1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/swap.h> 11 #include <linux/migrate.h> 12 #include <linux/compaction.h> 13 #include <linux/mm_inline.h> 14 #include <linux/backing-dev.h> 15 #include <linux/sysctl.h> 16 #include <linux/sysfs.h> 17 #include <linux/balloon_compaction.h> 18 #include <linux/page-isolation.h> 19 #include "internal.h" 20 21 #ifdef CONFIG_COMPACTION 22 static inline void count_compact_event(enum vm_event_item item) 23 { 24 count_vm_event(item); 25 } 26 27 static inline void count_compact_events(enum vm_event_item item, long delta) 28 { 29 count_vm_events(item, delta); 30 } 31 #else 32 #define count_compact_event(item) do { } while (0) 33 #define count_compact_events(item, delta) do { } while (0) 34 #endif 35 36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/compaction.h> 40 41 static unsigned long release_freepages(struct list_head *freelist) 42 { 43 struct page *page, *next; 44 unsigned long count = 0; 45 46 list_for_each_entry_safe(page, next, freelist, lru) { 47 list_del(&page->lru); 48 __free_page(page); 49 count++; 50 } 51 52 return count; 53 } 54 55 static void map_pages(struct list_head *list) 56 { 57 struct page *page; 58 59 list_for_each_entry(page, list, lru) { 60 arch_alloc_page(page, 0); 61 kernel_map_pages(page, 1, 1); 62 } 63 } 64 65 static inline bool migrate_async_suitable(int migratetype) 66 { 67 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; 68 } 69 70 #ifdef CONFIG_COMPACTION 71 /* Returns true if the pageblock should be scanned for pages to isolate. */ 72 static inline bool isolation_suitable(struct compact_control *cc, 73 struct page *page) 74 { 75 if (cc->ignore_skip_hint) 76 return true; 77 78 return !get_pageblock_skip(page); 79 } 80 81 /* 82 * This function is called to clear all cached information on pageblocks that 83 * should be skipped for page isolation when the migrate and free page scanner 84 * meet. 85 */ 86 static void __reset_isolation_suitable(struct zone *zone) 87 { 88 unsigned long start_pfn = zone->zone_start_pfn; 89 unsigned long end_pfn = zone_end_pfn(zone); 90 unsigned long pfn; 91 92 zone->compact_cached_migrate_pfn = start_pfn; 93 zone->compact_cached_free_pfn = end_pfn; 94 zone->compact_blockskip_flush = false; 95 96 /* Walk the zone and mark every pageblock as suitable for isolation */ 97 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 98 struct page *page; 99 100 cond_resched(); 101 102 if (!pfn_valid(pfn)) 103 continue; 104 105 page = pfn_to_page(pfn); 106 if (zone != page_zone(page)) 107 continue; 108 109 clear_pageblock_skip(page); 110 } 111 } 112 113 void reset_isolation_suitable(pg_data_t *pgdat) 114 { 115 int zoneid; 116 117 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 118 struct zone *zone = &pgdat->node_zones[zoneid]; 119 if (!populated_zone(zone)) 120 continue; 121 122 /* Only flush if a full compaction finished recently */ 123 if (zone->compact_blockskip_flush) 124 __reset_isolation_suitable(zone); 125 } 126 } 127 128 /* 129 * If no pages were isolated then mark this pageblock to be skipped in the 130 * future. The information is later cleared by __reset_isolation_suitable(). 131 */ 132 static void update_pageblock_skip(struct compact_control *cc, 133 struct page *page, unsigned long nr_isolated, 134 bool migrate_scanner) 135 { 136 struct zone *zone = cc->zone; 137 138 if (cc->ignore_skip_hint) 139 return; 140 141 if (!page) 142 return; 143 144 if (!nr_isolated) { 145 unsigned long pfn = page_to_pfn(page); 146 set_pageblock_skip(page); 147 148 /* Update where compaction should restart */ 149 if (migrate_scanner) { 150 if (!cc->finished_update_migrate && 151 pfn > zone->compact_cached_migrate_pfn) 152 zone->compact_cached_migrate_pfn = pfn; 153 } else { 154 if (!cc->finished_update_free && 155 pfn < zone->compact_cached_free_pfn) 156 zone->compact_cached_free_pfn = pfn; 157 } 158 } 159 } 160 #else 161 static inline bool isolation_suitable(struct compact_control *cc, 162 struct page *page) 163 { 164 return true; 165 } 166 167 static void update_pageblock_skip(struct compact_control *cc, 168 struct page *page, unsigned long nr_isolated, 169 bool migrate_scanner) 170 { 171 } 172 #endif /* CONFIG_COMPACTION */ 173 174 static inline bool should_release_lock(spinlock_t *lock) 175 { 176 return need_resched() || spin_is_contended(lock); 177 } 178 179 /* 180 * Compaction requires the taking of some coarse locks that are potentially 181 * very heavily contended. Check if the process needs to be scheduled or 182 * if the lock is contended. For async compaction, back out in the event 183 * if contention is severe. For sync compaction, schedule. 184 * 185 * Returns true if the lock is held. 186 * Returns false if the lock is released and compaction should abort 187 */ 188 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags, 189 bool locked, struct compact_control *cc) 190 { 191 if (should_release_lock(lock)) { 192 if (locked) { 193 spin_unlock_irqrestore(lock, *flags); 194 locked = false; 195 } 196 197 /* async aborts if taking too long or contended */ 198 if (!cc->sync) { 199 cc->contended = true; 200 return false; 201 } 202 203 cond_resched(); 204 } 205 206 if (!locked) 207 spin_lock_irqsave(lock, *flags); 208 return true; 209 } 210 211 static inline bool compact_trylock_irqsave(spinlock_t *lock, 212 unsigned long *flags, struct compact_control *cc) 213 { 214 return compact_checklock_irqsave(lock, flags, false, cc); 215 } 216 217 /* Returns true if the page is within a block suitable for migration to */ 218 static bool suitable_migration_target(struct page *page) 219 { 220 /* If the page is a large free page, then disallow migration */ 221 if (PageBuddy(page) && page_order(page) >= pageblock_order) 222 return false; 223 224 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 225 if (migrate_async_suitable(get_pageblock_migratetype(page))) 226 return true; 227 228 /* Otherwise skip the block */ 229 return false; 230 } 231 232 /* 233 * Isolate free pages onto a private freelist. If @strict is true, will abort 234 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 235 * (even though it may still end up isolating some pages). 236 */ 237 static unsigned long isolate_freepages_block(struct compact_control *cc, 238 unsigned long blockpfn, 239 unsigned long end_pfn, 240 struct list_head *freelist, 241 bool strict) 242 { 243 int nr_scanned = 0, total_isolated = 0; 244 struct page *cursor, *valid_page = NULL; 245 unsigned long flags; 246 bool locked = false; 247 bool checked_pageblock = false; 248 249 cursor = pfn_to_page(blockpfn); 250 251 /* Isolate free pages. */ 252 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 253 int isolated, i; 254 struct page *page = cursor; 255 256 nr_scanned++; 257 if (!pfn_valid_within(blockpfn)) 258 goto isolate_fail; 259 260 if (!valid_page) 261 valid_page = page; 262 if (!PageBuddy(page)) 263 goto isolate_fail; 264 265 /* 266 * The zone lock must be held to isolate freepages. 267 * Unfortunately this is a very coarse lock and can be 268 * heavily contended if there are parallel allocations 269 * or parallel compactions. For async compaction do not 270 * spin on the lock and we acquire the lock as late as 271 * possible. 272 */ 273 locked = compact_checklock_irqsave(&cc->zone->lock, &flags, 274 locked, cc); 275 if (!locked) 276 break; 277 278 /* Recheck this is a suitable migration target under lock */ 279 if (!strict && !checked_pageblock) { 280 /* 281 * We need to check suitability of pageblock only once 282 * and this isolate_freepages_block() is called with 283 * pageblock range, so just check once is sufficient. 284 */ 285 checked_pageblock = true; 286 if (!suitable_migration_target(page)) 287 break; 288 } 289 290 /* Recheck this is a buddy page under lock */ 291 if (!PageBuddy(page)) 292 goto isolate_fail; 293 294 /* Found a free page, break it into order-0 pages */ 295 isolated = split_free_page(page); 296 total_isolated += isolated; 297 for (i = 0; i < isolated; i++) { 298 list_add(&page->lru, freelist); 299 page++; 300 } 301 302 /* If a page was split, advance to the end of it */ 303 if (isolated) { 304 blockpfn += isolated - 1; 305 cursor += isolated - 1; 306 continue; 307 } 308 309 isolate_fail: 310 if (strict) 311 break; 312 else 313 continue; 314 315 } 316 317 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated); 318 319 /* 320 * If strict isolation is requested by CMA then check that all the 321 * pages requested were isolated. If there were any failures, 0 is 322 * returned and CMA will fail. 323 */ 324 if (strict && blockpfn < end_pfn) 325 total_isolated = 0; 326 327 if (locked) 328 spin_unlock_irqrestore(&cc->zone->lock, flags); 329 330 /* Update the pageblock-skip if the whole pageblock was scanned */ 331 if (blockpfn == end_pfn) 332 update_pageblock_skip(cc, valid_page, total_isolated, false); 333 334 count_compact_events(COMPACTFREE_SCANNED, nr_scanned); 335 if (total_isolated) 336 count_compact_events(COMPACTISOLATED, total_isolated); 337 return total_isolated; 338 } 339 340 /** 341 * isolate_freepages_range() - isolate free pages. 342 * @start_pfn: The first PFN to start isolating. 343 * @end_pfn: The one-past-last PFN. 344 * 345 * Non-free pages, invalid PFNs, or zone boundaries within the 346 * [start_pfn, end_pfn) range are considered errors, cause function to 347 * undo its actions and return zero. 348 * 349 * Otherwise, function returns one-past-the-last PFN of isolated page 350 * (which may be greater then end_pfn if end fell in a middle of 351 * a free page). 352 */ 353 unsigned long 354 isolate_freepages_range(struct compact_control *cc, 355 unsigned long start_pfn, unsigned long end_pfn) 356 { 357 unsigned long isolated, pfn, block_end_pfn; 358 LIST_HEAD(freelist); 359 360 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) { 361 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn))) 362 break; 363 364 /* 365 * On subsequent iterations ALIGN() is actually not needed, 366 * but we keep it that we not to complicate the code. 367 */ 368 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 369 block_end_pfn = min(block_end_pfn, end_pfn); 370 371 isolated = isolate_freepages_block(cc, pfn, block_end_pfn, 372 &freelist, true); 373 374 /* 375 * In strict mode, isolate_freepages_block() returns 0 if 376 * there are any holes in the block (ie. invalid PFNs or 377 * non-free pages). 378 */ 379 if (!isolated) 380 break; 381 382 /* 383 * If we managed to isolate pages, it is always (1 << n) * 384 * pageblock_nr_pages for some non-negative n. (Max order 385 * page may span two pageblocks). 386 */ 387 } 388 389 /* split_free_page does not map the pages */ 390 map_pages(&freelist); 391 392 if (pfn < end_pfn) { 393 /* Loop terminated early, cleanup. */ 394 release_freepages(&freelist); 395 return 0; 396 } 397 398 /* We don't use freelists for anything. */ 399 return pfn; 400 } 401 402 /* Update the number of anon and file isolated pages in the zone */ 403 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc) 404 { 405 struct page *page; 406 unsigned int count[2] = { 0, }; 407 408 list_for_each_entry(page, &cc->migratepages, lru) 409 count[!!page_is_file_cache(page)]++; 410 411 /* If locked we can use the interrupt unsafe versions */ 412 if (locked) { 413 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 414 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 415 } else { 416 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 417 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 418 } 419 } 420 421 /* Similar to reclaim, but different enough that they don't share logic */ 422 static bool too_many_isolated(struct zone *zone) 423 { 424 unsigned long active, inactive, isolated; 425 426 inactive = zone_page_state(zone, NR_INACTIVE_FILE) + 427 zone_page_state(zone, NR_INACTIVE_ANON); 428 active = zone_page_state(zone, NR_ACTIVE_FILE) + 429 zone_page_state(zone, NR_ACTIVE_ANON); 430 isolated = zone_page_state(zone, NR_ISOLATED_FILE) + 431 zone_page_state(zone, NR_ISOLATED_ANON); 432 433 return isolated > (inactive + active) / 2; 434 } 435 436 /** 437 * isolate_migratepages_range() - isolate all migrate-able pages in range. 438 * @zone: Zone pages are in. 439 * @cc: Compaction control structure. 440 * @low_pfn: The first PFN of the range. 441 * @end_pfn: The one-past-the-last PFN of the range. 442 * @unevictable: true if it allows to isolate unevictable pages 443 * 444 * Isolate all pages that can be migrated from the range specified by 445 * [low_pfn, end_pfn). Returns zero if there is a fatal signal 446 * pending), otherwise PFN of the first page that was not scanned 447 * (which may be both less, equal to or more then end_pfn). 448 * 449 * Assumes that cc->migratepages is empty and cc->nr_migratepages is 450 * zero. 451 * 452 * Apart from cc->migratepages and cc->nr_migratetypes this function 453 * does not modify any cc's fields, in particular it does not modify 454 * (or read for that matter) cc->migrate_pfn. 455 */ 456 unsigned long 457 isolate_migratepages_range(struct zone *zone, struct compact_control *cc, 458 unsigned long low_pfn, unsigned long end_pfn, bool unevictable) 459 { 460 unsigned long last_pageblock_nr = 0, pageblock_nr; 461 unsigned long nr_scanned = 0, nr_isolated = 0; 462 struct list_head *migratelist = &cc->migratepages; 463 struct lruvec *lruvec; 464 unsigned long flags; 465 bool locked = false; 466 struct page *page = NULL, *valid_page = NULL; 467 bool skipped_async_unsuitable = false; 468 const isolate_mode_t mode = (!cc->sync ? ISOLATE_ASYNC_MIGRATE : 0) | 469 (unevictable ? ISOLATE_UNEVICTABLE : 0); 470 471 /* 472 * Ensure that there are not too many pages isolated from the LRU 473 * list by either parallel reclaimers or compaction. If there are, 474 * delay for some time until fewer pages are isolated 475 */ 476 while (unlikely(too_many_isolated(zone))) { 477 /* async migration should just abort */ 478 if (!cc->sync) 479 return 0; 480 481 congestion_wait(BLK_RW_ASYNC, HZ/10); 482 483 if (fatal_signal_pending(current)) 484 return 0; 485 } 486 487 /* Time to isolate some pages for migration */ 488 cond_resched(); 489 for (; low_pfn < end_pfn; low_pfn++) { 490 /* give a chance to irqs before checking need_resched() */ 491 if (locked && !(low_pfn % SWAP_CLUSTER_MAX)) { 492 if (should_release_lock(&zone->lru_lock)) { 493 spin_unlock_irqrestore(&zone->lru_lock, flags); 494 locked = false; 495 } 496 } 497 498 /* 499 * migrate_pfn does not necessarily start aligned to a 500 * pageblock. Ensure that pfn_valid is called when moving 501 * into a new MAX_ORDER_NR_PAGES range in case of large 502 * memory holes within the zone 503 */ 504 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { 505 if (!pfn_valid(low_pfn)) { 506 low_pfn += MAX_ORDER_NR_PAGES - 1; 507 continue; 508 } 509 } 510 511 if (!pfn_valid_within(low_pfn)) 512 continue; 513 nr_scanned++; 514 515 /* 516 * Get the page and ensure the page is within the same zone. 517 * See the comment in isolate_freepages about overlapping 518 * nodes. It is deliberate that the new zone lock is not taken 519 * as memory compaction should not move pages between nodes. 520 */ 521 page = pfn_to_page(low_pfn); 522 if (page_zone(page) != zone) 523 continue; 524 525 if (!valid_page) 526 valid_page = page; 527 528 /* If isolation recently failed, do not retry */ 529 pageblock_nr = low_pfn >> pageblock_order; 530 if (last_pageblock_nr != pageblock_nr) { 531 int mt; 532 533 last_pageblock_nr = pageblock_nr; 534 if (!isolation_suitable(cc, page)) 535 goto next_pageblock; 536 537 /* 538 * For async migration, also only scan in MOVABLE 539 * blocks. Async migration is optimistic to see if 540 * the minimum amount of work satisfies the allocation 541 */ 542 mt = get_pageblock_migratetype(page); 543 if (!cc->sync && !migrate_async_suitable(mt)) { 544 cc->finished_update_migrate = true; 545 skipped_async_unsuitable = true; 546 goto next_pageblock; 547 } 548 } 549 550 /* 551 * Skip if free. page_order cannot be used without zone->lock 552 * as nothing prevents parallel allocations or buddy merging. 553 */ 554 if (PageBuddy(page)) 555 continue; 556 557 /* 558 * Check may be lockless but that's ok as we recheck later. 559 * It's possible to migrate LRU pages and balloon pages 560 * Skip any other type of page 561 */ 562 if (!PageLRU(page)) { 563 if (unlikely(balloon_page_movable(page))) { 564 if (locked && balloon_page_isolate(page)) { 565 /* Successfully isolated */ 566 goto isolate_success; 567 } 568 } 569 continue; 570 } 571 572 /* 573 * PageLRU is set. lru_lock normally excludes isolation 574 * splitting and collapsing (collapsing has already happened 575 * if PageLRU is set) but the lock is not necessarily taken 576 * here and it is wasteful to take it just to check transhuge. 577 * Check TransHuge without lock and skip the whole pageblock if 578 * it's either a transhuge or hugetlbfs page, as calling 579 * compound_order() without preventing THP from splitting the 580 * page underneath us may return surprising results. 581 */ 582 if (PageTransHuge(page)) { 583 if (!locked) 584 goto next_pageblock; 585 low_pfn += (1 << compound_order(page)) - 1; 586 continue; 587 } 588 589 /* 590 * Migration will fail if an anonymous page is pinned in memory, 591 * so avoid taking lru_lock and isolating it unnecessarily in an 592 * admittedly racy check. 593 */ 594 if (!page_mapping(page) && 595 page_count(page) > page_mapcount(page)) 596 continue; 597 598 /* Check if it is ok to still hold the lock */ 599 locked = compact_checklock_irqsave(&zone->lru_lock, &flags, 600 locked, cc); 601 if (!locked || fatal_signal_pending(current)) 602 break; 603 604 /* Recheck PageLRU and PageTransHuge under lock */ 605 if (!PageLRU(page)) 606 continue; 607 if (PageTransHuge(page)) { 608 low_pfn += (1 << compound_order(page)) - 1; 609 continue; 610 } 611 612 lruvec = mem_cgroup_page_lruvec(page, zone); 613 614 /* Try isolate the page */ 615 if (__isolate_lru_page(page, mode) != 0) 616 continue; 617 618 VM_BUG_ON_PAGE(PageTransCompound(page), page); 619 620 /* Successfully isolated */ 621 del_page_from_lru_list(page, lruvec, page_lru(page)); 622 623 isolate_success: 624 cc->finished_update_migrate = true; 625 list_add(&page->lru, migratelist); 626 cc->nr_migratepages++; 627 nr_isolated++; 628 629 /* Avoid isolating too much */ 630 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 631 ++low_pfn; 632 break; 633 } 634 635 continue; 636 637 next_pageblock: 638 low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1; 639 } 640 641 acct_isolated(zone, locked, cc); 642 643 if (locked) 644 spin_unlock_irqrestore(&zone->lru_lock, flags); 645 646 /* 647 * Update the pageblock-skip information and cached scanner pfn, 648 * if the whole pageblock was scanned without isolating any page. 649 * This is not done when pageblock was skipped due to being unsuitable 650 * for async compaction, so that eventual sync compaction can try. 651 */ 652 if (low_pfn == end_pfn && !skipped_async_unsuitable) 653 update_pageblock_skip(cc, valid_page, nr_isolated, true); 654 655 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated); 656 657 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned); 658 if (nr_isolated) 659 count_compact_events(COMPACTISOLATED, nr_isolated); 660 661 return low_pfn; 662 } 663 664 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 665 #ifdef CONFIG_COMPACTION 666 /* 667 * Based on information in the current compact_control, find blocks 668 * suitable for isolating free pages from and then isolate them. 669 */ 670 static void isolate_freepages(struct zone *zone, 671 struct compact_control *cc) 672 { 673 struct page *page; 674 unsigned long high_pfn, low_pfn, pfn, z_end_pfn, end_pfn; 675 int nr_freepages = cc->nr_freepages; 676 struct list_head *freelist = &cc->freepages; 677 678 /* 679 * Initialise the free scanner. The starting point is where we last 680 * scanned from (or the end of the zone if starting). The low point 681 * is the end of the pageblock the migration scanner is using. 682 */ 683 pfn = cc->free_pfn; 684 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages); 685 686 /* 687 * Take care that if the migration scanner is at the end of the zone 688 * that the free scanner does not accidentally move to the next zone 689 * in the next isolation cycle. 690 */ 691 high_pfn = min(low_pfn, pfn); 692 693 z_end_pfn = zone_end_pfn(zone); 694 695 /* 696 * Isolate free pages until enough are available to migrate the 697 * pages on cc->migratepages. We stop searching if the migrate 698 * and free page scanners meet or enough free pages are isolated. 699 */ 700 for (; pfn >= low_pfn && cc->nr_migratepages > nr_freepages; 701 pfn -= pageblock_nr_pages) { 702 unsigned long isolated; 703 704 /* 705 * This can iterate a massively long zone without finding any 706 * suitable migration targets, so periodically check if we need 707 * to schedule. 708 */ 709 cond_resched(); 710 711 if (!pfn_valid(pfn)) 712 continue; 713 714 /* 715 * Check for overlapping nodes/zones. It's possible on some 716 * configurations to have a setup like 717 * node0 node1 node0 718 * i.e. it's possible that all pages within a zones range of 719 * pages do not belong to a single zone. 720 */ 721 page = pfn_to_page(pfn); 722 if (page_zone(page) != zone) 723 continue; 724 725 /* Check the block is suitable for migration */ 726 if (!suitable_migration_target(page)) 727 continue; 728 729 /* If isolation recently failed, do not retry */ 730 if (!isolation_suitable(cc, page)) 731 continue; 732 733 /* Found a block suitable for isolating free pages from */ 734 isolated = 0; 735 736 /* 737 * As pfn may not start aligned, pfn+pageblock_nr_page 738 * may cross a MAX_ORDER_NR_PAGES boundary and miss 739 * a pfn_valid check. Ensure isolate_freepages_block() 740 * only scans within a pageblock 741 */ 742 end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 743 end_pfn = min(end_pfn, z_end_pfn); 744 isolated = isolate_freepages_block(cc, pfn, end_pfn, 745 freelist, false); 746 nr_freepages += isolated; 747 748 /* 749 * Record the highest PFN we isolated pages from. When next 750 * looking for free pages, the search will restart here as 751 * page migration may have returned some pages to the allocator 752 */ 753 if (isolated) { 754 cc->finished_update_free = true; 755 high_pfn = max(high_pfn, pfn); 756 } 757 } 758 759 /* split_free_page does not map the pages */ 760 map_pages(freelist); 761 762 /* 763 * If we crossed the migrate scanner, we want to keep it that way 764 * so that compact_finished() may detect this 765 */ 766 if (pfn < low_pfn) 767 cc->free_pfn = max(pfn, zone->zone_start_pfn); 768 else 769 cc->free_pfn = high_pfn; 770 cc->nr_freepages = nr_freepages; 771 } 772 773 /* 774 * This is a migrate-callback that "allocates" freepages by taking pages 775 * from the isolated freelists in the block we are migrating to. 776 */ 777 static struct page *compaction_alloc(struct page *migratepage, 778 unsigned long data, 779 int **result) 780 { 781 struct compact_control *cc = (struct compact_control *)data; 782 struct page *freepage; 783 784 /* Isolate free pages if necessary */ 785 if (list_empty(&cc->freepages)) { 786 isolate_freepages(cc->zone, cc); 787 788 if (list_empty(&cc->freepages)) 789 return NULL; 790 } 791 792 freepage = list_entry(cc->freepages.next, struct page, lru); 793 list_del(&freepage->lru); 794 cc->nr_freepages--; 795 796 return freepage; 797 } 798 799 /* 800 * We cannot control nr_migratepages and nr_freepages fully when migration is 801 * running as migrate_pages() has no knowledge of compact_control. When 802 * migration is complete, we count the number of pages on the lists by hand. 803 */ 804 static void update_nr_listpages(struct compact_control *cc) 805 { 806 int nr_migratepages = 0; 807 int nr_freepages = 0; 808 struct page *page; 809 810 list_for_each_entry(page, &cc->migratepages, lru) 811 nr_migratepages++; 812 list_for_each_entry(page, &cc->freepages, lru) 813 nr_freepages++; 814 815 cc->nr_migratepages = nr_migratepages; 816 cc->nr_freepages = nr_freepages; 817 } 818 819 /* possible outcome of isolate_migratepages */ 820 typedef enum { 821 ISOLATE_ABORT, /* Abort compaction now */ 822 ISOLATE_NONE, /* No pages isolated, continue scanning */ 823 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 824 } isolate_migrate_t; 825 826 /* 827 * Isolate all pages that can be migrated from the block pointed to by 828 * the migrate scanner within compact_control. 829 */ 830 static isolate_migrate_t isolate_migratepages(struct zone *zone, 831 struct compact_control *cc) 832 { 833 unsigned long low_pfn, end_pfn; 834 835 /* Do not scan outside zone boundaries */ 836 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn); 837 838 /* Only scan within a pageblock boundary */ 839 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages); 840 841 /* Do not cross the free scanner or scan within a memory hole */ 842 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) { 843 cc->migrate_pfn = end_pfn; 844 return ISOLATE_NONE; 845 } 846 847 /* Perform the isolation */ 848 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false); 849 if (!low_pfn || cc->contended) 850 return ISOLATE_ABORT; 851 852 cc->migrate_pfn = low_pfn; 853 854 return ISOLATE_SUCCESS; 855 } 856 857 static int compact_finished(struct zone *zone, 858 struct compact_control *cc) 859 { 860 unsigned int order; 861 unsigned long watermark; 862 863 if (fatal_signal_pending(current)) 864 return COMPACT_PARTIAL; 865 866 /* Compaction run completes if the migrate and free scanner meet */ 867 if (cc->free_pfn <= cc->migrate_pfn) { 868 /* Let the next compaction start anew. */ 869 zone->compact_cached_migrate_pfn = zone->zone_start_pfn; 870 zone->compact_cached_free_pfn = zone_end_pfn(zone); 871 872 /* 873 * Mark that the PG_migrate_skip information should be cleared 874 * by kswapd when it goes to sleep. kswapd does not set the 875 * flag itself as the decision to be clear should be directly 876 * based on an allocation request. 877 */ 878 if (!current_is_kswapd()) 879 zone->compact_blockskip_flush = true; 880 881 return COMPACT_COMPLETE; 882 } 883 884 /* 885 * order == -1 is expected when compacting via 886 * /proc/sys/vm/compact_memory 887 */ 888 if (cc->order == -1) 889 return COMPACT_CONTINUE; 890 891 /* Compaction run is not finished if the watermark is not met */ 892 watermark = low_wmark_pages(zone); 893 watermark += (1 << cc->order); 894 895 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0)) 896 return COMPACT_CONTINUE; 897 898 /* Direct compactor: Is a suitable page free? */ 899 for (order = cc->order; order < MAX_ORDER; order++) { 900 struct free_area *area = &zone->free_area[order]; 901 902 /* Job done if page is free of the right migratetype */ 903 if (!list_empty(&area->free_list[cc->migratetype])) 904 return COMPACT_PARTIAL; 905 906 /* Job done if allocation would set block type */ 907 if (cc->order >= pageblock_order && area->nr_free) 908 return COMPACT_PARTIAL; 909 } 910 911 return COMPACT_CONTINUE; 912 } 913 914 /* 915 * compaction_suitable: Is this suitable to run compaction on this zone now? 916 * Returns 917 * COMPACT_SKIPPED - If there are too few free pages for compaction 918 * COMPACT_PARTIAL - If the allocation would succeed without compaction 919 * COMPACT_CONTINUE - If compaction should run now 920 */ 921 unsigned long compaction_suitable(struct zone *zone, int order) 922 { 923 int fragindex; 924 unsigned long watermark; 925 926 /* 927 * order == -1 is expected when compacting via 928 * /proc/sys/vm/compact_memory 929 */ 930 if (order == -1) 931 return COMPACT_CONTINUE; 932 933 /* 934 * Watermarks for order-0 must be met for compaction. Note the 2UL. 935 * This is because during migration, copies of pages need to be 936 * allocated and for a short time, the footprint is higher 937 */ 938 watermark = low_wmark_pages(zone) + (2UL << order); 939 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 940 return COMPACT_SKIPPED; 941 942 /* 943 * fragmentation index determines if allocation failures are due to 944 * low memory or external fragmentation 945 * 946 * index of -1000 implies allocations might succeed depending on 947 * watermarks 948 * index towards 0 implies failure is due to lack of memory 949 * index towards 1000 implies failure is due to fragmentation 950 * 951 * Only compact if a failure would be due to fragmentation. 952 */ 953 fragindex = fragmentation_index(zone, order); 954 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 955 return COMPACT_SKIPPED; 956 957 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark, 958 0, 0)) 959 return COMPACT_PARTIAL; 960 961 return COMPACT_CONTINUE; 962 } 963 964 static int compact_zone(struct zone *zone, struct compact_control *cc) 965 { 966 int ret; 967 unsigned long start_pfn = zone->zone_start_pfn; 968 unsigned long end_pfn = zone_end_pfn(zone); 969 970 ret = compaction_suitable(zone, cc->order); 971 switch (ret) { 972 case COMPACT_PARTIAL: 973 case COMPACT_SKIPPED: 974 /* Compaction is likely to fail */ 975 return ret; 976 case COMPACT_CONTINUE: 977 /* Fall through to compaction */ 978 ; 979 } 980 981 /* 982 * Clear pageblock skip if there were failures recently and compaction 983 * is about to be retried after being deferred. kswapd does not do 984 * this reset as it'll reset the cached information when going to sleep. 985 */ 986 if (compaction_restarting(zone, cc->order) && !current_is_kswapd()) 987 __reset_isolation_suitable(zone); 988 989 /* 990 * Setup to move all movable pages to the end of the zone. Used cached 991 * information on where the scanners should start but check that it 992 * is initialised by ensuring the values are within zone boundaries. 993 */ 994 cc->migrate_pfn = zone->compact_cached_migrate_pfn; 995 cc->free_pfn = zone->compact_cached_free_pfn; 996 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) { 997 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1); 998 zone->compact_cached_free_pfn = cc->free_pfn; 999 } 1000 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) { 1001 cc->migrate_pfn = start_pfn; 1002 zone->compact_cached_migrate_pfn = cc->migrate_pfn; 1003 } 1004 1005 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn); 1006 1007 migrate_prep_local(); 1008 1009 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { 1010 unsigned long nr_migrate, nr_remaining; 1011 int err; 1012 1013 switch (isolate_migratepages(zone, cc)) { 1014 case ISOLATE_ABORT: 1015 ret = COMPACT_PARTIAL; 1016 putback_movable_pages(&cc->migratepages); 1017 cc->nr_migratepages = 0; 1018 goto out; 1019 case ISOLATE_NONE: 1020 continue; 1021 case ISOLATE_SUCCESS: 1022 ; 1023 } 1024 1025 nr_migrate = cc->nr_migratepages; 1026 err = migrate_pages(&cc->migratepages, compaction_alloc, 1027 (unsigned long)cc, 1028 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC, 1029 MR_COMPACTION); 1030 update_nr_listpages(cc); 1031 nr_remaining = cc->nr_migratepages; 1032 1033 trace_mm_compaction_migratepages(nr_migrate - nr_remaining, 1034 nr_remaining); 1035 1036 /* Release isolated pages not migrated */ 1037 if (err) { 1038 putback_movable_pages(&cc->migratepages); 1039 cc->nr_migratepages = 0; 1040 /* 1041 * migrate_pages() may return -ENOMEM when scanners meet 1042 * and we want compact_finished() to detect it 1043 */ 1044 if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) { 1045 ret = COMPACT_PARTIAL; 1046 goto out; 1047 } 1048 } 1049 } 1050 1051 out: 1052 /* Release free pages and check accounting */ 1053 cc->nr_freepages -= release_freepages(&cc->freepages); 1054 VM_BUG_ON(cc->nr_freepages != 0); 1055 1056 trace_mm_compaction_end(ret); 1057 1058 return ret; 1059 } 1060 1061 static unsigned long compact_zone_order(struct zone *zone, 1062 int order, gfp_t gfp_mask, 1063 bool sync, bool *contended) 1064 { 1065 unsigned long ret; 1066 struct compact_control cc = { 1067 .nr_freepages = 0, 1068 .nr_migratepages = 0, 1069 .order = order, 1070 .migratetype = allocflags_to_migratetype(gfp_mask), 1071 .zone = zone, 1072 .sync = sync, 1073 }; 1074 INIT_LIST_HEAD(&cc.freepages); 1075 INIT_LIST_HEAD(&cc.migratepages); 1076 1077 ret = compact_zone(zone, &cc); 1078 1079 VM_BUG_ON(!list_empty(&cc.freepages)); 1080 VM_BUG_ON(!list_empty(&cc.migratepages)); 1081 1082 *contended = cc.contended; 1083 return ret; 1084 } 1085 1086 int sysctl_extfrag_threshold = 500; 1087 1088 /** 1089 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 1090 * @zonelist: The zonelist used for the current allocation 1091 * @order: The order of the current allocation 1092 * @gfp_mask: The GFP mask of the current allocation 1093 * @nodemask: The allowed nodes to allocate from 1094 * @sync: Whether migration is synchronous or not 1095 * @contended: Return value that is true if compaction was aborted due to lock contention 1096 * @page: Optionally capture a free page of the requested order during compaction 1097 * 1098 * This is the main entry point for direct page compaction. 1099 */ 1100 unsigned long try_to_compact_pages(struct zonelist *zonelist, 1101 int order, gfp_t gfp_mask, nodemask_t *nodemask, 1102 bool sync, bool *contended) 1103 { 1104 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1105 int may_enter_fs = gfp_mask & __GFP_FS; 1106 int may_perform_io = gfp_mask & __GFP_IO; 1107 struct zoneref *z; 1108 struct zone *zone; 1109 int rc = COMPACT_SKIPPED; 1110 int alloc_flags = 0; 1111 1112 /* Check if the GFP flags allow compaction */ 1113 if (!order || !may_enter_fs || !may_perform_io) 1114 return rc; 1115 1116 count_compact_event(COMPACTSTALL); 1117 1118 #ifdef CONFIG_CMA 1119 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 1120 alloc_flags |= ALLOC_CMA; 1121 #endif 1122 /* Compact each zone in the list */ 1123 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 1124 nodemask) { 1125 int status; 1126 1127 status = compact_zone_order(zone, order, gfp_mask, sync, 1128 contended); 1129 rc = max(status, rc); 1130 1131 /* If a normal allocation would succeed, stop compacting */ 1132 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 1133 alloc_flags)) 1134 break; 1135 } 1136 1137 return rc; 1138 } 1139 1140 1141 /* Compact all zones within a node */ 1142 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) 1143 { 1144 int zoneid; 1145 struct zone *zone; 1146 1147 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1148 1149 zone = &pgdat->node_zones[zoneid]; 1150 if (!populated_zone(zone)) 1151 continue; 1152 1153 cc->nr_freepages = 0; 1154 cc->nr_migratepages = 0; 1155 cc->zone = zone; 1156 INIT_LIST_HEAD(&cc->freepages); 1157 INIT_LIST_HEAD(&cc->migratepages); 1158 1159 if (cc->order == -1 || !compaction_deferred(zone, cc->order)) 1160 compact_zone(zone, cc); 1161 1162 if (cc->order > 0) { 1163 if (zone_watermark_ok(zone, cc->order, 1164 low_wmark_pages(zone), 0, 0)) 1165 compaction_defer_reset(zone, cc->order, false); 1166 /* Currently async compaction is never deferred. */ 1167 else if (cc->sync) 1168 defer_compaction(zone, cc->order); 1169 } 1170 1171 VM_BUG_ON(!list_empty(&cc->freepages)); 1172 VM_BUG_ON(!list_empty(&cc->migratepages)); 1173 } 1174 } 1175 1176 void compact_pgdat(pg_data_t *pgdat, int order) 1177 { 1178 struct compact_control cc = { 1179 .order = order, 1180 .sync = false, 1181 }; 1182 1183 if (!order) 1184 return; 1185 1186 __compact_pgdat(pgdat, &cc); 1187 } 1188 1189 static void compact_node(int nid) 1190 { 1191 struct compact_control cc = { 1192 .order = -1, 1193 .sync = true, 1194 .ignore_skip_hint = true, 1195 }; 1196 1197 __compact_pgdat(NODE_DATA(nid), &cc); 1198 } 1199 1200 /* Compact all nodes in the system */ 1201 static void compact_nodes(void) 1202 { 1203 int nid; 1204 1205 /* Flush pending updates to the LRU lists */ 1206 lru_add_drain_all(); 1207 1208 for_each_online_node(nid) 1209 compact_node(nid); 1210 } 1211 1212 /* The written value is actually unused, all memory is compacted */ 1213 int sysctl_compact_memory; 1214 1215 /* This is the entry point for compacting all nodes via /proc/sys/vm */ 1216 int sysctl_compaction_handler(struct ctl_table *table, int write, 1217 void __user *buffer, size_t *length, loff_t *ppos) 1218 { 1219 if (write) 1220 compact_nodes(); 1221 1222 return 0; 1223 } 1224 1225 int sysctl_extfrag_handler(struct ctl_table *table, int write, 1226 void __user *buffer, size_t *length, loff_t *ppos) 1227 { 1228 proc_dointvec_minmax(table, write, buffer, length, ppos); 1229 1230 return 0; 1231 } 1232 1233 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 1234 static ssize_t sysfs_compact_node(struct device *dev, 1235 struct device_attribute *attr, 1236 const char *buf, size_t count) 1237 { 1238 int nid = dev->id; 1239 1240 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 1241 /* Flush pending updates to the LRU lists */ 1242 lru_add_drain_all(); 1243 1244 compact_node(nid); 1245 } 1246 1247 return count; 1248 } 1249 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 1250 1251 int compaction_register_node(struct node *node) 1252 { 1253 return device_create_file(&node->dev, &dev_attr_compact); 1254 } 1255 1256 void compaction_unregister_node(struct node *node) 1257 { 1258 return device_remove_file(&node->dev, &dev_attr_compact); 1259 } 1260 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 1261 1262 #endif /* CONFIG_COMPACTION */ 1263