xref: /openbmc/linux/mm/compaction.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 	count_vm_event(item);
32 }
33 
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 	count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42 
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47 
48 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
52 
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55 	struct page *page, *next;
56 	unsigned long high_pfn = 0;
57 
58 	list_for_each_entry_safe(page, next, freelist, lru) {
59 		unsigned long pfn = page_to_pfn(page);
60 		list_del(&page->lru);
61 		__free_page(page);
62 		if (pfn > high_pfn)
63 			high_pfn = pfn;
64 	}
65 
66 	return high_pfn;
67 }
68 
69 static void split_map_pages(struct list_head *list)
70 {
71 	unsigned int i, order, nr_pages;
72 	struct page *page, *next;
73 	LIST_HEAD(tmp_list);
74 
75 	list_for_each_entry_safe(page, next, list, lru) {
76 		list_del(&page->lru);
77 
78 		order = page_private(page);
79 		nr_pages = 1 << order;
80 
81 		post_alloc_hook(page, order, __GFP_MOVABLE);
82 		if (order)
83 			split_page(page, order);
84 
85 		for (i = 0; i < nr_pages; i++) {
86 			list_add(&page->lru, &tmp_list);
87 			page++;
88 		}
89 	}
90 
91 	list_splice(&tmp_list, list);
92 }
93 
94 #ifdef CONFIG_COMPACTION
95 
96 int PageMovable(struct page *page)
97 {
98 	struct address_space *mapping;
99 
100 	VM_BUG_ON_PAGE(!PageLocked(page), page);
101 	if (!__PageMovable(page))
102 		return 0;
103 
104 	mapping = page_mapping(page);
105 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
106 		return 1;
107 
108 	return 0;
109 }
110 EXPORT_SYMBOL(PageMovable);
111 
112 void __SetPageMovable(struct page *page, struct address_space *mapping)
113 {
114 	VM_BUG_ON_PAGE(!PageLocked(page), page);
115 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
116 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
117 }
118 EXPORT_SYMBOL(__SetPageMovable);
119 
120 void __ClearPageMovable(struct page *page)
121 {
122 	VM_BUG_ON_PAGE(!PageLocked(page), page);
123 	VM_BUG_ON_PAGE(!PageMovable(page), page);
124 	/*
125 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126 	 * flag so that VM can catch up released page by driver after isolation.
127 	 * With it, VM migration doesn't try to put it back.
128 	 */
129 	page->mapping = (void *)((unsigned long)page->mapping &
130 				PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__ClearPageMovable);
133 
134 /* Do not skip compaction more than 64 times */
135 #define COMPACT_MAX_DEFER_SHIFT 6
136 
137 /*
138  * Compaction is deferred when compaction fails to result in a page
139  * allocation success. 1 << compact_defer_limit compactions are skipped up
140  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141  */
142 void defer_compaction(struct zone *zone, int order)
143 {
144 	zone->compact_considered = 0;
145 	zone->compact_defer_shift++;
146 
147 	if (order < zone->compact_order_failed)
148 		zone->compact_order_failed = order;
149 
150 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
151 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
152 
153 	trace_mm_compaction_defer_compaction(zone, order);
154 }
155 
156 /* Returns true if compaction should be skipped this time */
157 bool compaction_deferred(struct zone *zone, int order)
158 {
159 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
160 
161 	if (order < zone->compact_order_failed)
162 		return false;
163 
164 	/* Avoid possible overflow */
165 	if (++zone->compact_considered > defer_limit)
166 		zone->compact_considered = defer_limit;
167 
168 	if (zone->compact_considered >= defer_limit)
169 		return false;
170 
171 	trace_mm_compaction_deferred(zone, order);
172 
173 	return true;
174 }
175 
176 /*
177  * Update defer tracking counters after successful compaction of given order,
178  * which means an allocation either succeeded (alloc_success == true) or is
179  * expected to succeed.
180  */
181 void compaction_defer_reset(struct zone *zone, int order,
182 		bool alloc_success)
183 {
184 	if (alloc_success) {
185 		zone->compact_considered = 0;
186 		zone->compact_defer_shift = 0;
187 	}
188 	if (order >= zone->compact_order_failed)
189 		zone->compact_order_failed = order + 1;
190 
191 	trace_mm_compaction_defer_reset(zone, order);
192 }
193 
194 /* Returns true if restarting compaction after many failures */
195 bool compaction_restarting(struct zone *zone, int order)
196 {
197 	if (order < zone->compact_order_failed)
198 		return false;
199 
200 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
201 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
202 }
203 
204 /* Returns true if the pageblock should be scanned for pages to isolate. */
205 static inline bool isolation_suitable(struct compact_control *cc,
206 					struct page *page)
207 {
208 	if (cc->ignore_skip_hint)
209 		return true;
210 
211 	return !get_pageblock_skip(page);
212 }
213 
214 static void reset_cached_positions(struct zone *zone)
215 {
216 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
217 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218 	zone->compact_cached_free_pfn =
219 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 }
221 
222 /*
223  * Compound pages of >= pageblock_order should consistenly be skipped until
224  * released. It is always pointless to compact pages of such order (if they are
225  * migratable), and the pageblocks they occupy cannot contain any free pages.
226  */
227 static bool pageblock_skip_persistent(struct page *page)
228 {
229 	if (!PageCompound(page))
230 		return false;
231 
232 	page = compound_head(page);
233 
234 	if (compound_order(page) >= pageblock_order)
235 		return true;
236 
237 	return false;
238 }
239 
240 static bool
241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
242 							bool check_target)
243 {
244 	struct page *page = pfn_to_online_page(pfn);
245 	struct page *end_page;
246 	unsigned long block_pfn;
247 
248 	if (!page)
249 		return false;
250 	if (zone != page_zone(page))
251 		return false;
252 	if (pageblock_skip_persistent(page))
253 		return false;
254 
255 	/*
256 	 * If skip is already cleared do no further checking once the
257 	 * restart points have been set.
258 	 */
259 	if (check_source && check_target && !get_pageblock_skip(page))
260 		return true;
261 
262 	/*
263 	 * If clearing skip for the target scanner, do not select a
264 	 * non-movable pageblock as the starting point.
265 	 */
266 	if (!check_source && check_target &&
267 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
268 		return false;
269 
270 	/*
271 	 * Only clear the hint if a sample indicates there is either a
272 	 * free page or an LRU page in the block. One or other condition
273 	 * is necessary for the block to be a migration source/target.
274 	 */
275 	block_pfn = pageblock_start_pfn(pfn);
276 	pfn = max(block_pfn, zone->zone_start_pfn);
277 	page = pfn_to_page(pfn);
278 	if (zone != page_zone(page))
279 		return false;
280 	pfn = block_pfn + pageblock_nr_pages;
281 	pfn = min(pfn, zone_end_pfn(zone));
282 	end_page = pfn_to_page(pfn);
283 
284 	do {
285 		if (pfn_valid_within(pfn)) {
286 			if (check_source && PageLRU(page)) {
287 				clear_pageblock_skip(page);
288 				return true;
289 			}
290 
291 			if (check_target && PageBuddy(page)) {
292 				clear_pageblock_skip(page);
293 				return true;
294 			}
295 		}
296 
297 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
298 		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
299 	} while (page < end_page);
300 
301 	return false;
302 }
303 
304 /*
305  * This function is called to clear all cached information on pageblocks that
306  * should be skipped for page isolation when the migrate and free page scanner
307  * meet.
308  */
309 static void __reset_isolation_suitable(struct zone *zone)
310 {
311 	unsigned long migrate_pfn = zone->zone_start_pfn;
312 	unsigned long free_pfn = zone_end_pfn(zone);
313 	unsigned long reset_migrate = free_pfn;
314 	unsigned long reset_free = migrate_pfn;
315 	bool source_set = false;
316 	bool free_set = false;
317 
318 	if (!zone->compact_blockskip_flush)
319 		return;
320 
321 	zone->compact_blockskip_flush = false;
322 
323 	/*
324 	 * Walk the zone and update pageblock skip information. Source looks
325 	 * for PageLRU while target looks for PageBuddy. When the scanner
326 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
327 	 * is suitable as both source and target.
328 	 */
329 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
330 					free_pfn -= pageblock_nr_pages) {
331 		cond_resched();
332 
333 		/* Update the migrate PFN */
334 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
335 		    migrate_pfn < reset_migrate) {
336 			source_set = true;
337 			reset_migrate = migrate_pfn;
338 			zone->compact_init_migrate_pfn = reset_migrate;
339 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
340 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
341 		}
342 
343 		/* Update the free PFN */
344 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
345 		    free_pfn > reset_free) {
346 			free_set = true;
347 			reset_free = free_pfn;
348 			zone->compact_init_free_pfn = reset_free;
349 			zone->compact_cached_free_pfn = reset_free;
350 		}
351 	}
352 
353 	/* Leave no distance if no suitable block was reset */
354 	if (reset_migrate >= reset_free) {
355 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
356 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
357 		zone->compact_cached_free_pfn = free_pfn;
358 	}
359 }
360 
361 void reset_isolation_suitable(pg_data_t *pgdat)
362 {
363 	int zoneid;
364 
365 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
366 		struct zone *zone = &pgdat->node_zones[zoneid];
367 		if (!populated_zone(zone))
368 			continue;
369 
370 		/* Only flush if a full compaction finished recently */
371 		if (zone->compact_blockskip_flush)
372 			__reset_isolation_suitable(zone);
373 	}
374 }
375 
376 /*
377  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
378  * locks are not required for read/writers. Returns true if it was already set.
379  */
380 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
381 							unsigned long pfn)
382 {
383 	bool skip;
384 
385 	/* Do no update if skip hint is being ignored */
386 	if (cc->ignore_skip_hint)
387 		return false;
388 
389 	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
390 		return false;
391 
392 	skip = get_pageblock_skip(page);
393 	if (!skip && !cc->no_set_skip_hint)
394 		set_pageblock_skip(page);
395 
396 	return skip;
397 }
398 
399 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
400 {
401 	struct zone *zone = cc->zone;
402 
403 	pfn = pageblock_end_pfn(pfn);
404 
405 	/* Set for isolation rather than compaction */
406 	if (cc->no_set_skip_hint)
407 		return;
408 
409 	if (pfn > zone->compact_cached_migrate_pfn[0])
410 		zone->compact_cached_migrate_pfn[0] = pfn;
411 	if (cc->mode != MIGRATE_ASYNC &&
412 	    pfn > zone->compact_cached_migrate_pfn[1])
413 		zone->compact_cached_migrate_pfn[1] = pfn;
414 }
415 
416 /*
417  * If no pages were isolated then mark this pageblock to be skipped in the
418  * future. The information is later cleared by __reset_isolation_suitable().
419  */
420 static void update_pageblock_skip(struct compact_control *cc,
421 			struct page *page, unsigned long pfn)
422 {
423 	struct zone *zone = cc->zone;
424 
425 	if (cc->no_set_skip_hint)
426 		return;
427 
428 	if (!page)
429 		return;
430 
431 	set_pageblock_skip(page);
432 
433 	/* Update where async and sync compaction should restart */
434 	if (pfn < zone->compact_cached_free_pfn)
435 		zone->compact_cached_free_pfn = pfn;
436 }
437 #else
438 static inline bool isolation_suitable(struct compact_control *cc,
439 					struct page *page)
440 {
441 	return true;
442 }
443 
444 static inline bool pageblock_skip_persistent(struct page *page)
445 {
446 	return false;
447 }
448 
449 static inline void update_pageblock_skip(struct compact_control *cc,
450 			struct page *page, unsigned long pfn)
451 {
452 }
453 
454 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
455 {
456 }
457 
458 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
459 							unsigned long pfn)
460 {
461 	return false;
462 }
463 #endif /* CONFIG_COMPACTION */
464 
465 /*
466  * Compaction requires the taking of some coarse locks that are potentially
467  * very heavily contended. For async compaction, trylock and record if the
468  * lock is contended. The lock will still be acquired but compaction will
469  * abort when the current block is finished regardless of success rate.
470  * Sync compaction acquires the lock.
471  *
472  * Always returns true which makes it easier to track lock state in callers.
473  */
474 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
475 						struct compact_control *cc)
476 {
477 	/* Track if the lock is contended in async mode */
478 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
479 		if (spin_trylock_irqsave(lock, *flags))
480 			return true;
481 
482 		cc->contended = true;
483 	}
484 
485 	spin_lock_irqsave(lock, *flags);
486 	return true;
487 }
488 
489 /*
490  * Compaction requires the taking of some coarse locks that are potentially
491  * very heavily contended. The lock should be periodically unlocked to avoid
492  * having disabled IRQs for a long time, even when there is nobody waiting on
493  * the lock. It might also be that allowing the IRQs will result in
494  * need_resched() becoming true. If scheduling is needed, async compaction
495  * aborts. Sync compaction schedules.
496  * Either compaction type will also abort if a fatal signal is pending.
497  * In either case if the lock was locked, it is dropped and not regained.
498  *
499  * Returns true if compaction should abort due to fatal signal pending, or
500  *		async compaction due to need_resched()
501  * Returns false when compaction can continue (sync compaction might have
502  *		scheduled)
503  */
504 static bool compact_unlock_should_abort(spinlock_t *lock,
505 		unsigned long flags, bool *locked, struct compact_control *cc)
506 {
507 	if (*locked) {
508 		spin_unlock_irqrestore(lock, flags);
509 		*locked = false;
510 	}
511 
512 	if (fatal_signal_pending(current)) {
513 		cc->contended = true;
514 		return true;
515 	}
516 
517 	cond_resched();
518 
519 	return false;
520 }
521 
522 /*
523  * Isolate free pages onto a private freelist. If @strict is true, will abort
524  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
525  * (even though it may still end up isolating some pages).
526  */
527 static unsigned long isolate_freepages_block(struct compact_control *cc,
528 				unsigned long *start_pfn,
529 				unsigned long end_pfn,
530 				struct list_head *freelist,
531 				unsigned int stride,
532 				bool strict)
533 {
534 	int nr_scanned = 0, total_isolated = 0;
535 	struct page *cursor;
536 	unsigned long flags = 0;
537 	bool locked = false;
538 	unsigned long blockpfn = *start_pfn;
539 	unsigned int order;
540 
541 	/* Strict mode is for isolation, speed is secondary */
542 	if (strict)
543 		stride = 1;
544 
545 	cursor = pfn_to_page(blockpfn);
546 
547 	/* Isolate free pages. */
548 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
549 		int isolated;
550 		struct page *page = cursor;
551 
552 		/*
553 		 * Periodically drop the lock (if held) regardless of its
554 		 * contention, to give chance to IRQs. Abort if fatal signal
555 		 * pending or async compaction detects need_resched()
556 		 */
557 		if (!(blockpfn % SWAP_CLUSTER_MAX)
558 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
559 								&locked, cc))
560 			break;
561 
562 		nr_scanned++;
563 		if (!pfn_valid_within(blockpfn))
564 			goto isolate_fail;
565 
566 		/*
567 		 * For compound pages such as THP and hugetlbfs, we can save
568 		 * potentially a lot of iterations if we skip them at once.
569 		 * The check is racy, but we can consider only valid values
570 		 * and the only danger is skipping too much.
571 		 */
572 		if (PageCompound(page)) {
573 			const unsigned int order = compound_order(page);
574 
575 			if (likely(order < MAX_ORDER)) {
576 				blockpfn += (1UL << order) - 1;
577 				cursor += (1UL << order) - 1;
578 			}
579 			goto isolate_fail;
580 		}
581 
582 		if (!PageBuddy(page))
583 			goto isolate_fail;
584 
585 		/*
586 		 * If we already hold the lock, we can skip some rechecking.
587 		 * Note that if we hold the lock now, checked_pageblock was
588 		 * already set in some previous iteration (or strict is true),
589 		 * so it is correct to skip the suitable migration target
590 		 * recheck as well.
591 		 */
592 		if (!locked) {
593 			locked = compact_lock_irqsave(&cc->zone->lock,
594 								&flags, cc);
595 
596 			/* Recheck this is a buddy page under lock */
597 			if (!PageBuddy(page))
598 				goto isolate_fail;
599 		}
600 
601 		/* Found a free page, will break it into order-0 pages */
602 		order = page_order(page);
603 		isolated = __isolate_free_page(page, order);
604 		if (!isolated)
605 			break;
606 		set_page_private(page, order);
607 
608 		total_isolated += isolated;
609 		cc->nr_freepages += isolated;
610 		list_add_tail(&page->lru, freelist);
611 
612 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
613 			blockpfn += isolated;
614 			break;
615 		}
616 		/* Advance to the end of split page */
617 		blockpfn += isolated - 1;
618 		cursor += isolated - 1;
619 		continue;
620 
621 isolate_fail:
622 		if (strict)
623 			break;
624 		else
625 			continue;
626 
627 	}
628 
629 	if (locked)
630 		spin_unlock_irqrestore(&cc->zone->lock, flags);
631 
632 	/*
633 	 * There is a tiny chance that we have read bogus compound_order(),
634 	 * so be careful to not go outside of the pageblock.
635 	 */
636 	if (unlikely(blockpfn > end_pfn))
637 		blockpfn = end_pfn;
638 
639 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
640 					nr_scanned, total_isolated);
641 
642 	/* Record how far we have got within the block */
643 	*start_pfn = blockpfn;
644 
645 	/*
646 	 * If strict isolation is requested by CMA then check that all the
647 	 * pages requested were isolated. If there were any failures, 0 is
648 	 * returned and CMA will fail.
649 	 */
650 	if (strict && blockpfn < end_pfn)
651 		total_isolated = 0;
652 
653 	cc->total_free_scanned += nr_scanned;
654 	if (total_isolated)
655 		count_compact_events(COMPACTISOLATED, total_isolated);
656 	return total_isolated;
657 }
658 
659 /**
660  * isolate_freepages_range() - isolate free pages.
661  * @cc:        Compaction control structure.
662  * @start_pfn: The first PFN to start isolating.
663  * @end_pfn:   The one-past-last PFN.
664  *
665  * Non-free pages, invalid PFNs, or zone boundaries within the
666  * [start_pfn, end_pfn) range are considered errors, cause function to
667  * undo its actions and return zero.
668  *
669  * Otherwise, function returns one-past-the-last PFN of isolated page
670  * (which may be greater then end_pfn if end fell in a middle of
671  * a free page).
672  */
673 unsigned long
674 isolate_freepages_range(struct compact_control *cc,
675 			unsigned long start_pfn, unsigned long end_pfn)
676 {
677 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
678 	LIST_HEAD(freelist);
679 
680 	pfn = start_pfn;
681 	block_start_pfn = pageblock_start_pfn(pfn);
682 	if (block_start_pfn < cc->zone->zone_start_pfn)
683 		block_start_pfn = cc->zone->zone_start_pfn;
684 	block_end_pfn = pageblock_end_pfn(pfn);
685 
686 	for (; pfn < end_pfn; pfn += isolated,
687 				block_start_pfn = block_end_pfn,
688 				block_end_pfn += pageblock_nr_pages) {
689 		/* Protect pfn from changing by isolate_freepages_block */
690 		unsigned long isolate_start_pfn = pfn;
691 
692 		block_end_pfn = min(block_end_pfn, end_pfn);
693 
694 		/*
695 		 * pfn could pass the block_end_pfn if isolated freepage
696 		 * is more than pageblock order. In this case, we adjust
697 		 * scanning range to right one.
698 		 */
699 		if (pfn >= block_end_pfn) {
700 			block_start_pfn = pageblock_start_pfn(pfn);
701 			block_end_pfn = pageblock_end_pfn(pfn);
702 			block_end_pfn = min(block_end_pfn, end_pfn);
703 		}
704 
705 		if (!pageblock_pfn_to_page(block_start_pfn,
706 					block_end_pfn, cc->zone))
707 			break;
708 
709 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
710 					block_end_pfn, &freelist, 0, true);
711 
712 		/*
713 		 * In strict mode, isolate_freepages_block() returns 0 if
714 		 * there are any holes in the block (ie. invalid PFNs or
715 		 * non-free pages).
716 		 */
717 		if (!isolated)
718 			break;
719 
720 		/*
721 		 * If we managed to isolate pages, it is always (1 << n) *
722 		 * pageblock_nr_pages for some non-negative n.  (Max order
723 		 * page may span two pageblocks).
724 		 */
725 	}
726 
727 	/* __isolate_free_page() does not map the pages */
728 	split_map_pages(&freelist);
729 
730 	if (pfn < end_pfn) {
731 		/* Loop terminated early, cleanup. */
732 		release_freepages(&freelist);
733 		return 0;
734 	}
735 
736 	/* We don't use freelists for anything. */
737 	return pfn;
738 }
739 
740 /* Similar to reclaim, but different enough that they don't share logic */
741 static bool too_many_isolated(pg_data_t *pgdat)
742 {
743 	unsigned long active, inactive, isolated;
744 
745 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
746 			node_page_state(pgdat, NR_INACTIVE_ANON);
747 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
748 			node_page_state(pgdat, NR_ACTIVE_ANON);
749 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
750 			node_page_state(pgdat, NR_ISOLATED_ANON);
751 
752 	return isolated > (inactive + active) / 2;
753 }
754 
755 /**
756  * isolate_migratepages_block() - isolate all migrate-able pages within
757  *				  a single pageblock
758  * @cc:		Compaction control structure.
759  * @low_pfn:	The first PFN to isolate
760  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
761  * @isolate_mode: Isolation mode to be used.
762  *
763  * Isolate all pages that can be migrated from the range specified by
764  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
765  * Returns zero if there is a fatal signal pending, otherwise PFN of the
766  * first page that was not scanned (which may be both less, equal to or more
767  * than end_pfn).
768  *
769  * The pages are isolated on cc->migratepages list (not required to be empty),
770  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
771  * is neither read nor updated.
772  */
773 static unsigned long
774 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
775 			unsigned long end_pfn, isolate_mode_t isolate_mode)
776 {
777 	pg_data_t *pgdat = cc->zone->zone_pgdat;
778 	unsigned long nr_scanned = 0, nr_isolated = 0;
779 	struct lruvec *lruvec;
780 	unsigned long flags = 0;
781 	bool locked = false;
782 	struct page *page = NULL, *valid_page = NULL;
783 	unsigned long start_pfn = low_pfn;
784 	bool skip_on_failure = false;
785 	unsigned long next_skip_pfn = 0;
786 	bool skip_updated = false;
787 
788 	/*
789 	 * Ensure that there are not too many pages isolated from the LRU
790 	 * list by either parallel reclaimers or compaction. If there are,
791 	 * delay for some time until fewer pages are isolated
792 	 */
793 	while (unlikely(too_many_isolated(pgdat))) {
794 		/* async migration should just abort */
795 		if (cc->mode == MIGRATE_ASYNC)
796 			return 0;
797 
798 		congestion_wait(BLK_RW_ASYNC, HZ/10);
799 
800 		if (fatal_signal_pending(current))
801 			return 0;
802 	}
803 
804 	cond_resched();
805 
806 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
807 		skip_on_failure = true;
808 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
809 	}
810 
811 	/* Time to isolate some pages for migration */
812 	for (; low_pfn < end_pfn; low_pfn++) {
813 
814 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
815 			/*
816 			 * We have isolated all migration candidates in the
817 			 * previous order-aligned block, and did not skip it due
818 			 * to failure. We should migrate the pages now and
819 			 * hopefully succeed compaction.
820 			 */
821 			if (nr_isolated)
822 				break;
823 
824 			/*
825 			 * We failed to isolate in the previous order-aligned
826 			 * block. Set the new boundary to the end of the
827 			 * current block. Note we can't simply increase
828 			 * next_skip_pfn by 1 << order, as low_pfn might have
829 			 * been incremented by a higher number due to skipping
830 			 * a compound or a high-order buddy page in the
831 			 * previous loop iteration.
832 			 */
833 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
834 		}
835 
836 		/*
837 		 * Periodically drop the lock (if held) regardless of its
838 		 * contention, to give chance to IRQs. Abort async compaction
839 		 * if contended.
840 		 */
841 		if (!(low_pfn % SWAP_CLUSTER_MAX)
842 		    && compact_unlock_should_abort(&pgdat->lru_lock,
843 					    flags, &locked, cc))
844 			break;
845 
846 		if (!pfn_valid_within(low_pfn))
847 			goto isolate_fail;
848 		nr_scanned++;
849 
850 		page = pfn_to_page(low_pfn);
851 
852 		/*
853 		 * Check if the pageblock has already been marked skipped.
854 		 * Only the aligned PFN is checked as the caller isolates
855 		 * COMPACT_CLUSTER_MAX at a time so the second call must
856 		 * not falsely conclude that the block should be skipped.
857 		 */
858 		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
859 			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
860 				low_pfn = end_pfn;
861 				goto isolate_abort;
862 			}
863 			valid_page = page;
864 		}
865 
866 		/*
867 		 * Skip if free. We read page order here without zone lock
868 		 * which is generally unsafe, but the race window is small and
869 		 * the worst thing that can happen is that we skip some
870 		 * potential isolation targets.
871 		 */
872 		if (PageBuddy(page)) {
873 			unsigned long freepage_order = page_order_unsafe(page);
874 
875 			/*
876 			 * Without lock, we cannot be sure that what we got is
877 			 * a valid page order. Consider only values in the
878 			 * valid order range to prevent low_pfn overflow.
879 			 */
880 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
881 				low_pfn += (1UL << freepage_order) - 1;
882 			continue;
883 		}
884 
885 		/*
886 		 * Regardless of being on LRU, compound pages such as THP and
887 		 * hugetlbfs are not to be compacted. We can potentially save
888 		 * a lot of iterations if we skip them at once. The check is
889 		 * racy, but we can consider only valid values and the only
890 		 * danger is skipping too much.
891 		 */
892 		if (PageCompound(page)) {
893 			const unsigned int order = compound_order(page);
894 
895 			if (likely(order < MAX_ORDER))
896 				low_pfn += (1UL << order) - 1;
897 			goto isolate_fail;
898 		}
899 
900 		/*
901 		 * Check may be lockless but that's ok as we recheck later.
902 		 * It's possible to migrate LRU and non-lru movable pages.
903 		 * Skip any other type of page
904 		 */
905 		if (!PageLRU(page)) {
906 			/*
907 			 * __PageMovable can return false positive so we need
908 			 * to verify it under page_lock.
909 			 */
910 			if (unlikely(__PageMovable(page)) &&
911 					!PageIsolated(page)) {
912 				if (locked) {
913 					spin_unlock_irqrestore(&pgdat->lru_lock,
914 									flags);
915 					locked = false;
916 				}
917 
918 				if (!isolate_movable_page(page, isolate_mode))
919 					goto isolate_success;
920 			}
921 
922 			goto isolate_fail;
923 		}
924 
925 		/*
926 		 * Migration will fail if an anonymous page is pinned in memory,
927 		 * so avoid taking lru_lock and isolating it unnecessarily in an
928 		 * admittedly racy check.
929 		 */
930 		if (!page_mapping(page) &&
931 		    page_count(page) > page_mapcount(page))
932 			goto isolate_fail;
933 
934 		/*
935 		 * Only allow to migrate anonymous pages in GFP_NOFS context
936 		 * because those do not depend on fs locks.
937 		 */
938 		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
939 			goto isolate_fail;
940 
941 		/* If we already hold the lock, we can skip some rechecking */
942 		if (!locked) {
943 			locked = compact_lock_irqsave(&pgdat->lru_lock,
944 								&flags, cc);
945 
946 			/* Try get exclusive access under lock */
947 			if (!skip_updated) {
948 				skip_updated = true;
949 				if (test_and_set_skip(cc, page, low_pfn))
950 					goto isolate_abort;
951 			}
952 
953 			/* Recheck PageLRU and PageCompound under lock */
954 			if (!PageLRU(page))
955 				goto isolate_fail;
956 
957 			/*
958 			 * Page become compound since the non-locked check,
959 			 * and it's on LRU. It can only be a THP so the order
960 			 * is safe to read and it's 0 for tail pages.
961 			 */
962 			if (unlikely(PageCompound(page))) {
963 				low_pfn += (1UL << compound_order(page)) - 1;
964 				goto isolate_fail;
965 			}
966 		}
967 
968 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
969 
970 		/* Try isolate the page */
971 		if (__isolate_lru_page(page, isolate_mode) != 0)
972 			goto isolate_fail;
973 
974 		VM_BUG_ON_PAGE(PageCompound(page), page);
975 
976 		/* Successfully isolated */
977 		del_page_from_lru_list(page, lruvec, page_lru(page));
978 		inc_node_page_state(page,
979 				NR_ISOLATED_ANON + page_is_file_cache(page));
980 
981 isolate_success:
982 		list_add(&page->lru, &cc->migratepages);
983 		cc->nr_migratepages++;
984 		nr_isolated++;
985 
986 		/*
987 		 * Avoid isolating too much unless this block is being
988 		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
989 		 * or a lock is contended. For contention, isolate quickly to
990 		 * potentially remove one source of contention.
991 		 */
992 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
993 		    !cc->rescan && !cc->contended) {
994 			++low_pfn;
995 			break;
996 		}
997 
998 		continue;
999 isolate_fail:
1000 		if (!skip_on_failure)
1001 			continue;
1002 
1003 		/*
1004 		 * We have isolated some pages, but then failed. Release them
1005 		 * instead of migrating, as we cannot form the cc->order buddy
1006 		 * page anyway.
1007 		 */
1008 		if (nr_isolated) {
1009 			if (locked) {
1010 				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1011 				locked = false;
1012 			}
1013 			putback_movable_pages(&cc->migratepages);
1014 			cc->nr_migratepages = 0;
1015 			nr_isolated = 0;
1016 		}
1017 
1018 		if (low_pfn < next_skip_pfn) {
1019 			low_pfn = next_skip_pfn - 1;
1020 			/*
1021 			 * The check near the loop beginning would have updated
1022 			 * next_skip_pfn too, but this is a bit simpler.
1023 			 */
1024 			next_skip_pfn += 1UL << cc->order;
1025 		}
1026 	}
1027 
1028 	/*
1029 	 * The PageBuddy() check could have potentially brought us outside
1030 	 * the range to be scanned.
1031 	 */
1032 	if (unlikely(low_pfn > end_pfn))
1033 		low_pfn = end_pfn;
1034 
1035 isolate_abort:
1036 	if (locked)
1037 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1038 
1039 	/*
1040 	 * Updated the cached scanner pfn once the pageblock has been scanned
1041 	 * Pages will either be migrated in which case there is no point
1042 	 * scanning in the near future or migration failed in which case the
1043 	 * failure reason may persist. The block is marked for skipping if
1044 	 * there were no pages isolated in the block or if the block is
1045 	 * rescanned twice in a row.
1046 	 */
1047 	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1048 		if (valid_page && !skip_updated)
1049 			set_pageblock_skip(valid_page);
1050 		update_cached_migrate(cc, low_pfn);
1051 	}
1052 
1053 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1054 						nr_scanned, nr_isolated);
1055 
1056 	cc->total_migrate_scanned += nr_scanned;
1057 	if (nr_isolated)
1058 		count_compact_events(COMPACTISOLATED, nr_isolated);
1059 
1060 	return low_pfn;
1061 }
1062 
1063 /**
1064  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1065  * @cc:        Compaction control structure.
1066  * @start_pfn: The first PFN to start isolating.
1067  * @end_pfn:   The one-past-last PFN.
1068  *
1069  * Returns zero if isolation fails fatally due to e.g. pending signal.
1070  * Otherwise, function returns one-past-the-last PFN of isolated page
1071  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1072  */
1073 unsigned long
1074 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1075 							unsigned long end_pfn)
1076 {
1077 	unsigned long pfn, block_start_pfn, block_end_pfn;
1078 
1079 	/* Scan block by block. First and last block may be incomplete */
1080 	pfn = start_pfn;
1081 	block_start_pfn = pageblock_start_pfn(pfn);
1082 	if (block_start_pfn < cc->zone->zone_start_pfn)
1083 		block_start_pfn = cc->zone->zone_start_pfn;
1084 	block_end_pfn = pageblock_end_pfn(pfn);
1085 
1086 	for (; pfn < end_pfn; pfn = block_end_pfn,
1087 				block_start_pfn = block_end_pfn,
1088 				block_end_pfn += pageblock_nr_pages) {
1089 
1090 		block_end_pfn = min(block_end_pfn, end_pfn);
1091 
1092 		if (!pageblock_pfn_to_page(block_start_pfn,
1093 					block_end_pfn, cc->zone))
1094 			continue;
1095 
1096 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1097 							ISOLATE_UNEVICTABLE);
1098 
1099 		if (!pfn)
1100 			break;
1101 
1102 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1103 			break;
1104 	}
1105 
1106 	return pfn;
1107 }
1108 
1109 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1110 #ifdef CONFIG_COMPACTION
1111 
1112 static bool suitable_migration_source(struct compact_control *cc,
1113 							struct page *page)
1114 {
1115 	int block_mt;
1116 
1117 	if (pageblock_skip_persistent(page))
1118 		return false;
1119 
1120 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1121 		return true;
1122 
1123 	block_mt = get_pageblock_migratetype(page);
1124 
1125 	if (cc->migratetype == MIGRATE_MOVABLE)
1126 		return is_migrate_movable(block_mt);
1127 	else
1128 		return block_mt == cc->migratetype;
1129 }
1130 
1131 /* Returns true if the page is within a block suitable for migration to */
1132 static bool suitable_migration_target(struct compact_control *cc,
1133 							struct page *page)
1134 {
1135 	/* If the page is a large free page, then disallow migration */
1136 	if (PageBuddy(page)) {
1137 		/*
1138 		 * We are checking page_order without zone->lock taken. But
1139 		 * the only small danger is that we skip a potentially suitable
1140 		 * pageblock, so it's not worth to check order for valid range.
1141 		 */
1142 		if (page_order_unsafe(page) >= pageblock_order)
1143 			return false;
1144 	}
1145 
1146 	if (cc->ignore_block_suitable)
1147 		return true;
1148 
1149 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1150 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1151 		return true;
1152 
1153 	/* Otherwise skip the block */
1154 	return false;
1155 }
1156 
1157 static inline unsigned int
1158 freelist_scan_limit(struct compact_control *cc)
1159 {
1160 	return (COMPACT_CLUSTER_MAX >> cc->fast_search_fail) + 1;
1161 }
1162 
1163 /*
1164  * Test whether the free scanner has reached the same or lower pageblock than
1165  * the migration scanner, and compaction should thus terminate.
1166  */
1167 static inline bool compact_scanners_met(struct compact_control *cc)
1168 {
1169 	return (cc->free_pfn >> pageblock_order)
1170 		<= (cc->migrate_pfn >> pageblock_order);
1171 }
1172 
1173 /*
1174  * Used when scanning for a suitable migration target which scans freelists
1175  * in reverse. Reorders the list such as the unscanned pages are scanned
1176  * first on the next iteration of the free scanner
1177  */
1178 static void
1179 move_freelist_head(struct list_head *freelist, struct page *freepage)
1180 {
1181 	LIST_HEAD(sublist);
1182 
1183 	if (!list_is_last(freelist, &freepage->lru)) {
1184 		list_cut_before(&sublist, freelist, &freepage->lru);
1185 		if (!list_empty(&sublist))
1186 			list_splice_tail(&sublist, freelist);
1187 	}
1188 }
1189 
1190 /*
1191  * Similar to move_freelist_head except used by the migration scanner
1192  * when scanning forward. It's possible for these list operations to
1193  * move against each other if they search the free list exactly in
1194  * lockstep.
1195  */
1196 static void
1197 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1198 {
1199 	LIST_HEAD(sublist);
1200 
1201 	if (!list_is_first(freelist, &freepage->lru)) {
1202 		list_cut_position(&sublist, freelist, &freepage->lru);
1203 		if (!list_empty(&sublist))
1204 			list_splice_tail(&sublist, freelist);
1205 	}
1206 }
1207 
1208 static void
1209 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1210 {
1211 	unsigned long start_pfn, end_pfn;
1212 	struct page *page = pfn_to_page(pfn);
1213 
1214 	/* Do not search around if there are enough pages already */
1215 	if (cc->nr_freepages >= cc->nr_migratepages)
1216 		return;
1217 
1218 	/* Minimise scanning during async compaction */
1219 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1220 		return;
1221 
1222 	/* Pageblock boundaries */
1223 	start_pfn = pageblock_start_pfn(pfn);
1224 	end_pfn = min(start_pfn + pageblock_nr_pages, zone_end_pfn(cc->zone));
1225 
1226 	/* Scan before */
1227 	if (start_pfn != pfn) {
1228 		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1229 		if (cc->nr_freepages >= cc->nr_migratepages)
1230 			return;
1231 	}
1232 
1233 	/* Scan after */
1234 	start_pfn = pfn + nr_isolated;
1235 	if (start_pfn != end_pfn)
1236 		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1237 
1238 	/* Skip this pageblock in the future as it's full or nearly full */
1239 	if (cc->nr_freepages < cc->nr_migratepages)
1240 		set_pageblock_skip(page);
1241 }
1242 
1243 /* Search orders in round-robin fashion */
1244 static int next_search_order(struct compact_control *cc, int order)
1245 {
1246 	order--;
1247 	if (order < 0)
1248 		order = cc->order - 1;
1249 
1250 	/* Search wrapped around? */
1251 	if (order == cc->search_order) {
1252 		cc->search_order--;
1253 		if (cc->search_order < 0)
1254 			cc->search_order = cc->order - 1;
1255 		return -1;
1256 	}
1257 
1258 	return order;
1259 }
1260 
1261 static unsigned long
1262 fast_isolate_freepages(struct compact_control *cc)
1263 {
1264 	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1265 	unsigned int nr_scanned = 0;
1266 	unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1267 	unsigned long nr_isolated = 0;
1268 	unsigned long distance;
1269 	struct page *page = NULL;
1270 	bool scan_start = false;
1271 	int order;
1272 
1273 	/* Full compaction passes in a negative order */
1274 	if (cc->order <= 0)
1275 		return cc->free_pfn;
1276 
1277 	/*
1278 	 * If starting the scan, use a deeper search and use the highest
1279 	 * PFN found if a suitable one is not found.
1280 	 */
1281 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1282 		limit = pageblock_nr_pages >> 1;
1283 		scan_start = true;
1284 	}
1285 
1286 	/*
1287 	 * Preferred point is in the top quarter of the scan space but take
1288 	 * a pfn from the top half if the search is problematic.
1289 	 */
1290 	distance = (cc->free_pfn - cc->migrate_pfn);
1291 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1292 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1293 
1294 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1295 		low_pfn = min_pfn;
1296 
1297 	/*
1298 	 * Search starts from the last successful isolation order or the next
1299 	 * order to search after a previous failure
1300 	 */
1301 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1302 
1303 	for (order = cc->search_order;
1304 	     !page && order >= 0;
1305 	     order = next_search_order(cc, order)) {
1306 		struct free_area *area = &cc->zone->free_area[order];
1307 		struct list_head *freelist;
1308 		struct page *freepage;
1309 		unsigned long flags;
1310 		unsigned int order_scanned = 0;
1311 
1312 		if (!area->nr_free)
1313 			continue;
1314 
1315 		spin_lock_irqsave(&cc->zone->lock, flags);
1316 		freelist = &area->free_list[MIGRATE_MOVABLE];
1317 		list_for_each_entry_reverse(freepage, freelist, lru) {
1318 			unsigned long pfn;
1319 
1320 			order_scanned++;
1321 			nr_scanned++;
1322 			pfn = page_to_pfn(freepage);
1323 
1324 			if (pfn >= highest)
1325 				highest = pageblock_start_pfn(pfn);
1326 
1327 			if (pfn >= low_pfn) {
1328 				cc->fast_search_fail = 0;
1329 				cc->search_order = order;
1330 				page = freepage;
1331 				break;
1332 			}
1333 
1334 			if (pfn >= min_pfn && pfn > high_pfn) {
1335 				high_pfn = pfn;
1336 
1337 				/* Shorten the scan if a candidate is found */
1338 				limit >>= 1;
1339 			}
1340 
1341 			if (order_scanned >= limit)
1342 				break;
1343 		}
1344 
1345 		/* Use a minimum pfn if a preferred one was not found */
1346 		if (!page && high_pfn) {
1347 			page = pfn_to_page(high_pfn);
1348 
1349 			/* Update freepage for the list reorder below */
1350 			freepage = page;
1351 		}
1352 
1353 		/* Reorder to so a future search skips recent pages */
1354 		move_freelist_head(freelist, freepage);
1355 
1356 		/* Isolate the page if available */
1357 		if (page) {
1358 			if (__isolate_free_page(page, order)) {
1359 				set_page_private(page, order);
1360 				nr_isolated = 1 << order;
1361 				cc->nr_freepages += nr_isolated;
1362 				list_add_tail(&page->lru, &cc->freepages);
1363 				count_compact_events(COMPACTISOLATED, nr_isolated);
1364 			} else {
1365 				/* If isolation fails, abort the search */
1366 				order = -1;
1367 				page = NULL;
1368 			}
1369 		}
1370 
1371 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1372 
1373 		/*
1374 		 * Smaller scan on next order so the total scan ig related
1375 		 * to freelist_scan_limit.
1376 		 */
1377 		if (order_scanned >= limit)
1378 			limit = min(1U, limit >> 1);
1379 	}
1380 
1381 	if (!page) {
1382 		cc->fast_search_fail++;
1383 		if (scan_start) {
1384 			/*
1385 			 * Use the highest PFN found above min. If one was
1386 			 * not found, be pessemistic for direct compaction
1387 			 * and use the min mark.
1388 			 */
1389 			if (highest) {
1390 				page = pfn_to_page(highest);
1391 				cc->free_pfn = highest;
1392 			} else {
1393 				if (cc->direct_compaction) {
1394 					page = pfn_to_page(min_pfn);
1395 					cc->free_pfn = min_pfn;
1396 				}
1397 			}
1398 		}
1399 	}
1400 
1401 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1402 		highest -= pageblock_nr_pages;
1403 		cc->zone->compact_cached_free_pfn = highest;
1404 	}
1405 
1406 	cc->total_free_scanned += nr_scanned;
1407 	if (!page)
1408 		return cc->free_pfn;
1409 
1410 	low_pfn = page_to_pfn(page);
1411 	fast_isolate_around(cc, low_pfn, nr_isolated);
1412 	return low_pfn;
1413 }
1414 
1415 /*
1416  * Based on information in the current compact_control, find blocks
1417  * suitable for isolating free pages from and then isolate them.
1418  */
1419 static void isolate_freepages(struct compact_control *cc)
1420 {
1421 	struct zone *zone = cc->zone;
1422 	struct page *page;
1423 	unsigned long block_start_pfn;	/* start of current pageblock */
1424 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1425 	unsigned long block_end_pfn;	/* end of current pageblock */
1426 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1427 	struct list_head *freelist = &cc->freepages;
1428 	unsigned int stride;
1429 
1430 	/* Try a small search of the free lists for a candidate */
1431 	isolate_start_pfn = fast_isolate_freepages(cc);
1432 	if (cc->nr_freepages)
1433 		goto splitmap;
1434 
1435 	/*
1436 	 * Initialise the free scanner. The starting point is where we last
1437 	 * successfully isolated from, zone-cached value, or the end of the
1438 	 * zone when isolating for the first time. For looping we also need
1439 	 * this pfn aligned down to the pageblock boundary, because we do
1440 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1441 	 * For ending point, take care when isolating in last pageblock of a
1442 	 * a zone which ends in the middle of a pageblock.
1443 	 * The low boundary is the end of the pageblock the migration scanner
1444 	 * is using.
1445 	 */
1446 	isolate_start_pfn = cc->free_pfn;
1447 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1448 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1449 						zone_end_pfn(zone));
1450 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1451 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1452 
1453 	/*
1454 	 * Isolate free pages until enough are available to migrate the
1455 	 * pages on cc->migratepages. We stop searching if the migrate
1456 	 * and free page scanners meet or enough free pages are isolated.
1457 	 */
1458 	for (; block_start_pfn >= low_pfn;
1459 				block_end_pfn = block_start_pfn,
1460 				block_start_pfn -= pageblock_nr_pages,
1461 				isolate_start_pfn = block_start_pfn) {
1462 		unsigned long nr_isolated;
1463 
1464 		/*
1465 		 * This can iterate a massively long zone without finding any
1466 		 * suitable migration targets, so periodically check resched.
1467 		 */
1468 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1469 			cond_resched();
1470 
1471 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1472 									zone);
1473 		if (!page)
1474 			continue;
1475 
1476 		/* Check the block is suitable for migration */
1477 		if (!suitable_migration_target(cc, page))
1478 			continue;
1479 
1480 		/* If isolation recently failed, do not retry */
1481 		if (!isolation_suitable(cc, page))
1482 			continue;
1483 
1484 		/* Found a block suitable for isolating free pages from. */
1485 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1486 					block_end_pfn, freelist, stride, false);
1487 
1488 		/* Update the skip hint if the full pageblock was scanned */
1489 		if (isolate_start_pfn == block_end_pfn)
1490 			update_pageblock_skip(cc, page, block_start_pfn);
1491 
1492 		/* Are enough freepages isolated? */
1493 		if (cc->nr_freepages >= cc->nr_migratepages) {
1494 			if (isolate_start_pfn >= block_end_pfn) {
1495 				/*
1496 				 * Restart at previous pageblock if more
1497 				 * freepages can be isolated next time.
1498 				 */
1499 				isolate_start_pfn =
1500 					block_start_pfn - pageblock_nr_pages;
1501 			}
1502 			break;
1503 		} else if (isolate_start_pfn < block_end_pfn) {
1504 			/*
1505 			 * If isolation failed early, do not continue
1506 			 * needlessly.
1507 			 */
1508 			break;
1509 		}
1510 
1511 		/* Adjust stride depending on isolation */
1512 		if (nr_isolated) {
1513 			stride = 1;
1514 			continue;
1515 		}
1516 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1517 	}
1518 
1519 	/*
1520 	 * Record where the free scanner will restart next time. Either we
1521 	 * broke from the loop and set isolate_start_pfn based on the last
1522 	 * call to isolate_freepages_block(), or we met the migration scanner
1523 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1524 	 */
1525 	cc->free_pfn = isolate_start_pfn;
1526 
1527 splitmap:
1528 	/* __isolate_free_page() does not map the pages */
1529 	split_map_pages(freelist);
1530 }
1531 
1532 /*
1533  * This is a migrate-callback that "allocates" freepages by taking pages
1534  * from the isolated freelists in the block we are migrating to.
1535  */
1536 static struct page *compaction_alloc(struct page *migratepage,
1537 					unsigned long data)
1538 {
1539 	struct compact_control *cc = (struct compact_control *)data;
1540 	struct page *freepage;
1541 
1542 	if (list_empty(&cc->freepages)) {
1543 		isolate_freepages(cc);
1544 
1545 		if (list_empty(&cc->freepages))
1546 			return NULL;
1547 	}
1548 
1549 	freepage = list_entry(cc->freepages.next, struct page, lru);
1550 	list_del(&freepage->lru);
1551 	cc->nr_freepages--;
1552 
1553 	return freepage;
1554 }
1555 
1556 /*
1557  * This is a migrate-callback that "frees" freepages back to the isolated
1558  * freelist.  All pages on the freelist are from the same zone, so there is no
1559  * special handling needed for NUMA.
1560  */
1561 static void compaction_free(struct page *page, unsigned long data)
1562 {
1563 	struct compact_control *cc = (struct compact_control *)data;
1564 
1565 	list_add(&page->lru, &cc->freepages);
1566 	cc->nr_freepages++;
1567 }
1568 
1569 /* possible outcome of isolate_migratepages */
1570 typedef enum {
1571 	ISOLATE_ABORT,		/* Abort compaction now */
1572 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1573 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1574 } isolate_migrate_t;
1575 
1576 /*
1577  * Allow userspace to control policy on scanning the unevictable LRU for
1578  * compactable pages.
1579  */
1580 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1581 
1582 static inline void
1583 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1584 {
1585 	if (cc->fast_start_pfn == ULONG_MAX)
1586 		return;
1587 
1588 	if (!cc->fast_start_pfn)
1589 		cc->fast_start_pfn = pfn;
1590 
1591 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1592 }
1593 
1594 static inline unsigned long
1595 reinit_migrate_pfn(struct compact_control *cc)
1596 {
1597 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1598 		return cc->migrate_pfn;
1599 
1600 	cc->migrate_pfn = cc->fast_start_pfn;
1601 	cc->fast_start_pfn = ULONG_MAX;
1602 
1603 	return cc->migrate_pfn;
1604 }
1605 
1606 /*
1607  * Briefly search the free lists for a migration source that already has
1608  * some free pages to reduce the number of pages that need migration
1609  * before a pageblock is free.
1610  */
1611 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1612 {
1613 	unsigned int limit = freelist_scan_limit(cc);
1614 	unsigned int nr_scanned = 0;
1615 	unsigned long distance;
1616 	unsigned long pfn = cc->migrate_pfn;
1617 	unsigned long high_pfn;
1618 	int order;
1619 
1620 	/* Skip hints are relied on to avoid repeats on the fast search */
1621 	if (cc->ignore_skip_hint)
1622 		return pfn;
1623 
1624 	/*
1625 	 * If the migrate_pfn is not at the start of a zone or the start
1626 	 * of a pageblock then assume this is a continuation of a previous
1627 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1628 	 */
1629 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1630 		return pfn;
1631 
1632 	/*
1633 	 * For smaller orders, just linearly scan as the number of pages
1634 	 * to migrate should be relatively small and does not necessarily
1635 	 * justify freeing up a large block for a small allocation.
1636 	 */
1637 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1638 		return pfn;
1639 
1640 	/*
1641 	 * Only allow kcompactd and direct requests for movable pages to
1642 	 * quickly clear out a MOVABLE pageblock for allocation. This
1643 	 * reduces the risk that a large movable pageblock is freed for
1644 	 * an unmovable/reclaimable small allocation.
1645 	 */
1646 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1647 		return pfn;
1648 
1649 	/*
1650 	 * When starting the migration scanner, pick any pageblock within the
1651 	 * first half of the search space. Otherwise try and pick a pageblock
1652 	 * within the first eighth to reduce the chances that a migration
1653 	 * target later becomes a source.
1654 	 */
1655 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1656 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1657 		distance >>= 2;
1658 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1659 
1660 	for (order = cc->order - 1;
1661 	     order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1662 	     order--) {
1663 		struct free_area *area = &cc->zone->free_area[order];
1664 		struct list_head *freelist;
1665 		unsigned long flags;
1666 		struct page *freepage;
1667 
1668 		if (!area->nr_free)
1669 			continue;
1670 
1671 		spin_lock_irqsave(&cc->zone->lock, flags);
1672 		freelist = &area->free_list[MIGRATE_MOVABLE];
1673 		list_for_each_entry(freepage, freelist, lru) {
1674 			unsigned long free_pfn;
1675 
1676 			nr_scanned++;
1677 			free_pfn = page_to_pfn(freepage);
1678 			if (free_pfn < high_pfn) {
1679 				/*
1680 				 * Avoid if skipped recently. Ideally it would
1681 				 * move to the tail but even safe iteration of
1682 				 * the list assumes an entry is deleted, not
1683 				 * reordered.
1684 				 */
1685 				if (get_pageblock_skip(freepage)) {
1686 					if (list_is_last(freelist, &freepage->lru))
1687 						break;
1688 
1689 					continue;
1690 				}
1691 
1692 				/* Reorder to so a future search skips recent pages */
1693 				move_freelist_tail(freelist, freepage);
1694 
1695 				update_fast_start_pfn(cc, free_pfn);
1696 				pfn = pageblock_start_pfn(free_pfn);
1697 				cc->fast_search_fail = 0;
1698 				set_pageblock_skip(freepage);
1699 				break;
1700 			}
1701 
1702 			if (nr_scanned >= limit) {
1703 				cc->fast_search_fail++;
1704 				move_freelist_tail(freelist, freepage);
1705 				break;
1706 			}
1707 		}
1708 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1709 	}
1710 
1711 	cc->total_migrate_scanned += nr_scanned;
1712 
1713 	/*
1714 	 * If fast scanning failed then use a cached entry for a page block
1715 	 * that had free pages as the basis for starting a linear scan.
1716 	 */
1717 	if (pfn == cc->migrate_pfn)
1718 		pfn = reinit_migrate_pfn(cc);
1719 
1720 	return pfn;
1721 }
1722 
1723 /*
1724  * Isolate all pages that can be migrated from the first suitable block,
1725  * starting at the block pointed to by the migrate scanner pfn within
1726  * compact_control.
1727  */
1728 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1729 					struct compact_control *cc)
1730 {
1731 	unsigned long block_start_pfn;
1732 	unsigned long block_end_pfn;
1733 	unsigned long low_pfn;
1734 	struct page *page;
1735 	const isolate_mode_t isolate_mode =
1736 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1737 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1738 	bool fast_find_block;
1739 
1740 	/*
1741 	 * Start at where we last stopped, or beginning of the zone as
1742 	 * initialized by compact_zone(). The first failure will use
1743 	 * the lowest PFN as the starting point for linear scanning.
1744 	 */
1745 	low_pfn = fast_find_migrateblock(cc);
1746 	block_start_pfn = pageblock_start_pfn(low_pfn);
1747 	if (block_start_pfn < zone->zone_start_pfn)
1748 		block_start_pfn = zone->zone_start_pfn;
1749 
1750 	/*
1751 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1752 	 * the isolation_suitable check below, check whether the fast
1753 	 * search was successful.
1754 	 */
1755 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1756 
1757 	/* Only scan within a pageblock boundary */
1758 	block_end_pfn = pageblock_end_pfn(low_pfn);
1759 
1760 	/*
1761 	 * Iterate over whole pageblocks until we find the first suitable.
1762 	 * Do not cross the free scanner.
1763 	 */
1764 	for (; block_end_pfn <= cc->free_pfn;
1765 			fast_find_block = false,
1766 			low_pfn = block_end_pfn,
1767 			block_start_pfn = block_end_pfn,
1768 			block_end_pfn += pageblock_nr_pages) {
1769 
1770 		/*
1771 		 * This can potentially iterate a massively long zone with
1772 		 * many pageblocks unsuitable, so periodically check if we
1773 		 * need to schedule.
1774 		 */
1775 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1776 			cond_resched();
1777 
1778 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1779 									zone);
1780 		if (!page)
1781 			continue;
1782 
1783 		/*
1784 		 * If isolation recently failed, do not retry. Only check the
1785 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1786 		 * to be visited multiple times. Assume skip was checked
1787 		 * before making it "skip" so other compaction instances do
1788 		 * not scan the same block.
1789 		 */
1790 		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1791 		    !fast_find_block && !isolation_suitable(cc, page))
1792 			continue;
1793 
1794 		/*
1795 		 * For async compaction, also only scan in MOVABLE blocks
1796 		 * without huge pages. Async compaction is optimistic to see
1797 		 * if the minimum amount of work satisfies the allocation.
1798 		 * The cached PFN is updated as it's possible that all
1799 		 * remaining blocks between source and target are unsuitable
1800 		 * and the compaction scanners fail to meet.
1801 		 */
1802 		if (!suitable_migration_source(cc, page)) {
1803 			update_cached_migrate(cc, block_end_pfn);
1804 			continue;
1805 		}
1806 
1807 		/* Perform the isolation */
1808 		low_pfn = isolate_migratepages_block(cc, low_pfn,
1809 						block_end_pfn, isolate_mode);
1810 
1811 		if (!low_pfn)
1812 			return ISOLATE_ABORT;
1813 
1814 		/*
1815 		 * Either we isolated something and proceed with migration. Or
1816 		 * we failed and compact_zone should decide if we should
1817 		 * continue or not.
1818 		 */
1819 		break;
1820 	}
1821 
1822 	/* Record where migration scanner will be restarted. */
1823 	cc->migrate_pfn = low_pfn;
1824 
1825 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1826 }
1827 
1828 /*
1829  * order == -1 is expected when compacting via
1830  * /proc/sys/vm/compact_memory
1831  */
1832 static inline bool is_via_compact_memory(int order)
1833 {
1834 	return order == -1;
1835 }
1836 
1837 static enum compact_result __compact_finished(struct compact_control *cc)
1838 {
1839 	unsigned int order;
1840 	const int migratetype = cc->migratetype;
1841 	int ret;
1842 
1843 	/* Compaction run completes if the migrate and free scanner meet */
1844 	if (compact_scanners_met(cc)) {
1845 		/* Let the next compaction start anew. */
1846 		reset_cached_positions(cc->zone);
1847 
1848 		/*
1849 		 * Mark that the PG_migrate_skip information should be cleared
1850 		 * by kswapd when it goes to sleep. kcompactd does not set the
1851 		 * flag itself as the decision to be clear should be directly
1852 		 * based on an allocation request.
1853 		 */
1854 		if (cc->direct_compaction)
1855 			cc->zone->compact_blockskip_flush = true;
1856 
1857 		if (cc->whole_zone)
1858 			return COMPACT_COMPLETE;
1859 		else
1860 			return COMPACT_PARTIAL_SKIPPED;
1861 	}
1862 
1863 	if (is_via_compact_memory(cc->order))
1864 		return COMPACT_CONTINUE;
1865 
1866 	/*
1867 	 * Always finish scanning a pageblock to reduce the possibility of
1868 	 * fallbacks in the future. This is particularly important when
1869 	 * migration source is unmovable/reclaimable but it's not worth
1870 	 * special casing.
1871 	 */
1872 	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1873 		return COMPACT_CONTINUE;
1874 
1875 	/* Direct compactor: Is a suitable page free? */
1876 	ret = COMPACT_NO_SUITABLE_PAGE;
1877 	for (order = cc->order; order < MAX_ORDER; order++) {
1878 		struct free_area *area = &cc->zone->free_area[order];
1879 		bool can_steal;
1880 
1881 		/* Job done if page is free of the right migratetype */
1882 		if (!list_empty(&area->free_list[migratetype]))
1883 			return COMPACT_SUCCESS;
1884 
1885 #ifdef CONFIG_CMA
1886 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1887 		if (migratetype == MIGRATE_MOVABLE &&
1888 			!list_empty(&area->free_list[MIGRATE_CMA]))
1889 			return COMPACT_SUCCESS;
1890 #endif
1891 		/*
1892 		 * Job done if allocation would steal freepages from
1893 		 * other migratetype buddy lists.
1894 		 */
1895 		if (find_suitable_fallback(area, order, migratetype,
1896 						true, &can_steal) != -1) {
1897 
1898 			/* movable pages are OK in any pageblock */
1899 			if (migratetype == MIGRATE_MOVABLE)
1900 				return COMPACT_SUCCESS;
1901 
1902 			/*
1903 			 * We are stealing for a non-movable allocation. Make
1904 			 * sure we finish compacting the current pageblock
1905 			 * first so it is as free as possible and we won't
1906 			 * have to steal another one soon. This only applies
1907 			 * to sync compaction, as async compaction operates
1908 			 * on pageblocks of the same migratetype.
1909 			 */
1910 			if (cc->mode == MIGRATE_ASYNC ||
1911 					IS_ALIGNED(cc->migrate_pfn,
1912 							pageblock_nr_pages)) {
1913 				return COMPACT_SUCCESS;
1914 			}
1915 
1916 			ret = COMPACT_CONTINUE;
1917 			break;
1918 		}
1919 	}
1920 
1921 	if (cc->contended || fatal_signal_pending(current))
1922 		ret = COMPACT_CONTENDED;
1923 
1924 	return ret;
1925 }
1926 
1927 static enum compact_result compact_finished(struct compact_control *cc)
1928 {
1929 	int ret;
1930 
1931 	ret = __compact_finished(cc);
1932 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
1933 	if (ret == COMPACT_NO_SUITABLE_PAGE)
1934 		ret = COMPACT_CONTINUE;
1935 
1936 	return ret;
1937 }
1938 
1939 /*
1940  * compaction_suitable: Is this suitable to run compaction on this zone now?
1941  * Returns
1942  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1943  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1944  *   COMPACT_CONTINUE - If compaction should run now
1945  */
1946 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1947 					unsigned int alloc_flags,
1948 					int classzone_idx,
1949 					unsigned long wmark_target)
1950 {
1951 	unsigned long watermark;
1952 
1953 	if (is_via_compact_memory(order))
1954 		return COMPACT_CONTINUE;
1955 
1956 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1957 	/*
1958 	 * If watermarks for high-order allocation are already met, there
1959 	 * should be no need for compaction at all.
1960 	 */
1961 	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1962 								alloc_flags))
1963 		return COMPACT_SUCCESS;
1964 
1965 	/*
1966 	 * Watermarks for order-0 must be met for compaction to be able to
1967 	 * isolate free pages for migration targets. This means that the
1968 	 * watermark and alloc_flags have to match, or be more pessimistic than
1969 	 * the check in __isolate_free_page(). We don't use the direct
1970 	 * compactor's alloc_flags, as they are not relevant for freepage
1971 	 * isolation. We however do use the direct compactor's classzone_idx to
1972 	 * skip over zones where lowmem reserves would prevent allocation even
1973 	 * if compaction succeeds.
1974 	 * For costly orders, we require low watermark instead of min for
1975 	 * compaction to proceed to increase its chances.
1976 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1977 	 * suitable migration targets
1978 	 */
1979 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1980 				low_wmark_pages(zone) : min_wmark_pages(zone);
1981 	watermark += compact_gap(order);
1982 	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1983 						ALLOC_CMA, wmark_target))
1984 		return COMPACT_SKIPPED;
1985 
1986 	return COMPACT_CONTINUE;
1987 }
1988 
1989 enum compact_result compaction_suitable(struct zone *zone, int order,
1990 					unsigned int alloc_flags,
1991 					int classzone_idx)
1992 {
1993 	enum compact_result ret;
1994 	int fragindex;
1995 
1996 	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1997 				    zone_page_state(zone, NR_FREE_PAGES));
1998 	/*
1999 	 * fragmentation index determines if allocation failures are due to
2000 	 * low memory or external fragmentation
2001 	 *
2002 	 * index of -1000 would imply allocations might succeed depending on
2003 	 * watermarks, but we already failed the high-order watermark check
2004 	 * index towards 0 implies failure is due to lack of memory
2005 	 * index towards 1000 implies failure is due to fragmentation
2006 	 *
2007 	 * Only compact if a failure would be due to fragmentation. Also
2008 	 * ignore fragindex for non-costly orders where the alternative to
2009 	 * a successful reclaim/compaction is OOM. Fragindex and the
2010 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2011 	 * excessive compaction for costly orders, but it should not be at the
2012 	 * expense of system stability.
2013 	 */
2014 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2015 		fragindex = fragmentation_index(zone, order);
2016 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2017 			ret = COMPACT_NOT_SUITABLE_ZONE;
2018 	}
2019 
2020 	trace_mm_compaction_suitable(zone, order, ret);
2021 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2022 		ret = COMPACT_SKIPPED;
2023 
2024 	return ret;
2025 }
2026 
2027 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2028 		int alloc_flags)
2029 {
2030 	struct zone *zone;
2031 	struct zoneref *z;
2032 
2033 	/*
2034 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2035 	 * retrying the reclaim.
2036 	 */
2037 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2038 					ac->nodemask) {
2039 		unsigned long available;
2040 		enum compact_result compact_result;
2041 
2042 		/*
2043 		 * Do not consider all the reclaimable memory because we do not
2044 		 * want to trash just for a single high order allocation which
2045 		 * is even not guaranteed to appear even if __compaction_suitable
2046 		 * is happy about the watermark check.
2047 		 */
2048 		available = zone_reclaimable_pages(zone) / order;
2049 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2050 		compact_result = __compaction_suitable(zone, order, alloc_flags,
2051 				ac_classzone_idx(ac), available);
2052 		if (compact_result != COMPACT_SKIPPED)
2053 			return true;
2054 	}
2055 
2056 	return false;
2057 }
2058 
2059 static enum compact_result
2060 compact_zone(struct compact_control *cc, struct capture_control *capc)
2061 {
2062 	enum compact_result ret;
2063 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2064 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2065 	unsigned long last_migrated_pfn;
2066 	const bool sync = cc->mode != MIGRATE_ASYNC;
2067 	bool update_cached;
2068 
2069 	cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
2070 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2071 							cc->classzone_idx);
2072 	/* Compaction is likely to fail */
2073 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2074 		return ret;
2075 
2076 	/* huh, compaction_suitable is returning something unexpected */
2077 	VM_BUG_ON(ret != COMPACT_CONTINUE);
2078 
2079 	/*
2080 	 * Clear pageblock skip if there were failures recently and compaction
2081 	 * is about to be retried after being deferred.
2082 	 */
2083 	if (compaction_restarting(cc->zone, cc->order))
2084 		__reset_isolation_suitable(cc->zone);
2085 
2086 	/*
2087 	 * Setup to move all movable pages to the end of the zone. Used cached
2088 	 * information on where the scanners should start (unless we explicitly
2089 	 * want to compact the whole zone), but check that it is initialised
2090 	 * by ensuring the values are within zone boundaries.
2091 	 */
2092 	cc->fast_start_pfn = 0;
2093 	if (cc->whole_zone) {
2094 		cc->migrate_pfn = start_pfn;
2095 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2096 	} else {
2097 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2098 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2099 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2100 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2101 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2102 		}
2103 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2104 			cc->migrate_pfn = start_pfn;
2105 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2106 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2107 		}
2108 
2109 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2110 			cc->whole_zone = true;
2111 	}
2112 
2113 	last_migrated_pfn = 0;
2114 
2115 	/*
2116 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2117 	 * the basis that some migrations will fail in ASYNC mode. However,
2118 	 * if the cached PFNs match and pageblocks are skipped due to having
2119 	 * no isolation candidates, then the sync state does not matter.
2120 	 * Until a pageblock with isolation candidates is found, keep the
2121 	 * cached PFNs in sync to avoid revisiting the same blocks.
2122 	 */
2123 	update_cached = !sync &&
2124 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2125 
2126 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2127 				cc->free_pfn, end_pfn, sync);
2128 
2129 	migrate_prep_local();
2130 
2131 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2132 		int err;
2133 		unsigned long start_pfn = cc->migrate_pfn;
2134 
2135 		/*
2136 		 * Avoid multiple rescans which can happen if a page cannot be
2137 		 * isolated (dirty/writeback in async mode) or if the migrated
2138 		 * pages are being allocated before the pageblock is cleared.
2139 		 * The first rescan will capture the entire pageblock for
2140 		 * migration. If it fails, it'll be marked skip and scanning
2141 		 * will proceed as normal.
2142 		 */
2143 		cc->rescan = false;
2144 		if (pageblock_start_pfn(last_migrated_pfn) ==
2145 		    pageblock_start_pfn(start_pfn)) {
2146 			cc->rescan = true;
2147 		}
2148 
2149 		switch (isolate_migratepages(cc->zone, cc)) {
2150 		case ISOLATE_ABORT:
2151 			ret = COMPACT_CONTENDED;
2152 			putback_movable_pages(&cc->migratepages);
2153 			cc->nr_migratepages = 0;
2154 			last_migrated_pfn = 0;
2155 			goto out;
2156 		case ISOLATE_NONE:
2157 			if (update_cached) {
2158 				cc->zone->compact_cached_migrate_pfn[1] =
2159 					cc->zone->compact_cached_migrate_pfn[0];
2160 			}
2161 
2162 			/*
2163 			 * We haven't isolated and migrated anything, but
2164 			 * there might still be unflushed migrations from
2165 			 * previous cc->order aligned block.
2166 			 */
2167 			goto check_drain;
2168 		case ISOLATE_SUCCESS:
2169 			update_cached = false;
2170 			last_migrated_pfn = start_pfn;
2171 			;
2172 		}
2173 
2174 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2175 				compaction_free, (unsigned long)cc, cc->mode,
2176 				MR_COMPACTION);
2177 
2178 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2179 							&cc->migratepages);
2180 
2181 		/* All pages were either migrated or will be released */
2182 		cc->nr_migratepages = 0;
2183 		if (err) {
2184 			putback_movable_pages(&cc->migratepages);
2185 			/*
2186 			 * migrate_pages() may return -ENOMEM when scanners meet
2187 			 * and we want compact_finished() to detect it
2188 			 */
2189 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2190 				ret = COMPACT_CONTENDED;
2191 				goto out;
2192 			}
2193 			/*
2194 			 * We failed to migrate at least one page in the current
2195 			 * order-aligned block, so skip the rest of it.
2196 			 */
2197 			if (cc->direct_compaction &&
2198 						(cc->mode == MIGRATE_ASYNC)) {
2199 				cc->migrate_pfn = block_end_pfn(
2200 						cc->migrate_pfn - 1, cc->order);
2201 				/* Draining pcplists is useless in this case */
2202 				last_migrated_pfn = 0;
2203 			}
2204 		}
2205 
2206 check_drain:
2207 		/*
2208 		 * Has the migration scanner moved away from the previous
2209 		 * cc->order aligned block where we migrated from? If yes,
2210 		 * flush the pages that were freed, so that they can merge and
2211 		 * compact_finished() can detect immediately if allocation
2212 		 * would succeed.
2213 		 */
2214 		if (cc->order > 0 && last_migrated_pfn) {
2215 			int cpu;
2216 			unsigned long current_block_start =
2217 				block_start_pfn(cc->migrate_pfn, cc->order);
2218 
2219 			if (last_migrated_pfn < current_block_start) {
2220 				cpu = get_cpu();
2221 				lru_add_drain_cpu(cpu);
2222 				drain_local_pages(cc->zone);
2223 				put_cpu();
2224 				/* No more flushing until we migrate again */
2225 				last_migrated_pfn = 0;
2226 			}
2227 		}
2228 
2229 		/* Stop if a page has been captured */
2230 		if (capc && capc->page) {
2231 			ret = COMPACT_SUCCESS;
2232 			break;
2233 		}
2234 	}
2235 
2236 out:
2237 	/*
2238 	 * Release free pages and update where the free scanner should restart,
2239 	 * so we don't leave any returned pages behind in the next attempt.
2240 	 */
2241 	if (cc->nr_freepages > 0) {
2242 		unsigned long free_pfn = release_freepages(&cc->freepages);
2243 
2244 		cc->nr_freepages = 0;
2245 		VM_BUG_ON(free_pfn == 0);
2246 		/* The cached pfn is always the first in a pageblock */
2247 		free_pfn = pageblock_start_pfn(free_pfn);
2248 		/*
2249 		 * Only go back, not forward. The cached pfn might have been
2250 		 * already reset to zone end in compact_finished()
2251 		 */
2252 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2253 			cc->zone->compact_cached_free_pfn = free_pfn;
2254 	}
2255 
2256 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2257 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2258 
2259 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2260 				cc->free_pfn, end_pfn, sync, ret);
2261 
2262 	return ret;
2263 }
2264 
2265 static enum compact_result compact_zone_order(struct zone *zone, int order,
2266 		gfp_t gfp_mask, enum compact_priority prio,
2267 		unsigned int alloc_flags, int classzone_idx,
2268 		struct page **capture)
2269 {
2270 	enum compact_result ret;
2271 	struct compact_control cc = {
2272 		.nr_freepages = 0,
2273 		.nr_migratepages = 0,
2274 		.total_migrate_scanned = 0,
2275 		.total_free_scanned = 0,
2276 		.order = order,
2277 		.search_order = order,
2278 		.gfp_mask = gfp_mask,
2279 		.zone = zone,
2280 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2281 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2282 		.alloc_flags = alloc_flags,
2283 		.classzone_idx = classzone_idx,
2284 		.direct_compaction = true,
2285 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2286 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2287 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2288 	};
2289 	struct capture_control capc = {
2290 		.cc = &cc,
2291 		.page = NULL,
2292 	};
2293 
2294 	if (capture)
2295 		current->capture_control = &capc;
2296 	INIT_LIST_HEAD(&cc.freepages);
2297 	INIT_LIST_HEAD(&cc.migratepages);
2298 
2299 	ret = compact_zone(&cc, &capc);
2300 
2301 	VM_BUG_ON(!list_empty(&cc.freepages));
2302 	VM_BUG_ON(!list_empty(&cc.migratepages));
2303 
2304 	*capture = capc.page;
2305 	current->capture_control = NULL;
2306 
2307 	return ret;
2308 }
2309 
2310 int sysctl_extfrag_threshold = 500;
2311 
2312 /**
2313  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2314  * @gfp_mask: The GFP mask of the current allocation
2315  * @order: The order of the current allocation
2316  * @alloc_flags: The allocation flags of the current allocation
2317  * @ac: The context of current allocation
2318  * @prio: Determines how hard direct compaction should try to succeed
2319  *
2320  * This is the main entry point for direct page compaction.
2321  */
2322 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2323 		unsigned int alloc_flags, const struct alloc_context *ac,
2324 		enum compact_priority prio, struct page **capture)
2325 {
2326 	int may_perform_io = gfp_mask & __GFP_IO;
2327 	struct zoneref *z;
2328 	struct zone *zone;
2329 	enum compact_result rc = COMPACT_SKIPPED;
2330 
2331 	/*
2332 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2333 	 * tricky context because the migration might require IO
2334 	 */
2335 	if (!may_perform_io)
2336 		return COMPACT_SKIPPED;
2337 
2338 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2339 
2340 	/* Compact each zone in the list */
2341 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2342 								ac->nodemask) {
2343 		enum compact_result status;
2344 
2345 		if (prio > MIN_COMPACT_PRIORITY
2346 					&& compaction_deferred(zone, order)) {
2347 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2348 			continue;
2349 		}
2350 
2351 		status = compact_zone_order(zone, order, gfp_mask, prio,
2352 				alloc_flags, ac_classzone_idx(ac), capture);
2353 		rc = max(status, rc);
2354 
2355 		/* The allocation should succeed, stop compacting */
2356 		if (status == COMPACT_SUCCESS) {
2357 			/*
2358 			 * We think the allocation will succeed in this zone,
2359 			 * but it is not certain, hence the false. The caller
2360 			 * will repeat this with true if allocation indeed
2361 			 * succeeds in this zone.
2362 			 */
2363 			compaction_defer_reset(zone, order, false);
2364 
2365 			break;
2366 		}
2367 
2368 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2369 					status == COMPACT_PARTIAL_SKIPPED))
2370 			/*
2371 			 * We think that allocation won't succeed in this zone
2372 			 * so we defer compaction there. If it ends up
2373 			 * succeeding after all, it will be reset.
2374 			 */
2375 			defer_compaction(zone, order);
2376 
2377 		/*
2378 		 * We might have stopped compacting due to need_resched() in
2379 		 * async compaction, or due to a fatal signal detected. In that
2380 		 * case do not try further zones
2381 		 */
2382 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2383 					|| fatal_signal_pending(current))
2384 			break;
2385 	}
2386 
2387 	return rc;
2388 }
2389 
2390 
2391 /* Compact all zones within a node */
2392 static void compact_node(int nid)
2393 {
2394 	pg_data_t *pgdat = NODE_DATA(nid);
2395 	int zoneid;
2396 	struct zone *zone;
2397 	struct compact_control cc = {
2398 		.order = -1,
2399 		.total_migrate_scanned = 0,
2400 		.total_free_scanned = 0,
2401 		.mode = MIGRATE_SYNC,
2402 		.ignore_skip_hint = true,
2403 		.whole_zone = true,
2404 		.gfp_mask = GFP_KERNEL,
2405 	};
2406 
2407 
2408 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2409 
2410 		zone = &pgdat->node_zones[zoneid];
2411 		if (!populated_zone(zone))
2412 			continue;
2413 
2414 		cc.nr_freepages = 0;
2415 		cc.nr_migratepages = 0;
2416 		cc.zone = zone;
2417 		INIT_LIST_HEAD(&cc.freepages);
2418 		INIT_LIST_HEAD(&cc.migratepages);
2419 
2420 		compact_zone(&cc, NULL);
2421 
2422 		VM_BUG_ON(!list_empty(&cc.freepages));
2423 		VM_BUG_ON(!list_empty(&cc.migratepages));
2424 	}
2425 }
2426 
2427 /* Compact all nodes in the system */
2428 static void compact_nodes(void)
2429 {
2430 	int nid;
2431 
2432 	/* Flush pending updates to the LRU lists */
2433 	lru_add_drain_all();
2434 
2435 	for_each_online_node(nid)
2436 		compact_node(nid);
2437 }
2438 
2439 /* The written value is actually unused, all memory is compacted */
2440 int sysctl_compact_memory;
2441 
2442 /*
2443  * This is the entry point for compacting all nodes via
2444  * /proc/sys/vm/compact_memory
2445  */
2446 int sysctl_compaction_handler(struct ctl_table *table, int write,
2447 			void __user *buffer, size_t *length, loff_t *ppos)
2448 {
2449 	if (write)
2450 		compact_nodes();
2451 
2452 	return 0;
2453 }
2454 
2455 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2456 static ssize_t sysfs_compact_node(struct device *dev,
2457 			struct device_attribute *attr,
2458 			const char *buf, size_t count)
2459 {
2460 	int nid = dev->id;
2461 
2462 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2463 		/* Flush pending updates to the LRU lists */
2464 		lru_add_drain_all();
2465 
2466 		compact_node(nid);
2467 	}
2468 
2469 	return count;
2470 }
2471 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2472 
2473 int compaction_register_node(struct node *node)
2474 {
2475 	return device_create_file(&node->dev, &dev_attr_compact);
2476 }
2477 
2478 void compaction_unregister_node(struct node *node)
2479 {
2480 	return device_remove_file(&node->dev, &dev_attr_compact);
2481 }
2482 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2483 
2484 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2485 {
2486 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2487 }
2488 
2489 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2490 {
2491 	int zoneid;
2492 	struct zone *zone;
2493 	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
2494 
2495 	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
2496 		zone = &pgdat->node_zones[zoneid];
2497 
2498 		if (!populated_zone(zone))
2499 			continue;
2500 
2501 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2502 					classzone_idx) == COMPACT_CONTINUE)
2503 			return true;
2504 	}
2505 
2506 	return false;
2507 }
2508 
2509 static void kcompactd_do_work(pg_data_t *pgdat)
2510 {
2511 	/*
2512 	 * With no special task, compact all zones so that a page of requested
2513 	 * order is allocatable.
2514 	 */
2515 	int zoneid;
2516 	struct zone *zone;
2517 	struct compact_control cc = {
2518 		.order = pgdat->kcompactd_max_order,
2519 		.search_order = pgdat->kcompactd_max_order,
2520 		.total_migrate_scanned = 0,
2521 		.total_free_scanned = 0,
2522 		.classzone_idx = pgdat->kcompactd_classzone_idx,
2523 		.mode = MIGRATE_SYNC_LIGHT,
2524 		.ignore_skip_hint = false,
2525 		.gfp_mask = GFP_KERNEL,
2526 	};
2527 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2528 							cc.classzone_idx);
2529 	count_compact_event(KCOMPACTD_WAKE);
2530 
2531 	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
2532 		int status;
2533 
2534 		zone = &pgdat->node_zones[zoneid];
2535 		if (!populated_zone(zone))
2536 			continue;
2537 
2538 		if (compaction_deferred(zone, cc.order))
2539 			continue;
2540 
2541 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2542 							COMPACT_CONTINUE)
2543 			continue;
2544 
2545 		cc.nr_freepages = 0;
2546 		cc.nr_migratepages = 0;
2547 		cc.total_migrate_scanned = 0;
2548 		cc.total_free_scanned = 0;
2549 		cc.zone = zone;
2550 		INIT_LIST_HEAD(&cc.freepages);
2551 		INIT_LIST_HEAD(&cc.migratepages);
2552 
2553 		if (kthread_should_stop())
2554 			return;
2555 		status = compact_zone(&cc, NULL);
2556 
2557 		if (status == COMPACT_SUCCESS) {
2558 			compaction_defer_reset(zone, cc.order, false);
2559 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2560 			/*
2561 			 * Buddy pages may become stranded on pcps that could
2562 			 * otherwise coalesce on the zone's free area for
2563 			 * order >= cc.order.  This is ratelimited by the
2564 			 * upcoming deferral.
2565 			 */
2566 			drain_all_pages(zone);
2567 
2568 			/*
2569 			 * We use sync migration mode here, so we defer like
2570 			 * sync direct compaction does.
2571 			 */
2572 			defer_compaction(zone, cc.order);
2573 		}
2574 
2575 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2576 				     cc.total_migrate_scanned);
2577 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2578 				     cc.total_free_scanned);
2579 
2580 		VM_BUG_ON(!list_empty(&cc.freepages));
2581 		VM_BUG_ON(!list_empty(&cc.migratepages));
2582 	}
2583 
2584 	/*
2585 	 * Regardless of success, we are done until woken up next. But remember
2586 	 * the requested order/classzone_idx in case it was higher/tighter than
2587 	 * our current ones
2588 	 */
2589 	if (pgdat->kcompactd_max_order <= cc.order)
2590 		pgdat->kcompactd_max_order = 0;
2591 	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2592 		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2593 }
2594 
2595 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2596 {
2597 	if (!order)
2598 		return;
2599 
2600 	if (pgdat->kcompactd_max_order < order)
2601 		pgdat->kcompactd_max_order = order;
2602 
2603 	if (pgdat->kcompactd_classzone_idx > classzone_idx)
2604 		pgdat->kcompactd_classzone_idx = classzone_idx;
2605 
2606 	/*
2607 	 * Pairs with implicit barrier in wait_event_freezable()
2608 	 * such that wakeups are not missed.
2609 	 */
2610 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2611 		return;
2612 
2613 	if (!kcompactd_node_suitable(pgdat))
2614 		return;
2615 
2616 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2617 							classzone_idx);
2618 	wake_up_interruptible(&pgdat->kcompactd_wait);
2619 }
2620 
2621 /*
2622  * The background compaction daemon, started as a kernel thread
2623  * from the init process.
2624  */
2625 static int kcompactd(void *p)
2626 {
2627 	pg_data_t *pgdat = (pg_data_t*)p;
2628 	struct task_struct *tsk = current;
2629 
2630 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2631 
2632 	if (!cpumask_empty(cpumask))
2633 		set_cpus_allowed_ptr(tsk, cpumask);
2634 
2635 	set_freezable();
2636 
2637 	pgdat->kcompactd_max_order = 0;
2638 	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2639 
2640 	while (!kthread_should_stop()) {
2641 		unsigned long pflags;
2642 
2643 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2644 		wait_event_freezable(pgdat->kcompactd_wait,
2645 				kcompactd_work_requested(pgdat));
2646 
2647 		psi_memstall_enter(&pflags);
2648 		kcompactd_do_work(pgdat);
2649 		psi_memstall_leave(&pflags);
2650 	}
2651 
2652 	return 0;
2653 }
2654 
2655 /*
2656  * This kcompactd start function will be called by init and node-hot-add.
2657  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2658  */
2659 int kcompactd_run(int nid)
2660 {
2661 	pg_data_t *pgdat = NODE_DATA(nid);
2662 	int ret = 0;
2663 
2664 	if (pgdat->kcompactd)
2665 		return 0;
2666 
2667 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2668 	if (IS_ERR(pgdat->kcompactd)) {
2669 		pr_err("Failed to start kcompactd on node %d\n", nid);
2670 		ret = PTR_ERR(pgdat->kcompactd);
2671 		pgdat->kcompactd = NULL;
2672 	}
2673 	return ret;
2674 }
2675 
2676 /*
2677  * Called by memory hotplug when all memory in a node is offlined. Caller must
2678  * hold mem_hotplug_begin/end().
2679  */
2680 void kcompactd_stop(int nid)
2681 {
2682 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2683 
2684 	if (kcompactd) {
2685 		kthread_stop(kcompactd);
2686 		NODE_DATA(nid)->kcompactd = NULL;
2687 	}
2688 }
2689 
2690 /*
2691  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2692  * not required for correctness. So if the last cpu in a node goes
2693  * away, we get changed to run anywhere: as the first one comes back,
2694  * restore their cpu bindings.
2695  */
2696 static int kcompactd_cpu_online(unsigned int cpu)
2697 {
2698 	int nid;
2699 
2700 	for_each_node_state(nid, N_MEMORY) {
2701 		pg_data_t *pgdat = NODE_DATA(nid);
2702 		const struct cpumask *mask;
2703 
2704 		mask = cpumask_of_node(pgdat->node_id);
2705 
2706 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2707 			/* One of our CPUs online: restore mask */
2708 			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2709 	}
2710 	return 0;
2711 }
2712 
2713 static int __init kcompactd_init(void)
2714 {
2715 	int nid;
2716 	int ret;
2717 
2718 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2719 					"mm/compaction:online",
2720 					kcompactd_cpu_online, NULL);
2721 	if (ret < 0) {
2722 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
2723 		return ret;
2724 	}
2725 
2726 	for_each_node_state(nid, N_MEMORY)
2727 		kcompactd_run(nid);
2728 	return 0;
2729 }
2730 subsys_initcall(kcompactd_init)
2731 
2732 #endif /* CONFIG_COMPACTION */
2733