pointer, otherwise an interrupt could free and capture a page 2539 * and we would leak it. 2540 */ 2541 WRITE_ONCE(current->capture_control, NULL); 2542 *capture = READ_ONCE(capc.page); 2543 /* 2544 * Technically, it is also possible that compaction is skipped but 2545 * the page is still captured out of luck(IRQ came and freed the page). 2546 * Returning COMPACT_SUCCESS in such cases helps in properly accounting 2547 * the COMPACT[STALL|FAIL] when compaction is skipped. 2548 */ 2549 if (*capture) 2550 ret = COMPACT_SUCCESS; 2551 2552 return ret; 2553 } 2554 2555 int sysctl_extfrag_threshold = 500; 2556 2557 /** 2558 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2559 * @gfp_mask: The GFP mask of the current allocation 2560 * @order: The order of the current allocation 2561 * @alloc_flags: The allocation flags of the current allocation 2562 * @ac: The context of current allocation 2563 * @prio: Determines how hard direct compaction should try to succeed 2564 * @capture: Pointer to free page created by compaction will be stored here 2565 * 2566 * This is the main entry point for direct page compaction. 2567 */ 2568 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2569 unsigned int alloc_flags, const struct alloc_context *ac, 2570 enum compact_priority prio, struct page **capture) 2571 { 2572 int may_perform_io = (__force int)(gfp_mask & __GFP_IO); 2573 struct zoneref *z; 2574 struct zone *zone; 2575 enum compact_result rc = COMPACT_SKIPPED; 2576 2577 /* 2578 * Check if the GFP flags allow compaction - GFP_NOIO is really 2579 * tricky context because the migration might require IO 2580 */ 2581 if (!may_perform_io) 2582 return COMPACT_SKIPPED; 2583 2584 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2585 2586 /* Compact each zone in the list */ 2587 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2588 ac->highest_zoneidx, ac->nodemask) { 2589 enum compact_result status; 2590 2591 if (prio > MIN_COMPACT_PRIORITY 2592 && compaction_deferred(zone, order)) { 2593 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2594 continue; 2595 } 2596 2597 status = compact_zone_order(zone, order, gfp_mask, prio, 2598 alloc_flags, ac->highest_zoneidx, capture); 2599 rc = max(status, rc); 2600 2601 /* The allocation should succeed, stop compacting */ 2602 if (status == COMPACT_SUCCESS) { 2603 /* 2604 * We think the allocation will succeed in this zone, 2605 * but it is not certain, hence the false. The caller 2606 * will repeat this with true if allocation indeed 2607 * succeeds in this zone. 2608 */ 2609 compaction_defer_reset(zone, order, false); 2610 2611 break; 2612 } 2613 2614 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2615 status == COMPACT_PARTIAL_SKIPPED)) 2616 /* 2617 * We think that allocation won't succeed in this zone 2618 * so we defer compaction there. If it ends up 2619 * succeeding after all, it will be reset. 2620 */ 2621 defer_compaction(zone, order); 2622 2623 /* 2624 * We might have stopped compacting due to need_resched() in 2625 * async compaction, or due to a fatal signal detected. In that 2626 * case do not try further zones 2627 */ 2628 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2629 || fatal_signal_pending(current)) 2630 break; 2631 } 2632 2633 return rc; 2634 } 2635 2636 /* 2637 * Compact all zones within a node till each zone's fragmentation score 2638 * reaches within proactive compaction thresholds (as determined by the 2639 * proactiveness tunable). 2640 * 2641 * It is possible that the function returns before reaching score targets 2642 * due to various back-off conditions, such as, contention on per-node or 2643 * per-zone locks. 2644 */ 2645 static void proactive_compact_node(pg_data_t *pgdat) 2646 { 2647 int zoneid; 2648 struct zone *zone; 2649 struct compact_control cc = { 2650 .order = -1, 2651 .mode = MIGRATE_SYNC_LIGHT, 2652 .ignore_skip_hint = true, 2653 .whole_zone = true, 2654 .gfp_mask = GFP_KERNEL, 2655 .proactive_compaction = true, 2656 }; 2657 2658 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2659 zone = &pgdat->node_zones[zoneid]; 2660 if (!populated_zone(zone)) 2661 continue; 2662 2663 cc.zone = zone; 2664 2665 compact_zone(&cc, NULL); 2666 2667 VM_BUG_ON(!list_empty(&cc.freepages)); 2668 VM_BUG_ON(!list_empty(&cc.migratepages)); 2669 } 2670 } 2671 2672 /* Compact all zones within a node */ 2673 static void compact_node(int nid) 2674 { 2675 pg_data_t *pgdat = NODE_DATA(nid); 2676 int zoneid; 2677 struct zone *zone; 2678 struct compact_control cc = { 2679 .order = -1, 2680 .mode = MIGRATE_SYNC, 2681 .ignore_skip_hint = true, 2682 .whole_zone = true, 2683 .gfp_mask = GFP_KERNEL, 2684 }; 2685 2686 2687 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2688 2689 zone = &pgdat->node_zones[zoneid]; 2690 if (!populated_zone(zone)) 2691 continue; 2692 2693 cc.zone = zone; 2694 2695 compact_zone(&cc, NULL); 2696 2697 VM_BUG_ON(!list_empty(&cc.freepages)); 2698 VM_BUG_ON(!list_empty(&cc.migratepages)); 2699 } 2700 } 2701 2702 /* Compact all nodes in the system */ 2703 static void compact_nodes(void) 2704 { 2705 int nid; 2706 2707 /* Flush pending updates to the LRU lists */ 2708 lru_add_drain_all(); 2709 2710 for_each_online_node(nid) 2711 compact_node(nid); 2712 } 2713 2714 /* 2715 * Tunable for proactive compaction. It determines how 2716 * aggressively the kernel should compact memory in the 2717 * background. It takes values in the range [0, 100]. 2718 */ 2719 unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 2720 2721 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write, 2722 void *buffer, size_t *length, loff_t *ppos) 2723 { 2724 int rc, nid; 2725 2726 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 2727 if (rc) 2728 return rc; 2729 2730 if (write && sysctl_compaction_proactiveness) { 2731 for_each_online_node(nid) { 2732 pg_data_t *pgdat = NODE_DATA(nid); 2733 2734 if (pgdat->proactive_compact_trigger) 2735 continue; 2736 2737 pgdat->proactive_compact_trigger = true; 2738 wake_up_interruptible(&pgdat->kcompactd_wait); 2739 } 2740 } 2741 2742 return 0; 2743 } 2744 2745 /* 2746 * This is the entry point for compacting all nodes via 2747 * /proc/sys/vm/compact_memory 2748 */ 2749 int sysctl_compaction_handler(struct ctl_table *table, int write, 2750 void *buffer, size_t *length, loff_t *ppos) 2751 { 2752 if (write) 2753 compact_nodes(); 2754 2755 return 0; 2756 } 2757 2758 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2759 static ssize_t compact_store(struct device *dev, 2760 struct device_attribute *attr, 2761 const char *buf, size_t count) 2762 { 2763 int nid = dev->id; 2764 2765 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2766 /* Flush pending updates to the LRU lists */ 2767 lru_add_drain_all(); 2768 2769 compact_node(nid); 2770 } 2771 2772 return count; 2773 } 2774 static DEVICE_ATTR_WO(compact); 2775 2776 int compaction_register_node(struct node *node) 2777 { 2778 return device_create_file(&node->dev, &dev_attr_compact); 2779 } 2780 2781 void compaction_unregister_node(struct node *node) 2782 { 2783 return device_remove_file(&node->dev, &dev_attr_compact); 2784 } 2785 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2786 2787 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2788 { 2789 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() || 2790 pgdat->proactive_compact_trigger; 2791 } 2792 2793 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2794 { 2795 int zoneid; 2796 struct zone *zone; 2797 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 2798 2799 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 2800 zone = &pgdat->node_zones[zoneid]; 2801 2802 if (!populated_zone(zone)) 2803 continue; 2804 2805 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2806 highest_zoneidx) == COMPACT_CONTINUE) 2807 return true; 2808 } 2809 2810 return false; 2811 } 2812 2813 static void kcompactd_do_work(pg_data_t *pgdat) 2814 { 2815 /* 2816 * With no special task, compact all zones so that a page of requested 2817 * order is allocatable. 2818 */ 2819 int zoneid; 2820 struct zone *zone; 2821 struct compact_control cc = { 2822 .order = pgdat->kcompactd_max_order, 2823 .search_order = pgdat->kcompactd_max_order, 2824 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 2825 .mode = MIGRATE_SYNC_LIGHT, 2826 .ignore_skip_hint = false, 2827 .gfp_mask = GFP_KERNEL, 2828 }; 2829 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2830 cc.highest_zoneidx); 2831 count_compact_event(KCOMPACTD_WAKE); 2832 2833 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 2834 int status; 2835 2836 zone = &pgdat->node_zones[zoneid]; 2837 if (!populated_zone(zone)) 2838 continue; 2839 2840 if (compaction_deferred(zone, cc.order)) 2841 continue; 2842 2843 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2844 COMPACT_CONTINUE) 2845 continue; 2846 2847 if (kthread_should_stop()) 2848 return; 2849 2850 cc.zone = zone; 2851 status = compact_zone(&cc, NULL); 2852 2853 if (status == COMPACT_SUCCESS) { 2854 compaction_defer_reset(zone, cc.order, false); 2855 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2856 /* 2857 * Buddy pages may become stranded on pcps that could 2858 * otherwise coalesce on the zone's free area for 2859 * order >= cc.order. This is ratelimited by the 2860 * upcoming deferral. 2861 */ 2862 drain_all_pages(zone); 2863 2864 /* 2865 * We use sync migration mode here, so we defer like 2866 * sync direct compaction does. 2867 */ 2868 defer_compaction(zone, cc.order); 2869 } 2870 2871 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2872 cc.total_migrate_scanned); 2873 count_compact_events(KCOMPACTD_FREE_SCANNED, 2874 cc.total_free_scanned); 2875 2876 VM_BUG_ON(!list_empty(&cc.freepages)); 2877 VM_BUG_ON(!list_empty(&cc.migratepages)); 2878 } 2879 2880 /* 2881 * Regardless of success, we are done until woken up next. But remember 2882 * the requested order/highest_zoneidx in case it was higher/tighter 2883 * than our current ones 2884 */ 2885 if (pgdat->kcompactd_max_order <= cc.order) 2886 pgdat->kcompactd_max_order = 0; 2887 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 2888 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2889 } 2890 2891 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 2892 { 2893 if (!order) 2894 return; 2895 2896 if (pgdat->kcompactd_max_order < order) 2897 pgdat->kcompactd_max_order = order; 2898 2899 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 2900 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 2901 2902 /* 2903 * Pairs with implicit barrier in wait_event_freezable() 2904 * such that wakeups are not missed. 2905 */ 2906 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2907 return; 2908 2909 if (!kcompactd_node_suitable(pgdat)) 2910 return; 2911 2912 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2913 highest_zoneidx); 2914 wake_up_interruptible(&pgdat->kcompactd_wait); 2915 } 2916 2917 /* 2918 * The background compaction daemon, started as a kernel thread 2919 * from the init process. 2920 */ 2921 static int kcompactd(void *p) 2922 { 2923 pg_data_t *pgdat = (pg_data_t *)p; 2924 struct task_struct *tsk = current; 2925 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC); 2926 long timeout = default_timeout; 2927 2928 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2929 2930 if (!cpumask_empty(cpumask)) 2931 set_cpus_allowed_ptr(tsk, cpumask); 2932 2933 set_freezable(); 2934 2935 pgdat->kcompactd_max_order = 0; 2936 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2937 2938 while (!kthread_should_stop()) { 2939 unsigned long pflags; 2940 2941 /* 2942 * Avoid the unnecessary wakeup for proactive compaction 2943 * when it is disabled. 2944 */ 2945 if (!sysctl_compaction_proactiveness) 2946 timeout = MAX_SCHEDULE_TIMEOUT; 2947 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2948 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 2949 kcompactd_work_requested(pgdat), timeout) && 2950 !pgdat->proactive_compact_trigger) { 2951 2952 psi_memstall_enter(&pflags); 2953 kcompactd_do_work(pgdat); 2954 psi_memstall_leave(&pflags); 2955 /* 2956 * Reset the timeout value. The defer timeout from 2957 * proactive compaction is lost here but that is fine 2958 * as the condition of the zone changing substantionally 2959 * then carrying on with the previous defer interval is 2960 * not useful. 2961 */ 2962 timeout = default_timeout; 2963 continue; 2964 } 2965 2966 /* 2967 * Start the proactive work with default timeout. Based 2968 * on the fragmentation score, this timeout is updated. 2969 */ 2970 timeout = default_timeout; 2971 if (should_proactive_compact_node(pgdat)) { 2972 unsigned int prev_score, score; 2973 2974 prev_score = fragmentation_score_node(pgdat); 2975 proactive_compact_node(pgdat); 2976 score = fragmentation_score_node(pgdat); 2977 /* 2978 * Defer proactive compaction if the fragmentation 2979 * score did not go down i.e. no progress made. 2980 */ 2981 if (unlikely(score >= prev_score)) 2982 timeout = 2983 default_timeout << COMPACT_MAX_DEFER_SHIFT; 2984 } 2985 if (unlikely(pgdat->proactive_compact_trigger)) 2986 pgdat->proactive_compact_trigger = false; 2987 } 2988 2989 return 0; 2990 } 2991 2992 /* 2993 * This kcompactd start function will be called by init and node-hot-add. 2994 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2995 */ 2996 void kcompactd_run(int nid) 2997 { 2998 pg_data_t *pgdat = NODE_DATA(nid); 2999 3000 if (pgdat->kcompactd) 3001 return; 3002 3003 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 3004 if (IS_ERR(pgdat->kcompactd)) { 3005 pr_err("Failed to start kcompactd on node %d\n", nid); 3006 pgdat->kcompactd = NULL; 3007 } 3008 } 3009 3010 /* 3011 * Called by memory hotplug when all memory in a node is offlined. Caller must 3012 * be holding mem_hotplug_begin/done(). 3013 */ 3014 void kcompactd_stop(int nid) 3015 { 3016 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 3017 3018 if (kcompactd) { 3019 kthread_stop(kcompactd); 3020 NODE_DATA(nid)->kcompactd = NULL; 3021 } 3022 } 3023 3024 /* 3025 * It's optimal to keep kcompactd on the same CPUs as their memory, but 3026 * not required for correctness. So if the last cpu in a node goes 3027 * away, we get changed to run anywhere: as the first one comes back, 3028 * restore their cpu bindings. 3029 */ 3030 static int kcompactd_cpu_online(unsigned int cpu) 3031 { 3032 int nid; 3033 3034 for_each_node_state(nid, N_MEMORY) { 3035 pg_data_t *pgdat = NODE_DATA(nid); 3036 const struct cpumask *mask; 3037 3038 mask = cpumask_of_node(pgdat->node_id); 3039 3040 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3041 /* One of our CPUs online: restore mask */ 3042 if (pgdat->kcompactd) 3043 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 3044 } 3045 return 0; 3046 } 3047 3048 static int __init kcompactd_init(void) 3049 { 3050 int nid; 3051 int ret; 3052 3053 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3054 "mm/compaction:online", 3055 kcompactd_cpu_online, NULL); 3056 if (ret < 0) { 3057 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 3058 return ret; 3059 } 3060 3061 for_each_node_state(nid, N_MEMORY) 3062 kcompactd_run(nid); 3063 return 0; 3064 } 3065 subsys_initcall(kcompactd_init) 3066 3067 #endif /* CONFIG_COMPACTION */ 3068