xref: /openbmc/linux/mm/compaction.c (revision 1c2f87c2)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
20 
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item)
23 {
24 	count_vm_event(item);
25 }
26 
27 static inline void count_compact_events(enum vm_event_item item, long delta)
28 {
29 	count_vm_events(item, delta);
30 }
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
35 
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/compaction.h>
40 
41 static unsigned long release_freepages(struct list_head *freelist)
42 {
43 	struct page *page, *next;
44 	unsigned long count = 0;
45 
46 	list_for_each_entry_safe(page, next, freelist, lru) {
47 		list_del(&page->lru);
48 		__free_page(page);
49 		count++;
50 	}
51 
52 	return count;
53 }
54 
55 static void map_pages(struct list_head *list)
56 {
57 	struct page *page;
58 
59 	list_for_each_entry(page, list, lru) {
60 		arch_alloc_page(page, 0);
61 		kernel_map_pages(page, 1, 1);
62 	}
63 }
64 
65 static inline bool migrate_async_suitable(int migratetype)
66 {
67 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
68 }
69 
70 #ifdef CONFIG_COMPACTION
71 /* Returns true if the pageblock should be scanned for pages to isolate. */
72 static inline bool isolation_suitable(struct compact_control *cc,
73 					struct page *page)
74 {
75 	if (cc->ignore_skip_hint)
76 		return true;
77 
78 	return !get_pageblock_skip(page);
79 }
80 
81 /*
82  * This function is called to clear all cached information on pageblocks that
83  * should be skipped for page isolation when the migrate and free page scanner
84  * meet.
85  */
86 static void __reset_isolation_suitable(struct zone *zone)
87 {
88 	unsigned long start_pfn = zone->zone_start_pfn;
89 	unsigned long end_pfn = zone_end_pfn(zone);
90 	unsigned long pfn;
91 
92 	zone->compact_cached_migrate_pfn = start_pfn;
93 	zone->compact_cached_free_pfn = end_pfn;
94 	zone->compact_blockskip_flush = false;
95 
96 	/* Walk the zone and mark every pageblock as suitable for isolation */
97 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
98 		struct page *page;
99 
100 		cond_resched();
101 
102 		if (!pfn_valid(pfn))
103 			continue;
104 
105 		page = pfn_to_page(pfn);
106 		if (zone != page_zone(page))
107 			continue;
108 
109 		clear_pageblock_skip(page);
110 	}
111 }
112 
113 void reset_isolation_suitable(pg_data_t *pgdat)
114 {
115 	int zoneid;
116 
117 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
118 		struct zone *zone = &pgdat->node_zones[zoneid];
119 		if (!populated_zone(zone))
120 			continue;
121 
122 		/* Only flush if a full compaction finished recently */
123 		if (zone->compact_blockskip_flush)
124 			__reset_isolation_suitable(zone);
125 	}
126 }
127 
128 /*
129  * If no pages were isolated then mark this pageblock to be skipped in the
130  * future. The information is later cleared by __reset_isolation_suitable().
131  */
132 static void update_pageblock_skip(struct compact_control *cc,
133 			struct page *page, unsigned long nr_isolated,
134 			bool migrate_scanner)
135 {
136 	struct zone *zone = cc->zone;
137 
138 	if (cc->ignore_skip_hint)
139 		return;
140 
141 	if (!page)
142 		return;
143 
144 	if (!nr_isolated) {
145 		unsigned long pfn = page_to_pfn(page);
146 		set_pageblock_skip(page);
147 
148 		/* Update where compaction should restart */
149 		if (migrate_scanner) {
150 			if (!cc->finished_update_migrate &&
151 			    pfn > zone->compact_cached_migrate_pfn)
152 				zone->compact_cached_migrate_pfn = pfn;
153 		} else {
154 			if (!cc->finished_update_free &&
155 			    pfn < zone->compact_cached_free_pfn)
156 				zone->compact_cached_free_pfn = pfn;
157 		}
158 	}
159 }
160 #else
161 static inline bool isolation_suitable(struct compact_control *cc,
162 					struct page *page)
163 {
164 	return true;
165 }
166 
167 static void update_pageblock_skip(struct compact_control *cc,
168 			struct page *page, unsigned long nr_isolated,
169 			bool migrate_scanner)
170 {
171 }
172 #endif /* CONFIG_COMPACTION */
173 
174 static inline bool should_release_lock(spinlock_t *lock)
175 {
176 	return need_resched() || spin_is_contended(lock);
177 }
178 
179 /*
180  * Compaction requires the taking of some coarse locks that are potentially
181  * very heavily contended. Check if the process needs to be scheduled or
182  * if the lock is contended. For async compaction, back out in the event
183  * if contention is severe. For sync compaction, schedule.
184  *
185  * Returns true if the lock is held.
186  * Returns false if the lock is released and compaction should abort
187  */
188 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
189 				      bool locked, struct compact_control *cc)
190 {
191 	if (should_release_lock(lock)) {
192 		if (locked) {
193 			spin_unlock_irqrestore(lock, *flags);
194 			locked = false;
195 		}
196 
197 		/* async aborts if taking too long or contended */
198 		if (!cc->sync) {
199 			cc->contended = true;
200 			return false;
201 		}
202 
203 		cond_resched();
204 	}
205 
206 	if (!locked)
207 		spin_lock_irqsave(lock, *flags);
208 	return true;
209 }
210 
211 static inline bool compact_trylock_irqsave(spinlock_t *lock,
212 			unsigned long *flags, struct compact_control *cc)
213 {
214 	return compact_checklock_irqsave(lock, flags, false, cc);
215 }
216 
217 /* Returns true if the page is within a block suitable for migration to */
218 static bool suitable_migration_target(struct page *page)
219 {
220 	/* If the page is a large free page, then disallow migration */
221 	if (PageBuddy(page) && page_order(page) >= pageblock_order)
222 		return false;
223 
224 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
225 	if (migrate_async_suitable(get_pageblock_migratetype(page)))
226 		return true;
227 
228 	/* Otherwise skip the block */
229 	return false;
230 }
231 
232 /*
233  * Isolate free pages onto a private freelist. If @strict is true, will abort
234  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
235  * (even though it may still end up isolating some pages).
236  */
237 static unsigned long isolate_freepages_block(struct compact_control *cc,
238 				unsigned long blockpfn,
239 				unsigned long end_pfn,
240 				struct list_head *freelist,
241 				bool strict)
242 {
243 	int nr_scanned = 0, total_isolated = 0;
244 	struct page *cursor, *valid_page = NULL;
245 	unsigned long flags;
246 	bool locked = false;
247 	bool checked_pageblock = false;
248 
249 	cursor = pfn_to_page(blockpfn);
250 
251 	/* Isolate free pages. */
252 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
253 		int isolated, i;
254 		struct page *page = cursor;
255 
256 		nr_scanned++;
257 		if (!pfn_valid_within(blockpfn))
258 			goto isolate_fail;
259 
260 		if (!valid_page)
261 			valid_page = page;
262 		if (!PageBuddy(page))
263 			goto isolate_fail;
264 
265 		/*
266 		 * The zone lock must be held to isolate freepages.
267 		 * Unfortunately this is a very coarse lock and can be
268 		 * heavily contended if there are parallel allocations
269 		 * or parallel compactions. For async compaction do not
270 		 * spin on the lock and we acquire the lock as late as
271 		 * possible.
272 		 */
273 		locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
274 								locked, cc);
275 		if (!locked)
276 			break;
277 
278 		/* Recheck this is a suitable migration target under lock */
279 		if (!strict && !checked_pageblock) {
280 			/*
281 			 * We need to check suitability of pageblock only once
282 			 * and this isolate_freepages_block() is called with
283 			 * pageblock range, so just check once is sufficient.
284 			 */
285 			checked_pageblock = true;
286 			if (!suitable_migration_target(page))
287 				break;
288 		}
289 
290 		/* Recheck this is a buddy page under lock */
291 		if (!PageBuddy(page))
292 			goto isolate_fail;
293 
294 		/* Found a free page, break it into order-0 pages */
295 		isolated = split_free_page(page);
296 		total_isolated += isolated;
297 		for (i = 0; i < isolated; i++) {
298 			list_add(&page->lru, freelist);
299 			page++;
300 		}
301 
302 		/* If a page was split, advance to the end of it */
303 		if (isolated) {
304 			blockpfn += isolated - 1;
305 			cursor += isolated - 1;
306 			continue;
307 		}
308 
309 isolate_fail:
310 		if (strict)
311 			break;
312 		else
313 			continue;
314 
315 	}
316 
317 	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
318 
319 	/*
320 	 * If strict isolation is requested by CMA then check that all the
321 	 * pages requested were isolated. If there were any failures, 0 is
322 	 * returned and CMA will fail.
323 	 */
324 	if (strict && blockpfn < end_pfn)
325 		total_isolated = 0;
326 
327 	if (locked)
328 		spin_unlock_irqrestore(&cc->zone->lock, flags);
329 
330 	/* Update the pageblock-skip if the whole pageblock was scanned */
331 	if (blockpfn == end_pfn)
332 		update_pageblock_skip(cc, valid_page, total_isolated, false);
333 
334 	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
335 	if (total_isolated)
336 		count_compact_events(COMPACTISOLATED, total_isolated);
337 	return total_isolated;
338 }
339 
340 /**
341  * isolate_freepages_range() - isolate free pages.
342  * @start_pfn: The first PFN to start isolating.
343  * @end_pfn:   The one-past-last PFN.
344  *
345  * Non-free pages, invalid PFNs, or zone boundaries within the
346  * [start_pfn, end_pfn) range are considered errors, cause function to
347  * undo its actions and return zero.
348  *
349  * Otherwise, function returns one-past-the-last PFN of isolated page
350  * (which may be greater then end_pfn if end fell in a middle of
351  * a free page).
352  */
353 unsigned long
354 isolate_freepages_range(struct compact_control *cc,
355 			unsigned long start_pfn, unsigned long end_pfn)
356 {
357 	unsigned long isolated, pfn, block_end_pfn;
358 	LIST_HEAD(freelist);
359 
360 	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
361 		if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
362 			break;
363 
364 		/*
365 		 * On subsequent iterations ALIGN() is actually not needed,
366 		 * but we keep it that we not to complicate the code.
367 		 */
368 		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
369 		block_end_pfn = min(block_end_pfn, end_pfn);
370 
371 		isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
372 						   &freelist, true);
373 
374 		/*
375 		 * In strict mode, isolate_freepages_block() returns 0 if
376 		 * there are any holes in the block (ie. invalid PFNs or
377 		 * non-free pages).
378 		 */
379 		if (!isolated)
380 			break;
381 
382 		/*
383 		 * If we managed to isolate pages, it is always (1 << n) *
384 		 * pageblock_nr_pages for some non-negative n.  (Max order
385 		 * page may span two pageblocks).
386 		 */
387 	}
388 
389 	/* split_free_page does not map the pages */
390 	map_pages(&freelist);
391 
392 	if (pfn < end_pfn) {
393 		/* Loop terminated early, cleanup. */
394 		release_freepages(&freelist);
395 		return 0;
396 	}
397 
398 	/* We don't use freelists for anything. */
399 	return pfn;
400 }
401 
402 /* Update the number of anon and file isolated pages in the zone */
403 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
404 {
405 	struct page *page;
406 	unsigned int count[2] = { 0, };
407 
408 	list_for_each_entry(page, &cc->migratepages, lru)
409 		count[!!page_is_file_cache(page)]++;
410 
411 	/* If locked we can use the interrupt unsafe versions */
412 	if (locked) {
413 		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
414 		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
415 	} else {
416 		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
417 		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
418 	}
419 }
420 
421 /* Similar to reclaim, but different enough that they don't share logic */
422 static bool too_many_isolated(struct zone *zone)
423 {
424 	unsigned long active, inactive, isolated;
425 
426 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
427 					zone_page_state(zone, NR_INACTIVE_ANON);
428 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
429 					zone_page_state(zone, NR_ACTIVE_ANON);
430 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
431 					zone_page_state(zone, NR_ISOLATED_ANON);
432 
433 	return isolated > (inactive + active) / 2;
434 }
435 
436 /**
437  * isolate_migratepages_range() - isolate all migrate-able pages in range.
438  * @zone:	Zone pages are in.
439  * @cc:		Compaction control structure.
440  * @low_pfn:	The first PFN of the range.
441  * @end_pfn:	The one-past-the-last PFN of the range.
442  * @unevictable: true if it allows to isolate unevictable pages
443  *
444  * Isolate all pages that can be migrated from the range specified by
445  * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
446  * pending), otherwise PFN of the first page that was not scanned
447  * (which may be both less, equal to or more then end_pfn).
448  *
449  * Assumes that cc->migratepages is empty and cc->nr_migratepages is
450  * zero.
451  *
452  * Apart from cc->migratepages and cc->nr_migratetypes this function
453  * does not modify any cc's fields, in particular it does not modify
454  * (or read for that matter) cc->migrate_pfn.
455  */
456 unsigned long
457 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
458 		unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
459 {
460 	unsigned long last_pageblock_nr = 0, pageblock_nr;
461 	unsigned long nr_scanned = 0, nr_isolated = 0;
462 	struct list_head *migratelist = &cc->migratepages;
463 	struct lruvec *lruvec;
464 	unsigned long flags;
465 	bool locked = false;
466 	struct page *page = NULL, *valid_page = NULL;
467 	bool skipped_async_unsuitable = false;
468 	const isolate_mode_t mode = (!cc->sync ? ISOLATE_ASYNC_MIGRATE : 0) |
469 				    (unevictable ? ISOLATE_UNEVICTABLE : 0);
470 
471 	/*
472 	 * Ensure that there are not too many pages isolated from the LRU
473 	 * list by either parallel reclaimers or compaction. If there are,
474 	 * delay for some time until fewer pages are isolated
475 	 */
476 	while (unlikely(too_many_isolated(zone))) {
477 		/* async migration should just abort */
478 		if (!cc->sync)
479 			return 0;
480 
481 		congestion_wait(BLK_RW_ASYNC, HZ/10);
482 
483 		if (fatal_signal_pending(current))
484 			return 0;
485 	}
486 
487 	/* Time to isolate some pages for migration */
488 	cond_resched();
489 	for (; low_pfn < end_pfn; low_pfn++) {
490 		/* give a chance to irqs before checking need_resched() */
491 		if (locked && !(low_pfn % SWAP_CLUSTER_MAX)) {
492 			if (should_release_lock(&zone->lru_lock)) {
493 				spin_unlock_irqrestore(&zone->lru_lock, flags);
494 				locked = false;
495 			}
496 		}
497 
498 		/*
499 		 * migrate_pfn does not necessarily start aligned to a
500 		 * pageblock. Ensure that pfn_valid is called when moving
501 		 * into a new MAX_ORDER_NR_PAGES range in case of large
502 		 * memory holes within the zone
503 		 */
504 		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
505 			if (!pfn_valid(low_pfn)) {
506 				low_pfn += MAX_ORDER_NR_PAGES - 1;
507 				continue;
508 			}
509 		}
510 
511 		if (!pfn_valid_within(low_pfn))
512 			continue;
513 		nr_scanned++;
514 
515 		/*
516 		 * Get the page and ensure the page is within the same zone.
517 		 * See the comment in isolate_freepages about overlapping
518 		 * nodes. It is deliberate that the new zone lock is not taken
519 		 * as memory compaction should not move pages between nodes.
520 		 */
521 		page = pfn_to_page(low_pfn);
522 		if (page_zone(page) != zone)
523 			continue;
524 
525 		if (!valid_page)
526 			valid_page = page;
527 
528 		/* If isolation recently failed, do not retry */
529 		pageblock_nr = low_pfn >> pageblock_order;
530 		if (last_pageblock_nr != pageblock_nr) {
531 			int mt;
532 
533 			last_pageblock_nr = pageblock_nr;
534 			if (!isolation_suitable(cc, page))
535 				goto next_pageblock;
536 
537 			/*
538 			 * For async migration, also only scan in MOVABLE
539 			 * blocks. Async migration is optimistic to see if
540 			 * the minimum amount of work satisfies the allocation
541 			 */
542 			mt = get_pageblock_migratetype(page);
543 			if (!cc->sync && !migrate_async_suitable(mt)) {
544 				cc->finished_update_migrate = true;
545 				skipped_async_unsuitable = true;
546 				goto next_pageblock;
547 			}
548 		}
549 
550 		/*
551 		 * Skip if free. page_order cannot be used without zone->lock
552 		 * as nothing prevents parallel allocations or buddy merging.
553 		 */
554 		if (PageBuddy(page))
555 			continue;
556 
557 		/*
558 		 * Check may be lockless but that's ok as we recheck later.
559 		 * It's possible to migrate LRU pages and balloon pages
560 		 * Skip any other type of page
561 		 */
562 		if (!PageLRU(page)) {
563 			if (unlikely(balloon_page_movable(page))) {
564 				if (locked && balloon_page_isolate(page)) {
565 					/* Successfully isolated */
566 					goto isolate_success;
567 				}
568 			}
569 			continue;
570 		}
571 
572 		/*
573 		 * PageLRU is set. lru_lock normally excludes isolation
574 		 * splitting and collapsing (collapsing has already happened
575 		 * if PageLRU is set) but the lock is not necessarily taken
576 		 * here and it is wasteful to take it just to check transhuge.
577 		 * Check TransHuge without lock and skip the whole pageblock if
578 		 * it's either a transhuge or hugetlbfs page, as calling
579 		 * compound_order() without preventing THP from splitting the
580 		 * page underneath us may return surprising results.
581 		 */
582 		if (PageTransHuge(page)) {
583 			if (!locked)
584 				goto next_pageblock;
585 			low_pfn += (1 << compound_order(page)) - 1;
586 			continue;
587 		}
588 
589 		/*
590 		 * Migration will fail if an anonymous page is pinned in memory,
591 		 * so avoid taking lru_lock and isolating it unnecessarily in an
592 		 * admittedly racy check.
593 		 */
594 		if (!page_mapping(page) &&
595 		    page_count(page) > page_mapcount(page))
596 			continue;
597 
598 		/* Check if it is ok to still hold the lock */
599 		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
600 								locked, cc);
601 		if (!locked || fatal_signal_pending(current))
602 			break;
603 
604 		/* Recheck PageLRU and PageTransHuge under lock */
605 		if (!PageLRU(page))
606 			continue;
607 		if (PageTransHuge(page)) {
608 			low_pfn += (1 << compound_order(page)) - 1;
609 			continue;
610 		}
611 
612 		lruvec = mem_cgroup_page_lruvec(page, zone);
613 
614 		/* Try isolate the page */
615 		if (__isolate_lru_page(page, mode) != 0)
616 			continue;
617 
618 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
619 
620 		/* Successfully isolated */
621 		del_page_from_lru_list(page, lruvec, page_lru(page));
622 
623 isolate_success:
624 		cc->finished_update_migrate = true;
625 		list_add(&page->lru, migratelist);
626 		cc->nr_migratepages++;
627 		nr_isolated++;
628 
629 		/* Avoid isolating too much */
630 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
631 			++low_pfn;
632 			break;
633 		}
634 
635 		continue;
636 
637 next_pageblock:
638 		low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
639 	}
640 
641 	acct_isolated(zone, locked, cc);
642 
643 	if (locked)
644 		spin_unlock_irqrestore(&zone->lru_lock, flags);
645 
646 	/*
647 	 * Update the pageblock-skip information and cached scanner pfn,
648 	 * if the whole pageblock was scanned without isolating any page.
649 	 * This is not done when pageblock was skipped due to being unsuitable
650 	 * for async compaction, so that eventual sync compaction can try.
651 	 */
652 	if (low_pfn == end_pfn && !skipped_async_unsuitable)
653 		update_pageblock_skip(cc, valid_page, nr_isolated, true);
654 
655 	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
656 
657 	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
658 	if (nr_isolated)
659 		count_compact_events(COMPACTISOLATED, nr_isolated);
660 
661 	return low_pfn;
662 }
663 
664 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
665 #ifdef CONFIG_COMPACTION
666 /*
667  * Based on information in the current compact_control, find blocks
668  * suitable for isolating free pages from and then isolate them.
669  */
670 static void isolate_freepages(struct zone *zone,
671 				struct compact_control *cc)
672 {
673 	struct page *page;
674 	unsigned long high_pfn, low_pfn, pfn, z_end_pfn, end_pfn;
675 	int nr_freepages = cc->nr_freepages;
676 	struct list_head *freelist = &cc->freepages;
677 
678 	/*
679 	 * Initialise the free scanner. The starting point is where we last
680 	 * scanned from (or the end of the zone if starting). The low point
681 	 * is the end of the pageblock the migration scanner is using.
682 	 */
683 	pfn = cc->free_pfn;
684 	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
685 
686 	/*
687 	 * Take care that if the migration scanner is at the end of the zone
688 	 * that the free scanner does not accidentally move to the next zone
689 	 * in the next isolation cycle.
690 	 */
691 	high_pfn = min(low_pfn, pfn);
692 
693 	z_end_pfn = zone_end_pfn(zone);
694 
695 	/*
696 	 * Isolate free pages until enough are available to migrate the
697 	 * pages on cc->migratepages. We stop searching if the migrate
698 	 * and free page scanners meet or enough free pages are isolated.
699 	 */
700 	for (; pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
701 					pfn -= pageblock_nr_pages) {
702 		unsigned long isolated;
703 
704 		/*
705 		 * This can iterate a massively long zone without finding any
706 		 * suitable migration targets, so periodically check if we need
707 		 * to schedule.
708 		 */
709 		cond_resched();
710 
711 		if (!pfn_valid(pfn))
712 			continue;
713 
714 		/*
715 		 * Check for overlapping nodes/zones. It's possible on some
716 		 * configurations to have a setup like
717 		 * node0 node1 node0
718 		 * i.e. it's possible that all pages within a zones range of
719 		 * pages do not belong to a single zone.
720 		 */
721 		page = pfn_to_page(pfn);
722 		if (page_zone(page) != zone)
723 			continue;
724 
725 		/* Check the block is suitable for migration */
726 		if (!suitable_migration_target(page))
727 			continue;
728 
729 		/* If isolation recently failed, do not retry */
730 		if (!isolation_suitable(cc, page))
731 			continue;
732 
733 		/* Found a block suitable for isolating free pages from */
734 		isolated = 0;
735 
736 		/*
737 		 * As pfn may not start aligned, pfn+pageblock_nr_page
738 		 * may cross a MAX_ORDER_NR_PAGES boundary and miss
739 		 * a pfn_valid check. Ensure isolate_freepages_block()
740 		 * only scans within a pageblock
741 		 */
742 		end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
743 		end_pfn = min(end_pfn, z_end_pfn);
744 		isolated = isolate_freepages_block(cc, pfn, end_pfn,
745 						   freelist, false);
746 		nr_freepages += isolated;
747 
748 		/*
749 		 * Record the highest PFN we isolated pages from. When next
750 		 * looking for free pages, the search will restart here as
751 		 * page migration may have returned some pages to the allocator
752 		 */
753 		if (isolated) {
754 			cc->finished_update_free = true;
755 			high_pfn = max(high_pfn, pfn);
756 		}
757 	}
758 
759 	/* split_free_page does not map the pages */
760 	map_pages(freelist);
761 
762 	/*
763 	 * If we crossed the migrate scanner, we want to keep it that way
764 	 * so that compact_finished() may detect this
765 	 */
766 	if (pfn < low_pfn)
767 		cc->free_pfn = max(pfn, zone->zone_start_pfn);
768 	else
769 		cc->free_pfn = high_pfn;
770 	cc->nr_freepages = nr_freepages;
771 }
772 
773 /*
774  * This is a migrate-callback that "allocates" freepages by taking pages
775  * from the isolated freelists in the block we are migrating to.
776  */
777 static struct page *compaction_alloc(struct page *migratepage,
778 					unsigned long data,
779 					int **result)
780 {
781 	struct compact_control *cc = (struct compact_control *)data;
782 	struct page *freepage;
783 
784 	/* Isolate free pages if necessary */
785 	if (list_empty(&cc->freepages)) {
786 		isolate_freepages(cc->zone, cc);
787 
788 		if (list_empty(&cc->freepages))
789 			return NULL;
790 	}
791 
792 	freepage = list_entry(cc->freepages.next, struct page, lru);
793 	list_del(&freepage->lru);
794 	cc->nr_freepages--;
795 
796 	return freepage;
797 }
798 
799 /*
800  * We cannot control nr_migratepages and nr_freepages fully when migration is
801  * running as migrate_pages() has no knowledge of compact_control. When
802  * migration is complete, we count the number of pages on the lists by hand.
803  */
804 static void update_nr_listpages(struct compact_control *cc)
805 {
806 	int nr_migratepages = 0;
807 	int nr_freepages = 0;
808 	struct page *page;
809 
810 	list_for_each_entry(page, &cc->migratepages, lru)
811 		nr_migratepages++;
812 	list_for_each_entry(page, &cc->freepages, lru)
813 		nr_freepages++;
814 
815 	cc->nr_migratepages = nr_migratepages;
816 	cc->nr_freepages = nr_freepages;
817 }
818 
819 /* possible outcome of isolate_migratepages */
820 typedef enum {
821 	ISOLATE_ABORT,		/* Abort compaction now */
822 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
823 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
824 } isolate_migrate_t;
825 
826 /*
827  * Isolate all pages that can be migrated from the block pointed to by
828  * the migrate scanner within compact_control.
829  */
830 static isolate_migrate_t isolate_migratepages(struct zone *zone,
831 					struct compact_control *cc)
832 {
833 	unsigned long low_pfn, end_pfn;
834 
835 	/* Do not scan outside zone boundaries */
836 	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
837 
838 	/* Only scan within a pageblock boundary */
839 	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
840 
841 	/* Do not cross the free scanner or scan within a memory hole */
842 	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
843 		cc->migrate_pfn = end_pfn;
844 		return ISOLATE_NONE;
845 	}
846 
847 	/* Perform the isolation */
848 	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
849 	if (!low_pfn || cc->contended)
850 		return ISOLATE_ABORT;
851 
852 	cc->migrate_pfn = low_pfn;
853 
854 	return ISOLATE_SUCCESS;
855 }
856 
857 static int compact_finished(struct zone *zone,
858 			    struct compact_control *cc)
859 {
860 	unsigned int order;
861 	unsigned long watermark;
862 
863 	if (fatal_signal_pending(current))
864 		return COMPACT_PARTIAL;
865 
866 	/* Compaction run completes if the migrate and free scanner meet */
867 	if (cc->free_pfn <= cc->migrate_pfn) {
868 		/* Let the next compaction start anew. */
869 		zone->compact_cached_migrate_pfn = zone->zone_start_pfn;
870 		zone->compact_cached_free_pfn = zone_end_pfn(zone);
871 
872 		/*
873 		 * Mark that the PG_migrate_skip information should be cleared
874 		 * by kswapd when it goes to sleep. kswapd does not set the
875 		 * flag itself as the decision to be clear should be directly
876 		 * based on an allocation request.
877 		 */
878 		if (!current_is_kswapd())
879 			zone->compact_blockskip_flush = true;
880 
881 		return COMPACT_COMPLETE;
882 	}
883 
884 	/*
885 	 * order == -1 is expected when compacting via
886 	 * /proc/sys/vm/compact_memory
887 	 */
888 	if (cc->order == -1)
889 		return COMPACT_CONTINUE;
890 
891 	/* Compaction run is not finished if the watermark is not met */
892 	watermark = low_wmark_pages(zone);
893 	watermark += (1 << cc->order);
894 
895 	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
896 		return COMPACT_CONTINUE;
897 
898 	/* Direct compactor: Is a suitable page free? */
899 	for (order = cc->order; order < MAX_ORDER; order++) {
900 		struct free_area *area = &zone->free_area[order];
901 
902 		/* Job done if page is free of the right migratetype */
903 		if (!list_empty(&area->free_list[cc->migratetype]))
904 			return COMPACT_PARTIAL;
905 
906 		/* Job done if allocation would set block type */
907 		if (cc->order >= pageblock_order && area->nr_free)
908 			return COMPACT_PARTIAL;
909 	}
910 
911 	return COMPACT_CONTINUE;
912 }
913 
914 /*
915  * compaction_suitable: Is this suitable to run compaction on this zone now?
916  * Returns
917  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
918  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
919  *   COMPACT_CONTINUE - If compaction should run now
920  */
921 unsigned long compaction_suitable(struct zone *zone, int order)
922 {
923 	int fragindex;
924 	unsigned long watermark;
925 
926 	/*
927 	 * order == -1 is expected when compacting via
928 	 * /proc/sys/vm/compact_memory
929 	 */
930 	if (order == -1)
931 		return COMPACT_CONTINUE;
932 
933 	/*
934 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
935 	 * This is because during migration, copies of pages need to be
936 	 * allocated and for a short time, the footprint is higher
937 	 */
938 	watermark = low_wmark_pages(zone) + (2UL << order);
939 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
940 		return COMPACT_SKIPPED;
941 
942 	/*
943 	 * fragmentation index determines if allocation failures are due to
944 	 * low memory or external fragmentation
945 	 *
946 	 * index of -1000 implies allocations might succeed depending on
947 	 * watermarks
948 	 * index towards 0 implies failure is due to lack of memory
949 	 * index towards 1000 implies failure is due to fragmentation
950 	 *
951 	 * Only compact if a failure would be due to fragmentation.
952 	 */
953 	fragindex = fragmentation_index(zone, order);
954 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
955 		return COMPACT_SKIPPED;
956 
957 	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
958 	    0, 0))
959 		return COMPACT_PARTIAL;
960 
961 	return COMPACT_CONTINUE;
962 }
963 
964 static int compact_zone(struct zone *zone, struct compact_control *cc)
965 {
966 	int ret;
967 	unsigned long start_pfn = zone->zone_start_pfn;
968 	unsigned long end_pfn = zone_end_pfn(zone);
969 
970 	ret = compaction_suitable(zone, cc->order);
971 	switch (ret) {
972 	case COMPACT_PARTIAL:
973 	case COMPACT_SKIPPED:
974 		/* Compaction is likely to fail */
975 		return ret;
976 	case COMPACT_CONTINUE:
977 		/* Fall through to compaction */
978 		;
979 	}
980 
981 	/*
982 	 * Clear pageblock skip if there were failures recently and compaction
983 	 * is about to be retried after being deferred. kswapd does not do
984 	 * this reset as it'll reset the cached information when going to sleep.
985 	 */
986 	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
987 		__reset_isolation_suitable(zone);
988 
989 	/*
990 	 * Setup to move all movable pages to the end of the zone. Used cached
991 	 * information on where the scanners should start but check that it
992 	 * is initialised by ensuring the values are within zone boundaries.
993 	 */
994 	cc->migrate_pfn = zone->compact_cached_migrate_pfn;
995 	cc->free_pfn = zone->compact_cached_free_pfn;
996 	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
997 		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
998 		zone->compact_cached_free_pfn = cc->free_pfn;
999 	}
1000 	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1001 		cc->migrate_pfn = start_pfn;
1002 		zone->compact_cached_migrate_pfn = cc->migrate_pfn;
1003 	}
1004 
1005 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
1006 
1007 	migrate_prep_local();
1008 
1009 	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1010 		unsigned long nr_migrate, nr_remaining;
1011 		int err;
1012 
1013 		switch (isolate_migratepages(zone, cc)) {
1014 		case ISOLATE_ABORT:
1015 			ret = COMPACT_PARTIAL;
1016 			putback_movable_pages(&cc->migratepages);
1017 			cc->nr_migratepages = 0;
1018 			goto out;
1019 		case ISOLATE_NONE:
1020 			continue;
1021 		case ISOLATE_SUCCESS:
1022 			;
1023 		}
1024 
1025 		nr_migrate = cc->nr_migratepages;
1026 		err = migrate_pages(&cc->migratepages, compaction_alloc,
1027 				(unsigned long)cc,
1028 				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
1029 				MR_COMPACTION);
1030 		update_nr_listpages(cc);
1031 		nr_remaining = cc->nr_migratepages;
1032 
1033 		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
1034 						nr_remaining);
1035 
1036 		/* Release isolated pages not migrated */
1037 		if (err) {
1038 			putback_movable_pages(&cc->migratepages);
1039 			cc->nr_migratepages = 0;
1040 			/*
1041 			 * migrate_pages() may return -ENOMEM when scanners meet
1042 			 * and we want compact_finished() to detect it
1043 			 */
1044 			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1045 				ret = COMPACT_PARTIAL;
1046 				goto out;
1047 			}
1048 		}
1049 	}
1050 
1051 out:
1052 	/* Release free pages and check accounting */
1053 	cc->nr_freepages -= release_freepages(&cc->freepages);
1054 	VM_BUG_ON(cc->nr_freepages != 0);
1055 
1056 	trace_mm_compaction_end(ret);
1057 
1058 	return ret;
1059 }
1060 
1061 static unsigned long compact_zone_order(struct zone *zone,
1062 				 int order, gfp_t gfp_mask,
1063 				 bool sync, bool *contended)
1064 {
1065 	unsigned long ret;
1066 	struct compact_control cc = {
1067 		.nr_freepages = 0,
1068 		.nr_migratepages = 0,
1069 		.order = order,
1070 		.migratetype = allocflags_to_migratetype(gfp_mask),
1071 		.zone = zone,
1072 		.sync = sync,
1073 	};
1074 	INIT_LIST_HEAD(&cc.freepages);
1075 	INIT_LIST_HEAD(&cc.migratepages);
1076 
1077 	ret = compact_zone(zone, &cc);
1078 
1079 	VM_BUG_ON(!list_empty(&cc.freepages));
1080 	VM_BUG_ON(!list_empty(&cc.migratepages));
1081 
1082 	*contended = cc.contended;
1083 	return ret;
1084 }
1085 
1086 int sysctl_extfrag_threshold = 500;
1087 
1088 /**
1089  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1090  * @zonelist: The zonelist used for the current allocation
1091  * @order: The order of the current allocation
1092  * @gfp_mask: The GFP mask of the current allocation
1093  * @nodemask: The allowed nodes to allocate from
1094  * @sync: Whether migration is synchronous or not
1095  * @contended: Return value that is true if compaction was aborted due to lock contention
1096  * @page: Optionally capture a free page of the requested order during compaction
1097  *
1098  * This is the main entry point for direct page compaction.
1099  */
1100 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1101 			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1102 			bool sync, bool *contended)
1103 {
1104 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1105 	int may_enter_fs = gfp_mask & __GFP_FS;
1106 	int may_perform_io = gfp_mask & __GFP_IO;
1107 	struct zoneref *z;
1108 	struct zone *zone;
1109 	int rc = COMPACT_SKIPPED;
1110 	int alloc_flags = 0;
1111 
1112 	/* Check if the GFP flags allow compaction */
1113 	if (!order || !may_enter_fs || !may_perform_io)
1114 		return rc;
1115 
1116 	count_compact_event(COMPACTSTALL);
1117 
1118 #ifdef CONFIG_CMA
1119 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1120 		alloc_flags |= ALLOC_CMA;
1121 #endif
1122 	/* Compact each zone in the list */
1123 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1124 								nodemask) {
1125 		int status;
1126 
1127 		status = compact_zone_order(zone, order, gfp_mask, sync,
1128 						contended);
1129 		rc = max(status, rc);
1130 
1131 		/* If a normal allocation would succeed, stop compacting */
1132 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1133 				      alloc_flags))
1134 			break;
1135 	}
1136 
1137 	return rc;
1138 }
1139 
1140 
1141 /* Compact all zones within a node */
1142 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1143 {
1144 	int zoneid;
1145 	struct zone *zone;
1146 
1147 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1148 
1149 		zone = &pgdat->node_zones[zoneid];
1150 		if (!populated_zone(zone))
1151 			continue;
1152 
1153 		cc->nr_freepages = 0;
1154 		cc->nr_migratepages = 0;
1155 		cc->zone = zone;
1156 		INIT_LIST_HEAD(&cc->freepages);
1157 		INIT_LIST_HEAD(&cc->migratepages);
1158 
1159 		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1160 			compact_zone(zone, cc);
1161 
1162 		if (cc->order > 0) {
1163 			if (zone_watermark_ok(zone, cc->order,
1164 						low_wmark_pages(zone), 0, 0))
1165 				compaction_defer_reset(zone, cc->order, false);
1166 			/* Currently async compaction is never deferred. */
1167 			else if (cc->sync)
1168 				defer_compaction(zone, cc->order);
1169 		}
1170 
1171 		VM_BUG_ON(!list_empty(&cc->freepages));
1172 		VM_BUG_ON(!list_empty(&cc->migratepages));
1173 	}
1174 }
1175 
1176 void compact_pgdat(pg_data_t *pgdat, int order)
1177 {
1178 	struct compact_control cc = {
1179 		.order = order,
1180 		.sync = false,
1181 	};
1182 
1183 	if (!order)
1184 		return;
1185 
1186 	__compact_pgdat(pgdat, &cc);
1187 }
1188 
1189 static void compact_node(int nid)
1190 {
1191 	struct compact_control cc = {
1192 		.order = -1,
1193 		.sync = true,
1194 		.ignore_skip_hint = true,
1195 	};
1196 
1197 	__compact_pgdat(NODE_DATA(nid), &cc);
1198 }
1199 
1200 /* Compact all nodes in the system */
1201 static void compact_nodes(void)
1202 {
1203 	int nid;
1204 
1205 	/* Flush pending updates to the LRU lists */
1206 	lru_add_drain_all();
1207 
1208 	for_each_online_node(nid)
1209 		compact_node(nid);
1210 }
1211 
1212 /* The written value is actually unused, all memory is compacted */
1213 int sysctl_compact_memory;
1214 
1215 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1216 int sysctl_compaction_handler(struct ctl_table *table, int write,
1217 			void __user *buffer, size_t *length, loff_t *ppos)
1218 {
1219 	if (write)
1220 		compact_nodes();
1221 
1222 	return 0;
1223 }
1224 
1225 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1226 			void __user *buffer, size_t *length, loff_t *ppos)
1227 {
1228 	proc_dointvec_minmax(table, write, buffer, length, ppos);
1229 
1230 	return 0;
1231 }
1232 
1233 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1234 static ssize_t sysfs_compact_node(struct device *dev,
1235 			struct device_attribute *attr,
1236 			const char *buf, size_t count)
1237 {
1238 	int nid = dev->id;
1239 
1240 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1241 		/* Flush pending updates to the LRU lists */
1242 		lru_add_drain_all();
1243 
1244 		compact_node(nid);
1245 	}
1246 
1247 	return count;
1248 }
1249 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1250 
1251 int compaction_register_node(struct node *node)
1252 {
1253 	return device_create_file(&node->dev, &dev_attr_compact);
1254 }
1255 
1256 void compaction_unregister_node(struct node *node)
1257 {
1258 	return device_remove_file(&node->dev, &dev_attr_compact);
1259 }
1260 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1261 
1262 #endif /* CONFIG_COMPACTION */
1263