xref: /openbmc/linux/mm/compaction.c (revision 28dce2c4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 	count_vm_event(item);
32 }
33 
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 	count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42 
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47 
48 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
52 
53 /*
54  * Fragmentation score check interval for proactive compaction purposes.
55  */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57 
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
69 #endif
70 
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73 	struct page *page, *next;
74 	unsigned long high_pfn = 0;
75 
76 	list_for_each_entry_safe(page, next, freelist, lru) {
77 		unsigned long pfn = page_to_pfn(page);
78 		list_del(&page->lru);
79 		__free_page(page);
80 		if (pfn > high_pfn)
81 			high_pfn = pfn;
82 	}
83 
84 	return high_pfn;
85 }
86 
87 static void split_map_pages(struct list_head *list)
88 {
89 	unsigned int i, order, nr_pages;
90 	struct page *page, *next;
91 	LIST_HEAD(tmp_list);
92 
93 	list_for_each_entry_safe(page, next, list, lru) {
94 		list_del(&page->lru);
95 
96 		order = page_private(page);
97 		nr_pages = 1 << order;
98 
99 		post_alloc_hook(page, order, __GFP_MOVABLE);
100 		if (order)
101 			split_page(page, order);
102 
103 		for (i = 0; i < nr_pages; i++) {
104 			list_add(&page->lru, &tmp_list);
105 			page++;
106 		}
107 	}
108 
109 	list_splice(&tmp_list, list);
110 }
111 
112 #ifdef CONFIG_COMPACTION
113 
114 int PageMovable(struct page *page)
115 {
116 	struct address_space *mapping;
117 
118 	VM_BUG_ON_PAGE(!PageLocked(page), page);
119 	if (!__PageMovable(page))
120 		return 0;
121 
122 	mapping = page_mapping(page);
123 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 		return 1;
125 
126 	return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129 
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132 	VM_BUG_ON_PAGE(!PageLocked(page), page);
133 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137 
138 void __ClearPageMovable(struct page *page)
139 {
140 	VM_BUG_ON_PAGE(!PageMovable(page), page);
141 	/*
142 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
143 	 * flag so that VM can catch up released page by driver after isolation.
144 	 * With it, VM migration doesn't try to put it back.
145 	 */
146 	page->mapping = (void *)((unsigned long)page->mapping &
147 				PAGE_MAPPING_MOVABLE);
148 }
149 EXPORT_SYMBOL(__ClearPageMovable);
150 
151 /* Do not skip compaction more than 64 times */
152 #define COMPACT_MAX_DEFER_SHIFT 6
153 
154 /*
155  * Compaction is deferred when compaction fails to result in a page
156  * allocation success. 1 << compact_defer_shift, compactions are skipped up
157  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158  */
159 static void defer_compaction(struct zone *zone, int order)
160 {
161 	zone->compact_considered = 0;
162 	zone->compact_defer_shift++;
163 
164 	if (order < zone->compact_order_failed)
165 		zone->compact_order_failed = order;
166 
167 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169 
170 	trace_mm_compaction_defer_compaction(zone, order);
171 }
172 
173 /* Returns true if compaction should be skipped this time */
174 static bool compaction_deferred(struct zone *zone, int order)
175 {
176 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177 
178 	if (order < zone->compact_order_failed)
179 		return false;
180 
181 	/* Avoid possible overflow */
182 	if (++zone->compact_considered >= defer_limit) {
183 		zone->compact_considered = defer_limit;
184 		return false;
185 	}
186 
187 	trace_mm_compaction_deferred(zone, order);
188 
189 	return true;
190 }
191 
192 /*
193  * Update defer tracking counters after successful compaction of given order,
194  * which means an allocation either succeeded (alloc_success == true) or is
195  * expected to succeed.
196  */
197 void compaction_defer_reset(struct zone *zone, int order,
198 		bool alloc_success)
199 {
200 	if (alloc_success) {
201 		zone->compact_considered = 0;
202 		zone->compact_defer_shift = 0;
203 	}
204 	if (order >= zone->compact_order_failed)
205 		zone->compact_order_failed = order + 1;
206 
207 	trace_mm_compaction_defer_reset(zone, order);
208 }
209 
210 /* Returns true if restarting compaction after many failures */
211 static bool compaction_restarting(struct zone *zone, int order)
212 {
213 	if (order < zone->compact_order_failed)
214 		return false;
215 
216 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
218 }
219 
220 /* Returns true if the pageblock should be scanned for pages to isolate. */
221 static inline bool isolation_suitable(struct compact_control *cc,
222 					struct page *page)
223 {
224 	if (cc->ignore_skip_hint)
225 		return true;
226 
227 	return !get_pageblock_skip(page);
228 }
229 
230 static void reset_cached_positions(struct zone *zone)
231 {
232 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
234 	zone->compact_cached_free_pfn =
235 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
236 }
237 
238 /*
239  * Compound pages of >= pageblock_order should consistently be skipped until
240  * released. It is always pointless to compact pages of such order (if they are
241  * migratable), and the pageblocks they occupy cannot contain any free pages.
242  */
243 static bool pageblock_skip_persistent(struct page *page)
244 {
245 	if (!PageCompound(page))
246 		return false;
247 
248 	page = compound_head(page);
249 
250 	if (compound_order(page) >= pageblock_order)
251 		return true;
252 
253 	return false;
254 }
255 
256 static bool
257 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
258 							bool check_target)
259 {
260 	struct page *page = pfn_to_online_page(pfn);
261 	struct page *block_page;
262 	struct page *end_page;
263 	unsigned long block_pfn;
264 
265 	if (!page)
266 		return false;
267 	if (zone != page_zone(page))
268 		return false;
269 	if (pageblock_skip_persistent(page))
270 		return false;
271 
272 	/*
273 	 * If skip is already cleared do no further checking once the
274 	 * restart points have been set.
275 	 */
276 	if (check_source && check_target && !get_pageblock_skip(page))
277 		return true;
278 
279 	/*
280 	 * If clearing skip for the target scanner, do not select a
281 	 * non-movable pageblock as the starting point.
282 	 */
283 	if (!check_source && check_target &&
284 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
285 		return false;
286 
287 	/* Ensure the start of the pageblock or zone is online and valid */
288 	block_pfn = pageblock_start_pfn(pfn);
289 	block_pfn = max(block_pfn, zone->zone_start_pfn);
290 	block_page = pfn_to_online_page(block_pfn);
291 	if (block_page) {
292 		page = block_page;
293 		pfn = block_pfn;
294 	}
295 
296 	/* Ensure the end of the pageblock or zone is online and valid */
297 	block_pfn = pageblock_end_pfn(pfn) - 1;
298 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
299 	end_page = pfn_to_online_page(block_pfn);
300 	if (!end_page)
301 		return false;
302 
303 	/*
304 	 * Only clear the hint if a sample indicates there is either a
305 	 * free page or an LRU page in the block. One or other condition
306 	 * is necessary for the block to be a migration source/target.
307 	 */
308 	do {
309 		if (pfn_valid_within(pfn)) {
310 			if (check_source && PageLRU(page)) {
311 				clear_pageblock_skip(page);
312 				return true;
313 			}
314 
315 			if (check_target && PageBuddy(page)) {
316 				clear_pageblock_skip(page);
317 				return true;
318 			}
319 		}
320 
321 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
322 		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
323 	} while (page <= end_page);
324 
325 	return false;
326 }
327 
328 /*
329  * This function is called to clear all cached information on pageblocks that
330  * should be skipped for page isolation when the migrate and free page scanner
331  * meet.
332  */
333 static void __reset_isolation_suitable(struct zone *zone)
334 {
335 	unsigned long migrate_pfn = zone->zone_start_pfn;
336 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
337 	unsigned long reset_migrate = free_pfn;
338 	unsigned long reset_free = migrate_pfn;
339 	bool source_set = false;
340 	bool free_set = false;
341 
342 	if (!zone->compact_blockskip_flush)
343 		return;
344 
345 	zone->compact_blockskip_flush = false;
346 
347 	/*
348 	 * Walk the zone and update pageblock skip information. Source looks
349 	 * for PageLRU while target looks for PageBuddy. When the scanner
350 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
351 	 * is suitable as both source and target.
352 	 */
353 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
354 					free_pfn -= pageblock_nr_pages) {
355 		cond_resched();
356 
357 		/* Update the migrate PFN */
358 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
359 		    migrate_pfn < reset_migrate) {
360 			source_set = true;
361 			reset_migrate = migrate_pfn;
362 			zone->compact_init_migrate_pfn = reset_migrate;
363 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
364 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
365 		}
366 
367 		/* Update the free PFN */
368 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
369 		    free_pfn > reset_free) {
370 			free_set = true;
371 			reset_free = free_pfn;
372 			zone->compact_init_free_pfn = reset_free;
373 			zone->compact_cached_free_pfn = reset_free;
374 		}
375 	}
376 
377 	/* Leave no distance if no suitable block was reset */
378 	if (reset_migrate >= reset_free) {
379 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
380 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
381 		zone->compact_cached_free_pfn = free_pfn;
382 	}
383 }
384 
385 void reset_isolation_suitable(pg_data_t *pgdat)
386 {
387 	int zoneid;
388 
389 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
390 		struct zone *zone = &pgdat->node_zones[zoneid];
391 		if (!populated_zone(zone))
392 			continue;
393 
394 		/* Only flush if a full compaction finished recently */
395 		if (zone->compact_blockskip_flush)
396 			__reset_isolation_suitable(zone);
397 	}
398 }
399 
400 /*
401  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
402  * locks are not required for read/writers. Returns true if it was already set.
403  */
404 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
405 							unsigned long pfn)
406 {
407 	bool skip;
408 
409 	/* Do no update if skip hint is being ignored */
410 	if (cc->ignore_skip_hint)
411 		return false;
412 
413 	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
414 		return false;
415 
416 	skip = get_pageblock_skip(page);
417 	if (!skip && !cc->no_set_skip_hint)
418 		set_pageblock_skip(page);
419 
420 	return skip;
421 }
422 
423 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
424 {
425 	struct zone *zone = cc->zone;
426 
427 	pfn = pageblock_end_pfn(pfn);
428 
429 	/* Set for isolation rather than compaction */
430 	if (cc->no_set_skip_hint)
431 		return;
432 
433 	if (pfn > zone->compact_cached_migrate_pfn[0])
434 		zone->compact_cached_migrate_pfn[0] = pfn;
435 	if (cc->mode != MIGRATE_ASYNC &&
436 	    pfn > zone->compact_cached_migrate_pfn[1])
437 		zone->compact_cached_migrate_pfn[1] = pfn;
438 }
439 
440 /*
441  * If no pages were isolated then mark this pageblock to be skipped in the
442  * future. The information is later cleared by __reset_isolation_suitable().
443  */
444 static void update_pageblock_skip(struct compact_control *cc,
445 			struct page *page, unsigned long pfn)
446 {
447 	struct zone *zone = cc->zone;
448 
449 	if (cc->no_set_skip_hint)
450 		return;
451 
452 	if (!page)
453 		return;
454 
455 	set_pageblock_skip(page);
456 
457 	/* Update where async and sync compaction should restart */
458 	if (pfn < zone->compact_cached_free_pfn)
459 		zone->compact_cached_free_pfn = pfn;
460 }
461 #else
462 static inline bool isolation_suitable(struct compact_control *cc,
463 					struct page *page)
464 {
465 	return true;
466 }
467 
468 static inline bool pageblock_skip_persistent(struct page *page)
469 {
470 	return false;
471 }
472 
473 static inline void update_pageblock_skip(struct compact_control *cc,
474 			struct page *page, unsigned long pfn)
475 {
476 }
477 
478 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
479 {
480 }
481 
482 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
483 							unsigned long pfn)
484 {
485 	return false;
486 }
487 #endif /* CONFIG_COMPACTION */
488 
489 /*
490  * Compaction requires the taking of some coarse locks that are potentially
491  * very heavily contended. For async compaction, trylock and record if the
492  * lock is contended. The lock will still be acquired but compaction will
493  * abort when the current block is finished regardless of success rate.
494  * Sync compaction acquires the lock.
495  *
496  * Always returns true which makes it easier to track lock state in callers.
497  */
498 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
499 						struct compact_control *cc)
500 	__acquires(lock)
501 {
502 	/* Track if the lock is contended in async mode */
503 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
504 		if (spin_trylock_irqsave(lock, *flags))
505 			return true;
506 
507 		cc->contended = true;
508 	}
509 
510 	spin_lock_irqsave(lock, *flags);
511 	return true;
512 }
513 
514 /*
515  * Compaction requires the taking of some coarse locks that are potentially
516  * very heavily contended. The lock should be periodically unlocked to avoid
517  * having disabled IRQs for a long time, even when there is nobody waiting on
518  * the lock. It might also be that allowing the IRQs will result in
519  * need_resched() becoming true. If scheduling is needed, async compaction
520  * aborts. Sync compaction schedules.
521  * Either compaction type will also abort if a fatal signal is pending.
522  * In either case if the lock was locked, it is dropped and not regained.
523  *
524  * Returns true if compaction should abort due to fatal signal pending, or
525  *		async compaction due to need_resched()
526  * Returns false when compaction can continue (sync compaction might have
527  *		scheduled)
528  */
529 static bool compact_unlock_should_abort(spinlock_t *lock,
530 		unsigned long flags, bool *locked, struct compact_control *cc)
531 {
532 	if (*locked) {
533 		spin_unlock_irqrestore(lock, flags);
534 		*locked = false;
535 	}
536 
537 	if (fatal_signal_pending(current)) {
538 		cc->contended = true;
539 		return true;
540 	}
541 
542 	cond_resched();
543 
544 	return false;
545 }
546 
547 /*
548  * Isolate free pages onto a private freelist. If @strict is true, will abort
549  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
550  * (even though it may still end up isolating some pages).
551  */
552 static unsigned long isolate_freepages_block(struct compact_control *cc,
553 				unsigned long *start_pfn,
554 				unsigned long end_pfn,
555 				struct list_head *freelist,
556 				unsigned int stride,
557 				bool strict)
558 {
559 	int nr_scanned = 0, total_isolated = 0;
560 	struct page *cursor;
561 	unsigned long flags = 0;
562 	bool locked = false;
563 	unsigned long blockpfn = *start_pfn;
564 	unsigned int order;
565 
566 	/* Strict mode is for isolation, speed is secondary */
567 	if (strict)
568 		stride = 1;
569 
570 	cursor = pfn_to_page(blockpfn);
571 
572 	/* Isolate free pages. */
573 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
574 		int isolated;
575 		struct page *page = cursor;
576 
577 		/*
578 		 * Periodically drop the lock (if held) regardless of its
579 		 * contention, to give chance to IRQs. Abort if fatal signal
580 		 * pending or async compaction detects need_resched()
581 		 */
582 		if (!(blockpfn % SWAP_CLUSTER_MAX)
583 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
584 								&locked, cc))
585 			break;
586 
587 		nr_scanned++;
588 		if (!pfn_valid_within(blockpfn))
589 			goto isolate_fail;
590 
591 		/*
592 		 * For compound pages such as THP and hugetlbfs, we can save
593 		 * potentially a lot of iterations if we skip them at once.
594 		 * The check is racy, but we can consider only valid values
595 		 * and the only danger is skipping too much.
596 		 */
597 		if (PageCompound(page)) {
598 			const unsigned int order = compound_order(page);
599 
600 			if (likely(order < MAX_ORDER)) {
601 				blockpfn += (1UL << order) - 1;
602 				cursor += (1UL << order) - 1;
603 			}
604 			goto isolate_fail;
605 		}
606 
607 		if (!PageBuddy(page))
608 			goto isolate_fail;
609 
610 		/*
611 		 * If we already hold the lock, we can skip some rechecking.
612 		 * Note that if we hold the lock now, checked_pageblock was
613 		 * already set in some previous iteration (or strict is true),
614 		 * so it is correct to skip the suitable migration target
615 		 * recheck as well.
616 		 */
617 		if (!locked) {
618 			locked = compact_lock_irqsave(&cc->zone->lock,
619 								&flags, cc);
620 
621 			/* Recheck this is a buddy page under lock */
622 			if (!PageBuddy(page))
623 				goto isolate_fail;
624 		}
625 
626 		/* Found a free page, will break it into order-0 pages */
627 		order = buddy_order(page);
628 		isolated = __isolate_free_page(page, order);
629 		if (!isolated)
630 			break;
631 		set_page_private(page, order);
632 
633 		total_isolated += isolated;
634 		cc->nr_freepages += isolated;
635 		list_add_tail(&page->lru, freelist);
636 
637 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
638 			blockpfn += isolated;
639 			break;
640 		}
641 		/* Advance to the end of split page */
642 		blockpfn += isolated - 1;
643 		cursor += isolated - 1;
644 		continue;
645 
646 isolate_fail:
647 		if (strict)
648 			break;
649 		else
650 			continue;
651 
652 	}
653 
654 	if (locked)
655 		spin_unlock_irqrestore(&cc->zone->lock, flags);
656 
657 	/*
658 	 * There is a tiny chance that we have read bogus compound_order(),
659 	 * so be careful to not go outside of the pageblock.
660 	 */
661 	if (unlikely(blockpfn > end_pfn))
662 		blockpfn = end_pfn;
663 
664 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
665 					nr_scanned, total_isolated);
666 
667 	/* Record how far we have got within the block */
668 	*start_pfn = blockpfn;
669 
670 	/*
671 	 * If strict isolation is requested by CMA then check that all the
672 	 * pages requested were isolated. If there were any failures, 0 is
673 	 * returned and CMA will fail.
674 	 */
675 	if (strict && blockpfn < end_pfn)
676 		total_isolated = 0;
677 
678 	cc->total_free_scanned += nr_scanned;
679 	if (total_isolated)
680 		count_compact_events(COMPACTISOLATED, total_isolated);
681 	return total_isolated;
682 }
683 
684 /**
685  * isolate_freepages_range() - isolate free pages.
686  * @cc:        Compaction control structure.
687  * @start_pfn: The first PFN to start isolating.
688  * @end_pfn:   The one-past-last PFN.
689  *
690  * Non-free pages, invalid PFNs, or zone boundaries within the
691  * [start_pfn, end_pfn) range are considered errors, cause function to
692  * undo its actions and return zero.
693  *
694  * Otherwise, function returns one-past-the-last PFN of isolated page
695  * (which may be greater then end_pfn if end fell in a middle of
696  * a free page).
697  */
698 unsigned long
699 isolate_freepages_range(struct compact_control *cc,
700 			unsigned long start_pfn, unsigned long end_pfn)
701 {
702 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
703 	LIST_HEAD(freelist);
704 
705 	pfn = start_pfn;
706 	block_start_pfn = pageblock_start_pfn(pfn);
707 	if (block_start_pfn < cc->zone->zone_start_pfn)
708 		block_start_pfn = cc->zone->zone_start_pfn;
709 	block_end_pfn = pageblock_end_pfn(pfn);
710 
711 	for (; pfn < end_pfn; pfn += isolated,
712 				block_start_pfn = block_end_pfn,
713 				block_end_pfn += pageblock_nr_pages) {
714 		/* Protect pfn from changing by isolate_freepages_block */
715 		unsigned long isolate_start_pfn = pfn;
716 
717 		block_end_pfn = min(block_end_pfn, end_pfn);
718 
719 		/*
720 		 * pfn could pass the block_end_pfn if isolated freepage
721 		 * is more than pageblock order. In this case, we adjust
722 		 * scanning range to right one.
723 		 */
724 		if (pfn >= block_end_pfn) {
725 			block_start_pfn = pageblock_start_pfn(pfn);
726 			block_end_pfn = pageblock_end_pfn(pfn);
727 			block_end_pfn = min(block_end_pfn, end_pfn);
728 		}
729 
730 		if (!pageblock_pfn_to_page(block_start_pfn,
731 					block_end_pfn, cc->zone))
732 			break;
733 
734 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
735 					block_end_pfn, &freelist, 0, true);
736 
737 		/*
738 		 * In strict mode, isolate_freepages_block() returns 0 if
739 		 * there are any holes in the block (ie. invalid PFNs or
740 		 * non-free pages).
741 		 */
742 		if (!isolated)
743 			break;
744 
745 		/*
746 		 * If we managed to isolate pages, it is always (1 << n) *
747 		 * pageblock_nr_pages for some non-negative n.  (Max order
748 		 * page may span two pageblocks).
749 		 */
750 	}
751 
752 	/* __isolate_free_page() does not map the pages */
753 	split_map_pages(&freelist);
754 
755 	if (pfn < end_pfn) {
756 		/* Loop terminated early, cleanup. */
757 		release_freepages(&freelist);
758 		return 0;
759 	}
760 
761 	/* We don't use freelists for anything. */
762 	return pfn;
763 }
764 
765 /* Similar to reclaim, but different enough that they don't share logic */
766 static bool too_many_isolated(pg_data_t *pgdat)
767 {
768 	unsigned long active, inactive, isolated;
769 
770 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
771 			node_page_state(pgdat, NR_INACTIVE_ANON);
772 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
773 			node_page_state(pgdat, NR_ACTIVE_ANON);
774 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
775 			node_page_state(pgdat, NR_ISOLATED_ANON);
776 
777 	return isolated > (inactive + active) / 2;
778 }
779 
780 /**
781  * isolate_migratepages_block() - isolate all migrate-able pages within
782  *				  a single pageblock
783  * @cc:		Compaction control structure.
784  * @low_pfn:	The first PFN to isolate
785  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
786  * @isolate_mode: Isolation mode to be used.
787  *
788  * Isolate all pages that can be migrated from the range specified by
789  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
790  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
791  * -ENOMEM in case we could not allocate a page, or 0.
792  * cc->migrate_pfn will contain the next pfn to scan.
793  *
794  * The pages are isolated on cc->migratepages list (not required to be empty),
795  * and cc->nr_migratepages is updated accordingly.
796  */
797 static int
798 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
799 			unsigned long end_pfn, isolate_mode_t isolate_mode)
800 {
801 	pg_data_t *pgdat = cc->zone->zone_pgdat;
802 	unsigned long nr_scanned = 0, nr_isolated = 0;
803 	struct lruvec *lruvec;
804 	unsigned long flags = 0;
805 	struct lruvec *locked = NULL;
806 	struct page *page = NULL, *valid_page = NULL;
807 	unsigned long start_pfn = low_pfn;
808 	bool skip_on_failure = false;
809 	unsigned long next_skip_pfn = 0;
810 	bool skip_updated = false;
811 	int ret = 0;
812 
813 	cc->migrate_pfn = low_pfn;
814 
815 	/*
816 	 * Ensure that there are not too many pages isolated from the LRU
817 	 * list by either parallel reclaimers or compaction. If there are,
818 	 * delay for some time until fewer pages are isolated
819 	 */
820 	while (unlikely(too_many_isolated(pgdat))) {
821 		/* stop isolation if there are still pages not migrated */
822 		if (cc->nr_migratepages)
823 			return -EAGAIN;
824 
825 		/* async migration should just abort */
826 		if (cc->mode == MIGRATE_ASYNC)
827 			return -EAGAIN;
828 
829 		congestion_wait(BLK_RW_ASYNC, HZ/10);
830 
831 		if (fatal_signal_pending(current))
832 			return -EINTR;
833 	}
834 
835 	cond_resched();
836 
837 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
838 		skip_on_failure = true;
839 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
840 	}
841 
842 	/* Time to isolate some pages for migration */
843 	for (; low_pfn < end_pfn; low_pfn++) {
844 
845 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
846 			/*
847 			 * We have isolated all migration candidates in the
848 			 * previous order-aligned block, and did not skip it due
849 			 * to failure. We should migrate the pages now and
850 			 * hopefully succeed compaction.
851 			 */
852 			if (nr_isolated)
853 				break;
854 
855 			/*
856 			 * We failed to isolate in the previous order-aligned
857 			 * block. Set the new boundary to the end of the
858 			 * current block. Note we can't simply increase
859 			 * next_skip_pfn by 1 << order, as low_pfn might have
860 			 * been incremented by a higher number due to skipping
861 			 * a compound or a high-order buddy page in the
862 			 * previous loop iteration.
863 			 */
864 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
865 		}
866 
867 		/*
868 		 * Periodically drop the lock (if held) regardless of its
869 		 * contention, to give chance to IRQs. Abort completely if
870 		 * a fatal signal is pending.
871 		 */
872 		if (!(low_pfn % SWAP_CLUSTER_MAX)) {
873 			if (locked) {
874 				unlock_page_lruvec_irqrestore(locked, flags);
875 				locked = NULL;
876 			}
877 
878 			if (fatal_signal_pending(current)) {
879 				cc->contended = true;
880 				ret = -EINTR;
881 
882 				goto fatal_pending;
883 			}
884 
885 			cond_resched();
886 		}
887 
888 		if (!pfn_valid_within(low_pfn))
889 			goto isolate_fail;
890 		nr_scanned++;
891 
892 		page = pfn_to_page(low_pfn);
893 
894 		/*
895 		 * Check if the pageblock has already been marked skipped.
896 		 * Only the aligned PFN is checked as the caller isolates
897 		 * COMPACT_CLUSTER_MAX at a time so the second call must
898 		 * not falsely conclude that the block should be skipped.
899 		 */
900 		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
901 			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
902 				low_pfn = end_pfn;
903 				page = NULL;
904 				goto isolate_abort;
905 			}
906 			valid_page = page;
907 		}
908 
909 		if (PageHuge(page) && cc->alloc_contig) {
910 			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
911 
912 			/*
913 			 * Fail isolation in case isolate_or_dissolve_huge_page()
914 			 * reports an error. In case of -ENOMEM, abort right away.
915 			 */
916 			if (ret < 0) {
917 				 /* Do not report -EBUSY down the chain */
918 				if (ret == -EBUSY)
919 					ret = 0;
920 				low_pfn += (1UL << compound_order(page)) - 1;
921 				goto isolate_fail;
922 			}
923 
924 			if (PageHuge(page)) {
925 				/*
926 				 * Hugepage was successfully isolated and placed
927 				 * on the cc->migratepages list.
928 				 */
929 				low_pfn += compound_nr(page) - 1;
930 				goto isolate_success_no_list;
931 			}
932 
933 			/*
934 			 * Ok, the hugepage was dissolved. Now these pages are
935 			 * Buddy and cannot be re-allocated because they are
936 			 * isolated. Fall-through as the check below handles
937 			 * Buddy pages.
938 			 */
939 		}
940 
941 		/*
942 		 * Skip if free. We read page order here without zone lock
943 		 * which is generally unsafe, but the race window is small and
944 		 * the worst thing that can happen is that we skip some
945 		 * potential isolation targets.
946 		 */
947 		if (PageBuddy(page)) {
948 			unsigned long freepage_order = buddy_order_unsafe(page);
949 
950 			/*
951 			 * Without lock, we cannot be sure that what we got is
952 			 * a valid page order. Consider only values in the
953 			 * valid order range to prevent low_pfn overflow.
954 			 */
955 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
956 				low_pfn += (1UL << freepage_order) - 1;
957 			continue;
958 		}
959 
960 		/*
961 		 * Regardless of being on LRU, compound pages such as THP and
962 		 * hugetlbfs are not to be compacted unless we are attempting
963 		 * an allocation much larger than the huge page size (eg CMA).
964 		 * We can potentially save a lot of iterations if we skip them
965 		 * at once. The check is racy, but we can consider only valid
966 		 * values and the only danger is skipping too much.
967 		 */
968 		if (PageCompound(page) && !cc->alloc_contig) {
969 			const unsigned int order = compound_order(page);
970 
971 			if (likely(order < MAX_ORDER))
972 				low_pfn += (1UL << order) - 1;
973 			goto isolate_fail;
974 		}
975 
976 		/*
977 		 * Check may be lockless but that's ok as we recheck later.
978 		 * It's possible to migrate LRU and non-lru movable pages.
979 		 * Skip any other type of page
980 		 */
981 		if (!PageLRU(page)) {
982 			/*
983 			 * __PageMovable can return false positive so we need
984 			 * to verify it under page_lock.
985 			 */
986 			if (unlikely(__PageMovable(page)) &&
987 					!PageIsolated(page)) {
988 				if (locked) {
989 					unlock_page_lruvec_irqrestore(locked, flags);
990 					locked = NULL;
991 				}
992 
993 				if (!isolate_movable_page(page, isolate_mode))
994 					goto isolate_success;
995 			}
996 
997 			goto isolate_fail;
998 		}
999 
1000 		/*
1001 		 * Migration will fail if an anonymous page is pinned in memory,
1002 		 * so avoid taking lru_lock and isolating it unnecessarily in an
1003 		 * admittedly racy check.
1004 		 */
1005 		if (!page_mapping(page) &&
1006 		    page_count(page) > page_mapcount(page))
1007 			goto isolate_fail;
1008 
1009 		/*
1010 		 * Only allow to migrate anonymous pages in GFP_NOFS context
1011 		 * because those do not depend on fs locks.
1012 		 */
1013 		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
1014 			goto isolate_fail;
1015 
1016 		/*
1017 		 * Be careful not to clear PageLRU until after we're
1018 		 * sure the page is not being freed elsewhere -- the
1019 		 * page release code relies on it.
1020 		 */
1021 		if (unlikely(!get_page_unless_zero(page)))
1022 			goto isolate_fail;
1023 
1024 		if (!__isolate_lru_page_prepare(page, isolate_mode))
1025 			goto isolate_fail_put;
1026 
1027 		/* Try isolate the page */
1028 		if (!TestClearPageLRU(page))
1029 			goto isolate_fail_put;
1030 
1031 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1032 
1033 		/* If we already hold the lock, we can skip some rechecking */
1034 		if (lruvec != locked) {
1035 			if (locked)
1036 				unlock_page_lruvec_irqrestore(locked, flags);
1037 
1038 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1039 			locked = lruvec;
1040 
1041 			lruvec_memcg_debug(lruvec, page);
1042 
1043 			/* Try get exclusive access under lock */
1044 			if (!skip_updated) {
1045 				skip_updated = true;
1046 				if (test_and_set_skip(cc, page, low_pfn))
1047 					goto isolate_abort;
1048 			}
1049 
1050 			/*
1051 			 * Page become compound since the non-locked check,
1052 			 * and it's on LRU. It can only be a THP so the order
1053 			 * is safe to read and it's 0 for tail pages.
1054 			 */
1055 			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1056 				low_pfn += compound_nr(page) - 1;
1057 				SetPageLRU(page);
1058 				goto isolate_fail_put;
1059 			}
1060 		}
1061 
1062 		/* The whole page is taken off the LRU; skip the tail pages. */
1063 		if (PageCompound(page))
1064 			low_pfn += compound_nr(page) - 1;
1065 
1066 		/* Successfully isolated */
1067 		del_page_from_lru_list(page, lruvec);
1068 		mod_node_page_state(page_pgdat(page),
1069 				NR_ISOLATED_ANON + page_is_file_lru(page),
1070 				thp_nr_pages(page));
1071 
1072 isolate_success:
1073 		list_add(&page->lru, &cc->migratepages);
1074 isolate_success_no_list:
1075 		cc->nr_migratepages += compound_nr(page);
1076 		nr_isolated += compound_nr(page);
1077 
1078 		/*
1079 		 * Avoid isolating too much unless this block is being
1080 		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1081 		 * or a lock is contended. For contention, isolate quickly to
1082 		 * potentially remove one source of contention.
1083 		 */
1084 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1085 		    !cc->rescan && !cc->contended) {
1086 			++low_pfn;
1087 			break;
1088 		}
1089 
1090 		continue;
1091 
1092 isolate_fail_put:
1093 		/* Avoid potential deadlock in freeing page under lru_lock */
1094 		if (locked) {
1095 			unlock_page_lruvec_irqrestore(locked, flags);
1096 			locked = NULL;
1097 		}
1098 		put_page(page);
1099 
1100 isolate_fail:
1101 		if (!skip_on_failure && ret != -ENOMEM)
1102 			continue;
1103 
1104 		/*
1105 		 * We have isolated some pages, but then failed. Release them
1106 		 * instead of migrating, as we cannot form the cc->order buddy
1107 		 * page anyway.
1108 		 */
1109 		if (nr_isolated) {
1110 			if (locked) {
1111 				unlock_page_lruvec_irqrestore(locked, flags);
1112 				locked = NULL;
1113 			}
1114 			putback_movable_pages(&cc->migratepages);
1115 			cc->nr_migratepages = 0;
1116 			nr_isolated = 0;
1117 		}
1118 
1119 		if (low_pfn < next_skip_pfn) {
1120 			low_pfn = next_skip_pfn - 1;
1121 			/*
1122 			 * The check near the loop beginning would have updated
1123 			 * next_skip_pfn too, but this is a bit simpler.
1124 			 */
1125 			next_skip_pfn += 1UL << cc->order;
1126 		}
1127 
1128 		if (ret == -ENOMEM)
1129 			break;
1130 	}
1131 
1132 	/*
1133 	 * The PageBuddy() check could have potentially brought us outside
1134 	 * the range to be scanned.
1135 	 */
1136 	if (unlikely(low_pfn > end_pfn))
1137 		low_pfn = end_pfn;
1138 
1139 	page = NULL;
1140 
1141 isolate_abort:
1142 	if (locked)
1143 		unlock_page_lruvec_irqrestore(locked, flags);
1144 	if (page) {
1145 		SetPageLRU(page);
1146 		put_page(page);
1147 	}
1148 
1149 	/*
1150 	 * Updated the cached scanner pfn once the pageblock has been scanned
1151 	 * Pages will either be migrated in which case there is no point
1152 	 * scanning in the near future or migration failed in which case the
1153 	 * failure reason may persist. The block is marked for skipping if
1154 	 * there were no pages isolated in the block or if the block is
1155 	 * rescanned twice in a row.
1156 	 */
1157 	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1158 		if (valid_page && !skip_updated)
1159 			set_pageblock_skip(valid_page);
1160 		update_cached_migrate(cc, low_pfn);
1161 	}
1162 
1163 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1164 						nr_scanned, nr_isolated);
1165 
1166 fatal_pending:
1167 	cc->total_migrate_scanned += nr_scanned;
1168 	if (nr_isolated)
1169 		count_compact_events(COMPACTISOLATED, nr_isolated);
1170 
1171 	cc->migrate_pfn = low_pfn;
1172 
1173 	return ret;
1174 }
1175 
1176 /**
1177  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1178  * @cc:        Compaction control structure.
1179  * @start_pfn: The first PFN to start isolating.
1180  * @end_pfn:   The one-past-last PFN.
1181  *
1182  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1183  * in case we could not allocate a page, or 0.
1184  */
1185 int
1186 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1187 							unsigned long end_pfn)
1188 {
1189 	unsigned long pfn, block_start_pfn, block_end_pfn;
1190 	int ret = 0;
1191 
1192 	/* Scan block by block. First and last block may be incomplete */
1193 	pfn = start_pfn;
1194 	block_start_pfn = pageblock_start_pfn(pfn);
1195 	if (block_start_pfn < cc->zone->zone_start_pfn)
1196 		block_start_pfn = cc->zone->zone_start_pfn;
1197 	block_end_pfn = pageblock_end_pfn(pfn);
1198 
1199 	for (; pfn < end_pfn; pfn = block_end_pfn,
1200 				block_start_pfn = block_end_pfn,
1201 				block_end_pfn += pageblock_nr_pages) {
1202 
1203 		block_end_pfn = min(block_end_pfn, end_pfn);
1204 
1205 		if (!pageblock_pfn_to_page(block_start_pfn,
1206 					block_end_pfn, cc->zone))
1207 			continue;
1208 
1209 		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1210 						 ISOLATE_UNEVICTABLE);
1211 
1212 		if (ret)
1213 			break;
1214 
1215 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1216 			break;
1217 	}
1218 
1219 	return ret;
1220 }
1221 
1222 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1223 #ifdef CONFIG_COMPACTION
1224 
1225 static bool suitable_migration_source(struct compact_control *cc,
1226 							struct page *page)
1227 {
1228 	int block_mt;
1229 
1230 	if (pageblock_skip_persistent(page))
1231 		return false;
1232 
1233 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1234 		return true;
1235 
1236 	block_mt = get_pageblock_migratetype(page);
1237 
1238 	if (cc->migratetype == MIGRATE_MOVABLE)
1239 		return is_migrate_movable(block_mt);
1240 	else
1241 		return block_mt == cc->migratetype;
1242 }
1243 
1244 /* Returns true if the page is within a block suitable for migration to */
1245 static bool suitable_migration_target(struct compact_control *cc,
1246 							struct page *page)
1247 {
1248 	/* If the page is a large free page, then disallow migration */
1249 	if (PageBuddy(page)) {
1250 		/*
1251 		 * We are checking page_order without zone->lock taken. But
1252 		 * the only small danger is that we skip a potentially suitable
1253 		 * pageblock, so it's not worth to check order for valid range.
1254 		 */
1255 		if (buddy_order_unsafe(page) >= pageblock_order)
1256 			return false;
1257 	}
1258 
1259 	if (cc->ignore_block_suitable)
1260 		return true;
1261 
1262 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1263 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1264 		return true;
1265 
1266 	/* Otherwise skip the block */
1267 	return false;
1268 }
1269 
1270 static inline unsigned int
1271 freelist_scan_limit(struct compact_control *cc)
1272 {
1273 	unsigned short shift = BITS_PER_LONG - 1;
1274 
1275 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1276 }
1277 
1278 /*
1279  * Test whether the free scanner has reached the same or lower pageblock than
1280  * the migration scanner, and compaction should thus terminate.
1281  */
1282 static inline bool compact_scanners_met(struct compact_control *cc)
1283 {
1284 	return (cc->free_pfn >> pageblock_order)
1285 		<= (cc->migrate_pfn >> pageblock_order);
1286 }
1287 
1288 /*
1289  * Used when scanning for a suitable migration target which scans freelists
1290  * in reverse. Reorders the list such as the unscanned pages are scanned
1291  * first on the next iteration of the free scanner
1292  */
1293 static void
1294 move_freelist_head(struct list_head *freelist, struct page *freepage)
1295 {
1296 	LIST_HEAD(sublist);
1297 
1298 	if (!list_is_last(freelist, &freepage->lru)) {
1299 		list_cut_before(&sublist, freelist, &freepage->lru);
1300 		if (!list_empty(&sublist))
1301 			list_splice_tail(&sublist, freelist);
1302 	}
1303 }
1304 
1305 /*
1306  * Similar to move_freelist_head except used by the migration scanner
1307  * when scanning forward. It's possible for these list operations to
1308  * move against each other if they search the free list exactly in
1309  * lockstep.
1310  */
1311 static void
1312 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1313 {
1314 	LIST_HEAD(sublist);
1315 
1316 	if (!list_is_first(freelist, &freepage->lru)) {
1317 		list_cut_position(&sublist, freelist, &freepage->lru);
1318 		if (!list_empty(&sublist))
1319 			list_splice_tail(&sublist, freelist);
1320 	}
1321 }
1322 
1323 static void
1324 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1325 {
1326 	unsigned long start_pfn, end_pfn;
1327 	struct page *page;
1328 
1329 	/* Do not search around if there are enough pages already */
1330 	if (cc->nr_freepages >= cc->nr_migratepages)
1331 		return;
1332 
1333 	/* Minimise scanning during async compaction */
1334 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1335 		return;
1336 
1337 	/* Pageblock boundaries */
1338 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1339 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1340 
1341 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1342 	if (!page)
1343 		return;
1344 
1345 	/* Scan before */
1346 	if (start_pfn != pfn) {
1347 		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1348 		if (cc->nr_freepages >= cc->nr_migratepages)
1349 			return;
1350 	}
1351 
1352 	/* Scan after */
1353 	start_pfn = pfn + nr_isolated;
1354 	if (start_pfn < end_pfn)
1355 		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1356 
1357 	/* Skip this pageblock in the future as it's full or nearly full */
1358 	if (cc->nr_freepages < cc->nr_migratepages)
1359 		set_pageblock_skip(page);
1360 }
1361 
1362 /* Search orders in round-robin fashion */
1363 static int next_search_order(struct compact_control *cc, int order)
1364 {
1365 	order--;
1366 	if (order < 0)
1367 		order = cc->order - 1;
1368 
1369 	/* Search wrapped around? */
1370 	if (order == cc->search_order) {
1371 		cc->search_order--;
1372 		if (cc->search_order < 0)
1373 			cc->search_order = cc->order - 1;
1374 		return -1;
1375 	}
1376 
1377 	return order;
1378 }
1379 
1380 static unsigned long
1381 fast_isolate_freepages(struct compact_control *cc)
1382 {
1383 	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1384 	unsigned int nr_scanned = 0;
1385 	unsigned long low_pfn, min_pfn, highest = 0;
1386 	unsigned long nr_isolated = 0;
1387 	unsigned long distance;
1388 	struct page *page = NULL;
1389 	bool scan_start = false;
1390 	int order;
1391 
1392 	/* Full compaction passes in a negative order */
1393 	if (cc->order <= 0)
1394 		return cc->free_pfn;
1395 
1396 	/*
1397 	 * If starting the scan, use a deeper search and use the highest
1398 	 * PFN found if a suitable one is not found.
1399 	 */
1400 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1401 		limit = pageblock_nr_pages >> 1;
1402 		scan_start = true;
1403 	}
1404 
1405 	/*
1406 	 * Preferred point is in the top quarter of the scan space but take
1407 	 * a pfn from the top half if the search is problematic.
1408 	 */
1409 	distance = (cc->free_pfn - cc->migrate_pfn);
1410 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1411 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1412 
1413 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1414 		low_pfn = min_pfn;
1415 
1416 	/*
1417 	 * Search starts from the last successful isolation order or the next
1418 	 * order to search after a previous failure
1419 	 */
1420 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1421 
1422 	for (order = cc->search_order;
1423 	     !page && order >= 0;
1424 	     order = next_search_order(cc, order)) {
1425 		struct free_area *area = &cc->zone->free_area[order];
1426 		struct list_head *freelist;
1427 		struct page *freepage;
1428 		unsigned long flags;
1429 		unsigned int order_scanned = 0;
1430 		unsigned long high_pfn = 0;
1431 
1432 		if (!area->nr_free)
1433 			continue;
1434 
1435 		spin_lock_irqsave(&cc->zone->lock, flags);
1436 		freelist = &area->free_list[MIGRATE_MOVABLE];
1437 		list_for_each_entry_reverse(freepage, freelist, lru) {
1438 			unsigned long pfn;
1439 
1440 			order_scanned++;
1441 			nr_scanned++;
1442 			pfn = page_to_pfn(freepage);
1443 
1444 			if (pfn >= highest)
1445 				highest = max(pageblock_start_pfn(pfn),
1446 					      cc->zone->zone_start_pfn);
1447 
1448 			if (pfn >= low_pfn) {
1449 				cc->fast_search_fail = 0;
1450 				cc->search_order = order;
1451 				page = freepage;
1452 				break;
1453 			}
1454 
1455 			if (pfn >= min_pfn && pfn > high_pfn) {
1456 				high_pfn = pfn;
1457 
1458 				/* Shorten the scan if a candidate is found */
1459 				limit >>= 1;
1460 			}
1461 
1462 			if (order_scanned >= limit)
1463 				break;
1464 		}
1465 
1466 		/* Use a minimum pfn if a preferred one was not found */
1467 		if (!page && high_pfn) {
1468 			page = pfn_to_page(high_pfn);
1469 
1470 			/* Update freepage for the list reorder below */
1471 			freepage = page;
1472 		}
1473 
1474 		/* Reorder to so a future search skips recent pages */
1475 		move_freelist_head(freelist, freepage);
1476 
1477 		/* Isolate the page if available */
1478 		if (page) {
1479 			if (__isolate_free_page(page, order)) {
1480 				set_page_private(page, order);
1481 				nr_isolated = 1 << order;
1482 				cc->nr_freepages += nr_isolated;
1483 				list_add_tail(&page->lru, &cc->freepages);
1484 				count_compact_events(COMPACTISOLATED, nr_isolated);
1485 			} else {
1486 				/* If isolation fails, abort the search */
1487 				order = cc->search_order + 1;
1488 				page = NULL;
1489 			}
1490 		}
1491 
1492 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1493 
1494 		/*
1495 		 * Smaller scan on next order so the total scan ig related
1496 		 * to freelist_scan_limit.
1497 		 */
1498 		if (order_scanned >= limit)
1499 			limit = min(1U, limit >> 1);
1500 	}
1501 
1502 	if (!page) {
1503 		cc->fast_search_fail++;
1504 		if (scan_start) {
1505 			/*
1506 			 * Use the highest PFN found above min. If one was
1507 			 * not found, be pessimistic for direct compaction
1508 			 * and use the min mark.
1509 			 */
1510 			if (highest) {
1511 				page = pfn_to_page(highest);
1512 				cc->free_pfn = highest;
1513 			} else {
1514 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1515 					page = pageblock_pfn_to_page(min_pfn,
1516 						min(pageblock_end_pfn(min_pfn),
1517 						    zone_end_pfn(cc->zone)),
1518 						cc->zone);
1519 					cc->free_pfn = min_pfn;
1520 				}
1521 			}
1522 		}
1523 	}
1524 
1525 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1526 		highest -= pageblock_nr_pages;
1527 		cc->zone->compact_cached_free_pfn = highest;
1528 	}
1529 
1530 	cc->total_free_scanned += nr_scanned;
1531 	if (!page)
1532 		return cc->free_pfn;
1533 
1534 	low_pfn = page_to_pfn(page);
1535 	fast_isolate_around(cc, low_pfn, nr_isolated);
1536 	return low_pfn;
1537 }
1538 
1539 /*
1540  * Based on information in the current compact_control, find blocks
1541  * suitable for isolating free pages from and then isolate them.
1542  */
1543 static void isolate_freepages(struct compact_control *cc)
1544 {
1545 	struct zone *zone = cc->zone;
1546 	struct page *page;
1547 	unsigned long block_start_pfn;	/* start of current pageblock */
1548 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1549 	unsigned long block_end_pfn;	/* end of current pageblock */
1550 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1551 	struct list_head *freelist = &cc->freepages;
1552 	unsigned int stride;
1553 
1554 	/* Try a small search of the free lists for a candidate */
1555 	isolate_start_pfn = fast_isolate_freepages(cc);
1556 	if (cc->nr_freepages)
1557 		goto splitmap;
1558 
1559 	/*
1560 	 * Initialise the free scanner. The starting point is where we last
1561 	 * successfully isolated from, zone-cached value, or the end of the
1562 	 * zone when isolating for the first time. For looping we also need
1563 	 * this pfn aligned down to the pageblock boundary, because we do
1564 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1565 	 * For ending point, take care when isolating in last pageblock of a
1566 	 * zone which ends in the middle of a pageblock.
1567 	 * The low boundary is the end of the pageblock the migration scanner
1568 	 * is using.
1569 	 */
1570 	isolate_start_pfn = cc->free_pfn;
1571 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1572 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1573 						zone_end_pfn(zone));
1574 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1575 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1576 
1577 	/*
1578 	 * Isolate free pages until enough are available to migrate the
1579 	 * pages on cc->migratepages. We stop searching if the migrate
1580 	 * and free page scanners meet or enough free pages are isolated.
1581 	 */
1582 	for (; block_start_pfn >= low_pfn;
1583 				block_end_pfn = block_start_pfn,
1584 				block_start_pfn -= pageblock_nr_pages,
1585 				isolate_start_pfn = block_start_pfn) {
1586 		unsigned long nr_isolated;
1587 
1588 		/*
1589 		 * This can iterate a massively long zone without finding any
1590 		 * suitable migration targets, so periodically check resched.
1591 		 */
1592 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1593 			cond_resched();
1594 
1595 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1596 									zone);
1597 		if (!page)
1598 			continue;
1599 
1600 		/* Check the block is suitable for migration */
1601 		if (!suitable_migration_target(cc, page))
1602 			continue;
1603 
1604 		/* If isolation recently failed, do not retry */
1605 		if (!isolation_suitable(cc, page))
1606 			continue;
1607 
1608 		/* Found a block suitable for isolating free pages from. */
1609 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1610 					block_end_pfn, freelist, stride, false);
1611 
1612 		/* Update the skip hint if the full pageblock was scanned */
1613 		if (isolate_start_pfn == block_end_pfn)
1614 			update_pageblock_skip(cc, page, block_start_pfn);
1615 
1616 		/* Are enough freepages isolated? */
1617 		if (cc->nr_freepages >= cc->nr_migratepages) {
1618 			if (isolate_start_pfn >= block_end_pfn) {
1619 				/*
1620 				 * Restart at previous pageblock if more
1621 				 * freepages can be isolated next time.
1622 				 */
1623 				isolate_start_pfn =
1624 					block_start_pfn - pageblock_nr_pages;
1625 			}
1626 			break;
1627 		} else if (isolate_start_pfn < block_end_pfn) {
1628 			/*
1629 			 * If isolation failed early, do not continue
1630 			 * needlessly.
1631 			 */
1632 			break;
1633 		}
1634 
1635 		/* Adjust stride depending on isolation */
1636 		if (nr_isolated) {
1637 			stride = 1;
1638 			continue;
1639 		}
1640 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1641 	}
1642 
1643 	/*
1644 	 * Record where the free scanner will restart next time. Either we
1645 	 * broke from the loop and set isolate_start_pfn based on the last
1646 	 * call to isolate_freepages_block(), or we met the migration scanner
1647 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1648 	 */
1649 	cc->free_pfn = isolate_start_pfn;
1650 
1651 splitmap:
1652 	/* __isolate_free_page() does not map the pages */
1653 	split_map_pages(freelist);
1654 }
1655 
1656 /*
1657  * This is a migrate-callback that "allocates" freepages by taking pages
1658  * from the isolated freelists in the block we are migrating to.
1659  */
1660 static struct page *compaction_alloc(struct page *migratepage,
1661 					unsigned long data)
1662 {
1663 	struct compact_control *cc = (struct compact_control *)data;
1664 	struct page *freepage;
1665 
1666 	if (list_empty(&cc->freepages)) {
1667 		isolate_freepages(cc);
1668 
1669 		if (list_empty(&cc->freepages))
1670 			return NULL;
1671 	}
1672 
1673 	freepage = list_entry(cc->freepages.next, struct page, lru);
1674 	list_del(&freepage->lru);
1675 	cc->nr_freepages--;
1676 
1677 	return freepage;
1678 }
1679 
1680 /*
1681  * This is a migrate-callback that "frees" freepages back to the isolated
1682  * freelist.  All pages on the freelist are from the same zone, so there is no
1683  * special handling needed for NUMA.
1684  */
1685 static void compaction_free(struct page *page, unsigned long data)
1686 {
1687 	struct compact_control *cc = (struct compact_control *)data;
1688 
1689 	list_add(&page->lru, &cc->freepages);
1690 	cc->nr_freepages++;
1691 }
1692 
1693 /* possible outcome of isolate_migratepages */
1694 typedef enum {
1695 	ISOLATE_ABORT,		/* Abort compaction now */
1696 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1697 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1698 } isolate_migrate_t;
1699 
1700 /*
1701  * Allow userspace to control policy on scanning the unevictable LRU for
1702  * compactable pages.
1703  */
1704 #ifdef CONFIG_PREEMPT_RT
1705 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1706 #else
1707 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1708 #endif
1709 
1710 static inline void
1711 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1712 {
1713 	if (cc->fast_start_pfn == ULONG_MAX)
1714 		return;
1715 
1716 	if (!cc->fast_start_pfn)
1717 		cc->fast_start_pfn = pfn;
1718 
1719 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1720 }
1721 
1722 static inline unsigned long
1723 reinit_migrate_pfn(struct compact_control *cc)
1724 {
1725 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1726 		return cc->migrate_pfn;
1727 
1728 	cc->migrate_pfn = cc->fast_start_pfn;
1729 	cc->fast_start_pfn = ULONG_MAX;
1730 
1731 	return cc->migrate_pfn;
1732 }
1733 
1734 /*
1735  * Briefly search the free lists for a migration source that already has
1736  * some free pages to reduce the number of pages that need migration
1737  * before a pageblock is free.
1738  */
1739 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1740 {
1741 	unsigned int limit = freelist_scan_limit(cc);
1742 	unsigned int nr_scanned = 0;
1743 	unsigned long distance;
1744 	unsigned long pfn = cc->migrate_pfn;
1745 	unsigned long high_pfn;
1746 	int order;
1747 	bool found_block = false;
1748 
1749 	/* Skip hints are relied on to avoid repeats on the fast search */
1750 	if (cc->ignore_skip_hint)
1751 		return pfn;
1752 
1753 	/*
1754 	 * If the migrate_pfn is not at the start of a zone or the start
1755 	 * of a pageblock then assume this is a continuation of a previous
1756 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1757 	 */
1758 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1759 		return pfn;
1760 
1761 	/*
1762 	 * For smaller orders, just linearly scan as the number of pages
1763 	 * to migrate should be relatively small and does not necessarily
1764 	 * justify freeing up a large block for a small allocation.
1765 	 */
1766 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1767 		return pfn;
1768 
1769 	/*
1770 	 * Only allow kcompactd and direct requests for movable pages to
1771 	 * quickly clear out a MOVABLE pageblock for allocation. This
1772 	 * reduces the risk that a large movable pageblock is freed for
1773 	 * an unmovable/reclaimable small allocation.
1774 	 */
1775 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1776 		return pfn;
1777 
1778 	/*
1779 	 * When starting the migration scanner, pick any pageblock within the
1780 	 * first half of the search space. Otherwise try and pick a pageblock
1781 	 * within the first eighth to reduce the chances that a migration
1782 	 * target later becomes a source.
1783 	 */
1784 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1785 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1786 		distance >>= 2;
1787 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1788 
1789 	for (order = cc->order - 1;
1790 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1791 	     order--) {
1792 		struct free_area *area = &cc->zone->free_area[order];
1793 		struct list_head *freelist;
1794 		unsigned long flags;
1795 		struct page *freepage;
1796 
1797 		if (!area->nr_free)
1798 			continue;
1799 
1800 		spin_lock_irqsave(&cc->zone->lock, flags);
1801 		freelist = &area->free_list[MIGRATE_MOVABLE];
1802 		list_for_each_entry(freepage, freelist, lru) {
1803 			unsigned long free_pfn;
1804 
1805 			if (nr_scanned++ >= limit) {
1806 				move_freelist_tail(freelist, freepage);
1807 				break;
1808 			}
1809 
1810 			free_pfn = page_to_pfn(freepage);
1811 			if (free_pfn < high_pfn) {
1812 				/*
1813 				 * Avoid if skipped recently. Ideally it would
1814 				 * move to the tail but even safe iteration of
1815 				 * the list assumes an entry is deleted, not
1816 				 * reordered.
1817 				 */
1818 				if (get_pageblock_skip(freepage))
1819 					continue;
1820 
1821 				/* Reorder to so a future search skips recent pages */
1822 				move_freelist_tail(freelist, freepage);
1823 
1824 				update_fast_start_pfn(cc, free_pfn);
1825 				pfn = pageblock_start_pfn(free_pfn);
1826 				cc->fast_search_fail = 0;
1827 				found_block = true;
1828 				set_pageblock_skip(freepage);
1829 				break;
1830 			}
1831 		}
1832 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1833 	}
1834 
1835 	cc->total_migrate_scanned += nr_scanned;
1836 
1837 	/*
1838 	 * If fast scanning failed then use a cached entry for a page block
1839 	 * that had free pages as the basis for starting a linear scan.
1840 	 */
1841 	if (!found_block) {
1842 		cc->fast_search_fail++;
1843 		pfn = reinit_migrate_pfn(cc);
1844 	}
1845 	return pfn;
1846 }
1847 
1848 /*
1849  * Isolate all pages that can be migrated from the first suitable block,
1850  * starting at the block pointed to by the migrate scanner pfn within
1851  * compact_control.
1852  */
1853 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1854 {
1855 	unsigned long block_start_pfn;
1856 	unsigned long block_end_pfn;
1857 	unsigned long low_pfn;
1858 	struct page *page;
1859 	const isolate_mode_t isolate_mode =
1860 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1861 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1862 	bool fast_find_block;
1863 
1864 	/*
1865 	 * Start at where we last stopped, or beginning of the zone as
1866 	 * initialized by compact_zone(). The first failure will use
1867 	 * the lowest PFN as the starting point for linear scanning.
1868 	 */
1869 	low_pfn = fast_find_migrateblock(cc);
1870 	block_start_pfn = pageblock_start_pfn(low_pfn);
1871 	if (block_start_pfn < cc->zone->zone_start_pfn)
1872 		block_start_pfn = cc->zone->zone_start_pfn;
1873 
1874 	/*
1875 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1876 	 * the isolation_suitable check below, check whether the fast
1877 	 * search was successful.
1878 	 */
1879 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1880 
1881 	/* Only scan within a pageblock boundary */
1882 	block_end_pfn = pageblock_end_pfn(low_pfn);
1883 
1884 	/*
1885 	 * Iterate over whole pageblocks until we find the first suitable.
1886 	 * Do not cross the free scanner.
1887 	 */
1888 	for (; block_end_pfn <= cc->free_pfn;
1889 			fast_find_block = false,
1890 			cc->migrate_pfn = low_pfn = block_end_pfn,
1891 			block_start_pfn = block_end_pfn,
1892 			block_end_pfn += pageblock_nr_pages) {
1893 
1894 		/*
1895 		 * This can potentially iterate a massively long zone with
1896 		 * many pageblocks unsuitable, so periodically check if we
1897 		 * need to schedule.
1898 		 */
1899 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1900 			cond_resched();
1901 
1902 		page = pageblock_pfn_to_page(block_start_pfn,
1903 						block_end_pfn, cc->zone);
1904 		if (!page)
1905 			continue;
1906 
1907 		/*
1908 		 * If isolation recently failed, do not retry. Only check the
1909 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1910 		 * to be visited multiple times. Assume skip was checked
1911 		 * before making it "skip" so other compaction instances do
1912 		 * not scan the same block.
1913 		 */
1914 		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1915 		    !fast_find_block && !isolation_suitable(cc, page))
1916 			continue;
1917 
1918 		/*
1919 		 * For async compaction, also only scan in MOVABLE blocks
1920 		 * without huge pages. Async compaction is optimistic to see
1921 		 * if the minimum amount of work satisfies the allocation.
1922 		 * The cached PFN is updated as it's possible that all
1923 		 * remaining blocks between source and target are unsuitable
1924 		 * and the compaction scanners fail to meet.
1925 		 */
1926 		if (!suitable_migration_source(cc, page)) {
1927 			update_cached_migrate(cc, block_end_pfn);
1928 			continue;
1929 		}
1930 
1931 		/* Perform the isolation */
1932 		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1933 						isolate_mode))
1934 			return ISOLATE_ABORT;
1935 
1936 		/*
1937 		 * Either we isolated something and proceed with migration. Or
1938 		 * we failed and compact_zone should decide if we should
1939 		 * continue or not.
1940 		 */
1941 		break;
1942 	}
1943 
1944 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1945 }
1946 
1947 /*
1948  * order == -1 is expected when compacting via
1949  * /proc/sys/vm/compact_memory
1950  */
1951 static inline bool is_via_compact_memory(int order)
1952 {
1953 	return order == -1;
1954 }
1955 
1956 static bool kswapd_is_running(pg_data_t *pgdat)
1957 {
1958 	return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1959 }
1960 
1961 /*
1962  * A zone's fragmentation score is the external fragmentation wrt to the
1963  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1964  */
1965 static unsigned int fragmentation_score_zone(struct zone *zone)
1966 {
1967 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1968 }
1969 
1970 /*
1971  * A weighted zone's fragmentation score is the external fragmentation
1972  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1973  * returns a value in the range [0, 100].
1974  *
1975  * The scaling factor ensures that proactive compaction focuses on larger
1976  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1977  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1978  * and thus never exceeds the high threshold for proactive compaction.
1979  */
1980 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
1981 {
1982 	unsigned long score;
1983 
1984 	score = zone->present_pages * fragmentation_score_zone(zone);
1985 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1986 }
1987 
1988 /*
1989  * The per-node proactive (background) compaction process is started by its
1990  * corresponding kcompactd thread when the node's fragmentation score
1991  * exceeds the high threshold. The compaction process remains active till
1992  * the node's score falls below the low threshold, or one of the back-off
1993  * conditions is met.
1994  */
1995 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1996 {
1997 	unsigned int score = 0;
1998 	int zoneid;
1999 
2000 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2001 		struct zone *zone;
2002 
2003 		zone = &pgdat->node_zones[zoneid];
2004 		score += fragmentation_score_zone_weighted(zone);
2005 	}
2006 
2007 	return score;
2008 }
2009 
2010 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2011 {
2012 	unsigned int wmark_low;
2013 
2014 	/*
2015 	 * Cap the low watermark to avoid excessive compaction
2016 	 * activity in case a user sets the proactiveness tunable
2017 	 * close to 100 (maximum).
2018 	 */
2019 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2020 	return low ? wmark_low : min(wmark_low + 10, 100U);
2021 }
2022 
2023 static bool should_proactive_compact_node(pg_data_t *pgdat)
2024 {
2025 	int wmark_high;
2026 
2027 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2028 		return false;
2029 
2030 	wmark_high = fragmentation_score_wmark(pgdat, false);
2031 	return fragmentation_score_node(pgdat) > wmark_high;
2032 }
2033 
2034 static enum compact_result __compact_finished(struct compact_control *cc)
2035 {
2036 	unsigned int order;
2037 	const int migratetype = cc->migratetype;
2038 	int ret;
2039 
2040 	/* Compaction run completes if the migrate and free scanner meet */
2041 	if (compact_scanners_met(cc)) {
2042 		/* Let the next compaction start anew. */
2043 		reset_cached_positions(cc->zone);
2044 
2045 		/*
2046 		 * Mark that the PG_migrate_skip information should be cleared
2047 		 * by kswapd when it goes to sleep. kcompactd does not set the
2048 		 * flag itself as the decision to be clear should be directly
2049 		 * based on an allocation request.
2050 		 */
2051 		if (cc->direct_compaction)
2052 			cc->zone->compact_blockskip_flush = true;
2053 
2054 		if (cc->whole_zone)
2055 			return COMPACT_COMPLETE;
2056 		else
2057 			return COMPACT_PARTIAL_SKIPPED;
2058 	}
2059 
2060 	if (cc->proactive_compaction) {
2061 		int score, wmark_low;
2062 		pg_data_t *pgdat;
2063 
2064 		pgdat = cc->zone->zone_pgdat;
2065 		if (kswapd_is_running(pgdat))
2066 			return COMPACT_PARTIAL_SKIPPED;
2067 
2068 		score = fragmentation_score_zone(cc->zone);
2069 		wmark_low = fragmentation_score_wmark(pgdat, true);
2070 
2071 		if (score > wmark_low)
2072 			ret = COMPACT_CONTINUE;
2073 		else
2074 			ret = COMPACT_SUCCESS;
2075 
2076 		goto out;
2077 	}
2078 
2079 	if (is_via_compact_memory(cc->order))
2080 		return COMPACT_CONTINUE;
2081 
2082 	/*
2083 	 * Always finish scanning a pageblock to reduce the possibility of
2084 	 * fallbacks in the future. This is particularly important when
2085 	 * migration source is unmovable/reclaimable but it's not worth
2086 	 * special casing.
2087 	 */
2088 	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2089 		return COMPACT_CONTINUE;
2090 
2091 	/* Direct compactor: Is a suitable page free? */
2092 	ret = COMPACT_NO_SUITABLE_PAGE;
2093 	for (order = cc->order; order < MAX_ORDER; order++) {
2094 		struct free_area *area = &cc->zone->free_area[order];
2095 		bool can_steal;
2096 
2097 		/* Job done if page is free of the right migratetype */
2098 		if (!free_area_empty(area, migratetype))
2099 			return COMPACT_SUCCESS;
2100 
2101 #ifdef CONFIG_CMA
2102 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2103 		if (migratetype == MIGRATE_MOVABLE &&
2104 			!free_area_empty(area, MIGRATE_CMA))
2105 			return COMPACT_SUCCESS;
2106 #endif
2107 		/*
2108 		 * Job done if allocation would steal freepages from
2109 		 * other migratetype buddy lists.
2110 		 */
2111 		if (find_suitable_fallback(area, order, migratetype,
2112 						true, &can_steal) != -1) {
2113 
2114 			/* movable pages are OK in any pageblock */
2115 			if (migratetype == MIGRATE_MOVABLE)
2116 				return COMPACT_SUCCESS;
2117 
2118 			/*
2119 			 * We are stealing for a non-movable allocation. Make
2120 			 * sure we finish compacting the current pageblock
2121 			 * first so it is as free as possible and we won't
2122 			 * have to steal another one soon. This only applies
2123 			 * to sync compaction, as async compaction operates
2124 			 * on pageblocks of the same migratetype.
2125 			 */
2126 			if (cc->mode == MIGRATE_ASYNC ||
2127 					IS_ALIGNED(cc->migrate_pfn,
2128 							pageblock_nr_pages)) {
2129 				return COMPACT_SUCCESS;
2130 			}
2131 
2132 			ret = COMPACT_CONTINUE;
2133 			break;
2134 		}
2135 	}
2136 
2137 out:
2138 	if (cc->contended || fatal_signal_pending(current))
2139 		ret = COMPACT_CONTENDED;
2140 
2141 	return ret;
2142 }
2143 
2144 static enum compact_result compact_finished(struct compact_control *cc)
2145 {
2146 	int ret;
2147 
2148 	ret = __compact_finished(cc);
2149 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2150 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2151 		ret = COMPACT_CONTINUE;
2152 
2153 	return ret;
2154 }
2155 
2156 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2157 					unsigned int alloc_flags,
2158 					int highest_zoneidx,
2159 					unsigned long wmark_target)
2160 {
2161 	unsigned long watermark;
2162 
2163 	if (is_via_compact_memory(order))
2164 		return COMPACT_CONTINUE;
2165 
2166 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2167 	/*
2168 	 * If watermarks for high-order allocation are already met, there
2169 	 * should be no need for compaction at all.
2170 	 */
2171 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2172 								alloc_flags))
2173 		return COMPACT_SUCCESS;
2174 
2175 	/*
2176 	 * Watermarks for order-0 must be met for compaction to be able to
2177 	 * isolate free pages for migration targets. This means that the
2178 	 * watermark and alloc_flags have to match, or be more pessimistic than
2179 	 * the check in __isolate_free_page(). We don't use the direct
2180 	 * compactor's alloc_flags, as they are not relevant for freepage
2181 	 * isolation. We however do use the direct compactor's highest_zoneidx
2182 	 * to skip over zones where lowmem reserves would prevent allocation
2183 	 * even if compaction succeeds.
2184 	 * For costly orders, we require low watermark instead of min for
2185 	 * compaction to proceed to increase its chances.
2186 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2187 	 * suitable migration targets
2188 	 */
2189 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2190 				low_wmark_pages(zone) : min_wmark_pages(zone);
2191 	watermark += compact_gap(order);
2192 	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2193 						ALLOC_CMA, wmark_target))
2194 		return COMPACT_SKIPPED;
2195 
2196 	return COMPACT_CONTINUE;
2197 }
2198 
2199 /*
2200  * compaction_suitable: Is this suitable to run compaction on this zone now?
2201  * Returns
2202  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2203  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2204  *   COMPACT_CONTINUE - If compaction should run now
2205  */
2206 enum compact_result compaction_suitable(struct zone *zone, int order,
2207 					unsigned int alloc_flags,
2208 					int highest_zoneidx)
2209 {
2210 	enum compact_result ret;
2211 	int fragindex;
2212 
2213 	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2214 				    zone_page_state(zone, NR_FREE_PAGES));
2215 	/*
2216 	 * fragmentation index determines if allocation failures are due to
2217 	 * low memory or external fragmentation
2218 	 *
2219 	 * index of -1000 would imply allocations might succeed depending on
2220 	 * watermarks, but we already failed the high-order watermark check
2221 	 * index towards 0 implies failure is due to lack of memory
2222 	 * index towards 1000 implies failure is due to fragmentation
2223 	 *
2224 	 * Only compact if a failure would be due to fragmentation. Also
2225 	 * ignore fragindex for non-costly orders where the alternative to
2226 	 * a successful reclaim/compaction is OOM. Fragindex and the
2227 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2228 	 * excessive compaction for costly orders, but it should not be at the
2229 	 * expense of system stability.
2230 	 */
2231 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2232 		fragindex = fragmentation_index(zone, order);
2233 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2234 			ret = COMPACT_NOT_SUITABLE_ZONE;
2235 	}
2236 
2237 	trace_mm_compaction_suitable(zone, order, ret);
2238 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2239 		ret = COMPACT_SKIPPED;
2240 
2241 	return ret;
2242 }
2243 
2244 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2245 		int alloc_flags)
2246 {
2247 	struct zone *zone;
2248 	struct zoneref *z;
2249 
2250 	/*
2251 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2252 	 * retrying the reclaim.
2253 	 */
2254 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2255 				ac->highest_zoneidx, ac->nodemask) {
2256 		unsigned long available;
2257 		enum compact_result compact_result;
2258 
2259 		/*
2260 		 * Do not consider all the reclaimable memory because we do not
2261 		 * want to trash just for a single high order allocation which
2262 		 * is even not guaranteed to appear even if __compaction_suitable
2263 		 * is happy about the watermark check.
2264 		 */
2265 		available = zone_reclaimable_pages(zone) / order;
2266 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2267 		compact_result = __compaction_suitable(zone, order, alloc_flags,
2268 				ac->highest_zoneidx, available);
2269 		if (compact_result != COMPACT_SKIPPED)
2270 			return true;
2271 	}
2272 
2273 	return false;
2274 }
2275 
2276 static enum compact_result
2277 compact_zone(struct compact_control *cc, struct capture_control *capc)
2278 {
2279 	enum compact_result ret;
2280 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2281 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2282 	unsigned long last_migrated_pfn;
2283 	const bool sync = cc->mode != MIGRATE_ASYNC;
2284 	bool update_cached;
2285 
2286 	/*
2287 	 * These counters track activities during zone compaction.  Initialize
2288 	 * them before compacting a new zone.
2289 	 */
2290 	cc->total_migrate_scanned = 0;
2291 	cc->total_free_scanned = 0;
2292 	cc->nr_migratepages = 0;
2293 	cc->nr_freepages = 0;
2294 	INIT_LIST_HEAD(&cc->freepages);
2295 	INIT_LIST_HEAD(&cc->migratepages);
2296 
2297 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2298 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2299 							cc->highest_zoneidx);
2300 	/* Compaction is likely to fail */
2301 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2302 		return ret;
2303 
2304 	/* huh, compaction_suitable is returning something unexpected */
2305 	VM_BUG_ON(ret != COMPACT_CONTINUE);
2306 
2307 	/*
2308 	 * Clear pageblock skip if there were failures recently and compaction
2309 	 * is about to be retried after being deferred.
2310 	 */
2311 	if (compaction_restarting(cc->zone, cc->order))
2312 		__reset_isolation_suitable(cc->zone);
2313 
2314 	/*
2315 	 * Setup to move all movable pages to the end of the zone. Used cached
2316 	 * information on where the scanners should start (unless we explicitly
2317 	 * want to compact the whole zone), but check that it is initialised
2318 	 * by ensuring the values are within zone boundaries.
2319 	 */
2320 	cc->fast_start_pfn = 0;
2321 	if (cc->whole_zone) {
2322 		cc->migrate_pfn = start_pfn;
2323 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2324 	} else {
2325 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2326 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2327 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2328 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2329 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2330 		}
2331 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2332 			cc->migrate_pfn = start_pfn;
2333 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2334 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2335 		}
2336 
2337 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2338 			cc->whole_zone = true;
2339 	}
2340 
2341 	last_migrated_pfn = 0;
2342 
2343 	/*
2344 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2345 	 * the basis that some migrations will fail in ASYNC mode. However,
2346 	 * if the cached PFNs match and pageblocks are skipped due to having
2347 	 * no isolation candidates, then the sync state does not matter.
2348 	 * Until a pageblock with isolation candidates is found, keep the
2349 	 * cached PFNs in sync to avoid revisiting the same blocks.
2350 	 */
2351 	update_cached = !sync &&
2352 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2353 
2354 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2355 				cc->free_pfn, end_pfn, sync);
2356 
2357 	/* lru_add_drain_all could be expensive with involving other CPUs */
2358 	lru_add_drain();
2359 
2360 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2361 		int err;
2362 		unsigned long iteration_start_pfn = cc->migrate_pfn;
2363 
2364 		/*
2365 		 * Avoid multiple rescans which can happen if a page cannot be
2366 		 * isolated (dirty/writeback in async mode) or if the migrated
2367 		 * pages are being allocated before the pageblock is cleared.
2368 		 * The first rescan will capture the entire pageblock for
2369 		 * migration. If it fails, it'll be marked skip and scanning
2370 		 * will proceed as normal.
2371 		 */
2372 		cc->rescan = false;
2373 		if (pageblock_start_pfn(last_migrated_pfn) ==
2374 		    pageblock_start_pfn(iteration_start_pfn)) {
2375 			cc->rescan = true;
2376 		}
2377 
2378 		switch (isolate_migratepages(cc)) {
2379 		case ISOLATE_ABORT:
2380 			ret = COMPACT_CONTENDED;
2381 			putback_movable_pages(&cc->migratepages);
2382 			cc->nr_migratepages = 0;
2383 			goto out;
2384 		case ISOLATE_NONE:
2385 			if (update_cached) {
2386 				cc->zone->compact_cached_migrate_pfn[1] =
2387 					cc->zone->compact_cached_migrate_pfn[0];
2388 			}
2389 
2390 			/*
2391 			 * We haven't isolated and migrated anything, but
2392 			 * there might still be unflushed migrations from
2393 			 * previous cc->order aligned block.
2394 			 */
2395 			goto check_drain;
2396 		case ISOLATE_SUCCESS:
2397 			update_cached = false;
2398 			last_migrated_pfn = iteration_start_pfn;
2399 		}
2400 
2401 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2402 				compaction_free, (unsigned long)cc, cc->mode,
2403 				MR_COMPACTION);
2404 
2405 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2406 							&cc->migratepages);
2407 
2408 		/* All pages were either migrated or will be released */
2409 		cc->nr_migratepages = 0;
2410 		if (err) {
2411 			putback_movable_pages(&cc->migratepages);
2412 			/*
2413 			 * migrate_pages() may return -ENOMEM when scanners meet
2414 			 * and we want compact_finished() to detect it
2415 			 */
2416 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2417 				ret = COMPACT_CONTENDED;
2418 				goto out;
2419 			}
2420 			/*
2421 			 * We failed to migrate at least one page in the current
2422 			 * order-aligned block, so skip the rest of it.
2423 			 */
2424 			if (cc->direct_compaction &&
2425 						(cc->mode == MIGRATE_ASYNC)) {
2426 				cc->migrate_pfn = block_end_pfn(
2427 						cc->migrate_pfn - 1, cc->order);
2428 				/* Draining pcplists is useless in this case */
2429 				last_migrated_pfn = 0;
2430 			}
2431 		}
2432 
2433 check_drain:
2434 		/*
2435 		 * Has the migration scanner moved away from the previous
2436 		 * cc->order aligned block where we migrated from? If yes,
2437 		 * flush the pages that were freed, so that they can merge and
2438 		 * compact_finished() can detect immediately if allocation
2439 		 * would succeed.
2440 		 */
2441 		if (cc->order > 0 && last_migrated_pfn) {
2442 			unsigned long current_block_start =
2443 				block_start_pfn(cc->migrate_pfn, cc->order);
2444 
2445 			if (last_migrated_pfn < current_block_start) {
2446 				lru_add_drain_cpu_zone(cc->zone);
2447 				/* No more flushing until we migrate again */
2448 				last_migrated_pfn = 0;
2449 			}
2450 		}
2451 
2452 		/* Stop if a page has been captured */
2453 		if (capc && capc->page) {
2454 			ret = COMPACT_SUCCESS;
2455 			break;
2456 		}
2457 	}
2458 
2459 out:
2460 	/*
2461 	 * Release free pages and update where the free scanner should restart,
2462 	 * so we don't leave any returned pages behind in the next attempt.
2463 	 */
2464 	if (cc->nr_freepages > 0) {
2465 		unsigned long free_pfn = release_freepages(&cc->freepages);
2466 
2467 		cc->nr_freepages = 0;
2468 		VM_BUG_ON(free_pfn == 0);
2469 		/* The cached pfn is always the first in a pageblock */
2470 		free_pfn = pageblock_start_pfn(free_pfn);
2471 		/*
2472 		 * Only go back, not forward. The cached pfn might have been
2473 		 * already reset to zone end in compact_finished()
2474 		 */
2475 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2476 			cc->zone->compact_cached_free_pfn = free_pfn;
2477 	}
2478 
2479 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2480 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2481 
2482 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2483 				cc->free_pfn, end_pfn, sync, ret);
2484 
2485 	return ret;
2486 }
2487 
2488 static enum compact_result compact_zone_order(struct zone *zone, int order,
2489 		gfp_t gfp_mask, enum compact_priority prio,
2490 		unsigned int alloc_flags, int highest_zoneidx,
2491 		struct page **capture)
2492 {
2493 	enum compact_result ret;
2494 	struct compact_control cc = {
2495 		.order = order,
2496 		.search_order = order,
2497 		.gfp_mask = gfp_mask,
2498 		.zone = zone,
2499 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2500 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2501 		.alloc_flags = alloc_flags,
2502 		.highest_zoneidx = highest_zoneidx,
2503 		.direct_compaction = true,
2504 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2505 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2506 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2507 	};
2508 	struct capture_control capc = {
2509 		.cc = &cc,
2510 		.page = NULL,
2511 	};
2512 
2513 	/*
2514 	 * Make sure the structs are really initialized before we expose the
2515 	 * capture control, in case we are interrupted and the interrupt handler
2516 	 * frees a page.
2517 	 */
2518 	barrier();
2519 	WRITE_ONCE(current->capture_control, &capc);
2520 
2521 	ret = compact_zone(&cc, &capc);
2522 
2523 	VM_BUG_ON(!list_empty(&cc.freepages));
2524 	VM_BUG_ON(!list_empty(&cc.migratepages));
2525 
2526 	/*
2527 	 * Make sure we hide capture control first before we read the captured
2528 	 * page pointer, otherwise an interrupt could free and capture a page
2529 	 * and we would leak it.
2530 	 */
2531 	WRITE_ONCE(current->capture_control, NULL);
2532 	*capture = READ_ONCE(capc.page);
2533 	/*
2534 	 * Technically, it is also possible that compaction is skipped but
2535 	 * the page is still captured out of luck(IRQ came and freed the page).
2536 	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2537 	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2538 	 */
2539 	if (*capture)
2540 		ret = COMPACT_SUCCESS;
2541 
2542 	return ret;
2543 }
2544 
2545 int sysctl_extfrag_threshold = 500;
2546 
2547 /**
2548  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2549  * @gfp_mask: The GFP mask of the current allocation
2550  * @order: The order of the current allocation
2551  * @alloc_flags: The allocation flags of the current allocation
2552  * @ac: The context of current allocation
2553  * @prio: Determines how hard direct compaction should try to succeed
2554  * @capture: Pointer to free page created by compaction will be stored here
2555  *
2556  * This is the main entry point for direct page compaction.
2557  */
2558 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2559 		unsigned int alloc_flags, const struct alloc_context *ac,
2560 		enum compact_priority prio, struct page **capture)
2561 {
2562 	int may_perform_io = gfp_mask & __GFP_IO;
2563 	struct zoneref *z;
2564 	struct zone *zone;
2565 	enum compact_result rc = COMPACT_SKIPPED;
2566 
2567 	/*
2568 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2569 	 * tricky context because the migration might require IO
2570 	 */
2571 	if (!may_perform_io)
2572 		return COMPACT_SKIPPED;
2573 
2574 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2575 
2576 	/* Compact each zone in the list */
2577 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2578 					ac->highest_zoneidx, ac->nodemask) {
2579 		enum compact_result status;
2580 
2581 		if (prio > MIN_COMPACT_PRIORITY
2582 					&& compaction_deferred(zone, order)) {
2583 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2584 			continue;
2585 		}
2586 
2587 		status = compact_zone_order(zone, order, gfp_mask, prio,
2588 				alloc_flags, ac->highest_zoneidx, capture);
2589 		rc = max(status, rc);
2590 
2591 		/* The allocation should succeed, stop compacting */
2592 		if (status == COMPACT_SUCCESS) {
2593 			/*
2594 			 * We think the allocation will succeed in this zone,
2595 			 * but it is not certain, hence the false. The caller
2596 			 * will repeat this with true if allocation indeed
2597 			 * succeeds in this zone.
2598 			 */
2599 			compaction_defer_reset(zone, order, false);
2600 
2601 			break;
2602 		}
2603 
2604 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2605 					status == COMPACT_PARTIAL_SKIPPED))
2606 			/*
2607 			 * We think that allocation won't succeed in this zone
2608 			 * so we defer compaction there. If it ends up
2609 			 * succeeding after all, it will be reset.
2610 			 */
2611 			defer_compaction(zone, order);
2612 
2613 		/*
2614 		 * We might have stopped compacting due to need_resched() in
2615 		 * async compaction, or due to a fatal signal detected. In that
2616 		 * case do not try further zones
2617 		 */
2618 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2619 					|| fatal_signal_pending(current))
2620 			break;
2621 	}
2622 
2623 	return rc;
2624 }
2625 
2626 /*
2627  * Compact all zones within a node till each zone's fragmentation score
2628  * reaches within proactive compaction thresholds (as determined by the
2629  * proactiveness tunable).
2630  *
2631  * It is possible that the function returns before reaching score targets
2632  * due to various back-off conditions, such as, contention on per-node or
2633  * per-zone locks.
2634  */
2635 static void proactive_compact_node(pg_data_t *pgdat)
2636 {
2637 	int zoneid;
2638 	struct zone *zone;
2639 	struct compact_control cc = {
2640 		.order = -1,
2641 		.mode = MIGRATE_SYNC_LIGHT,
2642 		.ignore_skip_hint = true,
2643 		.whole_zone = true,
2644 		.gfp_mask = GFP_KERNEL,
2645 		.proactive_compaction = true,
2646 	};
2647 
2648 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2649 		zone = &pgdat->node_zones[zoneid];
2650 		if (!populated_zone(zone))
2651 			continue;
2652 
2653 		cc.zone = zone;
2654 
2655 		compact_zone(&cc, NULL);
2656 
2657 		VM_BUG_ON(!list_empty(&cc.freepages));
2658 		VM_BUG_ON(!list_empty(&cc.migratepages));
2659 	}
2660 }
2661 
2662 /* Compact all zones within a node */
2663 static void compact_node(int nid)
2664 {
2665 	pg_data_t *pgdat = NODE_DATA(nid);
2666 	int zoneid;
2667 	struct zone *zone;
2668 	struct compact_control cc = {
2669 		.order = -1,
2670 		.mode = MIGRATE_SYNC,
2671 		.ignore_skip_hint = true,
2672 		.whole_zone = true,
2673 		.gfp_mask = GFP_KERNEL,
2674 	};
2675 
2676 
2677 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2678 
2679 		zone = &pgdat->node_zones[zoneid];
2680 		if (!populated_zone(zone))
2681 			continue;
2682 
2683 		cc.zone = zone;
2684 
2685 		compact_zone(&cc, NULL);
2686 
2687 		VM_BUG_ON(!list_empty(&cc.freepages));
2688 		VM_BUG_ON(!list_empty(&cc.migratepages));
2689 	}
2690 }
2691 
2692 /* Compact all nodes in the system */
2693 static void compact_nodes(void)
2694 {
2695 	int nid;
2696 
2697 	/* Flush pending updates to the LRU lists */
2698 	lru_add_drain_all();
2699 
2700 	for_each_online_node(nid)
2701 		compact_node(nid);
2702 }
2703 
2704 /*
2705  * Tunable for proactive compaction. It determines how
2706  * aggressively the kernel should compact memory in the
2707  * background. It takes values in the range [0, 100].
2708  */
2709 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2710 
2711 /*
2712  * This is the entry point for compacting all nodes via
2713  * /proc/sys/vm/compact_memory
2714  */
2715 int sysctl_compaction_handler(struct ctl_table *table, int write,
2716 			void *buffer, size_t *length, loff_t *ppos)
2717 {
2718 	if (write)
2719 		compact_nodes();
2720 
2721 	return 0;
2722 }
2723 
2724 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2725 static ssize_t sysfs_compact_node(struct device *dev,
2726 			struct device_attribute *attr,
2727 			const char *buf, size_t count)
2728 {
2729 	int nid = dev->id;
2730 
2731 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2732 		/* Flush pending updates to the LRU lists */
2733 		lru_add_drain_all();
2734 
2735 		compact_node(nid);
2736 	}
2737 
2738 	return count;
2739 }
2740 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2741 
2742 int compaction_register_node(struct node *node)
2743 {
2744 	return device_create_file(&node->dev, &dev_attr_compact);
2745 }
2746 
2747 void compaction_unregister_node(struct node *node)
2748 {
2749 	return device_remove_file(&node->dev, &dev_attr_compact);
2750 }
2751 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2752 
2753 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2754 {
2755 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2756 }
2757 
2758 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2759 {
2760 	int zoneid;
2761 	struct zone *zone;
2762 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2763 
2764 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2765 		zone = &pgdat->node_zones[zoneid];
2766 
2767 		if (!populated_zone(zone))
2768 			continue;
2769 
2770 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2771 					highest_zoneidx) == COMPACT_CONTINUE)
2772 			return true;
2773 	}
2774 
2775 	return false;
2776 }
2777 
2778 static void kcompactd_do_work(pg_data_t *pgdat)
2779 {
2780 	/*
2781 	 * With no special task, compact all zones so that a page of requested
2782 	 * order is allocatable.
2783 	 */
2784 	int zoneid;
2785 	struct zone *zone;
2786 	struct compact_control cc = {
2787 		.order = pgdat->kcompactd_max_order,
2788 		.search_order = pgdat->kcompactd_max_order,
2789 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2790 		.mode = MIGRATE_SYNC_LIGHT,
2791 		.ignore_skip_hint = false,
2792 		.gfp_mask = GFP_KERNEL,
2793 	};
2794 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2795 							cc.highest_zoneidx);
2796 	count_compact_event(KCOMPACTD_WAKE);
2797 
2798 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2799 		int status;
2800 
2801 		zone = &pgdat->node_zones[zoneid];
2802 		if (!populated_zone(zone))
2803 			continue;
2804 
2805 		if (compaction_deferred(zone, cc.order))
2806 			continue;
2807 
2808 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2809 							COMPACT_CONTINUE)
2810 			continue;
2811 
2812 		if (kthread_should_stop())
2813 			return;
2814 
2815 		cc.zone = zone;
2816 		status = compact_zone(&cc, NULL);
2817 
2818 		if (status == COMPACT_SUCCESS) {
2819 			compaction_defer_reset(zone, cc.order, false);
2820 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2821 			/*
2822 			 * Buddy pages may become stranded on pcps that could
2823 			 * otherwise coalesce on the zone's free area for
2824 			 * order >= cc.order.  This is ratelimited by the
2825 			 * upcoming deferral.
2826 			 */
2827 			drain_all_pages(zone);
2828 
2829 			/*
2830 			 * We use sync migration mode here, so we defer like
2831 			 * sync direct compaction does.
2832 			 */
2833 			defer_compaction(zone, cc.order);
2834 		}
2835 
2836 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2837 				     cc.total_migrate_scanned);
2838 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2839 				     cc.total_free_scanned);
2840 
2841 		VM_BUG_ON(!list_empty(&cc.freepages));
2842 		VM_BUG_ON(!list_empty(&cc.migratepages));
2843 	}
2844 
2845 	/*
2846 	 * Regardless of success, we are done until woken up next. But remember
2847 	 * the requested order/highest_zoneidx in case it was higher/tighter
2848 	 * than our current ones
2849 	 */
2850 	if (pgdat->kcompactd_max_order <= cc.order)
2851 		pgdat->kcompactd_max_order = 0;
2852 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2853 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2854 }
2855 
2856 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2857 {
2858 	if (!order)
2859 		return;
2860 
2861 	if (pgdat->kcompactd_max_order < order)
2862 		pgdat->kcompactd_max_order = order;
2863 
2864 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2865 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2866 
2867 	/*
2868 	 * Pairs with implicit barrier in wait_event_freezable()
2869 	 * such that wakeups are not missed.
2870 	 */
2871 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2872 		return;
2873 
2874 	if (!kcompactd_node_suitable(pgdat))
2875 		return;
2876 
2877 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2878 							highest_zoneidx);
2879 	wake_up_interruptible(&pgdat->kcompactd_wait);
2880 }
2881 
2882 /*
2883  * The background compaction daemon, started as a kernel thread
2884  * from the init process.
2885  */
2886 static int kcompactd(void *p)
2887 {
2888 	pg_data_t *pgdat = (pg_data_t *)p;
2889 	struct task_struct *tsk = current;
2890 	unsigned int proactive_defer = 0;
2891 
2892 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2893 
2894 	if (!cpumask_empty(cpumask))
2895 		set_cpus_allowed_ptr(tsk, cpumask);
2896 
2897 	set_freezable();
2898 
2899 	pgdat->kcompactd_max_order = 0;
2900 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2901 
2902 	while (!kthread_should_stop()) {
2903 		unsigned long pflags;
2904 
2905 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2906 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2907 			kcompactd_work_requested(pgdat),
2908 			msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2909 
2910 			psi_memstall_enter(&pflags);
2911 			kcompactd_do_work(pgdat);
2912 			psi_memstall_leave(&pflags);
2913 			continue;
2914 		}
2915 
2916 		/* kcompactd wait timeout */
2917 		if (should_proactive_compact_node(pgdat)) {
2918 			unsigned int prev_score, score;
2919 
2920 			if (proactive_defer) {
2921 				proactive_defer--;
2922 				continue;
2923 			}
2924 			prev_score = fragmentation_score_node(pgdat);
2925 			proactive_compact_node(pgdat);
2926 			score = fragmentation_score_node(pgdat);
2927 			/*
2928 			 * Defer proactive compaction if the fragmentation
2929 			 * score did not go down i.e. no progress made.
2930 			 */
2931 			proactive_defer = score < prev_score ?
2932 					0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2933 		}
2934 	}
2935 
2936 	return 0;
2937 }
2938 
2939 /*
2940  * This kcompactd start function will be called by init and node-hot-add.
2941  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2942  */
2943 int kcompactd_run(int nid)
2944 {
2945 	pg_data_t *pgdat = NODE_DATA(nid);
2946 	int ret = 0;
2947 
2948 	if (pgdat->kcompactd)
2949 		return 0;
2950 
2951 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2952 	if (IS_ERR(pgdat->kcompactd)) {
2953 		pr_err("Failed to start kcompactd on node %d\n", nid);
2954 		ret = PTR_ERR(pgdat->kcompactd);
2955 		pgdat->kcompactd = NULL;
2956 	}
2957 	return ret;
2958 }
2959 
2960 /*
2961  * Called by memory hotplug when all memory in a node is offlined. Caller must
2962  * hold mem_hotplug_begin/end().
2963  */
2964 void kcompactd_stop(int nid)
2965 {
2966 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2967 
2968 	if (kcompactd) {
2969 		kthread_stop(kcompactd);
2970 		NODE_DATA(nid)->kcompactd = NULL;
2971 	}
2972 }
2973 
2974 /*
2975  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2976  * not required for correctness. So if the last cpu in a node goes
2977  * away, we get changed to run anywhere: as the first one comes back,
2978  * restore their cpu bindings.
2979  */
2980 static int kcompactd_cpu_online(unsigned int cpu)
2981 {
2982 	int nid;
2983 
2984 	for_each_node_state(nid, N_MEMORY) {
2985 		pg_data_t *pgdat = NODE_DATA(nid);
2986 		const struct cpumask *mask;
2987 
2988 		mask = cpumask_of_node(pgdat->node_id);
2989 
2990 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2991 			/* One of our CPUs online: restore mask */
2992 			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2993 	}
2994 	return 0;
2995 }
2996 
2997 static int __init kcompactd_init(void)
2998 {
2999 	int nid;
3000 	int ret;
3001 
3002 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3003 					"mm/compaction:online",
3004 					kcompactd_cpu_online, NULL);
3005 	if (ret < 0) {
3006 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3007 		return ret;
3008 	}
3009 
3010 	for_each_node_state(nid, N_MEMORY)
3011 		kcompactd_run(nid);
3012 	return 0;
3013 }
3014 subsys_initcall(kcompactd_init)
3015 
3016 #endif /* CONFIG_COMPACTION */
3017