1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include "internal.h" 26 27 #ifdef CONFIG_COMPACTION 28 static inline void count_compact_event(enum vm_event_item item) 29 { 30 count_vm_event(item); 31 } 32 33 static inline void count_compact_events(enum vm_event_item item, long delta) 34 { 35 count_vm_events(item, delta); 36 } 37 #else 38 #define count_compact_event(item) do { } while (0) 39 #define count_compact_events(item, delta) do { } while (0) 40 #endif 41 42 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 43 44 #define CREATE_TRACE_POINTS 45 #include <trace/events/compaction.h> 46 47 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 48 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 49 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 50 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 51 52 static unsigned long release_freepages(struct list_head *freelist) 53 { 54 struct page *page, *next; 55 unsigned long high_pfn = 0; 56 57 list_for_each_entry_safe(page, next, freelist, lru) { 58 unsigned long pfn = page_to_pfn(page); 59 list_del(&page->lru); 60 __free_page(page); 61 if (pfn > high_pfn) 62 high_pfn = pfn; 63 } 64 65 return high_pfn; 66 } 67 68 static void map_pages(struct list_head *list) 69 { 70 unsigned int i, order, nr_pages; 71 struct page *page, *next; 72 LIST_HEAD(tmp_list); 73 74 list_for_each_entry_safe(page, next, list, lru) { 75 list_del(&page->lru); 76 77 order = page_private(page); 78 nr_pages = 1 << order; 79 80 post_alloc_hook(page, order, __GFP_MOVABLE); 81 if (order) 82 split_page(page, order); 83 84 for (i = 0; i < nr_pages; i++) { 85 list_add(&page->lru, &tmp_list); 86 page++; 87 } 88 } 89 90 list_splice(&tmp_list, list); 91 } 92 93 #ifdef CONFIG_COMPACTION 94 95 int PageMovable(struct page *page) 96 { 97 struct address_space *mapping; 98 99 VM_BUG_ON_PAGE(!PageLocked(page), page); 100 if (!__PageMovable(page)) 101 return 0; 102 103 mapping = page_mapping(page); 104 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 105 return 1; 106 107 return 0; 108 } 109 EXPORT_SYMBOL(PageMovable); 110 111 void __SetPageMovable(struct page *page, struct address_space *mapping) 112 { 113 VM_BUG_ON_PAGE(!PageLocked(page), page); 114 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 115 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 116 } 117 EXPORT_SYMBOL(__SetPageMovable); 118 119 void __ClearPageMovable(struct page *page) 120 { 121 VM_BUG_ON_PAGE(!PageLocked(page), page); 122 VM_BUG_ON_PAGE(!PageMovable(page), page); 123 /* 124 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 125 * flag so that VM can catch up released page by driver after isolation. 126 * With it, VM migration doesn't try to put it back. 127 */ 128 page->mapping = (void *)((unsigned long)page->mapping & 129 PAGE_MAPPING_MOVABLE); 130 } 131 EXPORT_SYMBOL(__ClearPageMovable); 132 133 /* Do not skip compaction more than 64 times */ 134 #define COMPACT_MAX_DEFER_SHIFT 6 135 136 /* 137 * Compaction is deferred when compaction fails to result in a page 138 * allocation success. 1 << compact_defer_limit compactions are skipped up 139 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 140 */ 141 void defer_compaction(struct zone *zone, int order) 142 { 143 zone->compact_considered = 0; 144 zone->compact_defer_shift++; 145 146 if (order < zone->compact_order_failed) 147 zone->compact_order_failed = order; 148 149 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 150 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 151 152 trace_mm_compaction_defer_compaction(zone, order); 153 } 154 155 /* Returns true if compaction should be skipped this time */ 156 bool compaction_deferred(struct zone *zone, int order) 157 { 158 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 159 160 if (order < zone->compact_order_failed) 161 return false; 162 163 /* Avoid possible overflow */ 164 if (++zone->compact_considered > defer_limit) 165 zone->compact_considered = defer_limit; 166 167 if (zone->compact_considered >= defer_limit) 168 return false; 169 170 trace_mm_compaction_deferred(zone, order); 171 172 return true; 173 } 174 175 /* 176 * Update defer tracking counters after successful compaction of given order, 177 * which means an allocation either succeeded (alloc_success == true) or is 178 * expected to succeed. 179 */ 180 void compaction_defer_reset(struct zone *zone, int order, 181 bool alloc_success) 182 { 183 if (alloc_success) { 184 zone->compact_considered = 0; 185 zone->compact_defer_shift = 0; 186 } 187 if (order >= zone->compact_order_failed) 188 zone->compact_order_failed = order + 1; 189 190 trace_mm_compaction_defer_reset(zone, order); 191 } 192 193 /* Returns true if restarting compaction after many failures */ 194 bool compaction_restarting(struct zone *zone, int order) 195 { 196 if (order < zone->compact_order_failed) 197 return false; 198 199 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 200 zone->compact_considered >= 1UL << zone->compact_defer_shift; 201 } 202 203 /* Returns true if the pageblock should be scanned for pages to isolate. */ 204 static inline bool isolation_suitable(struct compact_control *cc, 205 struct page *page) 206 { 207 if (cc->ignore_skip_hint) 208 return true; 209 210 return !get_pageblock_skip(page); 211 } 212 213 static void reset_cached_positions(struct zone *zone) 214 { 215 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 216 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 217 zone->compact_cached_free_pfn = 218 pageblock_start_pfn(zone_end_pfn(zone) - 1); 219 } 220 221 /* 222 * Compound pages of >= pageblock_order should consistenly be skipped until 223 * released. It is always pointless to compact pages of such order (if they are 224 * migratable), and the pageblocks they occupy cannot contain any free pages. 225 */ 226 static bool pageblock_skip_persistent(struct page *page) 227 { 228 if (!PageCompound(page)) 229 return false; 230 231 page = compound_head(page); 232 233 if (compound_order(page) >= pageblock_order) 234 return true; 235 236 return false; 237 } 238 239 /* 240 * This function is called to clear all cached information on pageblocks that 241 * should be skipped for page isolation when the migrate and free page scanner 242 * meet. 243 */ 244 static void __reset_isolation_suitable(struct zone *zone) 245 { 246 unsigned long start_pfn = zone->zone_start_pfn; 247 unsigned long end_pfn = zone_end_pfn(zone); 248 unsigned long pfn; 249 250 zone->compact_blockskip_flush = false; 251 252 /* Walk the zone and mark every pageblock as suitable for isolation */ 253 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 254 struct page *page; 255 256 cond_resched(); 257 258 page = pfn_to_online_page(pfn); 259 if (!page) 260 continue; 261 if (zone != page_zone(page)) 262 continue; 263 if (pageblock_skip_persistent(page)) 264 continue; 265 266 clear_pageblock_skip(page); 267 } 268 269 reset_cached_positions(zone); 270 } 271 272 void reset_isolation_suitable(pg_data_t *pgdat) 273 { 274 int zoneid; 275 276 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 277 struct zone *zone = &pgdat->node_zones[zoneid]; 278 if (!populated_zone(zone)) 279 continue; 280 281 /* Only flush if a full compaction finished recently */ 282 if (zone->compact_blockskip_flush) 283 __reset_isolation_suitable(zone); 284 } 285 } 286 287 /* 288 * If no pages were isolated then mark this pageblock to be skipped in the 289 * future. The information is later cleared by __reset_isolation_suitable(). 290 */ 291 static void update_pageblock_skip(struct compact_control *cc, 292 struct page *page, unsigned long nr_isolated, 293 bool migrate_scanner) 294 { 295 struct zone *zone = cc->zone; 296 unsigned long pfn; 297 298 if (cc->no_set_skip_hint) 299 return; 300 301 if (!page) 302 return; 303 304 if (nr_isolated) 305 return; 306 307 set_pageblock_skip(page); 308 309 pfn = page_to_pfn(page); 310 311 /* Update where async and sync compaction should restart */ 312 if (migrate_scanner) { 313 if (pfn > zone->compact_cached_migrate_pfn[0]) 314 zone->compact_cached_migrate_pfn[0] = pfn; 315 if (cc->mode != MIGRATE_ASYNC && 316 pfn > zone->compact_cached_migrate_pfn[1]) 317 zone->compact_cached_migrate_pfn[1] = pfn; 318 } else { 319 if (pfn < zone->compact_cached_free_pfn) 320 zone->compact_cached_free_pfn = pfn; 321 } 322 } 323 #else 324 static inline bool isolation_suitable(struct compact_control *cc, 325 struct page *page) 326 { 327 return true; 328 } 329 330 static inline bool pageblock_skip_persistent(struct page *page) 331 { 332 return false; 333 } 334 335 static inline void update_pageblock_skip(struct compact_control *cc, 336 struct page *page, unsigned long nr_isolated, 337 bool migrate_scanner) 338 { 339 } 340 #endif /* CONFIG_COMPACTION */ 341 342 /* 343 * Compaction requires the taking of some coarse locks that are potentially 344 * very heavily contended. For async compaction, back out if the lock cannot 345 * be taken immediately. For sync compaction, spin on the lock if needed. 346 * 347 * Returns true if the lock is held 348 * Returns false if the lock is not held and compaction should abort 349 */ 350 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags, 351 struct compact_control *cc) 352 { 353 if (cc->mode == MIGRATE_ASYNC) { 354 if (!spin_trylock_irqsave(lock, *flags)) { 355 cc->contended = true; 356 return false; 357 } 358 } else { 359 spin_lock_irqsave(lock, *flags); 360 } 361 362 return true; 363 } 364 365 /* 366 * Compaction requires the taking of some coarse locks that are potentially 367 * very heavily contended. The lock should be periodically unlocked to avoid 368 * having disabled IRQs for a long time, even when there is nobody waiting on 369 * the lock. It might also be that allowing the IRQs will result in 370 * need_resched() becoming true. If scheduling is needed, async compaction 371 * aborts. Sync compaction schedules. 372 * Either compaction type will also abort if a fatal signal is pending. 373 * In either case if the lock was locked, it is dropped and not regained. 374 * 375 * Returns true if compaction should abort due to fatal signal pending, or 376 * async compaction due to need_resched() 377 * Returns false when compaction can continue (sync compaction might have 378 * scheduled) 379 */ 380 static bool compact_unlock_should_abort(spinlock_t *lock, 381 unsigned long flags, bool *locked, struct compact_control *cc) 382 { 383 if (*locked) { 384 spin_unlock_irqrestore(lock, flags); 385 *locked = false; 386 } 387 388 if (fatal_signal_pending(current)) { 389 cc->contended = true; 390 return true; 391 } 392 393 if (need_resched()) { 394 if (cc->mode == MIGRATE_ASYNC) { 395 cc->contended = true; 396 return true; 397 } 398 cond_resched(); 399 } 400 401 return false; 402 } 403 404 /* 405 * Aside from avoiding lock contention, compaction also periodically checks 406 * need_resched() and either schedules in sync compaction or aborts async 407 * compaction. This is similar to what compact_unlock_should_abort() does, but 408 * is used where no lock is concerned. 409 * 410 * Returns false when no scheduling was needed, or sync compaction scheduled. 411 * Returns true when async compaction should abort. 412 */ 413 static inline bool compact_should_abort(struct compact_control *cc) 414 { 415 /* async compaction aborts if contended */ 416 if (need_resched()) { 417 if (cc->mode == MIGRATE_ASYNC) { 418 cc->contended = true; 419 return true; 420 } 421 422 cond_resched(); 423 } 424 425 return false; 426 } 427 428 /* 429 * Isolate free pages onto a private freelist. If @strict is true, will abort 430 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 431 * (even though it may still end up isolating some pages). 432 */ 433 static unsigned long isolate_freepages_block(struct compact_control *cc, 434 unsigned long *start_pfn, 435 unsigned long end_pfn, 436 struct list_head *freelist, 437 bool strict) 438 { 439 int nr_scanned = 0, total_isolated = 0; 440 struct page *cursor, *valid_page = NULL; 441 unsigned long flags = 0; 442 bool locked = false; 443 unsigned long blockpfn = *start_pfn; 444 unsigned int order; 445 446 cursor = pfn_to_page(blockpfn); 447 448 /* Isolate free pages. */ 449 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 450 int isolated; 451 struct page *page = cursor; 452 453 /* 454 * Periodically drop the lock (if held) regardless of its 455 * contention, to give chance to IRQs. Abort if fatal signal 456 * pending or async compaction detects need_resched() 457 */ 458 if (!(blockpfn % SWAP_CLUSTER_MAX) 459 && compact_unlock_should_abort(&cc->zone->lock, flags, 460 &locked, cc)) 461 break; 462 463 nr_scanned++; 464 if (!pfn_valid_within(blockpfn)) 465 goto isolate_fail; 466 467 if (!valid_page) 468 valid_page = page; 469 470 /* 471 * For compound pages such as THP and hugetlbfs, we can save 472 * potentially a lot of iterations if we skip them at once. 473 * The check is racy, but we can consider only valid values 474 * and the only danger is skipping too much. 475 */ 476 if (PageCompound(page)) { 477 const unsigned int order = compound_order(page); 478 479 if (likely(order < MAX_ORDER)) { 480 blockpfn += (1UL << order) - 1; 481 cursor += (1UL << order) - 1; 482 } 483 goto isolate_fail; 484 } 485 486 if (!PageBuddy(page)) 487 goto isolate_fail; 488 489 /* 490 * If we already hold the lock, we can skip some rechecking. 491 * Note that if we hold the lock now, checked_pageblock was 492 * already set in some previous iteration (or strict is true), 493 * so it is correct to skip the suitable migration target 494 * recheck as well. 495 */ 496 if (!locked) { 497 /* 498 * The zone lock must be held to isolate freepages. 499 * Unfortunately this is a very coarse lock and can be 500 * heavily contended if there are parallel allocations 501 * or parallel compactions. For async compaction do not 502 * spin on the lock and we acquire the lock as late as 503 * possible. 504 */ 505 locked = compact_trylock_irqsave(&cc->zone->lock, 506 &flags, cc); 507 if (!locked) 508 break; 509 510 /* Recheck this is a buddy page under lock */ 511 if (!PageBuddy(page)) 512 goto isolate_fail; 513 } 514 515 /* Found a free page, will break it into order-0 pages */ 516 order = page_order(page); 517 isolated = __isolate_free_page(page, order); 518 if (!isolated) 519 break; 520 set_page_private(page, order); 521 522 total_isolated += isolated; 523 cc->nr_freepages += isolated; 524 list_add_tail(&page->lru, freelist); 525 526 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 527 blockpfn += isolated; 528 break; 529 } 530 /* Advance to the end of split page */ 531 blockpfn += isolated - 1; 532 cursor += isolated - 1; 533 continue; 534 535 isolate_fail: 536 if (strict) 537 break; 538 else 539 continue; 540 541 } 542 543 if (locked) 544 spin_unlock_irqrestore(&cc->zone->lock, flags); 545 546 /* 547 * There is a tiny chance that we have read bogus compound_order(), 548 * so be careful to not go outside of the pageblock. 549 */ 550 if (unlikely(blockpfn > end_pfn)) 551 blockpfn = end_pfn; 552 553 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 554 nr_scanned, total_isolated); 555 556 /* Record how far we have got within the block */ 557 *start_pfn = blockpfn; 558 559 /* 560 * If strict isolation is requested by CMA then check that all the 561 * pages requested were isolated. If there were any failures, 0 is 562 * returned and CMA will fail. 563 */ 564 if (strict && blockpfn < end_pfn) 565 total_isolated = 0; 566 567 /* Update the pageblock-skip if the whole pageblock was scanned */ 568 if (blockpfn == end_pfn) 569 update_pageblock_skip(cc, valid_page, total_isolated, false); 570 571 cc->total_free_scanned += nr_scanned; 572 if (total_isolated) 573 count_compact_events(COMPACTISOLATED, total_isolated); 574 return total_isolated; 575 } 576 577 /** 578 * isolate_freepages_range() - isolate free pages. 579 * @start_pfn: The first PFN to start isolating. 580 * @end_pfn: The one-past-last PFN. 581 * 582 * Non-free pages, invalid PFNs, or zone boundaries within the 583 * [start_pfn, end_pfn) range are considered errors, cause function to 584 * undo its actions and return zero. 585 * 586 * Otherwise, function returns one-past-the-last PFN of isolated page 587 * (which may be greater then end_pfn if end fell in a middle of 588 * a free page). 589 */ 590 unsigned long 591 isolate_freepages_range(struct compact_control *cc, 592 unsigned long start_pfn, unsigned long end_pfn) 593 { 594 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 595 LIST_HEAD(freelist); 596 597 pfn = start_pfn; 598 block_start_pfn = pageblock_start_pfn(pfn); 599 if (block_start_pfn < cc->zone->zone_start_pfn) 600 block_start_pfn = cc->zone->zone_start_pfn; 601 block_end_pfn = pageblock_end_pfn(pfn); 602 603 for (; pfn < end_pfn; pfn += isolated, 604 block_start_pfn = block_end_pfn, 605 block_end_pfn += pageblock_nr_pages) { 606 /* Protect pfn from changing by isolate_freepages_block */ 607 unsigned long isolate_start_pfn = pfn; 608 609 block_end_pfn = min(block_end_pfn, end_pfn); 610 611 /* 612 * pfn could pass the block_end_pfn if isolated freepage 613 * is more than pageblock order. In this case, we adjust 614 * scanning range to right one. 615 */ 616 if (pfn >= block_end_pfn) { 617 block_start_pfn = pageblock_start_pfn(pfn); 618 block_end_pfn = pageblock_end_pfn(pfn); 619 block_end_pfn = min(block_end_pfn, end_pfn); 620 } 621 622 if (!pageblock_pfn_to_page(block_start_pfn, 623 block_end_pfn, cc->zone)) 624 break; 625 626 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 627 block_end_pfn, &freelist, true); 628 629 /* 630 * In strict mode, isolate_freepages_block() returns 0 if 631 * there are any holes in the block (ie. invalid PFNs or 632 * non-free pages). 633 */ 634 if (!isolated) 635 break; 636 637 /* 638 * If we managed to isolate pages, it is always (1 << n) * 639 * pageblock_nr_pages for some non-negative n. (Max order 640 * page may span two pageblocks). 641 */ 642 } 643 644 /* __isolate_free_page() does not map the pages */ 645 map_pages(&freelist); 646 647 if (pfn < end_pfn) { 648 /* Loop terminated early, cleanup. */ 649 release_freepages(&freelist); 650 return 0; 651 } 652 653 /* We don't use freelists for anything. */ 654 return pfn; 655 } 656 657 /* Similar to reclaim, but different enough that they don't share logic */ 658 static bool too_many_isolated(struct zone *zone) 659 { 660 unsigned long active, inactive, isolated; 661 662 inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) + 663 node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON); 664 active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) + 665 node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON); 666 isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) + 667 node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON); 668 669 return isolated > (inactive + active) / 2; 670 } 671 672 /** 673 * isolate_migratepages_block() - isolate all migrate-able pages within 674 * a single pageblock 675 * @cc: Compaction control structure. 676 * @low_pfn: The first PFN to isolate 677 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 678 * @isolate_mode: Isolation mode to be used. 679 * 680 * Isolate all pages that can be migrated from the range specified by 681 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 682 * Returns zero if there is a fatal signal pending, otherwise PFN of the 683 * first page that was not scanned (which may be both less, equal to or more 684 * than end_pfn). 685 * 686 * The pages are isolated on cc->migratepages list (not required to be empty), 687 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 688 * is neither read nor updated. 689 */ 690 static unsigned long 691 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 692 unsigned long end_pfn, isolate_mode_t isolate_mode) 693 { 694 struct zone *zone = cc->zone; 695 unsigned long nr_scanned = 0, nr_isolated = 0; 696 struct lruvec *lruvec; 697 unsigned long flags = 0; 698 bool locked = false; 699 struct page *page = NULL, *valid_page = NULL; 700 unsigned long start_pfn = low_pfn; 701 bool skip_on_failure = false; 702 unsigned long next_skip_pfn = 0; 703 704 /* 705 * Ensure that there are not too many pages isolated from the LRU 706 * list by either parallel reclaimers or compaction. If there are, 707 * delay for some time until fewer pages are isolated 708 */ 709 while (unlikely(too_many_isolated(zone))) { 710 /* async migration should just abort */ 711 if (cc->mode == MIGRATE_ASYNC) 712 return 0; 713 714 congestion_wait(BLK_RW_ASYNC, HZ/10); 715 716 if (fatal_signal_pending(current)) 717 return 0; 718 } 719 720 if (compact_should_abort(cc)) 721 return 0; 722 723 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 724 skip_on_failure = true; 725 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 726 } 727 728 /* Time to isolate some pages for migration */ 729 for (; low_pfn < end_pfn; low_pfn++) { 730 731 if (skip_on_failure && low_pfn >= next_skip_pfn) { 732 /* 733 * We have isolated all migration candidates in the 734 * previous order-aligned block, and did not skip it due 735 * to failure. We should migrate the pages now and 736 * hopefully succeed compaction. 737 */ 738 if (nr_isolated) 739 break; 740 741 /* 742 * We failed to isolate in the previous order-aligned 743 * block. Set the new boundary to the end of the 744 * current block. Note we can't simply increase 745 * next_skip_pfn by 1 << order, as low_pfn might have 746 * been incremented by a higher number due to skipping 747 * a compound or a high-order buddy page in the 748 * previous loop iteration. 749 */ 750 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 751 } 752 753 /* 754 * Periodically drop the lock (if held) regardless of its 755 * contention, to give chance to IRQs. Abort async compaction 756 * if contended. 757 */ 758 if (!(low_pfn % SWAP_CLUSTER_MAX) 759 && compact_unlock_should_abort(zone_lru_lock(zone), flags, 760 &locked, cc)) 761 break; 762 763 if (!pfn_valid_within(low_pfn)) 764 goto isolate_fail; 765 nr_scanned++; 766 767 page = pfn_to_page(low_pfn); 768 769 if (!valid_page) 770 valid_page = page; 771 772 /* 773 * Skip if free. We read page order here without zone lock 774 * which is generally unsafe, but the race window is small and 775 * the worst thing that can happen is that we skip some 776 * potential isolation targets. 777 */ 778 if (PageBuddy(page)) { 779 unsigned long freepage_order = page_order_unsafe(page); 780 781 /* 782 * Without lock, we cannot be sure that what we got is 783 * a valid page order. Consider only values in the 784 * valid order range to prevent low_pfn overflow. 785 */ 786 if (freepage_order > 0 && freepage_order < MAX_ORDER) 787 low_pfn += (1UL << freepage_order) - 1; 788 continue; 789 } 790 791 /* 792 * Regardless of being on LRU, compound pages such as THP and 793 * hugetlbfs are not to be compacted. We can potentially save 794 * a lot of iterations if we skip them at once. The check is 795 * racy, but we can consider only valid values and the only 796 * danger is skipping too much. 797 */ 798 if (PageCompound(page)) { 799 const unsigned int order = compound_order(page); 800 801 if (likely(order < MAX_ORDER)) 802 low_pfn += (1UL << order) - 1; 803 goto isolate_fail; 804 } 805 806 /* 807 * Check may be lockless but that's ok as we recheck later. 808 * It's possible to migrate LRU and non-lru movable pages. 809 * Skip any other type of page 810 */ 811 if (!PageLRU(page)) { 812 /* 813 * __PageMovable can return false positive so we need 814 * to verify it under page_lock. 815 */ 816 if (unlikely(__PageMovable(page)) && 817 !PageIsolated(page)) { 818 if (locked) { 819 spin_unlock_irqrestore(zone_lru_lock(zone), 820 flags); 821 locked = false; 822 } 823 824 if (!isolate_movable_page(page, isolate_mode)) 825 goto isolate_success; 826 } 827 828 goto isolate_fail; 829 } 830 831 /* 832 * Migration will fail if an anonymous page is pinned in memory, 833 * so avoid taking lru_lock and isolating it unnecessarily in an 834 * admittedly racy check. 835 */ 836 if (!page_mapping(page) && 837 page_count(page) > page_mapcount(page)) 838 goto isolate_fail; 839 840 /* 841 * Only allow to migrate anonymous pages in GFP_NOFS context 842 * because those do not depend on fs locks. 843 */ 844 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page)) 845 goto isolate_fail; 846 847 /* If we already hold the lock, we can skip some rechecking */ 848 if (!locked) { 849 locked = compact_trylock_irqsave(zone_lru_lock(zone), 850 &flags, cc); 851 if (!locked) 852 break; 853 854 /* Recheck PageLRU and PageCompound under lock */ 855 if (!PageLRU(page)) 856 goto isolate_fail; 857 858 /* 859 * Page become compound since the non-locked check, 860 * and it's on LRU. It can only be a THP so the order 861 * is safe to read and it's 0 for tail pages. 862 */ 863 if (unlikely(PageCompound(page))) { 864 low_pfn += (1UL << compound_order(page)) - 1; 865 goto isolate_fail; 866 } 867 } 868 869 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 870 871 /* Try isolate the page */ 872 if (__isolate_lru_page(page, isolate_mode) != 0) 873 goto isolate_fail; 874 875 VM_BUG_ON_PAGE(PageCompound(page), page); 876 877 /* Successfully isolated */ 878 del_page_from_lru_list(page, lruvec, page_lru(page)); 879 inc_node_page_state(page, 880 NR_ISOLATED_ANON + page_is_file_cache(page)); 881 882 isolate_success: 883 list_add(&page->lru, &cc->migratepages); 884 cc->nr_migratepages++; 885 nr_isolated++; 886 887 /* 888 * Record where we could have freed pages by migration and not 889 * yet flushed them to buddy allocator. 890 * - this is the lowest page that was isolated and likely be 891 * then freed by migration. 892 */ 893 if (!cc->last_migrated_pfn) 894 cc->last_migrated_pfn = low_pfn; 895 896 /* Avoid isolating too much */ 897 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 898 ++low_pfn; 899 break; 900 } 901 902 continue; 903 isolate_fail: 904 if (!skip_on_failure) 905 continue; 906 907 /* 908 * We have isolated some pages, but then failed. Release them 909 * instead of migrating, as we cannot form the cc->order buddy 910 * page anyway. 911 */ 912 if (nr_isolated) { 913 if (locked) { 914 spin_unlock_irqrestore(zone_lru_lock(zone), flags); 915 locked = false; 916 } 917 putback_movable_pages(&cc->migratepages); 918 cc->nr_migratepages = 0; 919 cc->last_migrated_pfn = 0; 920 nr_isolated = 0; 921 } 922 923 if (low_pfn < next_skip_pfn) { 924 low_pfn = next_skip_pfn - 1; 925 /* 926 * The check near the loop beginning would have updated 927 * next_skip_pfn too, but this is a bit simpler. 928 */ 929 next_skip_pfn += 1UL << cc->order; 930 } 931 } 932 933 /* 934 * The PageBuddy() check could have potentially brought us outside 935 * the range to be scanned. 936 */ 937 if (unlikely(low_pfn > end_pfn)) 938 low_pfn = end_pfn; 939 940 if (locked) 941 spin_unlock_irqrestore(zone_lru_lock(zone), flags); 942 943 /* 944 * Update the pageblock-skip information and cached scanner pfn, 945 * if the whole pageblock was scanned without isolating any page. 946 */ 947 if (low_pfn == end_pfn) 948 update_pageblock_skip(cc, valid_page, nr_isolated, true); 949 950 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 951 nr_scanned, nr_isolated); 952 953 cc->total_migrate_scanned += nr_scanned; 954 if (nr_isolated) 955 count_compact_events(COMPACTISOLATED, nr_isolated); 956 957 return low_pfn; 958 } 959 960 /** 961 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 962 * @cc: Compaction control structure. 963 * @start_pfn: The first PFN to start isolating. 964 * @end_pfn: The one-past-last PFN. 965 * 966 * Returns zero if isolation fails fatally due to e.g. pending signal. 967 * Otherwise, function returns one-past-the-last PFN of isolated page 968 * (which may be greater than end_pfn if end fell in a middle of a THP page). 969 */ 970 unsigned long 971 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 972 unsigned long end_pfn) 973 { 974 unsigned long pfn, block_start_pfn, block_end_pfn; 975 976 /* Scan block by block. First and last block may be incomplete */ 977 pfn = start_pfn; 978 block_start_pfn = pageblock_start_pfn(pfn); 979 if (block_start_pfn < cc->zone->zone_start_pfn) 980 block_start_pfn = cc->zone->zone_start_pfn; 981 block_end_pfn = pageblock_end_pfn(pfn); 982 983 for (; pfn < end_pfn; pfn = block_end_pfn, 984 block_start_pfn = block_end_pfn, 985 block_end_pfn += pageblock_nr_pages) { 986 987 block_end_pfn = min(block_end_pfn, end_pfn); 988 989 if (!pageblock_pfn_to_page(block_start_pfn, 990 block_end_pfn, cc->zone)) 991 continue; 992 993 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 994 ISOLATE_UNEVICTABLE); 995 996 if (!pfn) 997 break; 998 999 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 1000 break; 1001 } 1002 1003 return pfn; 1004 } 1005 1006 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1007 #ifdef CONFIG_COMPACTION 1008 1009 static bool suitable_migration_source(struct compact_control *cc, 1010 struct page *page) 1011 { 1012 int block_mt; 1013 1014 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1015 return true; 1016 1017 block_mt = get_pageblock_migratetype(page); 1018 1019 if (cc->migratetype == MIGRATE_MOVABLE) 1020 return is_migrate_movable(block_mt); 1021 else 1022 return block_mt == cc->migratetype; 1023 } 1024 1025 /* Returns true if the page is within a block suitable for migration to */ 1026 static bool suitable_migration_target(struct compact_control *cc, 1027 struct page *page) 1028 { 1029 /* If the page is a large free page, then disallow migration */ 1030 if (PageBuddy(page)) { 1031 /* 1032 * We are checking page_order without zone->lock taken. But 1033 * the only small danger is that we skip a potentially suitable 1034 * pageblock, so it's not worth to check order for valid range. 1035 */ 1036 if (page_order_unsafe(page) >= pageblock_order) 1037 return false; 1038 } 1039 1040 if (cc->ignore_block_suitable) 1041 return true; 1042 1043 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1044 if (is_migrate_movable(get_pageblock_migratetype(page))) 1045 return true; 1046 1047 /* Otherwise skip the block */ 1048 return false; 1049 } 1050 1051 /* 1052 * Test whether the free scanner has reached the same or lower pageblock than 1053 * the migration scanner, and compaction should thus terminate. 1054 */ 1055 static inline bool compact_scanners_met(struct compact_control *cc) 1056 { 1057 return (cc->free_pfn >> pageblock_order) 1058 <= (cc->migrate_pfn >> pageblock_order); 1059 } 1060 1061 /* 1062 * Based on information in the current compact_control, find blocks 1063 * suitable for isolating free pages from and then isolate them. 1064 */ 1065 static void isolate_freepages(struct compact_control *cc) 1066 { 1067 struct zone *zone = cc->zone; 1068 struct page *page; 1069 unsigned long block_start_pfn; /* start of current pageblock */ 1070 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1071 unsigned long block_end_pfn; /* end of current pageblock */ 1072 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1073 struct list_head *freelist = &cc->freepages; 1074 1075 /* 1076 * Initialise the free scanner. The starting point is where we last 1077 * successfully isolated from, zone-cached value, or the end of the 1078 * zone when isolating for the first time. For looping we also need 1079 * this pfn aligned down to the pageblock boundary, because we do 1080 * block_start_pfn -= pageblock_nr_pages in the for loop. 1081 * For ending point, take care when isolating in last pageblock of a 1082 * a zone which ends in the middle of a pageblock. 1083 * The low boundary is the end of the pageblock the migration scanner 1084 * is using. 1085 */ 1086 isolate_start_pfn = cc->free_pfn; 1087 block_start_pfn = pageblock_start_pfn(cc->free_pfn); 1088 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1089 zone_end_pfn(zone)); 1090 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1091 1092 /* 1093 * Isolate free pages until enough are available to migrate the 1094 * pages on cc->migratepages. We stop searching if the migrate 1095 * and free page scanners meet or enough free pages are isolated. 1096 */ 1097 for (; block_start_pfn >= low_pfn; 1098 block_end_pfn = block_start_pfn, 1099 block_start_pfn -= pageblock_nr_pages, 1100 isolate_start_pfn = block_start_pfn) { 1101 /* 1102 * This can iterate a massively long zone without finding any 1103 * suitable migration targets, so periodically check if we need 1104 * to schedule, or even abort async compaction. 1105 */ 1106 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 1107 && compact_should_abort(cc)) 1108 break; 1109 1110 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1111 zone); 1112 if (!page) 1113 continue; 1114 1115 /* Check the block is suitable for migration */ 1116 if (!suitable_migration_target(cc, page)) 1117 continue; 1118 1119 /* If isolation recently failed, do not retry */ 1120 if (!isolation_suitable(cc, page)) 1121 continue; 1122 1123 /* Found a block suitable for isolating free pages from. */ 1124 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn, 1125 freelist, false); 1126 1127 /* 1128 * If we isolated enough freepages, or aborted due to lock 1129 * contention, terminate. 1130 */ 1131 if ((cc->nr_freepages >= cc->nr_migratepages) 1132 || cc->contended) { 1133 if (isolate_start_pfn >= block_end_pfn) { 1134 /* 1135 * Restart at previous pageblock if more 1136 * freepages can be isolated next time. 1137 */ 1138 isolate_start_pfn = 1139 block_start_pfn - pageblock_nr_pages; 1140 } 1141 break; 1142 } else if (isolate_start_pfn < block_end_pfn) { 1143 /* 1144 * If isolation failed early, do not continue 1145 * needlessly. 1146 */ 1147 break; 1148 } 1149 } 1150 1151 /* __isolate_free_page() does not map the pages */ 1152 map_pages(freelist); 1153 1154 /* 1155 * Record where the free scanner will restart next time. Either we 1156 * broke from the loop and set isolate_start_pfn based on the last 1157 * call to isolate_freepages_block(), or we met the migration scanner 1158 * and the loop terminated due to isolate_start_pfn < low_pfn 1159 */ 1160 cc->free_pfn = isolate_start_pfn; 1161 } 1162 1163 /* 1164 * This is a migrate-callback that "allocates" freepages by taking pages 1165 * from the isolated freelists in the block we are migrating to. 1166 */ 1167 static struct page *compaction_alloc(struct page *migratepage, 1168 unsigned long data, 1169 int **result) 1170 { 1171 struct compact_control *cc = (struct compact_control *)data; 1172 struct page *freepage; 1173 1174 /* 1175 * Isolate free pages if necessary, and if we are not aborting due to 1176 * contention. 1177 */ 1178 if (list_empty(&cc->freepages)) { 1179 if (!cc->contended) 1180 isolate_freepages(cc); 1181 1182 if (list_empty(&cc->freepages)) 1183 return NULL; 1184 } 1185 1186 freepage = list_entry(cc->freepages.next, struct page, lru); 1187 list_del(&freepage->lru); 1188 cc->nr_freepages--; 1189 1190 return freepage; 1191 } 1192 1193 /* 1194 * This is a migrate-callback that "frees" freepages back to the isolated 1195 * freelist. All pages on the freelist are from the same zone, so there is no 1196 * special handling needed for NUMA. 1197 */ 1198 static void compaction_free(struct page *page, unsigned long data) 1199 { 1200 struct compact_control *cc = (struct compact_control *)data; 1201 1202 list_add(&page->lru, &cc->freepages); 1203 cc->nr_freepages++; 1204 } 1205 1206 /* possible outcome of isolate_migratepages */ 1207 typedef enum { 1208 ISOLATE_ABORT, /* Abort compaction now */ 1209 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1210 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1211 } isolate_migrate_t; 1212 1213 /* 1214 * Allow userspace to control policy on scanning the unevictable LRU for 1215 * compactable pages. 1216 */ 1217 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1218 1219 /* 1220 * Isolate all pages that can be migrated from the first suitable block, 1221 * starting at the block pointed to by the migrate scanner pfn within 1222 * compact_control. 1223 */ 1224 static isolate_migrate_t isolate_migratepages(struct zone *zone, 1225 struct compact_control *cc) 1226 { 1227 unsigned long block_start_pfn; 1228 unsigned long block_end_pfn; 1229 unsigned long low_pfn; 1230 struct page *page; 1231 const isolate_mode_t isolate_mode = 1232 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1233 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1234 1235 /* 1236 * Start at where we last stopped, or beginning of the zone as 1237 * initialized by compact_zone() 1238 */ 1239 low_pfn = cc->migrate_pfn; 1240 block_start_pfn = pageblock_start_pfn(low_pfn); 1241 if (block_start_pfn < zone->zone_start_pfn) 1242 block_start_pfn = zone->zone_start_pfn; 1243 1244 /* Only scan within a pageblock boundary */ 1245 block_end_pfn = pageblock_end_pfn(low_pfn); 1246 1247 /* 1248 * Iterate over whole pageblocks until we find the first suitable. 1249 * Do not cross the free scanner. 1250 */ 1251 for (; block_end_pfn <= cc->free_pfn; 1252 low_pfn = block_end_pfn, 1253 block_start_pfn = block_end_pfn, 1254 block_end_pfn += pageblock_nr_pages) { 1255 1256 /* 1257 * This can potentially iterate a massively long zone with 1258 * many pageblocks unsuitable, so periodically check if we 1259 * need to schedule, or even abort async compaction. 1260 */ 1261 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)) 1262 && compact_should_abort(cc)) 1263 break; 1264 1265 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1266 zone); 1267 if (!page) 1268 continue; 1269 1270 /* If isolation recently failed, do not retry */ 1271 if (!isolation_suitable(cc, page)) 1272 continue; 1273 1274 /* 1275 * For async compaction, also only scan in MOVABLE blocks. 1276 * Async compaction is optimistic to see if the minimum amount 1277 * of work satisfies the allocation. 1278 */ 1279 if (!suitable_migration_source(cc, page)) 1280 continue; 1281 1282 /* Perform the isolation */ 1283 low_pfn = isolate_migratepages_block(cc, low_pfn, 1284 block_end_pfn, isolate_mode); 1285 1286 if (!low_pfn || cc->contended) 1287 return ISOLATE_ABORT; 1288 1289 /* 1290 * Either we isolated something and proceed with migration. Or 1291 * we failed and compact_zone should decide if we should 1292 * continue or not. 1293 */ 1294 break; 1295 } 1296 1297 /* Record where migration scanner will be restarted. */ 1298 cc->migrate_pfn = low_pfn; 1299 1300 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1301 } 1302 1303 /* 1304 * order == -1 is expected when compacting via 1305 * /proc/sys/vm/compact_memory 1306 */ 1307 static inline bool is_via_compact_memory(int order) 1308 { 1309 return order == -1; 1310 } 1311 1312 static enum compact_result __compact_finished(struct zone *zone, 1313 struct compact_control *cc) 1314 { 1315 unsigned int order; 1316 const int migratetype = cc->migratetype; 1317 1318 if (cc->contended || fatal_signal_pending(current)) 1319 return COMPACT_CONTENDED; 1320 1321 /* Compaction run completes if the migrate and free scanner meet */ 1322 if (compact_scanners_met(cc)) { 1323 /* Let the next compaction start anew. */ 1324 reset_cached_positions(zone); 1325 1326 /* 1327 * Mark that the PG_migrate_skip information should be cleared 1328 * by kswapd when it goes to sleep. kcompactd does not set the 1329 * flag itself as the decision to be clear should be directly 1330 * based on an allocation request. 1331 */ 1332 if (cc->direct_compaction) 1333 zone->compact_blockskip_flush = true; 1334 1335 if (cc->whole_zone) 1336 return COMPACT_COMPLETE; 1337 else 1338 return COMPACT_PARTIAL_SKIPPED; 1339 } 1340 1341 if (is_via_compact_memory(cc->order)) 1342 return COMPACT_CONTINUE; 1343 1344 if (cc->finishing_block) { 1345 /* 1346 * We have finished the pageblock, but better check again that 1347 * we really succeeded. 1348 */ 1349 if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages)) 1350 cc->finishing_block = false; 1351 else 1352 return COMPACT_CONTINUE; 1353 } 1354 1355 /* Direct compactor: Is a suitable page free? */ 1356 for (order = cc->order; order < MAX_ORDER; order++) { 1357 struct free_area *area = &zone->free_area[order]; 1358 bool can_steal; 1359 1360 /* Job done if page is free of the right migratetype */ 1361 if (!list_empty(&area->free_list[migratetype])) 1362 return COMPACT_SUCCESS; 1363 1364 #ifdef CONFIG_CMA 1365 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 1366 if (migratetype == MIGRATE_MOVABLE && 1367 !list_empty(&area->free_list[MIGRATE_CMA])) 1368 return COMPACT_SUCCESS; 1369 #endif 1370 /* 1371 * Job done if allocation would steal freepages from 1372 * other migratetype buddy lists. 1373 */ 1374 if (find_suitable_fallback(area, order, migratetype, 1375 true, &can_steal) != -1) { 1376 1377 /* movable pages are OK in any pageblock */ 1378 if (migratetype == MIGRATE_MOVABLE) 1379 return COMPACT_SUCCESS; 1380 1381 /* 1382 * We are stealing for a non-movable allocation. Make 1383 * sure we finish compacting the current pageblock 1384 * first so it is as free as possible and we won't 1385 * have to steal another one soon. This only applies 1386 * to sync compaction, as async compaction operates 1387 * on pageblocks of the same migratetype. 1388 */ 1389 if (cc->mode == MIGRATE_ASYNC || 1390 IS_ALIGNED(cc->migrate_pfn, 1391 pageblock_nr_pages)) { 1392 return COMPACT_SUCCESS; 1393 } 1394 1395 cc->finishing_block = true; 1396 return COMPACT_CONTINUE; 1397 } 1398 } 1399 1400 return COMPACT_NO_SUITABLE_PAGE; 1401 } 1402 1403 static enum compact_result compact_finished(struct zone *zone, 1404 struct compact_control *cc) 1405 { 1406 int ret; 1407 1408 ret = __compact_finished(zone, cc); 1409 trace_mm_compaction_finished(zone, cc->order, ret); 1410 if (ret == COMPACT_NO_SUITABLE_PAGE) 1411 ret = COMPACT_CONTINUE; 1412 1413 return ret; 1414 } 1415 1416 /* 1417 * compaction_suitable: Is this suitable to run compaction on this zone now? 1418 * Returns 1419 * COMPACT_SKIPPED - If there are too few free pages for compaction 1420 * COMPACT_SUCCESS - If the allocation would succeed without compaction 1421 * COMPACT_CONTINUE - If compaction should run now 1422 */ 1423 static enum compact_result __compaction_suitable(struct zone *zone, int order, 1424 unsigned int alloc_flags, 1425 int classzone_idx, 1426 unsigned long wmark_target) 1427 { 1428 unsigned long watermark; 1429 1430 if (is_via_compact_memory(order)) 1431 return COMPACT_CONTINUE; 1432 1433 watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1434 /* 1435 * If watermarks for high-order allocation are already met, there 1436 * should be no need for compaction at all. 1437 */ 1438 if (zone_watermark_ok(zone, order, watermark, classzone_idx, 1439 alloc_flags)) 1440 return COMPACT_SUCCESS; 1441 1442 /* 1443 * Watermarks for order-0 must be met for compaction to be able to 1444 * isolate free pages for migration targets. This means that the 1445 * watermark and alloc_flags have to match, or be more pessimistic than 1446 * the check in __isolate_free_page(). We don't use the direct 1447 * compactor's alloc_flags, as they are not relevant for freepage 1448 * isolation. We however do use the direct compactor's classzone_idx to 1449 * skip over zones where lowmem reserves would prevent allocation even 1450 * if compaction succeeds. 1451 * For costly orders, we require low watermark instead of min for 1452 * compaction to proceed to increase its chances. 1453 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 1454 * suitable migration targets 1455 */ 1456 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 1457 low_wmark_pages(zone) : min_wmark_pages(zone); 1458 watermark += compact_gap(order); 1459 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx, 1460 ALLOC_CMA, wmark_target)) 1461 return COMPACT_SKIPPED; 1462 1463 return COMPACT_CONTINUE; 1464 } 1465 1466 enum compact_result compaction_suitable(struct zone *zone, int order, 1467 unsigned int alloc_flags, 1468 int classzone_idx) 1469 { 1470 enum compact_result ret; 1471 int fragindex; 1472 1473 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx, 1474 zone_page_state(zone, NR_FREE_PAGES)); 1475 /* 1476 * fragmentation index determines if allocation failures are due to 1477 * low memory or external fragmentation 1478 * 1479 * index of -1000 would imply allocations might succeed depending on 1480 * watermarks, but we already failed the high-order watermark check 1481 * index towards 0 implies failure is due to lack of memory 1482 * index towards 1000 implies failure is due to fragmentation 1483 * 1484 * Only compact if a failure would be due to fragmentation. Also 1485 * ignore fragindex for non-costly orders where the alternative to 1486 * a successful reclaim/compaction is OOM. Fragindex and the 1487 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 1488 * excessive compaction for costly orders, but it should not be at the 1489 * expense of system stability. 1490 */ 1491 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 1492 fragindex = fragmentation_index(zone, order); 1493 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 1494 ret = COMPACT_NOT_SUITABLE_ZONE; 1495 } 1496 1497 trace_mm_compaction_suitable(zone, order, ret); 1498 if (ret == COMPACT_NOT_SUITABLE_ZONE) 1499 ret = COMPACT_SKIPPED; 1500 1501 return ret; 1502 } 1503 1504 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 1505 int alloc_flags) 1506 { 1507 struct zone *zone; 1508 struct zoneref *z; 1509 1510 /* 1511 * Make sure at least one zone would pass __compaction_suitable if we continue 1512 * retrying the reclaim. 1513 */ 1514 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 1515 ac->nodemask) { 1516 unsigned long available; 1517 enum compact_result compact_result; 1518 1519 /* 1520 * Do not consider all the reclaimable memory because we do not 1521 * want to trash just for a single high order allocation which 1522 * is even not guaranteed to appear even if __compaction_suitable 1523 * is happy about the watermark check. 1524 */ 1525 available = zone_reclaimable_pages(zone) / order; 1526 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 1527 compact_result = __compaction_suitable(zone, order, alloc_flags, 1528 ac_classzone_idx(ac), available); 1529 if (compact_result != COMPACT_SKIPPED) 1530 return true; 1531 } 1532 1533 return false; 1534 } 1535 1536 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc) 1537 { 1538 enum compact_result ret; 1539 unsigned long start_pfn = zone->zone_start_pfn; 1540 unsigned long end_pfn = zone_end_pfn(zone); 1541 const bool sync = cc->mode != MIGRATE_ASYNC; 1542 1543 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask); 1544 ret = compaction_suitable(zone, cc->order, cc->alloc_flags, 1545 cc->classzone_idx); 1546 /* Compaction is likely to fail */ 1547 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 1548 return ret; 1549 1550 /* huh, compaction_suitable is returning something unexpected */ 1551 VM_BUG_ON(ret != COMPACT_CONTINUE); 1552 1553 /* 1554 * Clear pageblock skip if there were failures recently and compaction 1555 * is about to be retried after being deferred. 1556 */ 1557 if (compaction_restarting(zone, cc->order)) 1558 __reset_isolation_suitable(zone); 1559 1560 /* 1561 * Setup to move all movable pages to the end of the zone. Used cached 1562 * information on where the scanners should start (unless we explicitly 1563 * want to compact the whole zone), but check that it is initialised 1564 * by ensuring the values are within zone boundaries. 1565 */ 1566 if (cc->whole_zone) { 1567 cc->migrate_pfn = start_pfn; 1568 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 1569 } else { 1570 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync]; 1571 cc->free_pfn = zone->compact_cached_free_pfn; 1572 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 1573 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 1574 zone->compact_cached_free_pfn = cc->free_pfn; 1575 } 1576 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 1577 cc->migrate_pfn = start_pfn; 1578 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 1579 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 1580 } 1581 1582 if (cc->migrate_pfn == start_pfn) 1583 cc->whole_zone = true; 1584 } 1585 1586 cc->last_migrated_pfn = 0; 1587 1588 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 1589 cc->free_pfn, end_pfn, sync); 1590 1591 migrate_prep_local(); 1592 1593 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { 1594 int err; 1595 1596 switch (isolate_migratepages(zone, cc)) { 1597 case ISOLATE_ABORT: 1598 ret = COMPACT_CONTENDED; 1599 putback_movable_pages(&cc->migratepages); 1600 cc->nr_migratepages = 0; 1601 goto out; 1602 case ISOLATE_NONE: 1603 /* 1604 * We haven't isolated and migrated anything, but 1605 * there might still be unflushed migrations from 1606 * previous cc->order aligned block. 1607 */ 1608 goto check_drain; 1609 case ISOLATE_SUCCESS: 1610 ; 1611 } 1612 1613 err = migrate_pages(&cc->migratepages, compaction_alloc, 1614 compaction_free, (unsigned long)cc, cc->mode, 1615 MR_COMPACTION); 1616 1617 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 1618 &cc->migratepages); 1619 1620 /* All pages were either migrated or will be released */ 1621 cc->nr_migratepages = 0; 1622 if (err) { 1623 putback_movable_pages(&cc->migratepages); 1624 /* 1625 * migrate_pages() may return -ENOMEM when scanners meet 1626 * and we want compact_finished() to detect it 1627 */ 1628 if (err == -ENOMEM && !compact_scanners_met(cc)) { 1629 ret = COMPACT_CONTENDED; 1630 goto out; 1631 } 1632 /* 1633 * We failed to migrate at least one page in the current 1634 * order-aligned block, so skip the rest of it. 1635 */ 1636 if (cc->direct_compaction && 1637 (cc->mode == MIGRATE_ASYNC)) { 1638 cc->migrate_pfn = block_end_pfn( 1639 cc->migrate_pfn - 1, cc->order); 1640 /* Draining pcplists is useless in this case */ 1641 cc->last_migrated_pfn = 0; 1642 1643 } 1644 } 1645 1646 check_drain: 1647 /* 1648 * Has the migration scanner moved away from the previous 1649 * cc->order aligned block where we migrated from? If yes, 1650 * flush the pages that were freed, so that they can merge and 1651 * compact_finished() can detect immediately if allocation 1652 * would succeed. 1653 */ 1654 if (cc->order > 0 && cc->last_migrated_pfn) { 1655 int cpu; 1656 unsigned long current_block_start = 1657 block_start_pfn(cc->migrate_pfn, cc->order); 1658 1659 if (cc->last_migrated_pfn < current_block_start) { 1660 cpu = get_cpu(); 1661 lru_add_drain_cpu(cpu); 1662 drain_local_pages(zone); 1663 put_cpu(); 1664 /* No more flushing until we migrate again */ 1665 cc->last_migrated_pfn = 0; 1666 } 1667 } 1668 1669 } 1670 1671 out: 1672 /* 1673 * Release free pages and update where the free scanner should restart, 1674 * so we don't leave any returned pages behind in the next attempt. 1675 */ 1676 if (cc->nr_freepages > 0) { 1677 unsigned long free_pfn = release_freepages(&cc->freepages); 1678 1679 cc->nr_freepages = 0; 1680 VM_BUG_ON(free_pfn == 0); 1681 /* The cached pfn is always the first in a pageblock */ 1682 free_pfn = pageblock_start_pfn(free_pfn); 1683 /* 1684 * Only go back, not forward. The cached pfn might have been 1685 * already reset to zone end in compact_finished() 1686 */ 1687 if (free_pfn > zone->compact_cached_free_pfn) 1688 zone->compact_cached_free_pfn = free_pfn; 1689 } 1690 1691 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 1692 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 1693 1694 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 1695 cc->free_pfn, end_pfn, sync, ret); 1696 1697 return ret; 1698 } 1699 1700 static enum compact_result compact_zone_order(struct zone *zone, int order, 1701 gfp_t gfp_mask, enum compact_priority prio, 1702 unsigned int alloc_flags, int classzone_idx) 1703 { 1704 enum compact_result ret; 1705 struct compact_control cc = { 1706 .nr_freepages = 0, 1707 .nr_migratepages = 0, 1708 .total_migrate_scanned = 0, 1709 .total_free_scanned = 0, 1710 .order = order, 1711 .gfp_mask = gfp_mask, 1712 .zone = zone, 1713 .mode = (prio == COMPACT_PRIO_ASYNC) ? 1714 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 1715 .alloc_flags = alloc_flags, 1716 .classzone_idx = classzone_idx, 1717 .direct_compaction = true, 1718 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 1719 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 1720 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 1721 }; 1722 INIT_LIST_HEAD(&cc.freepages); 1723 INIT_LIST_HEAD(&cc.migratepages); 1724 1725 ret = compact_zone(zone, &cc); 1726 1727 VM_BUG_ON(!list_empty(&cc.freepages)); 1728 VM_BUG_ON(!list_empty(&cc.migratepages)); 1729 1730 return ret; 1731 } 1732 1733 int sysctl_extfrag_threshold = 500; 1734 1735 /** 1736 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 1737 * @gfp_mask: The GFP mask of the current allocation 1738 * @order: The order of the current allocation 1739 * @alloc_flags: The allocation flags of the current allocation 1740 * @ac: The context of current allocation 1741 * @mode: The migration mode for async, sync light, or sync migration 1742 * 1743 * This is the main entry point for direct page compaction. 1744 */ 1745 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 1746 unsigned int alloc_flags, const struct alloc_context *ac, 1747 enum compact_priority prio) 1748 { 1749 int may_perform_io = gfp_mask & __GFP_IO; 1750 struct zoneref *z; 1751 struct zone *zone; 1752 enum compact_result rc = COMPACT_SKIPPED; 1753 1754 /* 1755 * Check if the GFP flags allow compaction - GFP_NOIO is really 1756 * tricky context because the migration might require IO 1757 */ 1758 if (!may_perform_io) 1759 return COMPACT_SKIPPED; 1760 1761 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 1762 1763 /* Compact each zone in the list */ 1764 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 1765 ac->nodemask) { 1766 enum compact_result status; 1767 1768 if (prio > MIN_COMPACT_PRIORITY 1769 && compaction_deferred(zone, order)) { 1770 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 1771 continue; 1772 } 1773 1774 status = compact_zone_order(zone, order, gfp_mask, prio, 1775 alloc_flags, ac_classzone_idx(ac)); 1776 rc = max(status, rc); 1777 1778 /* The allocation should succeed, stop compacting */ 1779 if (status == COMPACT_SUCCESS) { 1780 /* 1781 * We think the allocation will succeed in this zone, 1782 * but it is not certain, hence the false. The caller 1783 * will repeat this with true if allocation indeed 1784 * succeeds in this zone. 1785 */ 1786 compaction_defer_reset(zone, order, false); 1787 1788 break; 1789 } 1790 1791 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 1792 status == COMPACT_PARTIAL_SKIPPED)) 1793 /* 1794 * We think that allocation won't succeed in this zone 1795 * so we defer compaction there. If it ends up 1796 * succeeding after all, it will be reset. 1797 */ 1798 defer_compaction(zone, order); 1799 1800 /* 1801 * We might have stopped compacting due to need_resched() in 1802 * async compaction, or due to a fatal signal detected. In that 1803 * case do not try further zones 1804 */ 1805 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 1806 || fatal_signal_pending(current)) 1807 break; 1808 } 1809 1810 return rc; 1811 } 1812 1813 1814 /* Compact all zones within a node */ 1815 static void compact_node(int nid) 1816 { 1817 pg_data_t *pgdat = NODE_DATA(nid); 1818 int zoneid; 1819 struct zone *zone; 1820 struct compact_control cc = { 1821 .order = -1, 1822 .total_migrate_scanned = 0, 1823 .total_free_scanned = 0, 1824 .mode = MIGRATE_SYNC, 1825 .ignore_skip_hint = true, 1826 .whole_zone = true, 1827 .gfp_mask = GFP_KERNEL, 1828 }; 1829 1830 1831 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1832 1833 zone = &pgdat->node_zones[zoneid]; 1834 if (!populated_zone(zone)) 1835 continue; 1836 1837 cc.nr_freepages = 0; 1838 cc.nr_migratepages = 0; 1839 cc.zone = zone; 1840 INIT_LIST_HEAD(&cc.freepages); 1841 INIT_LIST_HEAD(&cc.migratepages); 1842 1843 compact_zone(zone, &cc); 1844 1845 VM_BUG_ON(!list_empty(&cc.freepages)); 1846 VM_BUG_ON(!list_empty(&cc.migratepages)); 1847 } 1848 } 1849 1850 /* Compact all nodes in the system */ 1851 static void compact_nodes(void) 1852 { 1853 int nid; 1854 1855 /* Flush pending updates to the LRU lists */ 1856 lru_add_drain_all(); 1857 1858 for_each_online_node(nid) 1859 compact_node(nid); 1860 } 1861 1862 /* The written value is actually unused, all memory is compacted */ 1863 int sysctl_compact_memory; 1864 1865 /* 1866 * This is the entry point for compacting all nodes via 1867 * /proc/sys/vm/compact_memory 1868 */ 1869 int sysctl_compaction_handler(struct ctl_table *table, int write, 1870 void __user *buffer, size_t *length, loff_t *ppos) 1871 { 1872 if (write) 1873 compact_nodes(); 1874 1875 return 0; 1876 } 1877 1878 int sysctl_extfrag_handler(struct ctl_table *table, int write, 1879 void __user *buffer, size_t *length, loff_t *ppos) 1880 { 1881 proc_dointvec_minmax(table, write, buffer, length, ppos); 1882 1883 return 0; 1884 } 1885 1886 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 1887 static ssize_t sysfs_compact_node(struct device *dev, 1888 struct device_attribute *attr, 1889 const char *buf, size_t count) 1890 { 1891 int nid = dev->id; 1892 1893 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 1894 /* Flush pending updates to the LRU lists */ 1895 lru_add_drain_all(); 1896 1897 compact_node(nid); 1898 } 1899 1900 return count; 1901 } 1902 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 1903 1904 int compaction_register_node(struct node *node) 1905 { 1906 return device_create_file(&node->dev, &dev_attr_compact); 1907 } 1908 1909 void compaction_unregister_node(struct node *node) 1910 { 1911 return device_remove_file(&node->dev, &dev_attr_compact); 1912 } 1913 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 1914 1915 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 1916 { 1917 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 1918 } 1919 1920 static bool kcompactd_node_suitable(pg_data_t *pgdat) 1921 { 1922 int zoneid; 1923 struct zone *zone; 1924 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx; 1925 1926 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) { 1927 zone = &pgdat->node_zones[zoneid]; 1928 1929 if (!populated_zone(zone)) 1930 continue; 1931 1932 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 1933 classzone_idx) == COMPACT_CONTINUE) 1934 return true; 1935 } 1936 1937 return false; 1938 } 1939 1940 static void kcompactd_do_work(pg_data_t *pgdat) 1941 { 1942 /* 1943 * With no special task, compact all zones so that a page of requested 1944 * order is allocatable. 1945 */ 1946 int zoneid; 1947 struct zone *zone; 1948 struct compact_control cc = { 1949 .order = pgdat->kcompactd_max_order, 1950 .total_migrate_scanned = 0, 1951 .total_free_scanned = 0, 1952 .classzone_idx = pgdat->kcompactd_classzone_idx, 1953 .mode = MIGRATE_SYNC_LIGHT, 1954 .ignore_skip_hint = false, 1955 .gfp_mask = GFP_KERNEL, 1956 }; 1957 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 1958 cc.classzone_idx); 1959 count_compact_event(KCOMPACTD_WAKE); 1960 1961 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) { 1962 int status; 1963 1964 zone = &pgdat->node_zones[zoneid]; 1965 if (!populated_zone(zone)) 1966 continue; 1967 1968 if (compaction_deferred(zone, cc.order)) 1969 continue; 1970 1971 if (compaction_suitable(zone, cc.order, 0, zoneid) != 1972 COMPACT_CONTINUE) 1973 continue; 1974 1975 cc.nr_freepages = 0; 1976 cc.nr_migratepages = 0; 1977 cc.total_migrate_scanned = 0; 1978 cc.total_free_scanned = 0; 1979 cc.zone = zone; 1980 INIT_LIST_HEAD(&cc.freepages); 1981 INIT_LIST_HEAD(&cc.migratepages); 1982 1983 if (kthread_should_stop()) 1984 return; 1985 status = compact_zone(zone, &cc); 1986 1987 if (status == COMPACT_SUCCESS) { 1988 compaction_defer_reset(zone, cc.order, false); 1989 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 1990 /* 1991 * We use sync migration mode here, so we defer like 1992 * sync direct compaction does. 1993 */ 1994 defer_compaction(zone, cc.order); 1995 } 1996 1997 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 1998 cc.total_migrate_scanned); 1999 count_compact_events(KCOMPACTD_FREE_SCANNED, 2000 cc.total_free_scanned); 2001 2002 VM_BUG_ON(!list_empty(&cc.freepages)); 2003 VM_BUG_ON(!list_empty(&cc.migratepages)); 2004 } 2005 2006 /* 2007 * Regardless of success, we are done until woken up next. But remember 2008 * the requested order/classzone_idx in case it was higher/tighter than 2009 * our current ones 2010 */ 2011 if (pgdat->kcompactd_max_order <= cc.order) 2012 pgdat->kcompactd_max_order = 0; 2013 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx) 2014 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 2015 } 2016 2017 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx) 2018 { 2019 if (!order) 2020 return; 2021 2022 if (pgdat->kcompactd_max_order < order) 2023 pgdat->kcompactd_max_order = order; 2024 2025 if (pgdat->kcompactd_classzone_idx > classzone_idx) 2026 pgdat->kcompactd_classzone_idx = classzone_idx; 2027 2028 /* 2029 * Pairs with implicit barrier in wait_event_freezable() 2030 * such that wakeups are not missed. 2031 */ 2032 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2033 return; 2034 2035 if (!kcompactd_node_suitable(pgdat)) 2036 return; 2037 2038 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2039 classzone_idx); 2040 wake_up_interruptible(&pgdat->kcompactd_wait); 2041 } 2042 2043 /* 2044 * The background compaction daemon, started as a kernel thread 2045 * from the init process. 2046 */ 2047 static int kcompactd(void *p) 2048 { 2049 pg_data_t *pgdat = (pg_data_t*)p; 2050 struct task_struct *tsk = current; 2051 2052 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2053 2054 if (!cpumask_empty(cpumask)) 2055 set_cpus_allowed_ptr(tsk, cpumask); 2056 2057 set_freezable(); 2058 2059 pgdat->kcompactd_max_order = 0; 2060 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; 2061 2062 while (!kthread_should_stop()) { 2063 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2064 wait_event_freezable(pgdat->kcompactd_wait, 2065 kcompactd_work_requested(pgdat)); 2066 2067 kcompactd_do_work(pgdat); 2068 } 2069 2070 return 0; 2071 } 2072 2073 /* 2074 * This kcompactd start function will be called by init and node-hot-add. 2075 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2076 */ 2077 int kcompactd_run(int nid) 2078 { 2079 pg_data_t *pgdat = NODE_DATA(nid); 2080 int ret = 0; 2081 2082 if (pgdat->kcompactd) 2083 return 0; 2084 2085 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2086 if (IS_ERR(pgdat->kcompactd)) { 2087 pr_err("Failed to start kcompactd on node %d\n", nid); 2088 ret = PTR_ERR(pgdat->kcompactd); 2089 pgdat->kcompactd = NULL; 2090 } 2091 return ret; 2092 } 2093 2094 /* 2095 * Called by memory hotplug when all memory in a node is offlined. Caller must 2096 * hold mem_hotplug_begin/end(). 2097 */ 2098 void kcompactd_stop(int nid) 2099 { 2100 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2101 2102 if (kcompactd) { 2103 kthread_stop(kcompactd); 2104 NODE_DATA(nid)->kcompactd = NULL; 2105 } 2106 } 2107 2108 /* 2109 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2110 * not required for correctness. So if the last cpu in a node goes 2111 * away, we get changed to run anywhere: as the first one comes back, 2112 * restore their cpu bindings. 2113 */ 2114 static int kcompactd_cpu_online(unsigned int cpu) 2115 { 2116 int nid; 2117 2118 for_each_node_state(nid, N_MEMORY) { 2119 pg_data_t *pgdat = NODE_DATA(nid); 2120 const struct cpumask *mask; 2121 2122 mask = cpumask_of_node(pgdat->node_id); 2123 2124 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2125 /* One of our CPUs online: restore mask */ 2126 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2127 } 2128 return 0; 2129 } 2130 2131 static int __init kcompactd_init(void) 2132 { 2133 int nid; 2134 int ret; 2135 2136 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 2137 "mm/compaction:online", 2138 kcompactd_cpu_online, NULL); 2139 if (ret < 0) { 2140 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 2141 return ret; 2142 } 2143 2144 for_each_node_state(nid, N_MEMORY) 2145 kcompactd_run(nid); 2146 return 0; 2147 } 2148 subsys_initcall(kcompactd_init) 2149 2150 #endif /* CONFIG_COMPACTION */ 2151