1 /* 2 * linux/mm/compaction.c 3 * 4 * Memory compaction for the reduction of external fragmentation. Note that 5 * this heavily depends upon page migration to do all the real heavy 6 * lifting 7 * 8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 9 */ 10 #include <linux/swap.h> 11 #include <linux/migrate.h> 12 #include <linux/compaction.h> 13 #include <linux/mm_inline.h> 14 #include <linux/backing-dev.h> 15 #include <linux/sysctl.h> 16 #include <linux/sysfs.h> 17 #include "internal.h" 18 19 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 20 21 #define CREATE_TRACE_POINTS 22 #include <trace/events/compaction.h> 23 24 static unsigned long release_freepages(struct list_head *freelist) 25 { 26 struct page *page, *next; 27 unsigned long count = 0; 28 29 list_for_each_entry_safe(page, next, freelist, lru) { 30 list_del(&page->lru); 31 __free_page(page); 32 count++; 33 } 34 35 return count; 36 } 37 38 static void map_pages(struct list_head *list) 39 { 40 struct page *page; 41 42 list_for_each_entry(page, list, lru) { 43 arch_alloc_page(page, 0); 44 kernel_map_pages(page, 1, 1); 45 } 46 } 47 48 static inline bool migrate_async_suitable(int migratetype) 49 { 50 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; 51 } 52 53 #ifdef CONFIG_COMPACTION 54 /* Returns true if the pageblock should be scanned for pages to isolate. */ 55 static inline bool isolation_suitable(struct compact_control *cc, 56 struct page *page) 57 { 58 if (cc->ignore_skip_hint) 59 return true; 60 61 return !get_pageblock_skip(page); 62 } 63 64 /* 65 * This function is called to clear all cached information on pageblocks that 66 * should be skipped for page isolation when the migrate and free page scanner 67 * meet. 68 */ 69 static void __reset_isolation_suitable(struct zone *zone) 70 { 71 unsigned long start_pfn = zone->zone_start_pfn; 72 unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages; 73 unsigned long pfn; 74 75 zone->compact_cached_migrate_pfn = start_pfn; 76 zone->compact_cached_free_pfn = end_pfn; 77 zone->compact_blockskip_flush = false; 78 79 /* Walk the zone and mark every pageblock as suitable for isolation */ 80 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 81 struct page *page; 82 83 cond_resched(); 84 85 if (!pfn_valid(pfn)) 86 continue; 87 88 page = pfn_to_page(pfn); 89 if (zone != page_zone(page)) 90 continue; 91 92 clear_pageblock_skip(page); 93 } 94 } 95 96 void reset_isolation_suitable(pg_data_t *pgdat) 97 { 98 int zoneid; 99 100 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 101 struct zone *zone = &pgdat->node_zones[zoneid]; 102 if (!populated_zone(zone)) 103 continue; 104 105 /* Only flush if a full compaction finished recently */ 106 if (zone->compact_blockskip_flush) 107 __reset_isolation_suitable(zone); 108 } 109 } 110 111 /* 112 * If no pages were isolated then mark this pageblock to be skipped in the 113 * future. The information is later cleared by __reset_isolation_suitable(). 114 */ 115 static void update_pageblock_skip(struct compact_control *cc, 116 struct page *page, unsigned long nr_isolated, 117 bool migrate_scanner) 118 { 119 struct zone *zone = cc->zone; 120 if (!page) 121 return; 122 123 if (!nr_isolated) { 124 unsigned long pfn = page_to_pfn(page); 125 set_pageblock_skip(page); 126 127 /* Update where compaction should restart */ 128 if (migrate_scanner) { 129 if (!cc->finished_update_migrate && 130 pfn > zone->compact_cached_migrate_pfn) 131 zone->compact_cached_migrate_pfn = pfn; 132 } else { 133 if (!cc->finished_update_free && 134 pfn < zone->compact_cached_free_pfn) 135 zone->compact_cached_free_pfn = pfn; 136 } 137 } 138 } 139 #else 140 static inline bool isolation_suitable(struct compact_control *cc, 141 struct page *page) 142 { 143 return true; 144 } 145 146 static void update_pageblock_skip(struct compact_control *cc, 147 struct page *page, unsigned long nr_isolated, 148 bool migrate_scanner) 149 { 150 } 151 #endif /* CONFIG_COMPACTION */ 152 153 static inline bool should_release_lock(spinlock_t *lock) 154 { 155 return need_resched() || spin_is_contended(lock); 156 } 157 158 /* 159 * Compaction requires the taking of some coarse locks that are potentially 160 * very heavily contended. Check if the process needs to be scheduled or 161 * if the lock is contended. For async compaction, back out in the event 162 * if contention is severe. For sync compaction, schedule. 163 * 164 * Returns true if the lock is held. 165 * Returns false if the lock is released and compaction should abort 166 */ 167 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags, 168 bool locked, struct compact_control *cc) 169 { 170 if (should_release_lock(lock)) { 171 if (locked) { 172 spin_unlock_irqrestore(lock, *flags); 173 locked = false; 174 } 175 176 /* async aborts if taking too long or contended */ 177 if (!cc->sync) { 178 cc->contended = true; 179 return false; 180 } 181 182 cond_resched(); 183 } 184 185 if (!locked) 186 spin_lock_irqsave(lock, *flags); 187 return true; 188 } 189 190 static inline bool compact_trylock_irqsave(spinlock_t *lock, 191 unsigned long *flags, struct compact_control *cc) 192 { 193 return compact_checklock_irqsave(lock, flags, false, cc); 194 } 195 196 /* Returns true if the page is within a block suitable for migration to */ 197 static bool suitable_migration_target(struct page *page) 198 { 199 int migratetype = get_pageblock_migratetype(page); 200 201 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */ 202 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE) 203 return false; 204 205 /* If the page is a large free page, then allow migration */ 206 if (PageBuddy(page) && page_order(page) >= pageblock_order) 207 return true; 208 209 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 210 if (migrate_async_suitable(migratetype)) 211 return true; 212 213 /* Otherwise skip the block */ 214 return false; 215 } 216 217 static void compact_capture_page(struct compact_control *cc) 218 { 219 unsigned long flags; 220 int mtype, mtype_low, mtype_high; 221 222 if (!cc->page || *cc->page) 223 return; 224 225 /* 226 * For MIGRATE_MOVABLE allocations we capture a suitable page ASAP 227 * regardless of the migratetype of the freelist is is captured from. 228 * This is fine because the order for a high-order MIGRATE_MOVABLE 229 * allocation is typically at least a pageblock size and overall 230 * fragmentation is not impaired. Other allocation types must 231 * capture pages from their own migratelist because otherwise they 232 * could pollute other pageblocks like MIGRATE_MOVABLE with 233 * difficult to move pages and making fragmentation worse overall. 234 */ 235 if (cc->migratetype == MIGRATE_MOVABLE) { 236 mtype_low = 0; 237 mtype_high = MIGRATE_PCPTYPES; 238 } else { 239 mtype_low = cc->migratetype; 240 mtype_high = cc->migratetype + 1; 241 } 242 243 /* Speculatively examine the free lists without zone lock */ 244 for (mtype = mtype_low; mtype < mtype_high; mtype++) { 245 int order; 246 for (order = cc->order; order < MAX_ORDER; order++) { 247 struct page *page; 248 struct free_area *area; 249 area = &(cc->zone->free_area[order]); 250 if (list_empty(&area->free_list[mtype])) 251 continue; 252 253 /* Take the lock and attempt capture of the page */ 254 if (!compact_trylock_irqsave(&cc->zone->lock, &flags, cc)) 255 return; 256 if (!list_empty(&area->free_list[mtype])) { 257 page = list_entry(area->free_list[mtype].next, 258 struct page, lru); 259 if (capture_free_page(page, cc->order, mtype)) { 260 spin_unlock_irqrestore(&cc->zone->lock, 261 flags); 262 *cc->page = page; 263 return; 264 } 265 } 266 spin_unlock_irqrestore(&cc->zone->lock, flags); 267 } 268 } 269 } 270 271 /* 272 * Isolate free pages onto a private freelist. Caller must hold zone->lock. 273 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free 274 * pages inside of the pageblock (even though it may still end up isolating 275 * some pages). 276 */ 277 static unsigned long isolate_freepages_block(struct compact_control *cc, 278 unsigned long blockpfn, 279 unsigned long end_pfn, 280 struct list_head *freelist, 281 bool strict) 282 { 283 int nr_scanned = 0, total_isolated = 0; 284 struct page *cursor, *valid_page = NULL; 285 unsigned long nr_strict_required = end_pfn - blockpfn; 286 unsigned long flags; 287 bool locked = false; 288 289 cursor = pfn_to_page(blockpfn); 290 291 /* Isolate free pages. */ 292 for (; blockpfn < end_pfn; blockpfn++, cursor++) { 293 int isolated, i; 294 struct page *page = cursor; 295 296 nr_scanned++; 297 if (!pfn_valid_within(blockpfn)) 298 continue; 299 if (!valid_page) 300 valid_page = page; 301 if (!PageBuddy(page)) 302 continue; 303 304 /* 305 * The zone lock must be held to isolate freepages. 306 * Unfortunately this is a very coarse lock and can be 307 * heavily contended if there are parallel allocations 308 * or parallel compactions. For async compaction do not 309 * spin on the lock and we acquire the lock as late as 310 * possible. 311 */ 312 locked = compact_checklock_irqsave(&cc->zone->lock, &flags, 313 locked, cc); 314 if (!locked) 315 break; 316 317 /* Recheck this is a suitable migration target under lock */ 318 if (!strict && !suitable_migration_target(page)) 319 break; 320 321 /* Recheck this is a buddy page under lock */ 322 if (!PageBuddy(page)) 323 continue; 324 325 /* Found a free page, break it into order-0 pages */ 326 isolated = split_free_page(page); 327 if (!isolated && strict) 328 break; 329 total_isolated += isolated; 330 for (i = 0; i < isolated; i++) { 331 list_add(&page->lru, freelist); 332 page++; 333 } 334 335 /* If a page was split, advance to the end of it */ 336 if (isolated) { 337 blockpfn += isolated - 1; 338 cursor += isolated - 1; 339 } 340 } 341 342 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated); 343 344 /* 345 * If strict isolation is requested by CMA then check that all the 346 * pages requested were isolated. If there were any failures, 0 is 347 * returned and CMA will fail. 348 */ 349 if (strict && nr_strict_required > total_isolated) 350 total_isolated = 0; 351 352 if (locked) 353 spin_unlock_irqrestore(&cc->zone->lock, flags); 354 355 /* Update the pageblock-skip if the whole pageblock was scanned */ 356 if (blockpfn == end_pfn) 357 update_pageblock_skip(cc, valid_page, total_isolated, false); 358 359 return total_isolated; 360 } 361 362 /** 363 * isolate_freepages_range() - isolate free pages. 364 * @start_pfn: The first PFN to start isolating. 365 * @end_pfn: The one-past-last PFN. 366 * 367 * Non-free pages, invalid PFNs, or zone boundaries within the 368 * [start_pfn, end_pfn) range are considered errors, cause function to 369 * undo its actions and return zero. 370 * 371 * Otherwise, function returns one-past-the-last PFN of isolated page 372 * (which may be greater then end_pfn if end fell in a middle of 373 * a free page). 374 */ 375 unsigned long 376 isolate_freepages_range(struct compact_control *cc, 377 unsigned long start_pfn, unsigned long end_pfn) 378 { 379 unsigned long isolated, pfn, block_end_pfn; 380 LIST_HEAD(freelist); 381 382 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) { 383 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn))) 384 break; 385 386 /* 387 * On subsequent iterations ALIGN() is actually not needed, 388 * but we keep it that we not to complicate the code. 389 */ 390 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); 391 block_end_pfn = min(block_end_pfn, end_pfn); 392 393 isolated = isolate_freepages_block(cc, pfn, block_end_pfn, 394 &freelist, true); 395 396 /* 397 * In strict mode, isolate_freepages_block() returns 0 if 398 * there are any holes in the block (ie. invalid PFNs or 399 * non-free pages). 400 */ 401 if (!isolated) 402 break; 403 404 /* 405 * If we managed to isolate pages, it is always (1 << n) * 406 * pageblock_nr_pages for some non-negative n. (Max order 407 * page may span two pageblocks). 408 */ 409 } 410 411 /* split_free_page does not map the pages */ 412 map_pages(&freelist); 413 414 if (pfn < end_pfn) { 415 /* Loop terminated early, cleanup. */ 416 release_freepages(&freelist); 417 return 0; 418 } 419 420 /* We don't use freelists for anything. */ 421 return pfn; 422 } 423 424 /* Update the number of anon and file isolated pages in the zone */ 425 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc) 426 { 427 struct page *page; 428 unsigned int count[2] = { 0, }; 429 430 list_for_each_entry(page, &cc->migratepages, lru) 431 count[!!page_is_file_cache(page)]++; 432 433 /* If locked we can use the interrupt unsafe versions */ 434 if (locked) { 435 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 436 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 437 } else { 438 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); 439 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); 440 } 441 } 442 443 /* Similar to reclaim, but different enough that they don't share logic */ 444 static bool too_many_isolated(struct zone *zone) 445 { 446 unsigned long active, inactive, isolated; 447 448 inactive = zone_page_state(zone, NR_INACTIVE_FILE) + 449 zone_page_state(zone, NR_INACTIVE_ANON); 450 active = zone_page_state(zone, NR_ACTIVE_FILE) + 451 zone_page_state(zone, NR_ACTIVE_ANON); 452 isolated = zone_page_state(zone, NR_ISOLATED_FILE) + 453 zone_page_state(zone, NR_ISOLATED_ANON); 454 455 return isolated > (inactive + active) / 2; 456 } 457 458 /** 459 * isolate_migratepages_range() - isolate all migrate-able pages in range. 460 * @zone: Zone pages are in. 461 * @cc: Compaction control structure. 462 * @low_pfn: The first PFN of the range. 463 * @end_pfn: The one-past-the-last PFN of the range. 464 * @unevictable: true if it allows to isolate unevictable pages 465 * 466 * Isolate all pages that can be migrated from the range specified by 467 * [low_pfn, end_pfn). Returns zero if there is a fatal signal 468 * pending), otherwise PFN of the first page that was not scanned 469 * (which may be both less, equal to or more then end_pfn). 470 * 471 * Assumes that cc->migratepages is empty and cc->nr_migratepages is 472 * zero. 473 * 474 * Apart from cc->migratepages and cc->nr_migratetypes this function 475 * does not modify any cc's fields, in particular it does not modify 476 * (or read for that matter) cc->migrate_pfn. 477 */ 478 unsigned long 479 isolate_migratepages_range(struct zone *zone, struct compact_control *cc, 480 unsigned long low_pfn, unsigned long end_pfn, bool unevictable) 481 { 482 unsigned long last_pageblock_nr = 0, pageblock_nr; 483 unsigned long nr_scanned = 0, nr_isolated = 0; 484 struct list_head *migratelist = &cc->migratepages; 485 isolate_mode_t mode = 0; 486 struct lruvec *lruvec; 487 unsigned long flags; 488 bool locked = false; 489 struct page *page = NULL, *valid_page = NULL; 490 491 /* 492 * Ensure that there are not too many pages isolated from the LRU 493 * list by either parallel reclaimers or compaction. If there are, 494 * delay for some time until fewer pages are isolated 495 */ 496 while (unlikely(too_many_isolated(zone))) { 497 /* async migration should just abort */ 498 if (!cc->sync) 499 return 0; 500 501 congestion_wait(BLK_RW_ASYNC, HZ/10); 502 503 if (fatal_signal_pending(current)) 504 return 0; 505 } 506 507 /* Time to isolate some pages for migration */ 508 cond_resched(); 509 for (; low_pfn < end_pfn; low_pfn++) { 510 /* give a chance to irqs before checking need_resched() */ 511 if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) { 512 if (should_release_lock(&zone->lru_lock)) { 513 spin_unlock_irqrestore(&zone->lru_lock, flags); 514 locked = false; 515 } 516 } 517 518 /* 519 * migrate_pfn does not necessarily start aligned to a 520 * pageblock. Ensure that pfn_valid is called when moving 521 * into a new MAX_ORDER_NR_PAGES range in case of large 522 * memory holes within the zone 523 */ 524 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { 525 if (!pfn_valid(low_pfn)) { 526 low_pfn += MAX_ORDER_NR_PAGES - 1; 527 continue; 528 } 529 } 530 531 if (!pfn_valid_within(low_pfn)) 532 continue; 533 nr_scanned++; 534 535 /* 536 * Get the page and ensure the page is within the same zone. 537 * See the comment in isolate_freepages about overlapping 538 * nodes. It is deliberate that the new zone lock is not taken 539 * as memory compaction should not move pages between nodes. 540 */ 541 page = pfn_to_page(low_pfn); 542 if (page_zone(page) != zone) 543 continue; 544 545 if (!valid_page) 546 valid_page = page; 547 548 /* If isolation recently failed, do not retry */ 549 pageblock_nr = low_pfn >> pageblock_order; 550 if (!isolation_suitable(cc, page)) 551 goto next_pageblock; 552 553 /* Skip if free */ 554 if (PageBuddy(page)) 555 continue; 556 557 /* 558 * For async migration, also only scan in MOVABLE blocks. Async 559 * migration is optimistic to see if the minimum amount of work 560 * satisfies the allocation 561 */ 562 if (!cc->sync && last_pageblock_nr != pageblock_nr && 563 !migrate_async_suitable(get_pageblock_migratetype(page))) { 564 cc->finished_update_migrate = true; 565 goto next_pageblock; 566 } 567 568 /* Check may be lockless but that's ok as we recheck later */ 569 if (!PageLRU(page)) 570 continue; 571 572 /* 573 * PageLRU is set. lru_lock normally excludes isolation 574 * splitting and collapsing (collapsing has already happened 575 * if PageLRU is set) but the lock is not necessarily taken 576 * here and it is wasteful to take it just to check transhuge. 577 * Check TransHuge without lock and skip the whole pageblock if 578 * it's either a transhuge or hugetlbfs page, as calling 579 * compound_order() without preventing THP from splitting the 580 * page underneath us may return surprising results. 581 */ 582 if (PageTransHuge(page)) { 583 if (!locked) 584 goto next_pageblock; 585 low_pfn += (1 << compound_order(page)) - 1; 586 continue; 587 } 588 589 /* Check if it is ok to still hold the lock */ 590 locked = compact_checklock_irqsave(&zone->lru_lock, &flags, 591 locked, cc); 592 if (!locked || fatal_signal_pending(current)) 593 break; 594 595 /* Recheck PageLRU and PageTransHuge under lock */ 596 if (!PageLRU(page)) 597 continue; 598 if (PageTransHuge(page)) { 599 low_pfn += (1 << compound_order(page)) - 1; 600 continue; 601 } 602 603 if (!cc->sync) 604 mode |= ISOLATE_ASYNC_MIGRATE; 605 606 if (unevictable) 607 mode |= ISOLATE_UNEVICTABLE; 608 609 lruvec = mem_cgroup_page_lruvec(page, zone); 610 611 /* Try isolate the page */ 612 if (__isolate_lru_page(page, mode) != 0) 613 continue; 614 615 VM_BUG_ON(PageTransCompound(page)); 616 617 /* Successfully isolated */ 618 cc->finished_update_migrate = true; 619 del_page_from_lru_list(page, lruvec, page_lru(page)); 620 list_add(&page->lru, migratelist); 621 cc->nr_migratepages++; 622 nr_isolated++; 623 624 /* Avoid isolating too much */ 625 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { 626 ++low_pfn; 627 break; 628 } 629 630 continue; 631 632 next_pageblock: 633 low_pfn += pageblock_nr_pages; 634 low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1; 635 last_pageblock_nr = pageblock_nr; 636 } 637 638 acct_isolated(zone, locked, cc); 639 640 if (locked) 641 spin_unlock_irqrestore(&zone->lru_lock, flags); 642 643 /* Update the pageblock-skip if the whole pageblock was scanned */ 644 if (low_pfn == end_pfn) 645 update_pageblock_skip(cc, valid_page, nr_isolated, true); 646 647 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated); 648 649 return low_pfn; 650 } 651 652 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 653 #ifdef CONFIG_COMPACTION 654 /* 655 * Based on information in the current compact_control, find blocks 656 * suitable for isolating free pages from and then isolate them. 657 */ 658 static void isolate_freepages(struct zone *zone, 659 struct compact_control *cc) 660 { 661 struct page *page; 662 unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn; 663 int nr_freepages = cc->nr_freepages; 664 struct list_head *freelist = &cc->freepages; 665 666 /* 667 * Initialise the free scanner. The starting point is where we last 668 * scanned from (or the end of the zone if starting). The low point 669 * is the end of the pageblock the migration scanner is using. 670 */ 671 pfn = cc->free_pfn; 672 low_pfn = cc->migrate_pfn + pageblock_nr_pages; 673 674 /* 675 * Take care that if the migration scanner is at the end of the zone 676 * that the free scanner does not accidentally move to the next zone 677 * in the next isolation cycle. 678 */ 679 high_pfn = min(low_pfn, pfn); 680 681 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages; 682 683 /* 684 * Isolate free pages until enough are available to migrate the 685 * pages on cc->migratepages. We stop searching if the migrate 686 * and free page scanners meet or enough free pages are isolated. 687 */ 688 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages; 689 pfn -= pageblock_nr_pages) { 690 unsigned long isolated; 691 692 if (!pfn_valid(pfn)) 693 continue; 694 695 /* 696 * Check for overlapping nodes/zones. It's possible on some 697 * configurations to have a setup like 698 * node0 node1 node0 699 * i.e. it's possible that all pages within a zones range of 700 * pages do not belong to a single zone. 701 */ 702 page = pfn_to_page(pfn); 703 if (page_zone(page) != zone) 704 continue; 705 706 /* Check the block is suitable for migration */ 707 if (!suitable_migration_target(page)) 708 continue; 709 710 /* If isolation recently failed, do not retry */ 711 if (!isolation_suitable(cc, page)) 712 continue; 713 714 /* Found a block suitable for isolating free pages from */ 715 isolated = 0; 716 end_pfn = min(pfn + pageblock_nr_pages, zone_end_pfn); 717 isolated = isolate_freepages_block(cc, pfn, end_pfn, 718 freelist, false); 719 nr_freepages += isolated; 720 721 /* 722 * Record the highest PFN we isolated pages from. When next 723 * looking for free pages, the search will restart here as 724 * page migration may have returned some pages to the allocator 725 */ 726 if (isolated) { 727 cc->finished_update_free = true; 728 high_pfn = max(high_pfn, pfn); 729 } 730 } 731 732 /* split_free_page does not map the pages */ 733 map_pages(freelist); 734 735 cc->free_pfn = high_pfn; 736 cc->nr_freepages = nr_freepages; 737 } 738 739 /* 740 * This is a migrate-callback that "allocates" freepages by taking pages 741 * from the isolated freelists in the block we are migrating to. 742 */ 743 static struct page *compaction_alloc(struct page *migratepage, 744 unsigned long data, 745 int **result) 746 { 747 struct compact_control *cc = (struct compact_control *)data; 748 struct page *freepage; 749 750 /* Isolate free pages if necessary */ 751 if (list_empty(&cc->freepages)) { 752 isolate_freepages(cc->zone, cc); 753 754 if (list_empty(&cc->freepages)) 755 return NULL; 756 } 757 758 freepage = list_entry(cc->freepages.next, struct page, lru); 759 list_del(&freepage->lru); 760 cc->nr_freepages--; 761 762 return freepage; 763 } 764 765 /* 766 * We cannot control nr_migratepages and nr_freepages fully when migration is 767 * running as migrate_pages() has no knowledge of compact_control. When 768 * migration is complete, we count the number of pages on the lists by hand. 769 */ 770 static void update_nr_listpages(struct compact_control *cc) 771 { 772 int nr_migratepages = 0; 773 int nr_freepages = 0; 774 struct page *page; 775 776 list_for_each_entry(page, &cc->migratepages, lru) 777 nr_migratepages++; 778 list_for_each_entry(page, &cc->freepages, lru) 779 nr_freepages++; 780 781 cc->nr_migratepages = nr_migratepages; 782 cc->nr_freepages = nr_freepages; 783 } 784 785 /* possible outcome of isolate_migratepages */ 786 typedef enum { 787 ISOLATE_ABORT, /* Abort compaction now */ 788 ISOLATE_NONE, /* No pages isolated, continue scanning */ 789 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 790 } isolate_migrate_t; 791 792 /* 793 * Isolate all pages that can be migrated from the block pointed to by 794 * the migrate scanner within compact_control. 795 */ 796 static isolate_migrate_t isolate_migratepages(struct zone *zone, 797 struct compact_control *cc) 798 { 799 unsigned long low_pfn, end_pfn; 800 801 /* Do not scan outside zone boundaries */ 802 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn); 803 804 /* Only scan within a pageblock boundary */ 805 end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages); 806 807 /* Do not cross the free scanner or scan within a memory hole */ 808 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) { 809 cc->migrate_pfn = end_pfn; 810 return ISOLATE_NONE; 811 } 812 813 /* Perform the isolation */ 814 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false); 815 if (!low_pfn || cc->contended) 816 return ISOLATE_ABORT; 817 818 cc->migrate_pfn = low_pfn; 819 820 return ISOLATE_SUCCESS; 821 } 822 823 static int compact_finished(struct zone *zone, 824 struct compact_control *cc) 825 { 826 unsigned long watermark; 827 828 if (fatal_signal_pending(current)) 829 return COMPACT_PARTIAL; 830 831 /* Compaction run completes if the migrate and free scanner meet */ 832 if (cc->free_pfn <= cc->migrate_pfn) { 833 /* 834 * Mark that the PG_migrate_skip information should be cleared 835 * by kswapd when it goes to sleep. kswapd does not set the 836 * flag itself as the decision to be clear should be directly 837 * based on an allocation request. 838 */ 839 if (!current_is_kswapd()) 840 zone->compact_blockskip_flush = true; 841 842 return COMPACT_COMPLETE; 843 } 844 845 /* 846 * order == -1 is expected when compacting via 847 * /proc/sys/vm/compact_memory 848 */ 849 if (cc->order == -1) 850 return COMPACT_CONTINUE; 851 852 /* Compaction run is not finished if the watermark is not met */ 853 watermark = low_wmark_pages(zone); 854 watermark += (1 << cc->order); 855 856 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0)) 857 return COMPACT_CONTINUE; 858 859 /* Direct compactor: Is a suitable page free? */ 860 if (cc->page) { 861 /* Was a suitable page captured? */ 862 if (*cc->page) 863 return COMPACT_PARTIAL; 864 } else { 865 unsigned int order; 866 for (order = cc->order; order < MAX_ORDER; order++) { 867 struct free_area *area = &zone->free_area[cc->order]; 868 /* Job done if page is free of the right migratetype */ 869 if (!list_empty(&area->free_list[cc->migratetype])) 870 return COMPACT_PARTIAL; 871 872 /* Job done if allocation would set block type */ 873 if (cc->order >= pageblock_order && area->nr_free) 874 return COMPACT_PARTIAL; 875 } 876 } 877 878 return COMPACT_CONTINUE; 879 } 880 881 /* 882 * compaction_suitable: Is this suitable to run compaction on this zone now? 883 * Returns 884 * COMPACT_SKIPPED - If there are too few free pages for compaction 885 * COMPACT_PARTIAL - If the allocation would succeed without compaction 886 * COMPACT_CONTINUE - If compaction should run now 887 */ 888 unsigned long compaction_suitable(struct zone *zone, int order) 889 { 890 int fragindex; 891 unsigned long watermark; 892 893 /* 894 * order == -1 is expected when compacting via 895 * /proc/sys/vm/compact_memory 896 */ 897 if (order == -1) 898 return COMPACT_CONTINUE; 899 900 /* 901 * Watermarks for order-0 must be met for compaction. Note the 2UL. 902 * This is because during migration, copies of pages need to be 903 * allocated and for a short time, the footprint is higher 904 */ 905 watermark = low_wmark_pages(zone) + (2UL << order); 906 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 907 return COMPACT_SKIPPED; 908 909 /* 910 * fragmentation index determines if allocation failures are due to 911 * low memory or external fragmentation 912 * 913 * index of -1000 implies allocations might succeed depending on 914 * watermarks 915 * index towards 0 implies failure is due to lack of memory 916 * index towards 1000 implies failure is due to fragmentation 917 * 918 * Only compact if a failure would be due to fragmentation. 919 */ 920 fragindex = fragmentation_index(zone, order); 921 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 922 return COMPACT_SKIPPED; 923 924 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark, 925 0, 0)) 926 return COMPACT_PARTIAL; 927 928 return COMPACT_CONTINUE; 929 } 930 931 static int compact_zone(struct zone *zone, struct compact_control *cc) 932 { 933 int ret; 934 unsigned long start_pfn = zone->zone_start_pfn; 935 unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages; 936 937 ret = compaction_suitable(zone, cc->order); 938 switch (ret) { 939 case COMPACT_PARTIAL: 940 case COMPACT_SKIPPED: 941 /* Compaction is likely to fail */ 942 return ret; 943 case COMPACT_CONTINUE: 944 /* Fall through to compaction */ 945 ; 946 } 947 948 /* 949 * Setup to move all movable pages to the end of the zone. Used cached 950 * information on where the scanners should start but check that it 951 * is initialised by ensuring the values are within zone boundaries. 952 */ 953 cc->migrate_pfn = zone->compact_cached_migrate_pfn; 954 cc->free_pfn = zone->compact_cached_free_pfn; 955 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) { 956 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1); 957 zone->compact_cached_free_pfn = cc->free_pfn; 958 } 959 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) { 960 cc->migrate_pfn = start_pfn; 961 zone->compact_cached_migrate_pfn = cc->migrate_pfn; 962 } 963 964 /* 965 * Clear pageblock skip if there were failures recently and compaction 966 * is about to be retried after being deferred. kswapd does not do 967 * this reset as it'll reset the cached information when going to sleep. 968 */ 969 if (compaction_restarting(zone, cc->order) && !current_is_kswapd()) 970 __reset_isolation_suitable(zone); 971 972 migrate_prep_local(); 973 974 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { 975 unsigned long nr_migrate, nr_remaining; 976 int err; 977 978 switch (isolate_migratepages(zone, cc)) { 979 case ISOLATE_ABORT: 980 ret = COMPACT_PARTIAL; 981 putback_lru_pages(&cc->migratepages); 982 cc->nr_migratepages = 0; 983 goto out; 984 case ISOLATE_NONE: 985 continue; 986 case ISOLATE_SUCCESS: 987 ; 988 } 989 990 nr_migrate = cc->nr_migratepages; 991 err = migrate_pages(&cc->migratepages, compaction_alloc, 992 (unsigned long)cc, false, 993 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC); 994 update_nr_listpages(cc); 995 nr_remaining = cc->nr_migratepages; 996 997 count_vm_event(COMPACTBLOCKS); 998 count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining); 999 if (nr_remaining) 1000 count_vm_events(COMPACTPAGEFAILED, nr_remaining); 1001 trace_mm_compaction_migratepages(nr_migrate - nr_remaining, 1002 nr_remaining); 1003 1004 /* Release LRU pages not migrated */ 1005 if (err) { 1006 putback_lru_pages(&cc->migratepages); 1007 cc->nr_migratepages = 0; 1008 if (err == -ENOMEM) { 1009 ret = COMPACT_PARTIAL; 1010 goto out; 1011 } 1012 } 1013 1014 /* Capture a page now if it is a suitable size */ 1015 compact_capture_page(cc); 1016 } 1017 1018 out: 1019 /* Release free pages and check accounting */ 1020 cc->nr_freepages -= release_freepages(&cc->freepages); 1021 VM_BUG_ON(cc->nr_freepages != 0); 1022 1023 return ret; 1024 } 1025 1026 static unsigned long compact_zone_order(struct zone *zone, 1027 int order, gfp_t gfp_mask, 1028 bool sync, bool *contended, 1029 struct page **page) 1030 { 1031 unsigned long ret; 1032 struct compact_control cc = { 1033 .nr_freepages = 0, 1034 .nr_migratepages = 0, 1035 .order = order, 1036 .migratetype = allocflags_to_migratetype(gfp_mask), 1037 .zone = zone, 1038 .sync = sync, 1039 .page = page, 1040 }; 1041 INIT_LIST_HEAD(&cc.freepages); 1042 INIT_LIST_HEAD(&cc.migratepages); 1043 1044 ret = compact_zone(zone, &cc); 1045 1046 VM_BUG_ON(!list_empty(&cc.freepages)); 1047 VM_BUG_ON(!list_empty(&cc.migratepages)); 1048 1049 *contended = cc.contended; 1050 return ret; 1051 } 1052 1053 int sysctl_extfrag_threshold = 500; 1054 1055 /** 1056 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 1057 * @zonelist: The zonelist used for the current allocation 1058 * @order: The order of the current allocation 1059 * @gfp_mask: The GFP mask of the current allocation 1060 * @nodemask: The allowed nodes to allocate from 1061 * @sync: Whether migration is synchronous or not 1062 * @contended: Return value that is true if compaction was aborted due to lock contention 1063 * @page: Optionally capture a free page of the requested order during compaction 1064 * 1065 * This is the main entry point for direct page compaction. 1066 */ 1067 unsigned long try_to_compact_pages(struct zonelist *zonelist, 1068 int order, gfp_t gfp_mask, nodemask_t *nodemask, 1069 bool sync, bool *contended, struct page **page) 1070 { 1071 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1072 int may_enter_fs = gfp_mask & __GFP_FS; 1073 int may_perform_io = gfp_mask & __GFP_IO; 1074 struct zoneref *z; 1075 struct zone *zone; 1076 int rc = COMPACT_SKIPPED; 1077 int alloc_flags = 0; 1078 1079 /* Check if the GFP flags allow compaction */ 1080 if (!order || !may_enter_fs || !may_perform_io) 1081 return rc; 1082 1083 count_vm_event(COMPACTSTALL); 1084 1085 #ifdef CONFIG_CMA 1086 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 1087 alloc_flags |= ALLOC_CMA; 1088 #endif 1089 /* Compact each zone in the list */ 1090 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, 1091 nodemask) { 1092 int status; 1093 1094 status = compact_zone_order(zone, order, gfp_mask, sync, 1095 contended, page); 1096 rc = max(status, rc); 1097 1098 /* If a normal allocation would succeed, stop compacting */ 1099 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 1100 alloc_flags)) 1101 break; 1102 } 1103 1104 return rc; 1105 } 1106 1107 1108 /* Compact all zones within a node */ 1109 static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) 1110 { 1111 int zoneid; 1112 struct zone *zone; 1113 1114 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 1115 1116 zone = &pgdat->node_zones[zoneid]; 1117 if (!populated_zone(zone)) 1118 continue; 1119 1120 cc->nr_freepages = 0; 1121 cc->nr_migratepages = 0; 1122 cc->zone = zone; 1123 INIT_LIST_HEAD(&cc->freepages); 1124 INIT_LIST_HEAD(&cc->migratepages); 1125 1126 if (cc->order == -1 || !compaction_deferred(zone, cc->order)) 1127 compact_zone(zone, cc); 1128 1129 if (cc->order > 0) { 1130 int ok = zone_watermark_ok(zone, cc->order, 1131 low_wmark_pages(zone), 0, 0); 1132 if (ok && cc->order >= zone->compact_order_failed) 1133 zone->compact_order_failed = cc->order + 1; 1134 /* Currently async compaction is never deferred. */ 1135 else if (!ok && cc->sync) 1136 defer_compaction(zone, cc->order); 1137 } 1138 1139 VM_BUG_ON(!list_empty(&cc->freepages)); 1140 VM_BUG_ON(!list_empty(&cc->migratepages)); 1141 } 1142 1143 return 0; 1144 } 1145 1146 int compact_pgdat(pg_data_t *pgdat, int order) 1147 { 1148 struct compact_control cc = { 1149 .order = order, 1150 .sync = false, 1151 .page = NULL, 1152 }; 1153 1154 return __compact_pgdat(pgdat, &cc); 1155 } 1156 1157 static int compact_node(int nid) 1158 { 1159 struct compact_control cc = { 1160 .order = -1, 1161 .sync = true, 1162 .page = NULL, 1163 }; 1164 1165 return __compact_pgdat(NODE_DATA(nid), &cc); 1166 } 1167 1168 /* Compact all nodes in the system */ 1169 static int compact_nodes(void) 1170 { 1171 int nid; 1172 1173 /* Flush pending updates to the LRU lists */ 1174 lru_add_drain_all(); 1175 1176 for_each_online_node(nid) 1177 compact_node(nid); 1178 1179 return COMPACT_COMPLETE; 1180 } 1181 1182 /* The written value is actually unused, all memory is compacted */ 1183 int sysctl_compact_memory; 1184 1185 /* This is the entry point for compacting all nodes via /proc/sys/vm */ 1186 int sysctl_compaction_handler(struct ctl_table *table, int write, 1187 void __user *buffer, size_t *length, loff_t *ppos) 1188 { 1189 if (write) 1190 return compact_nodes(); 1191 1192 return 0; 1193 } 1194 1195 int sysctl_extfrag_handler(struct ctl_table *table, int write, 1196 void __user *buffer, size_t *length, loff_t *ppos) 1197 { 1198 proc_dointvec_minmax(table, write, buffer, length, ppos); 1199 1200 return 0; 1201 } 1202 1203 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 1204 ssize_t sysfs_compact_node(struct device *dev, 1205 struct device_attribute *attr, 1206 const char *buf, size_t count) 1207 { 1208 int nid = dev->id; 1209 1210 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 1211 /* Flush pending updates to the LRU lists */ 1212 lru_add_drain_all(); 1213 1214 compact_node(nid); 1215 } 1216 1217 return count; 1218 } 1219 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); 1220 1221 int compaction_register_node(struct node *node) 1222 { 1223 return device_create_file(&node->dev, &dev_attr_compact); 1224 } 1225 1226 void compaction_unregister_node(struct node *node) 1227 { 1228 return device_remove_file(&node->dev, &dev_attr_compact); 1229 } 1230 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 1231 1232 #endif /* CONFIG_COMPACTION */ 1233