1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 /* 30 * Fragmentation score check interval for proactive compaction purposes. 31 */ 32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500) 33 34 static inline void count_compact_event(enum vm_event_item item) 35 { 36 count_vm_event(item); 37 } 38 39 static inline void count_compact_events(enum vm_event_item item, long delta) 40 { 41 count_vm_events(item, delta); 42 } 43 #else 44 #define count_compact_event(item) do { } while (0) 45 #define count_compact_events(item, delta) do { } while (0) 46 #endif 47 48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/compaction.h> 52 53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 55 56 /* 57 * Page order with-respect-to which proactive compaction 58 * calculates external fragmentation, which is used as 59 * the "fragmentation score" of a node/zone. 60 */ 61 #if defined CONFIG_TRANSPARENT_HUGEPAGE 62 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER 63 #elif defined CONFIG_HUGETLBFS 64 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER 65 #else 66 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT) 67 #endif 68 69 static unsigned long release_freepages(struct list_head *freelist) 70 { 71 struct page *page, *next; 72 unsigned long high_pfn = 0; 73 74 list_for_each_entry_safe(page, next, freelist, lru) { 75 unsigned long pfn = page_to_pfn(page); 76 list_del(&page->lru); 77 __free_page(page); 78 if (pfn > high_pfn) 79 high_pfn = pfn; 80 } 81 82 return high_pfn; 83 } 84 85 static void split_map_pages(struct list_head *list) 86 { 87 unsigned int i, order, nr_pages; 88 struct page *page, *next; 89 LIST_HEAD(tmp_list); 90 91 list_for_each_entry_safe(page, next, list, lru) { 92 list_del(&page->lru); 93 94 order = page_private(page); 95 nr_pages = 1 << order; 96 97 post_alloc_hook(page, order, __GFP_MOVABLE); 98 if (order) 99 split_page(page, order); 100 101 for (i = 0; i < nr_pages; i++) { 102 list_add(&page->lru, &tmp_list); 103 page++; 104 } 105 } 106 107 list_splice(&tmp_list, list); 108 } 109 110 #ifdef CONFIG_COMPACTION 111 bool PageMovable(struct page *page) 112 { 113 const struct movable_operations *mops; 114 115 VM_BUG_ON_PAGE(!PageLocked(page), page); 116 if (!__PageMovable(page)) 117 return false; 118 119 mops = page_movable_ops(page); 120 if (mops) 121 return true; 122 123 return false; 124 } 125 126 void __SetPageMovable(struct page *page, const struct movable_operations *mops) 127 { 128 VM_BUG_ON_PAGE(!PageLocked(page), page); 129 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page); 130 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE); 131 } 132 EXPORT_SYMBOL(__SetPageMovable); 133 134 void __ClearPageMovable(struct page *page) 135 { 136 VM_BUG_ON_PAGE(!PageMovable(page), page); 137 /* 138 * This page still has the type of a movable page, but it's 139 * actually not movable any more. 140 */ 141 page->mapping = (void *)PAGE_MAPPING_MOVABLE; 142 } 143 EXPORT_SYMBOL(__ClearPageMovable); 144 145 /* Do not skip compaction more than 64 times */ 146 #define COMPACT_MAX_DEFER_SHIFT 6 147 148 /* 149 * Compaction is deferred when compaction fails to result in a page 150 * allocation success. 1 << compact_defer_shift, compactions are skipped up 151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 152 */ 153 static void defer_compaction(struct zone *zone, int order) 154 { 155 zone->compact_considered = 0; 156 zone->compact_defer_shift++; 157 158 if (order < zone->compact_order_failed) 159 zone->compact_order_failed = order; 160 161 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 162 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 163 164 trace_mm_compaction_defer_compaction(zone, order); 165 } 166 167 /* Returns true if compaction should be skipped this time */ 168 static bool compaction_deferred(struct zone *zone, int order) 169 { 170 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 171 172 if (order < zone->compact_order_failed) 173 return false; 174 175 /* Avoid possible overflow */ 176 if (++zone->compact_considered >= defer_limit) { 177 zone->compact_considered = defer_limit; 178 return false; 179 } 180 181 trace_mm_compaction_deferred(zone, order); 182 183 return true; 184 } 185 186 /* 187 * Update defer tracking counters after successful compaction of given order, 188 * which means an allocation either succeeded (alloc_success == true) or is 189 * expected to succeed. 190 */ 191 void compaction_defer_reset(struct zone *zone, int order, 192 bool alloc_success) 193 { 194 if (alloc_success) { 195 zone->compact_considered = 0; 196 zone->compact_defer_shift = 0; 197 } 198 if (order >= zone->compact_order_failed) 199 zone->compact_order_failed = order + 1; 200 201 trace_mm_compaction_defer_reset(zone, order); 202 } 203 204 /* Returns true if restarting compaction after many failures */ 205 static bool compaction_restarting(struct zone *zone, int order) 206 { 207 if (order < zone->compact_order_failed) 208 return false; 209 210 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 211 zone->compact_considered >= 1UL << zone->compact_defer_shift; 212 } 213 214 /* Returns true if the pageblock should be scanned for pages to isolate. */ 215 static inline bool isolation_suitable(struct compact_control *cc, 216 struct page *page) 217 { 218 if (cc->ignore_skip_hint) 219 return true; 220 221 return !get_pageblock_skip(page); 222 } 223 224 static void reset_cached_positions(struct zone *zone) 225 { 226 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 227 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 228 zone->compact_cached_free_pfn = 229 pageblock_start_pfn(zone_end_pfn(zone) - 1); 230 } 231 232 /* 233 * Compound pages of >= pageblock_order should consistently be skipped until 234 * released. It is always pointless to compact pages of such order (if they are 235 * migratable), and the pageblocks they occupy cannot contain any free pages. 236 */ 237 static bool pageblock_skip_persistent(struct page *page) 238 { 239 if (!PageCompound(page)) 240 return false; 241 242 page = compound_head(page); 243 244 if (compound_order(page) >= pageblock_order) 245 return true; 246 247 return false; 248 } 249 250 static bool 251 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 252 bool check_target) 253 { 254 struct page *page = pfn_to_online_page(pfn); 255 struct page *block_page; 256 struct page *end_page; 257 unsigned long block_pfn; 258 259 if (!page) 260 return false; 261 if (zone != page_zone(page)) 262 return false; 263 if (pageblock_skip_persistent(page)) 264 return false; 265 266 /* 267 * If skip is already cleared do no further checking once the 268 * restart points have been set. 269 */ 270 if (check_source && check_target && !get_pageblock_skip(page)) 271 return true; 272 273 /* 274 * If clearing skip for the target scanner, do not select a 275 * non-movable pageblock as the starting point. 276 */ 277 if (!check_source && check_target && 278 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 279 return false; 280 281 /* Ensure the start of the pageblock or zone is online and valid */ 282 block_pfn = pageblock_start_pfn(pfn); 283 block_pfn = max(block_pfn, zone->zone_start_pfn); 284 block_page = pfn_to_online_page(block_pfn); 285 if (block_page) { 286 page = block_page; 287 pfn = block_pfn; 288 } 289 290 /* Ensure the end of the pageblock or zone is online and valid */ 291 block_pfn = pageblock_end_pfn(pfn) - 1; 292 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 293 end_page = pfn_to_online_page(block_pfn); 294 if (!end_page) 295 return false; 296 297 /* 298 * Only clear the hint if a sample indicates there is either a 299 * free page or an LRU page in the block. One or other condition 300 * is necessary for the block to be a migration source/target. 301 */ 302 do { 303 if (check_source && PageLRU(page)) { 304 clear_pageblock_skip(page); 305 return true; 306 } 307 308 if (check_target && PageBuddy(page)) { 309 clear_pageblock_skip(page); 310 return true; 311 } 312 313 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 314 } while (page <= end_page); 315 316 return false; 317 } 318 319 /* 320 * This function is called to clear all cached information on pageblocks that 321 * should be skipped for page isolation when the migrate and free page scanner 322 * meet. 323 */ 324 static void __reset_isolation_suitable(struct zone *zone) 325 { 326 unsigned long migrate_pfn = zone->zone_start_pfn; 327 unsigned long free_pfn = zone_end_pfn(zone) - 1; 328 unsigned long reset_migrate = free_pfn; 329 unsigned long reset_free = migrate_pfn; 330 bool source_set = false; 331 bool free_set = false; 332 333 if (!zone->compact_blockskip_flush) 334 return; 335 336 zone->compact_blockskip_flush = false; 337 338 /* 339 * Walk the zone and update pageblock skip information. Source looks 340 * for PageLRU while target looks for PageBuddy. When the scanner 341 * is found, both PageBuddy and PageLRU are checked as the pageblock 342 * is suitable as both source and target. 343 */ 344 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 345 free_pfn -= pageblock_nr_pages) { 346 cond_resched(); 347 348 /* Update the migrate PFN */ 349 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 350 migrate_pfn < reset_migrate) { 351 source_set = true; 352 reset_migrate = migrate_pfn; 353 zone->compact_init_migrate_pfn = reset_migrate; 354 zone->compact_cached_migrate_pfn[0] = reset_migrate; 355 zone->compact_cached_migrate_pfn[1] = reset_migrate; 356 } 357 358 /* Update the free PFN */ 359 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 360 free_pfn > reset_free) { 361 free_set = true; 362 reset_free = free_pfn; 363 zone->compact_init_free_pfn = reset_free; 364 zone->compact_cached_free_pfn = reset_free; 365 } 366 } 367 368 /* Leave no distance if no suitable block was reset */ 369 if (reset_migrate >= reset_free) { 370 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 371 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 372 zone->compact_cached_free_pfn = free_pfn; 373 } 374 } 375 376 void reset_isolation_suitable(pg_data_t *pgdat) 377 { 378 int zoneid; 379 380 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 381 struct zone *zone = &pgdat->node_zones[zoneid]; 382 if (!populated_zone(zone)) 383 continue; 384 385 /* Only flush if a full compaction finished recently */ 386 if (zone->compact_blockskip_flush) 387 __reset_isolation_suitable(zone); 388 } 389 } 390 391 /* 392 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 393 * locks are not required for read/writers. Returns true if it was already set. 394 */ 395 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 396 unsigned long pfn) 397 { 398 bool skip; 399 400 /* Do no update if skip hint is being ignored */ 401 if (cc->ignore_skip_hint) 402 return false; 403 404 if (!pageblock_aligned(pfn)) 405 return false; 406 407 skip = get_pageblock_skip(page); 408 if (!skip && !cc->no_set_skip_hint) 409 set_pageblock_skip(page); 410 411 return skip; 412 } 413 414 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 415 { 416 struct zone *zone = cc->zone; 417 418 pfn = pageblock_end_pfn(pfn); 419 420 /* Set for isolation rather than compaction */ 421 if (cc->no_set_skip_hint) 422 return; 423 424 if (pfn > zone->compact_cached_migrate_pfn[0]) 425 zone->compact_cached_migrate_pfn[0] = pfn; 426 if (cc->mode != MIGRATE_ASYNC && 427 pfn > zone->compact_cached_migrate_pfn[1]) 428 zone->compact_cached_migrate_pfn[1] = pfn; 429 } 430 431 /* 432 * If no pages were isolated then mark this pageblock to be skipped in the 433 * future. The information is later cleared by __reset_isolation_suitable(). 434 */ 435 static void update_pageblock_skip(struct compact_control *cc, 436 struct page *page, unsigned long pfn) 437 { 438 struct zone *zone = cc->zone; 439 440 if (cc->no_set_skip_hint) 441 return; 442 443 if (!page) 444 return; 445 446 set_pageblock_skip(page); 447 448 /* Update where async and sync compaction should restart */ 449 if (pfn < zone->compact_cached_free_pfn) 450 zone->compact_cached_free_pfn = pfn; 451 } 452 #else 453 static inline bool isolation_suitable(struct compact_control *cc, 454 struct page *page) 455 { 456 return true; 457 } 458 459 static inline bool pageblock_skip_persistent(struct page *page) 460 { 461 return false; 462 } 463 464 static inline void update_pageblock_skip(struct compact_control *cc, 465 struct page *page, unsigned long pfn) 466 { 467 } 468 469 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 470 { 471 } 472 473 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 474 unsigned long pfn) 475 { 476 return false; 477 } 478 #endif /* CONFIG_COMPACTION */ 479 480 /* 481 * Compaction requires the taking of some coarse locks that are potentially 482 * very heavily contended. For async compaction, trylock and record if the 483 * lock is contended. The lock will still be acquired but compaction will 484 * abort when the current block is finished regardless of success rate. 485 * Sync compaction acquires the lock. 486 * 487 * Always returns true which makes it easier to track lock state in callers. 488 */ 489 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 490 struct compact_control *cc) 491 __acquires(lock) 492 { 493 /* Track if the lock is contended in async mode */ 494 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 495 if (spin_trylock_irqsave(lock, *flags)) 496 return true; 497 498 cc->contended = true; 499 } 500 501 spin_lock_irqsave(lock, *flags); 502 return true; 503 } 504 505 /* 506 * Compaction requires the taking of some coarse locks that are potentially 507 * very heavily contended. The lock should be periodically unlocked to avoid 508 * having disabled IRQs for a long time, even when there is nobody waiting on 509 * the lock. It might also be that allowing the IRQs will result in 510 * need_resched() becoming true. If scheduling is needed, compaction schedules. 511 * Either compaction type will also abort if a fatal signal is pending. 512 * In either case if the lock was locked, it is dropped and not regained. 513 * 514 * Returns true if compaction should abort due to fatal signal pending. 515 * Returns false when compaction can continue. 516 */ 517 static bool compact_unlock_should_abort(spinlock_t *lock, 518 unsigned long flags, bool *locked, struct compact_control *cc) 519 { 520 if (*locked) { 521 spin_unlock_irqrestore(lock, flags); 522 *locked = false; 523 } 524 525 if (fatal_signal_pending(current)) { 526 cc->contended = true; 527 return true; 528 } 529 530 cond_resched(); 531 532 return false; 533 } 534 535 /* 536 * Isolate free pages onto a private freelist. If @strict is true, will abort 537 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 538 * (even though it may still end up isolating some pages). 539 */ 540 static unsigned long isolate_freepages_block(struct compact_control *cc, 541 unsigned long *start_pfn, 542 unsigned long end_pfn, 543 struct list_head *freelist, 544 unsigned int stride, 545 bool strict) 546 { 547 int nr_scanned = 0, total_isolated = 0; 548 struct page *cursor; 549 unsigned long flags = 0; 550 bool locked = false; 551 unsigned long blockpfn = *start_pfn; 552 unsigned int order; 553 554 /* Strict mode is for isolation, speed is secondary */ 555 if (strict) 556 stride = 1; 557 558 cursor = pfn_to_page(blockpfn); 559 560 /* Isolate free pages. */ 561 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 562 int isolated; 563 struct page *page = cursor; 564 565 /* 566 * Periodically drop the lock (if held) regardless of its 567 * contention, to give chance to IRQs. Abort if fatal signal 568 * pending. 569 */ 570 if (!(blockpfn % COMPACT_CLUSTER_MAX) 571 && compact_unlock_should_abort(&cc->zone->lock, flags, 572 &locked, cc)) 573 break; 574 575 nr_scanned++; 576 577 /* 578 * For compound pages such as THP and hugetlbfs, we can save 579 * potentially a lot of iterations if we skip them at once. 580 * The check is racy, but we can consider only valid values 581 * and the only danger is skipping too much. 582 */ 583 if (PageCompound(page)) { 584 const unsigned int order = compound_order(page); 585 586 if (likely(order < MAX_ORDER)) { 587 blockpfn += (1UL << order) - 1; 588 cursor += (1UL << order) - 1; 589 } 590 goto isolate_fail; 591 } 592 593 if (!PageBuddy(page)) 594 goto isolate_fail; 595 596 /* If we already hold the lock, we can skip some rechecking. */ 597 if (!locked) { 598 locked = compact_lock_irqsave(&cc->zone->lock, 599 &flags, cc); 600 601 /* Recheck this is a buddy page under lock */ 602 if (!PageBuddy(page)) 603 goto isolate_fail; 604 } 605 606 /* Found a free page, will break it into order-0 pages */ 607 order = buddy_order(page); 608 isolated = __isolate_free_page(page, order); 609 if (!isolated) 610 break; 611 set_page_private(page, order); 612 613 nr_scanned += isolated - 1; 614 total_isolated += isolated; 615 cc->nr_freepages += isolated; 616 list_add_tail(&page->lru, freelist); 617 618 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 619 blockpfn += isolated; 620 break; 621 } 622 /* Advance to the end of split page */ 623 blockpfn += isolated - 1; 624 cursor += isolated - 1; 625 continue; 626 627 isolate_fail: 628 if (strict) 629 break; 630 else 631 continue; 632 633 } 634 635 if (locked) 636 spin_unlock_irqrestore(&cc->zone->lock, flags); 637 638 /* 639 * There is a tiny chance that we have read bogus compound_order(), 640 * so be careful to not go outside of the pageblock. 641 */ 642 if (unlikely(blockpfn > end_pfn)) 643 blockpfn = end_pfn; 644 645 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 646 nr_scanned, total_isolated); 647 648 /* Record how far we have got within the block */ 649 *start_pfn = blockpfn; 650 651 /* 652 * If strict isolation is requested by CMA then check that all the 653 * pages requested were isolated. If there were any failures, 0 is 654 * returned and CMA will fail. 655 */ 656 if (strict && blockpfn < end_pfn) 657 total_isolated = 0; 658 659 cc->total_free_scanned += nr_scanned; 660 if (total_isolated) 661 count_compact_events(COMPACTISOLATED, total_isolated); 662 return total_isolated; 663 } 664 665 /** 666 * isolate_freepages_range() - isolate free pages. 667 * @cc: Compaction control structure. 668 * @start_pfn: The first PFN to start isolating. 669 * @end_pfn: The one-past-last PFN. 670 * 671 * Non-free pages, invalid PFNs, or zone boundaries within the 672 * [start_pfn, end_pfn) range are considered errors, cause function to 673 * undo its actions and return zero. 674 * 675 * Otherwise, function returns one-past-the-last PFN of isolated page 676 * (which may be greater then end_pfn if end fell in a middle of 677 * a free page). 678 */ 679 unsigned long 680 isolate_freepages_range(struct compact_control *cc, 681 unsigned long start_pfn, unsigned long end_pfn) 682 { 683 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 684 LIST_HEAD(freelist); 685 686 pfn = start_pfn; 687 block_start_pfn = pageblock_start_pfn(pfn); 688 if (block_start_pfn < cc->zone->zone_start_pfn) 689 block_start_pfn = cc->zone->zone_start_pfn; 690 block_end_pfn = pageblock_end_pfn(pfn); 691 692 for (; pfn < end_pfn; pfn += isolated, 693 block_start_pfn = block_end_pfn, 694 block_end_pfn += pageblock_nr_pages) { 695 /* Protect pfn from changing by isolate_freepages_block */ 696 unsigned long isolate_start_pfn = pfn; 697 698 block_end_pfn = min(block_end_pfn, end_pfn); 699 700 /* 701 * pfn could pass the block_end_pfn if isolated freepage 702 * is more than pageblock order. In this case, we adjust 703 * scanning range to right one. 704 */ 705 if (pfn >= block_end_pfn) { 706 block_start_pfn = pageblock_start_pfn(pfn); 707 block_end_pfn = pageblock_end_pfn(pfn); 708 block_end_pfn = min(block_end_pfn, end_pfn); 709 } 710 711 if (!pageblock_pfn_to_page(block_start_pfn, 712 block_end_pfn, cc->zone)) 713 break; 714 715 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 716 block_end_pfn, &freelist, 0, true); 717 718 /* 719 * In strict mode, isolate_freepages_block() returns 0 if 720 * there are any holes in the block (ie. invalid PFNs or 721 * non-free pages). 722 */ 723 if (!isolated) 724 break; 725 726 /* 727 * If we managed to isolate pages, it is always (1 << n) * 728 * pageblock_nr_pages for some non-negative n. (Max order 729 * page may span two pageblocks). 730 */ 731 } 732 733 /* __isolate_free_page() does not map the pages */ 734 split_map_pages(&freelist); 735 736 if (pfn < end_pfn) { 737 /* Loop terminated early, cleanup. */ 738 release_freepages(&freelist); 739 return 0; 740 } 741 742 /* We don't use freelists for anything. */ 743 return pfn; 744 } 745 746 /* Similar to reclaim, but different enough that they don't share logic */ 747 static bool too_many_isolated(pg_data_t *pgdat) 748 { 749 bool too_many; 750 751 unsigned long active, inactive, isolated; 752 753 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 754 node_page_state(pgdat, NR_INACTIVE_ANON); 755 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 756 node_page_state(pgdat, NR_ACTIVE_ANON); 757 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 758 node_page_state(pgdat, NR_ISOLATED_ANON); 759 760 too_many = isolated > (inactive + active) / 2; 761 if (!too_many) 762 wake_throttle_isolated(pgdat); 763 764 return too_many; 765 } 766 767 /** 768 * isolate_migratepages_block() - isolate all migrate-able pages within 769 * a single pageblock 770 * @cc: Compaction control structure. 771 * @low_pfn: The first PFN to isolate 772 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 773 * @mode: Isolation mode to be used. 774 * 775 * Isolate all pages that can be migrated from the range specified by 776 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 777 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion, 778 * -ENOMEM in case we could not allocate a page, or 0. 779 * cc->migrate_pfn will contain the next pfn to scan. 780 * 781 * The pages are isolated on cc->migratepages list (not required to be empty), 782 * and cc->nr_migratepages is updated accordingly. 783 */ 784 static int 785 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 786 unsigned long end_pfn, isolate_mode_t mode) 787 { 788 pg_data_t *pgdat = cc->zone->zone_pgdat; 789 unsigned long nr_scanned = 0, nr_isolated = 0; 790 struct lruvec *lruvec; 791 unsigned long flags = 0; 792 struct lruvec *locked = NULL; 793 struct page *page = NULL, *valid_page = NULL; 794 struct address_space *mapping; 795 unsigned long start_pfn = low_pfn; 796 bool skip_on_failure = false; 797 unsigned long next_skip_pfn = 0; 798 bool skip_updated = false; 799 int ret = 0; 800 801 cc->migrate_pfn = low_pfn; 802 803 /* 804 * Ensure that there are not too many pages isolated from the LRU 805 * list by either parallel reclaimers or compaction. If there are, 806 * delay for some time until fewer pages are isolated 807 */ 808 while (unlikely(too_many_isolated(pgdat))) { 809 /* stop isolation if there are still pages not migrated */ 810 if (cc->nr_migratepages) 811 return -EAGAIN; 812 813 /* async migration should just abort */ 814 if (cc->mode == MIGRATE_ASYNC) 815 return -EAGAIN; 816 817 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 818 819 if (fatal_signal_pending(current)) 820 return -EINTR; 821 } 822 823 cond_resched(); 824 825 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 826 skip_on_failure = true; 827 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 828 } 829 830 /* Time to isolate some pages for migration */ 831 for (; low_pfn < end_pfn; low_pfn++) { 832 833 if (skip_on_failure && low_pfn >= next_skip_pfn) { 834 /* 835 * We have isolated all migration candidates in the 836 * previous order-aligned block, and did not skip it due 837 * to failure. We should migrate the pages now and 838 * hopefully succeed compaction. 839 */ 840 if (nr_isolated) 841 break; 842 843 /* 844 * We failed to isolate in the previous order-aligned 845 * block. Set the new boundary to the end of the 846 * current block. Note we can't simply increase 847 * next_skip_pfn by 1 << order, as low_pfn might have 848 * been incremented by a higher number due to skipping 849 * a compound or a high-order buddy page in the 850 * previous loop iteration. 851 */ 852 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 853 } 854 855 /* 856 * Periodically drop the lock (if held) regardless of its 857 * contention, to give chance to IRQs. Abort completely if 858 * a fatal signal is pending. 859 */ 860 if (!(low_pfn % COMPACT_CLUSTER_MAX)) { 861 if (locked) { 862 unlock_page_lruvec_irqrestore(locked, flags); 863 locked = NULL; 864 } 865 866 if (fatal_signal_pending(current)) { 867 cc->contended = true; 868 ret = -EINTR; 869 870 goto fatal_pending; 871 } 872 873 cond_resched(); 874 } 875 876 nr_scanned++; 877 878 page = pfn_to_page(low_pfn); 879 880 /* 881 * Check if the pageblock has already been marked skipped. 882 * Only the aligned PFN is checked as the caller isolates 883 * COMPACT_CLUSTER_MAX at a time so the second call must 884 * not falsely conclude that the block should be skipped. 885 */ 886 if (!valid_page && pageblock_aligned(low_pfn)) { 887 if (!isolation_suitable(cc, page)) { 888 low_pfn = end_pfn; 889 page = NULL; 890 goto isolate_abort; 891 } 892 valid_page = page; 893 } 894 895 if (PageHuge(page) && cc->alloc_contig) { 896 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages); 897 898 /* 899 * Fail isolation in case isolate_or_dissolve_huge_page() 900 * reports an error. In case of -ENOMEM, abort right away. 901 */ 902 if (ret < 0) { 903 /* Do not report -EBUSY down the chain */ 904 if (ret == -EBUSY) 905 ret = 0; 906 low_pfn += compound_nr(page) - 1; 907 goto isolate_fail; 908 } 909 910 if (PageHuge(page)) { 911 /* 912 * Hugepage was successfully isolated and placed 913 * on the cc->migratepages list. 914 */ 915 low_pfn += compound_nr(page) - 1; 916 goto isolate_success_no_list; 917 } 918 919 /* 920 * Ok, the hugepage was dissolved. Now these pages are 921 * Buddy and cannot be re-allocated because they are 922 * isolated. Fall-through as the check below handles 923 * Buddy pages. 924 */ 925 } 926 927 /* 928 * Skip if free. We read page order here without zone lock 929 * which is generally unsafe, but the race window is small and 930 * the worst thing that can happen is that we skip some 931 * potential isolation targets. 932 */ 933 if (PageBuddy(page)) { 934 unsigned long freepage_order = buddy_order_unsafe(page); 935 936 /* 937 * Without lock, we cannot be sure that what we got is 938 * a valid page order. Consider only values in the 939 * valid order range to prevent low_pfn overflow. 940 */ 941 if (freepage_order > 0 && freepage_order < MAX_ORDER) 942 low_pfn += (1UL << freepage_order) - 1; 943 continue; 944 } 945 946 /* 947 * Regardless of being on LRU, compound pages such as THP and 948 * hugetlbfs are not to be compacted unless we are attempting 949 * an allocation much larger than the huge page size (eg CMA). 950 * We can potentially save a lot of iterations if we skip them 951 * at once. The check is racy, but we can consider only valid 952 * values and the only danger is skipping too much. 953 */ 954 if (PageCompound(page) && !cc->alloc_contig) { 955 const unsigned int order = compound_order(page); 956 957 if (likely(order < MAX_ORDER)) 958 low_pfn += (1UL << order) - 1; 959 goto isolate_fail; 960 } 961 962 /* 963 * Check may be lockless but that's ok as we recheck later. 964 * It's possible to migrate LRU and non-lru movable pages. 965 * Skip any other type of page 966 */ 967 if (!PageLRU(page)) { 968 /* 969 * __PageMovable can return false positive so we need 970 * to verify it under page_lock. 971 */ 972 if (unlikely(__PageMovable(page)) && 973 !PageIsolated(page)) { 974 if (locked) { 975 unlock_page_lruvec_irqrestore(locked, flags); 976 locked = NULL; 977 } 978 979 if (isolate_movable_page(page, mode)) 980 goto isolate_success; 981 } 982 983 goto isolate_fail; 984 } 985 986 /* 987 * Be careful not to clear PageLRU until after we're 988 * sure the page is not being freed elsewhere -- the 989 * page release code relies on it. 990 */ 991 if (unlikely(!get_page_unless_zero(page))) 992 goto isolate_fail; 993 994 /* 995 * Migration will fail if an anonymous page is pinned in memory, 996 * so avoid taking lru_lock and isolating it unnecessarily in an 997 * admittedly racy check. 998 */ 999 mapping = page_mapping(page); 1000 if (!mapping && (page_count(page) - 1) > total_mapcount(page)) 1001 goto isolate_fail_put; 1002 1003 /* 1004 * Only allow to migrate anonymous pages in GFP_NOFS context 1005 * because those do not depend on fs locks. 1006 */ 1007 if (!(cc->gfp_mask & __GFP_FS) && mapping) 1008 goto isolate_fail_put; 1009 1010 /* Only take pages on LRU: a check now makes later tests safe */ 1011 if (!PageLRU(page)) 1012 goto isolate_fail_put; 1013 1014 /* Compaction might skip unevictable pages but CMA takes them */ 1015 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page)) 1016 goto isolate_fail_put; 1017 1018 /* 1019 * To minimise LRU disruption, the caller can indicate with 1020 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages 1021 * it will be able to migrate without blocking - clean pages 1022 * for the most part. PageWriteback would require blocking. 1023 */ 1024 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page)) 1025 goto isolate_fail_put; 1026 1027 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) { 1028 bool migrate_dirty; 1029 1030 /* 1031 * Only pages without mappings or that have a 1032 * ->migrate_folio callback are possible to migrate 1033 * without blocking. However, we can be racing with 1034 * truncation so it's necessary to lock the page 1035 * to stabilise the mapping as truncation holds 1036 * the page lock until after the page is removed 1037 * from the page cache. 1038 */ 1039 if (!trylock_page(page)) 1040 goto isolate_fail_put; 1041 1042 mapping = page_mapping(page); 1043 migrate_dirty = !mapping || 1044 mapping->a_ops->migrate_folio; 1045 unlock_page(page); 1046 if (!migrate_dirty) 1047 goto isolate_fail_put; 1048 } 1049 1050 /* Try isolate the page */ 1051 if (!TestClearPageLRU(page)) 1052 goto isolate_fail_put; 1053 1054 lruvec = folio_lruvec(page_folio(page)); 1055 1056 /* If we already hold the lock, we can skip some rechecking */ 1057 if (lruvec != locked) { 1058 if (locked) 1059 unlock_page_lruvec_irqrestore(locked, flags); 1060 1061 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); 1062 locked = lruvec; 1063 1064 lruvec_memcg_debug(lruvec, page_folio(page)); 1065 1066 /* Try get exclusive access under lock */ 1067 if (!skip_updated) { 1068 skip_updated = true; 1069 if (test_and_set_skip(cc, page, low_pfn)) 1070 goto isolate_abort; 1071 } 1072 1073 /* 1074 * Page become compound since the non-locked check, 1075 * and it's on LRU. It can only be a THP so the order 1076 * is safe to read and it's 0 for tail pages. 1077 */ 1078 if (unlikely(PageCompound(page) && !cc->alloc_contig)) { 1079 low_pfn += compound_nr(page) - 1; 1080 SetPageLRU(page); 1081 goto isolate_fail_put; 1082 } 1083 } 1084 1085 /* The whole page is taken off the LRU; skip the tail pages. */ 1086 if (PageCompound(page)) 1087 low_pfn += compound_nr(page) - 1; 1088 1089 /* Successfully isolated */ 1090 del_page_from_lru_list(page, lruvec); 1091 mod_node_page_state(page_pgdat(page), 1092 NR_ISOLATED_ANON + page_is_file_lru(page), 1093 thp_nr_pages(page)); 1094 1095 isolate_success: 1096 list_add(&page->lru, &cc->migratepages); 1097 isolate_success_no_list: 1098 cc->nr_migratepages += compound_nr(page); 1099 nr_isolated += compound_nr(page); 1100 nr_scanned += compound_nr(page) - 1; 1101 1102 /* 1103 * Avoid isolating too much unless this block is being 1104 * fully scanned (e.g. dirty/writeback pages, parallel allocation) 1105 * or a lock is contended. For contention, isolate quickly to 1106 * potentially remove one source of contention. 1107 */ 1108 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX && 1109 !cc->finish_pageblock && !cc->contended) { 1110 ++low_pfn; 1111 break; 1112 } 1113 1114 continue; 1115 1116 isolate_fail_put: 1117 /* Avoid potential deadlock in freeing page under lru_lock */ 1118 if (locked) { 1119 unlock_page_lruvec_irqrestore(locked, flags); 1120 locked = NULL; 1121 } 1122 put_page(page); 1123 1124 isolate_fail: 1125 if (!skip_on_failure && ret != -ENOMEM) 1126 continue; 1127 1128 /* 1129 * We have isolated some pages, but then failed. Release them 1130 * instead of migrating, as we cannot form the cc->order buddy 1131 * page anyway. 1132 */ 1133 if (nr_isolated) { 1134 if (locked) { 1135 unlock_page_lruvec_irqrestore(locked, flags); 1136 locked = NULL; 1137 } 1138 putback_movable_pages(&cc->migratepages); 1139 cc->nr_migratepages = 0; 1140 nr_isolated = 0; 1141 } 1142 1143 if (low_pfn < next_skip_pfn) { 1144 low_pfn = next_skip_pfn - 1; 1145 /* 1146 * The check near the loop beginning would have updated 1147 * next_skip_pfn too, but this is a bit simpler. 1148 */ 1149 next_skip_pfn += 1UL << cc->order; 1150 } 1151 1152 if (ret == -ENOMEM) 1153 break; 1154 } 1155 1156 /* 1157 * The PageBuddy() check could have potentially brought us outside 1158 * the range to be scanned. 1159 */ 1160 if (unlikely(low_pfn > end_pfn)) 1161 low_pfn = end_pfn; 1162 1163 page = NULL; 1164 1165 isolate_abort: 1166 if (locked) 1167 unlock_page_lruvec_irqrestore(locked, flags); 1168 if (page) { 1169 SetPageLRU(page); 1170 put_page(page); 1171 } 1172 1173 /* 1174 * Update the cached scanner pfn once the pageblock has been scanned. 1175 * Pages will either be migrated in which case there is no point 1176 * scanning in the near future or migration failed in which case the 1177 * failure reason may persist. The block is marked for skipping if 1178 * there were no pages isolated in the block or if the block is 1179 * rescanned twice in a row. 1180 */ 1181 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) { 1182 if (valid_page && !skip_updated) 1183 set_pageblock_skip(valid_page); 1184 update_cached_migrate(cc, low_pfn); 1185 } 1186 1187 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1188 nr_scanned, nr_isolated); 1189 1190 fatal_pending: 1191 cc->total_migrate_scanned += nr_scanned; 1192 if (nr_isolated) 1193 count_compact_events(COMPACTISOLATED, nr_isolated); 1194 1195 cc->migrate_pfn = low_pfn; 1196 1197 return ret; 1198 } 1199 1200 /** 1201 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1202 * @cc: Compaction control structure. 1203 * @start_pfn: The first PFN to start isolating. 1204 * @end_pfn: The one-past-last PFN. 1205 * 1206 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM 1207 * in case we could not allocate a page, or 0. 1208 */ 1209 int 1210 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1211 unsigned long end_pfn) 1212 { 1213 unsigned long pfn, block_start_pfn, block_end_pfn; 1214 int ret = 0; 1215 1216 /* Scan block by block. First and last block may be incomplete */ 1217 pfn = start_pfn; 1218 block_start_pfn = pageblock_start_pfn(pfn); 1219 if (block_start_pfn < cc->zone->zone_start_pfn) 1220 block_start_pfn = cc->zone->zone_start_pfn; 1221 block_end_pfn = pageblock_end_pfn(pfn); 1222 1223 for (; pfn < end_pfn; pfn = block_end_pfn, 1224 block_start_pfn = block_end_pfn, 1225 block_end_pfn += pageblock_nr_pages) { 1226 1227 block_end_pfn = min(block_end_pfn, end_pfn); 1228 1229 if (!pageblock_pfn_to_page(block_start_pfn, 1230 block_end_pfn, cc->zone)) 1231 continue; 1232 1233 ret = isolate_migratepages_block(cc, pfn, block_end_pfn, 1234 ISOLATE_UNEVICTABLE); 1235 1236 if (ret) 1237 break; 1238 1239 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX) 1240 break; 1241 } 1242 1243 return ret; 1244 } 1245 1246 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1247 #ifdef CONFIG_COMPACTION 1248 1249 static bool suitable_migration_source(struct compact_control *cc, 1250 struct page *page) 1251 { 1252 int block_mt; 1253 1254 if (pageblock_skip_persistent(page)) 1255 return false; 1256 1257 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1258 return true; 1259 1260 block_mt = get_pageblock_migratetype(page); 1261 1262 if (cc->migratetype == MIGRATE_MOVABLE) 1263 return is_migrate_movable(block_mt); 1264 else 1265 return block_mt == cc->migratetype; 1266 } 1267 1268 /* Returns true if the page is within a block suitable for migration to */ 1269 static bool suitable_migration_target(struct compact_control *cc, 1270 struct page *page) 1271 { 1272 /* If the page is a large free page, then disallow migration */ 1273 if (PageBuddy(page)) { 1274 /* 1275 * We are checking page_order without zone->lock taken. But 1276 * the only small danger is that we skip a potentially suitable 1277 * pageblock, so it's not worth to check order for valid range. 1278 */ 1279 if (buddy_order_unsafe(page) >= pageblock_order) 1280 return false; 1281 } 1282 1283 if (cc->ignore_block_suitable) 1284 return true; 1285 1286 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1287 if (is_migrate_movable(get_pageblock_migratetype(page))) 1288 return true; 1289 1290 /* Otherwise skip the block */ 1291 return false; 1292 } 1293 1294 static inline unsigned int 1295 freelist_scan_limit(struct compact_control *cc) 1296 { 1297 unsigned short shift = BITS_PER_LONG - 1; 1298 1299 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1300 } 1301 1302 /* 1303 * Test whether the free scanner has reached the same or lower pageblock than 1304 * the migration scanner, and compaction should thus terminate. 1305 */ 1306 static inline bool compact_scanners_met(struct compact_control *cc) 1307 { 1308 return (cc->free_pfn >> pageblock_order) 1309 <= (cc->migrate_pfn >> pageblock_order); 1310 } 1311 1312 /* 1313 * Used when scanning for a suitable migration target which scans freelists 1314 * in reverse. Reorders the list such as the unscanned pages are scanned 1315 * first on the next iteration of the free scanner 1316 */ 1317 static void 1318 move_freelist_head(struct list_head *freelist, struct page *freepage) 1319 { 1320 LIST_HEAD(sublist); 1321 1322 if (!list_is_last(freelist, &freepage->lru)) { 1323 list_cut_before(&sublist, freelist, &freepage->lru); 1324 list_splice_tail(&sublist, freelist); 1325 } 1326 } 1327 1328 /* 1329 * Similar to move_freelist_head except used by the migration scanner 1330 * when scanning forward. It's possible for these list operations to 1331 * move against each other if they search the free list exactly in 1332 * lockstep. 1333 */ 1334 static void 1335 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1336 { 1337 LIST_HEAD(sublist); 1338 1339 if (!list_is_first(freelist, &freepage->lru)) { 1340 list_cut_position(&sublist, freelist, &freepage->lru); 1341 list_splice_tail(&sublist, freelist); 1342 } 1343 } 1344 1345 static void 1346 fast_isolate_around(struct compact_control *cc, unsigned long pfn) 1347 { 1348 unsigned long start_pfn, end_pfn; 1349 struct page *page; 1350 1351 /* Do not search around if there are enough pages already */ 1352 if (cc->nr_freepages >= cc->nr_migratepages) 1353 return; 1354 1355 /* Minimise scanning during async compaction */ 1356 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1357 return; 1358 1359 /* Pageblock boundaries */ 1360 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn); 1361 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)); 1362 1363 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone); 1364 if (!page) 1365 return; 1366 1367 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1368 1369 /* Skip this pageblock in the future as it's full or nearly full */ 1370 if (cc->nr_freepages < cc->nr_migratepages) 1371 set_pageblock_skip(page); 1372 1373 return; 1374 } 1375 1376 /* Search orders in round-robin fashion */ 1377 static int next_search_order(struct compact_control *cc, int order) 1378 { 1379 order--; 1380 if (order < 0) 1381 order = cc->order - 1; 1382 1383 /* Search wrapped around? */ 1384 if (order == cc->search_order) { 1385 cc->search_order--; 1386 if (cc->search_order < 0) 1387 cc->search_order = cc->order - 1; 1388 return -1; 1389 } 1390 1391 return order; 1392 } 1393 1394 static unsigned long 1395 fast_isolate_freepages(struct compact_control *cc) 1396 { 1397 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1); 1398 unsigned int nr_scanned = 0; 1399 unsigned long low_pfn, min_pfn, highest = 0; 1400 unsigned long nr_isolated = 0; 1401 unsigned long distance; 1402 struct page *page = NULL; 1403 bool scan_start = false; 1404 int order; 1405 1406 /* Full compaction passes in a negative order */ 1407 if (cc->order <= 0) 1408 return cc->free_pfn; 1409 1410 /* 1411 * If starting the scan, use a deeper search and use the highest 1412 * PFN found if a suitable one is not found. 1413 */ 1414 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1415 limit = pageblock_nr_pages >> 1; 1416 scan_start = true; 1417 } 1418 1419 /* 1420 * Preferred point is in the top quarter of the scan space but take 1421 * a pfn from the top half if the search is problematic. 1422 */ 1423 distance = (cc->free_pfn - cc->migrate_pfn); 1424 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1425 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1426 1427 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1428 low_pfn = min_pfn; 1429 1430 /* 1431 * Search starts from the last successful isolation order or the next 1432 * order to search after a previous failure 1433 */ 1434 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1435 1436 for (order = cc->search_order; 1437 !page && order >= 0; 1438 order = next_search_order(cc, order)) { 1439 struct free_area *area = &cc->zone->free_area[order]; 1440 struct list_head *freelist; 1441 struct page *freepage; 1442 unsigned long flags; 1443 unsigned int order_scanned = 0; 1444 unsigned long high_pfn = 0; 1445 1446 if (!area->nr_free) 1447 continue; 1448 1449 spin_lock_irqsave(&cc->zone->lock, flags); 1450 freelist = &area->free_list[MIGRATE_MOVABLE]; 1451 list_for_each_entry_reverse(freepage, freelist, lru) { 1452 unsigned long pfn; 1453 1454 order_scanned++; 1455 nr_scanned++; 1456 pfn = page_to_pfn(freepage); 1457 1458 if (pfn >= highest) 1459 highest = max(pageblock_start_pfn(pfn), 1460 cc->zone->zone_start_pfn); 1461 1462 if (pfn >= low_pfn) { 1463 cc->fast_search_fail = 0; 1464 cc->search_order = order; 1465 page = freepage; 1466 break; 1467 } 1468 1469 if (pfn >= min_pfn && pfn > high_pfn) { 1470 high_pfn = pfn; 1471 1472 /* Shorten the scan if a candidate is found */ 1473 limit >>= 1; 1474 } 1475 1476 if (order_scanned >= limit) 1477 break; 1478 } 1479 1480 /* Use a minimum pfn if a preferred one was not found */ 1481 if (!page && high_pfn) { 1482 page = pfn_to_page(high_pfn); 1483 1484 /* Update freepage for the list reorder below */ 1485 freepage = page; 1486 } 1487 1488 /* Reorder to so a future search skips recent pages */ 1489 move_freelist_head(freelist, freepage); 1490 1491 /* Isolate the page if available */ 1492 if (page) { 1493 if (__isolate_free_page(page, order)) { 1494 set_page_private(page, order); 1495 nr_isolated = 1 << order; 1496 nr_scanned += nr_isolated - 1; 1497 cc->nr_freepages += nr_isolated; 1498 list_add_tail(&page->lru, &cc->freepages); 1499 count_compact_events(COMPACTISOLATED, nr_isolated); 1500 } else { 1501 /* If isolation fails, abort the search */ 1502 order = cc->search_order + 1; 1503 page = NULL; 1504 } 1505 } 1506 1507 spin_unlock_irqrestore(&cc->zone->lock, flags); 1508 1509 /* 1510 * Smaller scan on next order so the total scan is related 1511 * to freelist_scan_limit. 1512 */ 1513 if (order_scanned >= limit) 1514 limit = max(1U, limit >> 1); 1515 } 1516 1517 if (!page) { 1518 cc->fast_search_fail++; 1519 if (scan_start) { 1520 /* 1521 * Use the highest PFN found above min. If one was 1522 * not found, be pessimistic for direct compaction 1523 * and use the min mark. 1524 */ 1525 if (highest >= min_pfn) { 1526 page = pfn_to_page(highest); 1527 cc->free_pfn = highest; 1528 } else { 1529 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1530 page = pageblock_pfn_to_page(min_pfn, 1531 min(pageblock_end_pfn(min_pfn), 1532 zone_end_pfn(cc->zone)), 1533 cc->zone); 1534 cc->free_pfn = min_pfn; 1535 } 1536 } 1537 } 1538 } 1539 1540 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1541 highest -= pageblock_nr_pages; 1542 cc->zone->compact_cached_free_pfn = highest; 1543 } 1544 1545 cc->total_free_scanned += nr_scanned; 1546 if (!page) 1547 return cc->free_pfn; 1548 1549 low_pfn = page_to_pfn(page); 1550 fast_isolate_around(cc, low_pfn); 1551 return low_pfn; 1552 } 1553 1554 /* 1555 * Based on information in the current compact_control, find blocks 1556 * suitable for isolating free pages from and then isolate them. 1557 */ 1558 static void isolate_freepages(struct compact_control *cc) 1559 { 1560 struct zone *zone = cc->zone; 1561 struct page *page; 1562 unsigned long block_start_pfn; /* start of current pageblock */ 1563 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1564 unsigned long block_end_pfn; /* end of current pageblock */ 1565 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1566 struct list_head *freelist = &cc->freepages; 1567 unsigned int stride; 1568 1569 /* Try a small search of the free lists for a candidate */ 1570 fast_isolate_freepages(cc); 1571 if (cc->nr_freepages) 1572 goto splitmap; 1573 1574 /* 1575 * Initialise the free scanner. The starting point is where we last 1576 * successfully isolated from, zone-cached value, or the end of the 1577 * zone when isolating for the first time. For looping we also need 1578 * this pfn aligned down to the pageblock boundary, because we do 1579 * block_start_pfn -= pageblock_nr_pages in the for loop. 1580 * For ending point, take care when isolating in last pageblock of a 1581 * zone which ends in the middle of a pageblock. 1582 * The low boundary is the end of the pageblock the migration scanner 1583 * is using. 1584 */ 1585 isolate_start_pfn = cc->free_pfn; 1586 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1587 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1588 zone_end_pfn(zone)); 1589 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1590 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1591 1592 /* 1593 * Isolate free pages until enough are available to migrate the 1594 * pages on cc->migratepages. We stop searching if the migrate 1595 * and free page scanners meet or enough free pages are isolated. 1596 */ 1597 for (; block_start_pfn >= low_pfn; 1598 block_end_pfn = block_start_pfn, 1599 block_start_pfn -= pageblock_nr_pages, 1600 isolate_start_pfn = block_start_pfn) { 1601 unsigned long nr_isolated; 1602 1603 /* 1604 * This can iterate a massively long zone without finding any 1605 * suitable migration targets, so periodically check resched. 1606 */ 1607 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1608 cond_resched(); 1609 1610 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1611 zone); 1612 if (!page) 1613 continue; 1614 1615 /* Check the block is suitable for migration */ 1616 if (!suitable_migration_target(cc, page)) 1617 continue; 1618 1619 /* If isolation recently failed, do not retry */ 1620 if (!isolation_suitable(cc, page)) 1621 continue; 1622 1623 /* Found a block suitable for isolating free pages from. */ 1624 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1625 block_end_pfn, freelist, stride, false); 1626 1627 /* Update the skip hint if the full pageblock was scanned */ 1628 if (isolate_start_pfn == block_end_pfn) 1629 update_pageblock_skip(cc, page, block_start_pfn); 1630 1631 /* Are enough freepages isolated? */ 1632 if (cc->nr_freepages >= cc->nr_migratepages) { 1633 if (isolate_start_pfn >= block_end_pfn) { 1634 /* 1635 * Restart at previous pageblock if more 1636 * freepages can be isolated next time. 1637 */ 1638 isolate_start_pfn = 1639 block_start_pfn - pageblock_nr_pages; 1640 } 1641 break; 1642 } else if (isolate_start_pfn < block_end_pfn) { 1643 /* 1644 * If isolation failed early, do not continue 1645 * needlessly. 1646 */ 1647 break; 1648 } 1649 1650 /* Adjust stride depending on isolation */ 1651 if (nr_isolated) { 1652 stride = 1; 1653 continue; 1654 } 1655 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1656 } 1657 1658 /* 1659 * Record where the free scanner will restart next time. Either we 1660 * broke from the loop and set isolate_start_pfn based on the last 1661 * call to isolate_freepages_block(), or we met the migration scanner 1662 * and the loop terminated due to isolate_start_pfn < low_pfn 1663 */ 1664 cc->free_pfn = isolate_start_pfn; 1665 1666 splitmap: 1667 /* __isolate_free_page() does not map the pages */ 1668 split_map_pages(freelist); 1669 } 1670 1671 /* 1672 * This is a migrate-callback that "allocates" freepages by taking pages 1673 * from the isolated freelists in the block we are migrating to. 1674 */ 1675 static struct page *compaction_alloc(struct page *migratepage, 1676 unsigned long data) 1677 { 1678 struct compact_control *cc = (struct compact_control *)data; 1679 struct page *freepage; 1680 1681 if (list_empty(&cc->freepages)) { 1682 isolate_freepages(cc); 1683 1684 if (list_empty(&cc->freepages)) 1685 return NULL; 1686 } 1687 1688 freepage = list_entry(cc->freepages.next, struct page, lru); 1689 list_del(&freepage->lru); 1690 cc->nr_freepages--; 1691 1692 return freepage; 1693 } 1694 1695 /* 1696 * This is a migrate-callback that "frees" freepages back to the isolated 1697 * freelist. All pages on the freelist are from the same zone, so there is no 1698 * special handling needed for NUMA. 1699 */ 1700 static void compaction_free(struct page *page, unsigned long data) 1701 { 1702 struct compact_control *cc = (struct compact_control *)data; 1703 1704 list_add(&page->lru, &cc->freepages); 1705 cc->nr_freepages++; 1706 } 1707 1708 /* possible outcome of isolate_migratepages */ 1709 typedef enum { 1710 ISOLATE_ABORT, /* Abort compaction now */ 1711 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1712 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1713 } isolate_migrate_t; 1714 1715 /* 1716 * Allow userspace to control policy on scanning the unevictable LRU for 1717 * compactable pages. 1718 */ 1719 int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT; 1720 1721 static inline void 1722 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1723 { 1724 if (cc->fast_start_pfn == ULONG_MAX) 1725 return; 1726 1727 if (!cc->fast_start_pfn) 1728 cc->fast_start_pfn = pfn; 1729 1730 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1731 } 1732 1733 static inline unsigned long 1734 reinit_migrate_pfn(struct compact_control *cc) 1735 { 1736 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1737 return cc->migrate_pfn; 1738 1739 cc->migrate_pfn = cc->fast_start_pfn; 1740 cc->fast_start_pfn = ULONG_MAX; 1741 1742 return cc->migrate_pfn; 1743 } 1744 1745 /* 1746 * Briefly search the free lists for a migration source that already has 1747 * some free pages to reduce the number of pages that need migration 1748 * before a pageblock is free. 1749 */ 1750 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1751 { 1752 unsigned int limit = freelist_scan_limit(cc); 1753 unsigned int nr_scanned = 0; 1754 unsigned long distance; 1755 unsigned long pfn = cc->migrate_pfn; 1756 unsigned long high_pfn; 1757 int order; 1758 bool found_block = false; 1759 1760 /* Skip hints are relied on to avoid repeats on the fast search */ 1761 if (cc->ignore_skip_hint) 1762 return pfn; 1763 1764 /* 1765 * If the pageblock should be finished then do not select a different 1766 * pageblock. 1767 */ 1768 if (cc->finish_pageblock) 1769 return pfn; 1770 1771 /* 1772 * If the migrate_pfn is not at the start of a zone or the start 1773 * of a pageblock then assume this is a continuation of a previous 1774 * scan restarted due to COMPACT_CLUSTER_MAX. 1775 */ 1776 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1777 return pfn; 1778 1779 /* 1780 * For smaller orders, just linearly scan as the number of pages 1781 * to migrate should be relatively small and does not necessarily 1782 * justify freeing up a large block for a small allocation. 1783 */ 1784 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1785 return pfn; 1786 1787 /* 1788 * Only allow kcompactd and direct requests for movable pages to 1789 * quickly clear out a MOVABLE pageblock for allocation. This 1790 * reduces the risk that a large movable pageblock is freed for 1791 * an unmovable/reclaimable small allocation. 1792 */ 1793 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1794 return pfn; 1795 1796 /* 1797 * When starting the migration scanner, pick any pageblock within the 1798 * first half of the search space. Otherwise try and pick a pageblock 1799 * within the first eighth to reduce the chances that a migration 1800 * target later becomes a source. 1801 */ 1802 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1803 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1804 distance >>= 2; 1805 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1806 1807 for (order = cc->order - 1; 1808 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit; 1809 order--) { 1810 struct free_area *area = &cc->zone->free_area[order]; 1811 struct list_head *freelist; 1812 unsigned long flags; 1813 struct page *freepage; 1814 1815 if (!area->nr_free) 1816 continue; 1817 1818 spin_lock_irqsave(&cc->zone->lock, flags); 1819 freelist = &area->free_list[MIGRATE_MOVABLE]; 1820 list_for_each_entry(freepage, freelist, lru) { 1821 unsigned long free_pfn; 1822 1823 if (nr_scanned++ >= limit) { 1824 move_freelist_tail(freelist, freepage); 1825 break; 1826 } 1827 1828 free_pfn = page_to_pfn(freepage); 1829 if (free_pfn < high_pfn) { 1830 /* 1831 * Avoid if skipped recently. Ideally it would 1832 * move to the tail but even safe iteration of 1833 * the list assumes an entry is deleted, not 1834 * reordered. 1835 */ 1836 if (get_pageblock_skip(freepage)) 1837 continue; 1838 1839 /* Reorder to so a future search skips recent pages */ 1840 move_freelist_tail(freelist, freepage); 1841 1842 update_fast_start_pfn(cc, free_pfn); 1843 pfn = pageblock_start_pfn(free_pfn); 1844 if (pfn < cc->zone->zone_start_pfn) 1845 pfn = cc->zone->zone_start_pfn; 1846 cc->fast_search_fail = 0; 1847 found_block = true; 1848 set_pageblock_skip(freepage); 1849 break; 1850 } 1851 } 1852 spin_unlock_irqrestore(&cc->zone->lock, flags); 1853 } 1854 1855 cc->total_migrate_scanned += nr_scanned; 1856 1857 /* 1858 * If fast scanning failed then use a cached entry for a page block 1859 * that had free pages as the basis for starting a linear scan. 1860 */ 1861 if (!found_block) { 1862 cc->fast_search_fail++; 1863 pfn = reinit_migrate_pfn(cc); 1864 } 1865 return pfn; 1866 } 1867 1868 /* 1869 * Isolate all pages that can be migrated from the first suitable block, 1870 * starting at the block pointed to by the migrate scanner pfn within 1871 * compact_control. 1872 */ 1873 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1874 { 1875 unsigned long block_start_pfn; 1876 unsigned long block_end_pfn; 1877 unsigned long low_pfn; 1878 struct page *page; 1879 const isolate_mode_t isolate_mode = 1880 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1881 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1882 bool fast_find_block; 1883 1884 /* 1885 * Start at where we last stopped, or beginning of the zone as 1886 * initialized by compact_zone(). The first failure will use 1887 * the lowest PFN as the starting point for linear scanning. 1888 */ 1889 low_pfn = fast_find_migrateblock(cc); 1890 block_start_pfn = pageblock_start_pfn(low_pfn); 1891 if (block_start_pfn < cc->zone->zone_start_pfn) 1892 block_start_pfn = cc->zone->zone_start_pfn; 1893 1894 /* 1895 * fast_find_migrateblock marks a pageblock skipped so to avoid 1896 * the isolation_suitable check below, check whether the fast 1897 * search was successful. 1898 */ 1899 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1900 1901 /* Only scan within a pageblock boundary */ 1902 block_end_pfn = pageblock_end_pfn(low_pfn); 1903 1904 /* 1905 * Iterate over whole pageblocks until we find the first suitable. 1906 * Do not cross the free scanner. 1907 */ 1908 for (; block_end_pfn <= cc->free_pfn; 1909 fast_find_block = false, 1910 cc->migrate_pfn = low_pfn = block_end_pfn, 1911 block_start_pfn = block_end_pfn, 1912 block_end_pfn += pageblock_nr_pages) { 1913 1914 /* 1915 * This can potentially iterate a massively long zone with 1916 * many pageblocks unsuitable, so periodically check if we 1917 * need to schedule. 1918 */ 1919 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages))) 1920 cond_resched(); 1921 1922 page = pageblock_pfn_to_page(block_start_pfn, 1923 block_end_pfn, cc->zone); 1924 if (!page) 1925 continue; 1926 1927 /* 1928 * If isolation recently failed, do not retry. Only check the 1929 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1930 * to be visited multiple times. Assume skip was checked 1931 * before making it "skip" so other compaction instances do 1932 * not scan the same block. 1933 */ 1934 if (pageblock_aligned(low_pfn) && 1935 !fast_find_block && !isolation_suitable(cc, page)) 1936 continue; 1937 1938 /* 1939 * For async direct compaction, only scan the pageblocks of the 1940 * same migratetype without huge pages. Async direct compaction 1941 * is optimistic to see if the minimum amount of work satisfies 1942 * the allocation. The cached PFN is updated as it's possible 1943 * that all remaining blocks between source and target are 1944 * unsuitable and the compaction scanners fail to meet. 1945 */ 1946 if (!suitable_migration_source(cc, page)) { 1947 update_cached_migrate(cc, block_end_pfn); 1948 continue; 1949 } 1950 1951 /* Perform the isolation */ 1952 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn, 1953 isolate_mode)) 1954 return ISOLATE_ABORT; 1955 1956 /* 1957 * Either we isolated something and proceed with migration. Or 1958 * we failed and compact_zone should decide if we should 1959 * continue or not. 1960 */ 1961 break; 1962 } 1963 1964 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1965 } 1966 1967 /* 1968 * order == -1 is expected when compacting via 1969 * /proc/sys/vm/compact_memory 1970 */ 1971 static inline bool is_via_compact_memory(int order) 1972 { 1973 return order == -1; 1974 } 1975 1976 /* 1977 * Determine whether kswapd is (or recently was!) running on this node. 1978 * 1979 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't 1980 * zero it. 1981 */ 1982 static bool kswapd_is_running(pg_data_t *pgdat) 1983 { 1984 bool running; 1985 1986 pgdat_kswapd_lock(pgdat); 1987 running = pgdat->kswapd && task_is_running(pgdat->kswapd); 1988 pgdat_kswapd_unlock(pgdat); 1989 1990 return running; 1991 } 1992 1993 /* 1994 * A zone's fragmentation score is the external fragmentation wrt to the 1995 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100]. 1996 */ 1997 static unsigned int fragmentation_score_zone(struct zone *zone) 1998 { 1999 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); 2000 } 2001 2002 /* 2003 * A weighted zone's fragmentation score is the external fragmentation 2004 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It 2005 * returns a value in the range [0, 100]. 2006 * 2007 * The scaling factor ensures that proactive compaction focuses on larger 2008 * zones like ZONE_NORMAL, rather than smaller, specialized zones like 2009 * ZONE_DMA32. For smaller zones, the score value remains close to zero, 2010 * and thus never exceeds the high threshold for proactive compaction. 2011 */ 2012 static unsigned int fragmentation_score_zone_weighted(struct zone *zone) 2013 { 2014 unsigned long score; 2015 2016 score = zone->present_pages * fragmentation_score_zone(zone); 2017 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); 2018 } 2019 2020 /* 2021 * The per-node proactive (background) compaction process is started by its 2022 * corresponding kcompactd thread when the node's fragmentation score 2023 * exceeds the high threshold. The compaction process remains active till 2024 * the node's score falls below the low threshold, or one of the back-off 2025 * conditions is met. 2026 */ 2027 static unsigned int fragmentation_score_node(pg_data_t *pgdat) 2028 { 2029 unsigned int score = 0; 2030 int zoneid; 2031 2032 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2033 struct zone *zone; 2034 2035 zone = &pgdat->node_zones[zoneid]; 2036 if (!populated_zone(zone)) 2037 continue; 2038 score += fragmentation_score_zone_weighted(zone); 2039 } 2040 2041 return score; 2042 } 2043 2044 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low) 2045 { 2046 unsigned int wmark_low; 2047 2048 /* 2049 * Cap the low watermark to avoid excessive compaction 2050 * activity in case a user sets the proactiveness tunable 2051 * close to 100 (maximum). 2052 */ 2053 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U); 2054 return low ? wmark_low : min(wmark_low + 10, 100U); 2055 } 2056 2057 static bool should_proactive_compact_node(pg_data_t *pgdat) 2058 { 2059 int wmark_high; 2060 2061 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat)) 2062 return false; 2063 2064 wmark_high = fragmentation_score_wmark(pgdat, false); 2065 return fragmentation_score_node(pgdat) > wmark_high; 2066 } 2067 2068 static enum compact_result __compact_finished(struct compact_control *cc) 2069 { 2070 unsigned int order; 2071 const int migratetype = cc->migratetype; 2072 int ret; 2073 2074 /* Compaction run completes if the migrate and free scanner meet */ 2075 if (compact_scanners_met(cc)) { 2076 /* Let the next compaction start anew. */ 2077 reset_cached_positions(cc->zone); 2078 2079 /* 2080 * Mark that the PG_migrate_skip information should be cleared 2081 * by kswapd when it goes to sleep. kcompactd does not set the 2082 * flag itself as the decision to be clear should be directly 2083 * based on an allocation request. 2084 */ 2085 if (cc->direct_compaction) 2086 cc->zone->compact_blockskip_flush = true; 2087 2088 if (cc->whole_zone) 2089 return COMPACT_COMPLETE; 2090 else 2091 return COMPACT_PARTIAL_SKIPPED; 2092 } 2093 2094 if (cc->proactive_compaction) { 2095 int score, wmark_low; 2096 pg_data_t *pgdat; 2097 2098 pgdat = cc->zone->zone_pgdat; 2099 if (kswapd_is_running(pgdat)) 2100 return COMPACT_PARTIAL_SKIPPED; 2101 2102 score = fragmentation_score_zone(cc->zone); 2103 wmark_low = fragmentation_score_wmark(pgdat, true); 2104 2105 if (score > wmark_low) 2106 ret = COMPACT_CONTINUE; 2107 else 2108 ret = COMPACT_SUCCESS; 2109 2110 goto out; 2111 } 2112 2113 if (is_via_compact_memory(cc->order)) 2114 return COMPACT_CONTINUE; 2115 2116 /* 2117 * Always finish scanning a pageblock to reduce the possibility of 2118 * fallbacks in the future. This is particularly important when 2119 * migration source is unmovable/reclaimable but it's not worth 2120 * special casing. 2121 */ 2122 if (!pageblock_aligned(cc->migrate_pfn)) 2123 return COMPACT_CONTINUE; 2124 2125 /* Direct compactor: Is a suitable page free? */ 2126 ret = COMPACT_NO_SUITABLE_PAGE; 2127 for (order = cc->order; order < MAX_ORDER; order++) { 2128 struct free_area *area = &cc->zone->free_area[order]; 2129 bool can_steal; 2130 2131 /* Job done if page is free of the right migratetype */ 2132 if (!free_area_empty(area, migratetype)) 2133 return COMPACT_SUCCESS; 2134 2135 #ifdef CONFIG_CMA 2136 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 2137 if (migratetype == MIGRATE_MOVABLE && 2138 !free_area_empty(area, MIGRATE_CMA)) 2139 return COMPACT_SUCCESS; 2140 #endif 2141 /* 2142 * Job done if allocation would steal freepages from 2143 * other migratetype buddy lists. 2144 */ 2145 if (find_suitable_fallback(area, order, migratetype, 2146 true, &can_steal) != -1) 2147 /* 2148 * Movable pages are OK in any pageblock. If we are 2149 * stealing for a non-movable allocation, make sure 2150 * we finish compacting the current pageblock first 2151 * (which is assured by the above migrate_pfn align 2152 * check) so it is as free as possible and we won't 2153 * have to steal another one soon. 2154 */ 2155 return COMPACT_SUCCESS; 2156 } 2157 2158 out: 2159 if (cc->contended || fatal_signal_pending(current)) 2160 ret = COMPACT_CONTENDED; 2161 2162 return ret; 2163 } 2164 2165 static enum compact_result compact_finished(struct compact_control *cc) 2166 { 2167 int ret; 2168 2169 ret = __compact_finished(cc); 2170 trace_mm_compaction_finished(cc->zone, cc->order, ret); 2171 if (ret == COMPACT_NO_SUITABLE_PAGE) 2172 ret = COMPACT_CONTINUE; 2173 2174 return ret; 2175 } 2176 2177 static enum compact_result __compaction_suitable(struct zone *zone, int order, 2178 unsigned int alloc_flags, 2179 int highest_zoneidx, 2180 unsigned long wmark_target) 2181 { 2182 unsigned long watermark; 2183 2184 if (is_via_compact_memory(order)) 2185 return COMPACT_CONTINUE; 2186 2187 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 2188 /* 2189 * If watermarks for high-order allocation are already met, there 2190 * should be no need for compaction at all. 2191 */ 2192 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, 2193 alloc_flags)) 2194 return COMPACT_SUCCESS; 2195 2196 /* 2197 * Watermarks for order-0 must be met for compaction to be able to 2198 * isolate free pages for migration targets. This means that the 2199 * watermark and alloc_flags have to match, or be more pessimistic than 2200 * the check in __isolate_free_page(). We don't use the direct 2201 * compactor's alloc_flags, as they are not relevant for freepage 2202 * isolation. We however do use the direct compactor's highest_zoneidx 2203 * to skip over zones where lowmem reserves would prevent allocation 2204 * even if compaction succeeds. 2205 * For costly orders, we require low watermark instead of min for 2206 * compaction to proceed to increase its chances. 2207 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2208 * suitable migration targets 2209 */ 2210 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2211 low_wmark_pages(zone) : min_wmark_pages(zone); 2212 watermark += compact_gap(order); 2213 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2214 ALLOC_CMA, wmark_target)) 2215 return COMPACT_SKIPPED; 2216 2217 return COMPACT_CONTINUE; 2218 } 2219 2220 /* 2221 * compaction_suitable: Is this suitable to run compaction on this zone now? 2222 * Returns 2223 * COMPACT_SKIPPED - If there are too few free pages for compaction 2224 * COMPACT_SUCCESS - If the allocation would succeed without compaction 2225 * COMPACT_CONTINUE - If compaction should run now 2226 */ 2227 enum compact_result compaction_suitable(struct zone *zone, int order, 2228 unsigned int alloc_flags, 2229 int highest_zoneidx) 2230 { 2231 enum compact_result ret; 2232 int fragindex; 2233 2234 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx, 2235 zone_page_state(zone, NR_FREE_PAGES)); 2236 /* 2237 * fragmentation index determines if allocation failures are due to 2238 * low memory or external fragmentation 2239 * 2240 * index of -1000 would imply allocations might succeed depending on 2241 * watermarks, but we already failed the high-order watermark check 2242 * index towards 0 implies failure is due to lack of memory 2243 * index towards 1000 implies failure is due to fragmentation 2244 * 2245 * Only compact if a failure would be due to fragmentation. Also 2246 * ignore fragindex for non-costly orders where the alternative to 2247 * a successful reclaim/compaction is OOM. Fragindex and the 2248 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2249 * excessive compaction for costly orders, but it should not be at the 2250 * expense of system stability. 2251 */ 2252 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2253 fragindex = fragmentation_index(zone, order); 2254 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2255 ret = COMPACT_NOT_SUITABLE_ZONE; 2256 } 2257 2258 trace_mm_compaction_suitable(zone, order, ret); 2259 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2260 ret = COMPACT_SKIPPED; 2261 2262 return ret; 2263 } 2264 2265 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2266 int alloc_flags) 2267 { 2268 struct zone *zone; 2269 struct zoneref *z; 2270 2271 /* 2272 * Make sure at least one zone would pass __compaction_suitable if we continue 2273 * retrying the reclaim. 2274 */ 2275 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2276 ac->highest_zoneidx, ac->nodemask) { 2277 unsigned long available; 2278 enum compact_result compact_result; 2279 2280 /* 2281 * Do not consider all the reclaimable memory because we do not 2282 * want to trash just for a single high order allocation which 2283 * is even not guaranteed to appear even if __compaction_suitable 2284 * is happy about the watermark check. 2285 */ 2286 available = zone_reclaimable_pages(zone) / order; 2287 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2288 compact_result = __compaction_suitable(zone, order, alloc_flags, 2289 ac->highest_zoneidx, available); 2290 if (compact_result == COMPACT_CONTINUE) 2291 return true; 2292 } 2293 2294 return false; 2295 } 2296 2297 static enum compact_result 2298 compact_zone(struct compact_control *cc, struct capture_control *capc) 2299 { 2300 enum compact_result ret; 2301 unsigned long start_pfn = cc->zone->zone_start_pfn; 2302 unsigned long end_pfn = zone_end_pfn(cc->zone); 2303 unsigned long last_migrated_pfn; 2304 const bool sync = cc->mode != MIGRATE_ASYNC; 2305 bool update_cached; 2306 unsigned int nr_succeeded = 0; 2307 2308 /* 2309 * These counters track activities during zone compaction. Initialize 2310 * them before compacting a new zone. 2311 */ 2312 cc->total_migrate_scanned = 0; 2313 cc->total_free_scanned = 0; 2314 cc->nr_migratepages = 0; 2315 cc->nr_freepages = 0; 2316 INIT_LIST_HEAD(&cc->freepages); 2317 INIT_LIST_HEAD(&cc->migratepages); 2318 2319 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2320 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2321 cc->highest_zoneidx); 2322 /* Compaction is likely to fail */ 2323 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2324 return ret; 2325 2326 /* 2327 * Clear pageblock skip if there were failures recently and compaction 2328 * is about to be retried after being deferred. 2329 */ 2330 if (compaction_restarting(cc->zone, cc->order)) 2331 __reset_isolation_suitable(cc->zone); 2332 2333 /* 2334 * Setup to move all movable pages to the end of the zone. Used cached 2335 * information on where the scanners should start (unless we explicitly 2336 * want to compact the whole zone), but check that it is initialised 2337 * by ensuring the values are within zone boundaries. 2338 */ 2339 cc->fast_start_pfn = 0; 2340 if (cc->whole_zone) { 2341 cc->migrate_pfn = start_pfn; 2342 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2343 } else { 2344 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2345 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2346 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2347 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2348 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2349 } 2350 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2351 cc->migrate_pfn = start_pfn; 2352 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2353 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2354 } 2355 2356 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2357 cc->whole_zone = true; 2358 } 2359 2360 last_migrated_pfn = 0; 2361 2362 /* 2363 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2364 * the basis that some migrations will fail in ASYNC mode. However, 2365 * if the cached PFNs match and pageblocks are skipped due to having 2366 * no isolation candidates, then the sync state does not matter. 2367 * Until a pageblock with isolation candidates is found, keep the 2368 * cached PFNs in sync to avoid revisiting the same blocks. 2369 */ 2370 update_cached = !sync && 2371 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2372 2373 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync); 2374 2375 /* lru_add_drain_all could be expensive with involving other CPUs */ 2376 lru_add_drain(); 2377 2378 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2379 int err; 2380 unsigned long iteration_start_pfn = cc->migrate_pfn; 2381 2382 /* 2383 * Avoid multiple rescans of the same pageblock which can 2384 * happen if a page cannot be isolated (dirty/writeback in 2385 * async mode) or if the migrated pages are being allocated 2386 * before the pageblock is cleared. The first rescan will 2387 * capture the entire pageblock for migration. If it fails, 2388 * it'll be marked skip and scanning will proceed as normal. 2389 */ 2390 cc->finish_pageblock = false; 2391 if (pageblock_start_pfn(last_migrated_pfn) == 2392 pageblock_start_pfn(iteration_start_pfn)) { 2393 cc->finish_pageblock = true; 2394 } 2395 2396 rescan: 2397 switch (isolate_migratepages(cc)) { 2398 case ISOLATE_ABORT: 2399 ret = COMPACT_CONTENDED; 2400 putback_movable_pages(&cc->migratepages); 2401 cc->nr_migratepages = 0; 2402 goto out; 2403 case ISOLATE_NONE: 2404 if (update_cached) { 2405 cc->zone->compact_cached_migrate_pfn[1] = 2406 cc->zone->compact_cached_migrate_pfn[0]; 2407 } 2408 2409 /* 2410 * We haven't isolated and migrated anything, but 2411 * there might still be unflushed migrations from 2412 * previous cc->order aligned block. 2413 */ 2414 goto check_drain; 2415 case ISOLATE_SUCCESS: 2416 update_cached = false; 2417 last_migrated_pfn = iteration_start_pfn; 2418 } 2419 2420 err = migrate_pages(&cc->migratepages, compaction_alloc, 2421 compaction_free, (unsigned long)cc, cc->mode, 2422 MR_COMPACTION, &nr_succeeded); 2423 2424 trace_mm_compaction_migratepages(cc, nr_succeeded); 2425 2426 /* All pages were either migrated or will be released */ 2427 cc->nr_migratepages = 0; 2428 if (err) { 2429 putback_movable_pages(&cc->migratepages); 2430 /* 2431 * migrate_pages() may return -ENOMEM when scanners meet 2432 * and we want compact_finished() to detect it 2433 */ 2434 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2435 ret = COMPACT_CONTENDED; 2436 goto out; 2437 } 2438 /* 2439 * If an ASYNC or SYNC_LIGHT fails to migrate a page 2440 * within the current order-aligned block, scan the 2441 * remainder of the pageblock. This will mark the 2442 * pageblock "skip" to avoid rescanning in the near 2443 * future. This will isolate more pages than necessary 2444 * for the request but avoid loops due to 2445 * fast_find_migrateblock revisiting blocks that were 2446 * recently partially scanned. 2447 */ 2448 if (cc->direct_compaction && !cc->finish_pageblock && 2449 (cc->mode < MIGRATE_SYNC)) { 2450 cc->finish_pageblock = true; 2451 2452 /* 2453 * Draining pcplists does not help THP if 2454 * any page failed to migrate. Even after 2455 * drain, the pageblock will not be free. 2456 */ 2457 if (cc->order == COMPACTION_HPAGE_ORDER) 2458 last_migrated_pfn = 0; 2459 2460 goto rescan; 2461 } 2462 } 2463 2464 /* Stop if a page has been captured */ 2465 if (capc && capc->page) { 2466 ret = COMPACT_SUCCESS; 2467 break; 2468 } 2469 2470 check_drain: 2471 /* 2472 * Has the migration scanner moved away from the previous 2473 * cc->order aligned block where we migrated from? If yes, 2474 * flush the pages that were freed, so that they can merge and 2475 * compact_finished() can detect immediately if allocation 2476 * would succeed. 2477 */ 2478 if (cc->order > 0 && last_migrated_pfn) { 2479 unsigned long current_block_start = 2480 block_start_pfn(cc->migrate_pfn, cc->order); 2481 2482 if (last_migrated_pfn < current_block_start) { 2483 lru_add_drain_cpu_zone(cc->zone); 2484 /* No more flushing until we migrate again */ 2485 last_migrated_pfn = 0; 2486 } 2487 } 2488 } 2489 2490 out: 2491 /* 2492 * Release free pages and update where the free scanner should restart, 2493 * so we don't leave any returned pages behind in the next attempt. 2494 */ 2495 if (cc->nr_freepages > 0) { 2496 unsigned long free_pfn = release_freepages(&cc->freepages); 2497 2498 cc->nr_freepages = 0; 2499 VM_BUG_ON(free_pfn == 0); 2500 /* The cached pfn is always the first in a pageblock */ 2501 free_pfn = pageblock_start_pfn(free_pfn); 2502 /* 2503 * Only go back, not forward. The cached pfn might have been 2504 * already reset to zone end in compact_finished() 2505 */ 2506 if (free_pfn > cc->zone->compact_cached_free_pfn) 2507 cc->zone->compact_cached_free_pfn = free_pfn; 2508 } 2509 2510 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2511 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2512 2513 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret); 2514 2515 VM_BUG_ON(!list_empty(&cc->freepages)); 2516 VM_BUG_ON(!list_empty(&cc->migratepages)); 2517 2518 return ret; 2519 } 2520 2521 static enum compact_result compact_zone_order(struct zone *zone, int order, 2522 gfp_t gfp_mask, enum compact_priority prio, 2523 unsigned int alloc_flags, int highest_zoneidx, 2524 struct page **capture) 2525 { 2526 enum compact_result ret; 2527 struct compact_control cc = { 2528 .order = order, 2529 .search_order = order, 2530 .gfp_mask = gfp_mask, 2531 .zone = zone, 2532 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2533 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2534 .alloc_flags = alloc_flags, 2535 .highest_zoneidx = highest_zoneidx, 2536 .direct_compaction = true, 2537 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2538 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2539 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2540 }; 2541 struct capture_control capc = { 2542 .cc = &cc, 2543 .page = NULL, 2544 }; 2545 2546 /* 2547 * Make sure the structs are really initialized before we expose the 2548 * capture control, in case we are interrupted and the interrupt handler 2549 * frees a page. 2550 */ 2551 barrier(); 2552 WRITE_ONCE(current->capture_control, &capc); 2553 2554 ret = compact_zone(&cc, &capc); 2555 2556 /* 2557 * Make sure we hide capture control first before we read the captured 2558 * page pointer, otherwise an interrupt could free and capture a page 2559 * and we would leak it. 2560 */ 2561 WRITE_ONCE(current->capture_control, NULL); 2562 *capture = READ_ONCE(capc.page); 2563 /* 2564 * Technically, it is also possible that compaction is skipped but 2565 * the page is still captured out of luck(IRQ came and freed the page). 2566 * Returning COMPACT_SUCCESS in such cases helps in properly accounting 2567 * the COMPACT[STALL|FAIL] when compaction is skipped. 2568 */ 2569 if (*capture) 2570 ret = COMPACT_SUCCESS; 2571 2572 return ret; 2573 } 2574 2575 int sysctl_extfrag_threshold = 500; 2576 2577 /** 2578 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2579 * @gfp_mask: The GFP mask of the current allocation 2580 * @order: The order of the current allocation 2581 * @alloc_flags: The allocation flags of the current allocation 2582 * @ac: The context of current allocation 2583 * @prio: Determines how hard direct compaction should try to succeed 2584 * @capture: Pointer to free page created by compaction will be stored here 2585 * 2586 * This is the main entry point for direct page compaction. 2587 */ 2588 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2589 unsigned int alloc_flags, const struct alloc_context *ac, 2590 enum compact_priority prio, struct page **capture) 2591 { 2592 int may_perform_io = (__force int)(gfp_mask & __GFP_IO); 2593 struct zoneref *z; 2594 struct zone *zone; 2595 enum compact_result rc = COMPACT_SKIPPED; 2596 2597 /* 2598 * Check if the GFP flags allow compaction - GFP_NOIO is really 2599 * tricky context because the migration might require IO 2600 */ 2601 if (!may_perform_io) 2602 return COMPACT_SKIPPED; 2603 2604 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2605 2606 /* Compact each zone in the list */ 2607 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2608 ac->highest_zoneidx, ac->nodemask) { 2609 enum compact_result status; 2610 2611 if (prio > MIN_COMPACT_PRIORITY 2612 && compaction_deferred(zone, order)) { 2613 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2614 continue; 2615 } 2616 2617 status = compact_zone_order(zone, order, gfp_mask, prio, 2618 alloc_flags, ac->highest_zoneidx, capture); 2619 rc = max(status, rc); 2620 2621 /* The allocation should succeed, stop compacting */ 2622 if (status == COMPACT_SUCCESS) { 2623 /* 2624 * We think the allocation will succeed in this zone, 2625 * but it is not certain, hence the false. The caller 2626 * will repeat this with true if allocation indeed 2627 * succeeds in this zone. 2628 */ 2629 compaction_defer_reset(zone, order, false); 2630 2631 break; 2632 } 2633 2634 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2635 status == COMPACT_PARTIAL_SKIPPED)) 2636 /* 2637 * We think that allocation won't succeed in this zone 2638 * so we defer compaction there. If it ends up 2639 * succeeding after all, it will be reset. 2640 */ 2641 defer_compaction(zone, order); 2642 2643 /* 2644 * We might have stopped compacting due to need_resched() in 2645 * async compaction, or due to a fatal signal detected. In that 2646 * case do not try further zones 2647 */ 2648 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2649 || fatal_signal_pending(current)) 2650 break; 2651 } 2652 2653 return rc; 2654 } 2655 2656 /* 2657 * Compact all zones within a node till each zone's fragmentation score 2658 * reaches within proactive compaction thresholds (as determined by the 2659 * proactiveness tunable). 2660 * 2661 * It is possible that the function returns before reaching score targets 2662 * due to various back-off conditions, such as, contention on per-node or 2663 * per-zone locks. 2664 */ 2665 static void proactive_compact_node(pg_data_t *pgdat) 2666 { 2667 int zoneid; 2668 struct zone *zone; 2669 struct compact_control cc = { 2670 .order = -1, 2671 .mode = MIGRATE_SYNC_LIGHT, 2672 .ignore_skip_hint = true, 2673 .whole_zone = true, 2674 .gfp_mask = GFP_KERNEL, 2675 .proactive_compaction = true, 2676 }; 2677 2678 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2679 zone = &pgdat->node_zones[zoneid]; 2680 if (!populated_zone(zone)) 2681 continue; 2682 2683 cc.zone = zone; 2684 2685 compact_zone(&cc, NULL); 2686 2687 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2688 cc.total_migrate_scanned); 2689 count_compact_events(KCOMPACTD_FREE_SCANNED, 2690 cc.total_free_scanned); 2691 } 2692 } 2693 2694 /* Compact all zones within a node */ 2695 static void compact_node(int nid) 2696 { 2697 pg_data_t *pgdat = NODE_DATA(nid); 2698 int zoneid; 2699 struct zone *zone; 2700 struct compact_control cc = { 2701 .order = -1, 2702 .mode = MIGRATE_SYNC, 2703 .ignore_skip_hint = true, 2704 .whole_zone = true, 2705 .gfp_mask = GFP_KERNEL, 2706 }; 2707 2708 2709 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2710 2711 zone = &pgdat->node_zones[zoneid]; 2712 if (!populated_zone(zone)) 2713 continue; 2714 2715 cc.zone = zone; 2716 2717 compact_zone(&cc, NULL); 2718 } 2719 } 2720 2721 /* Compact all nodes in the system */ 2722 static void compact_nodes(void) 2723 { 2724 int nid; 2725 2726 /* Flush pending updates to the LRU lists */ 2727 lru_add_drain_all(); 2728 2729 for_each_online_node(nid) 2730 compact_node(nid); 2731 } 2732 2733 /* 2734 * Tunable for proactive compaction. It determines how 2735 * aggressively the kernel should compact memory in the 2736 * background. It takes values in the range [0, 100]. 2737 */ 2738 unsigned int __read_mostly sysctl_compaction_proactiveness = 20; 2739 2740 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write, 2741 void *buffer, size_t *length, loff_t *ppos) 2742 { 2743 int rc, nid; 2744 2745 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 2746 if (rc) 2747 return rc; 2748 2749 if (write && sysctl_compaction_proactiveness) { 2750 for_each_online_node(nid) { 2751 pg_data_t *pgdat = NODE_DATA(nid); 2752 2753 if (pgdat->proactive_compact_trigger) 2754 continue; 2755 2756 pgdat->proactive_compact_trigger = true; 2757 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1, 2758 pgdat->nr_zones - 1); 2759 wake_up_interruptible(&pgdat->kcompactd_wait); 2760 } 2761 } 2762 2763 return 0; 2764 } 2765 2766 /* 2767 * This is the entry point for compacting all nodes via 2768 * /proc/sys/vm/compact_memory 2769 */ 2770 int sysctl_compaction_handler(struct ctl_table *table, int write, 2771 void *buffer, size_t *length, loff_t *ppos) 2772 { 2773 if (write) 2774 compact_nodes(); 2775 2776 return 0; 2777 } 2778 2779 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2780 static ssize_t compact_store(struct device *dev, 2781 struct device_attribute *attr, 2782 const char *buf, size_t count) 2783 { 2784 int nid = dev->id; 2785 2786 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2787 /* Flush pending updates to the LRU lists */ 2788 lru_add_drain_all(); 2789 2790 compact_node(nid); 2791 } 2792 2793 return count; 2794 } 2795 static DEVICE_ATTR_WO(compact); 2796 2797 int compaction_register_node(struct node *node) 2798 { 2799 return device_create_file(&node->dev, &dev_attr_compact); 2800 } 2801 2802 void compaction_unregister_node(struct node *node) 2803 { 2804 return device_remove_file(&node->dev, &dev_attr_compact); 2805 } 2806 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2807 2808 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2809 { 2810 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() || 2811 pgdat->proactive_compact_trigger; 2812 } 2813 2814 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2815 { 2816 int zoneid; 2817 struct zone *zone; 2818 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 2819 2820 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 2821 zone = &pgdat->node_zones[zoneid]; 2822 2823 if (!populated_zone(zone)) 2824 continue; 2825 2826 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2827 highest_zoneidx) == COMPACT_CONTINUE) 2828 return true; 2829 } 2830 2831 return false; 2832 } 2833 2834 static void kcompactd_do_work(pg_data_t *pgdat) 2835 { 2836 /* 2837 * With no special task, compact all zones so that a page of requested 2838 * order is allocatable. 2839 */ 2840 int zoneid; 2841 struct zone *zone; 2842 struct compact_control cc = { 2843 .order = pgdat->kcompactd_max_order, 2844 .search_order = pgdat->kcompactd_max_order, 2845 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 2846 .mode = MIGRATE_SYNC_LIGHT, 2847 .ignore_skip_hint = false, 2848 .gfp_mask = GFP_KERNEL, 2849 }; 2850 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2851 cc.highest_zoneidx); 2852 count_compact_event(KCOMPACTD_WAKE); 2853 2854 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 2855 int status; 2856 2857 zone = &pgdat->node_zones[zoneid]; 2858 if (!populated_zone(zone)) 2859 continue; 2860 2861 if (compaction_deferred(zone, cc.order)) 2862 continue; 2863 2864 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2865 COMPACT_CONTINUE) 2866 continue; 2867 2868 if (kthread_should_stop()) 2869 return; 2870 2871 cc.zone = zone; 2872 status = compact_zone(&cc, NULL); 2873 2874 if (status == COMPACT_SUCCESS) { 2875 compaction_defer_reset(zone, cc.order, false); 2876 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2877 /* 2878 * Buddy pages may become stranded on pcps that could 2879 * otherwise coalesce on the zone's free area for 2880 * order >= cc.order. This is ratelimited by the 2881 * upcoming deferral. 2882 */ 2883 drain_all_pages(zone); 2884 2885 /* 2886 * We use sync migration mode here, so we defer like 2887 * sync direct compaction does. 2888 */ 2889 defer_compaction(zone, cc.order); 2890 } 2891 2892 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2893 cc.total_migrate_scanned); 2894 count_compact_events(KCOMPACTD_FREE_SCANNED, 2895 cc.total_free_scanned); 2896 } 2897 2898 /* 2899 * Regardless of success, we are done until woken up next. But remember 2900 * the requested order/highest_zoneidx in case it was higher/tighter 2901 * than our current ones 2902 */ 2903 if (pgdat->kcompactd_max_order <= cc.order) 2904 pgdat->kcompactd_max_order = 0; 2905 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 2906 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2907 } 2908 2909 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 2910 { 2911 if (!order) 2912 return; 2913 2914 if (pgdat->kcompactd_max_order < order) 2915 pgdat->kcompactd_max_order = order; 2916 2917 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 2918 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 2919 2920 /* 2921 * Pairs with implicit barrier in wait_event_freezable() 2922 * such that wakeups are not missed. 2923 */ 2924 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2925 return; 2926 2927 if (!kcompactd_node_suitable(pgdat)) 2928 return; 2929 2930 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2931 highest_zoneidx); 2932 wake_up_interruptible(&pgdat->kcompactd_wait); 2933 } 2934 2935 /* 2936 * The background compaction daemon, started as a kernel thread 2937 * from the init process. 2938 */ 2939 static int kcompactd(void *p) 2940 { 2941 pg_data_t *pgdat = (pg_data_t *)p; 2942 struct task_struct *tsk = current; 2943 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC); 2944 long timeout = default_timeout; 2945 2946 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2947 2948 if (!cpumask_empty(cpumask)) 2949 set_cpus_allowed_ptr(tsk, cpumask); 2950 2951 set_freezable(); 2952 2953 pgdat->kcompactd_max_order = 0; 2954 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2955 2956 while (!kthread_should_stop()) { 2957 unsigned long pflags; 2958 2959 /* 2960 * Avoid the unnecessary wakeup for proactive compaction 2961 * when it is disabled. 2962 */ 2963 if (!sysctl_compaction_proactiveness) 2964 timeout = MAX_SCHEDULE_TIMEOUT; 2965 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2966 if (wait_event_freezable_timeout(pgdat->kcompactd_wait, 2967 kcompactd_work_requested(pgdat), timeout) && 2968 !pgdat->proactive_compact_trigger) { 2969 2970 psi_memstall_enter(&pflags); 2971 kcompactd_do_work(pgdat); 2972 psi_memstall_leave(&pflags); 2973 /* 2974 * Reset the timeout value. The defer timeout from 2975 * proactive compaction is lost here but that is fine 2976 * as the condition of the zone changing substantionally 2977 * then carrying on with the previous defer interval is 2978 * not useful. 2979 */ 2980 timeout = default_timeout; 2981 continue; 2982 } 2983 2984 /* 2985 * Start the proactive work with default timeout. Based 2986 * on the fragmentation score, this timeout is updated. 2987 */ 2988 timeout = default_timeout; 2989 if (should_proactive_compact_node(pgdat)) { 2990 unsigned int prev_score, score; 2991 2992 prev_score = fragmentation_score_node(pgdat); 2993 proactive_compact_node(pgdat); 2994 score = fragmentation_score_node(pgdat); 2995 /* 2996 * Defer proactive compaction if the fragmentation 2997 * score did not go down i.e. no progress made. 2998 */ 2999 if (unlikely(score >= prev_score)) 3000 timeout = 3001 default_timeout << COMPACT_MAX_DEFER_SHIFT; 3002 } 3003 if (unlikely(pgdat->proactive_compact_trigger)) 3004 pgdat->proactive_compact_trigger = false; 3005 } 3006 3007 return 0; 3008 } 3009 3010 /* 3011 * This kcompactd start function will be called by init and node-hot-add. 3012 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 3013 */ 3014 void kcompactd_run(int nid) 3015 { 3016 pg_data_t *pgdat = NODE_DATA(nid); 3017 3018 if (pgdat->kcompactd) 3019 return; 3020 3021 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 3022 if (IS_ERR(pgdat->kcompactd)) { 3023 pr_err("Failed to start kcompactd on node %d\n", nid); 3024 pgdat->kcompactd = NULL; 3025 } 3026 } 3027 3028 /* 3029 * Called by memory hotplug when all memory in a node is offlined. Caller must 3030 * be holding mem_hotplug_begin/done(). 3031 */ 3032 void kcompactd_stop(int nid) 3033 { 3034 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 3035 3036 if (kcompactd) { 3037 kthread_stop(kcompactd); 3038 NODE_DATA(nid)->kcompactd = NULL; 3039 } 3040 } 3041 3042 /* 3043 * It's optimal to keep kcompactd on the same CPUs as their memory, but 3044 * not required for correctness. So if the last cpu in a node goes 3045 * away, we get changed to run anywhere: as the first one comes back, 3046 * restore their cpu bindings. 3047 */ 3048 static int kcompactd_cpu_online(unsigned int cpu) 3049 { 3050 int nid; 3051 3052 for_each_node_state(nid, N_MEMORY) { 3053 pg_data_t *pgdat = NODE_DATA(nid); 3054 const struct cpumask *mask; 3055 3056 mask = cpumask_of_node(pgdat->node_id); 3057 3058 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3059 /* One of our CPUs online: restore mask */ 3060 if (pgdat->kcompactd) 3061 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 3062 } 3063 return 0; 3064 } 3065 3066 static int __init kcompactd_init(void) 3067 { 3068 int nid; 3069 int ret; 3070 3071 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3072 "mm/compaction:online", 3073 kcompactd_cpu_online, NULL); 3074 if (ret < 0) { 3075 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 3076 return ret; 3077 } 3078 3079 for_each_node_state(nid, N_MEMORY) 3080 kcompactd_run(nid); 3081 return 0; 3082 } 3083 subsys_initcall(kcompactd_init) 3084 3085 #endif /* CONFIG_COMPACTION */ 3086