xref: /openbmc/linux/mm/compaction.c (revision 0199e993)
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
20 
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item)
23 {
24 	count_vm_event(item);
25 }
26 
27 static inline void count_compact_events(enum vm_event_item item, long delta)
28 {
29 	count_vm_events(item, delta);
30 }
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
35 
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/compaction.h>
40 
41 static unsigned long release_freepages(struct list_head *freelist)
42 {
43 	struct page *page, *next;
44 	unsigned long count = 0;
45 
46 	list_for_each_entry_safe(page, next, freelist, lru) {
47 		list_del(&page->lru);
48 		__free_page(page);
49 		count++;
50 	}
51 
52 	return count;
53 }
54 
55 static void map_pages(struct list_head *list)
56 {
57 	struct page *page;
58 
59 	list_for_each_entry(page, list, lru) {
60 		arch_alloc_page(page, 0);
61 		kernel_map_pages(page, 1, 1);
62 	}
63 }
64 
65 static inline bool migrate_async_suitable(int migratetype)
66 {
67 	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
68 }
69 
70 /*
71  * Check that the whole (or subset of) a pageblock given by the interval of
72  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
73  * with the migration of free compaction scanner. The scanners then need to
74  * use only pfn_valid_within() check for arches that allow holes within
75  * pageblocks.
76  *
77  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
78  *
79  * It's possible on some configurations to have a setup like node0 node1 node0
80  * i.e. it's possible that all pages within a zones range of pages do not
81  * belong to a single zone. We assume that a border between node0 and node1
82  * can occur within a single pageblock, but not a node0 node1 node0
83  * interleaving within a single pageblock. It is therefore sufficient to check
84  * the first and last page of a pageblock and avoid checking each individual
85  * page in a pageblock.
86  */
87 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
88 				unsigned long end_pfn, struct zone *zone)
89 {
90 	struct page *start_page;
91 	struct page *end_page;
92 
93 	/* end_pfn is one past the range we are checking */
94 	end_pfn--;
95 
96 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
97 		return NULL;
98 
99 	start_page = pfn_to_page(start_pfn);
100 
101 	if (page_zone(start_page) != zone)
102 		return NULL;
103 
104 	end_page = pfn_to_page(end_pfn);
105 
106 	/* This gives a shorter code than deriving page_zone(end_page) */
107 	if (page_zone_id(start_page) != page_zone_id(end_page))
108 		return NULL;
109 
110 	return start_page;
111 }
112 
113 #ifdef CONFIG_COMPACTION
114 /* Returns true if the pageblock should be scanned for pages to isolate. */
115 static inline bool isolation_suitable(struct compact_control *cc,
116 					struct page *page)
117 {
118 	if (cc->ignore_skip_hint)
119 		return true;
120 
121 	return !get_pageblock_skip(page);
122 }
123 
124 /*
125  * This function is called to clear all cached information on pageblocks that
126  * should be skipped for page isolation when the migrate and free page scanner
127  * meet.
128  */
129 static void __reset_isolation_suitable(struct zone *zone)
130 {
131 	unsigned long start_pfn = zone->zone_start_pfn;
132 	unsigned long end_pfn = zone_end_pfn(zone);
133 	unsigned long pfn;
134 
135 	zone->compact_cached_migrate_pfn[0] = start_pfn;
136 	zone->compact_cached_migrate_pfn[1] = start_pfn;
137 	zone->compact_cached_free_pfn = end_pfn;
138 	zone->compact_blockskip_flush = false;
139 
140 	/* Walk the zone and mark every pageblock as suitable for isolation */
141 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
142 		struct page *page;
143 
144 		cond_resched();
145 
146 		if (!pfn_valid(pfn))
147 			continue;
148 
149 		page = pfn_to_page(pfn);
150 		if (zone != page_zone(page))
151 			continue;
152 
153 		clear_pageblock_skip(page);
154 	}
155 }
156 
157 void reset_isolation_suitable(pg_data_t *pgdat)
158 {
159 	int zoneid;
160 
161 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
162 		struct zone *zone = &pgdat->node_zones[zoneid];
163 		if (!populated_zone(zone))
164 			continue;
165 
166 		/* Only flush if a full compaction finished recently */
167 		if (zone->compact_blockskip_flush)
168 			__reset_isolation_suitable(zone);
169 	}
170 }
171 
172 /*
173  * If no pages were isolated then mark this pageblock to be skipped in the
174  * future. The information is later cleared by __reset_isolation_suitable().
175  */
176 static void update_pageblock_skip(struct compact_control *cc,
177 			struct page *page, unsigned long nr_isolated,
178 			bool migrate_scanner)
179 {
180 	struct zone *zone = cc->zone;
181 	unsigned long pfn;
182 
183 	if (cc->ignore_skip_hint)
184 		return;
185 
186 	if (!page)
187 		return;
188 
189 	if (nr_isolated)
190 		return;
191 
192 	set_pageblock_skip(page);
193 
194 	pfn = page_to_pfn(page);
195 
196 	/* Update where async and sync compaction should restart */
197 	if (migrate_scanner) {
198 		if (cc->finished_update_migrate)
199 			return;
200 		if (pfn > zone->compact_cached_migrate_pfn[0])
201 			zone->compact_cached_migrate_pfn[0] = pfn;
202 		if (cc->mode != MIGRATE_ASYNC &&
203 		    pfn > zone->compact_cached_migrate_pfn[1])
204 			zone->compact_cached_migrate_pfn[1] = pfn;
205 	} else {
206 		if (cc->finished_update_free)
207 			return;
208 		if (pfn < zone->compact_cached_free_pfn)
209 			zone->compact_cached_free_pfn = pfn;
210 	}
211 }
212 #else
213 static inline bool isolation_suitable(struct compact_control *cc,
214 					struct page *page)
215 {
216 	return true;
217 }
218 
219 static void update_pageblock_skip(struct compact_control *cc,
220 			struct page *page, unsigned long nr_isolated,
221 			bool migrate_scanner)
222 {
223 }
224 #endif /* CONFIG_COMPACTION */
225 
226 /*
227  * Compaction requires the taking of some coarse locks that are potentially
228  * very heavily contended. For async compaction, back out if the lock cannot
229  * be taken immediately. For sync compaction, spin on the lock if needed.
230  *
231  * Returns true if the lock is held
232  * Returns false if the lock is not held and compaction should abort
233  */
234 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
235 						struct compact_control *cc)
236 {
237 	if (cc->mode == MIGRATE_ASYNC) {
238 		if (!spin_trylock_irqsave(lock, *flags)) {
239 			cc->contended = COMPACT_CONTENDED_LOCK;
240 			return false;
241 		}
242 	} else {
243 		spin_lock_irqsave(lock, *flags);
244 	}
245 
246 	return true;
247 }
248 
249 /*
250  * Compaction requires the taking of some coarse locks that are potentially
251  * very heavily contended. The lock should be periodically unlocked to avoid
252  * having disabled IRQs for a long time, even when there is nobody waiting on
253  * the lock. It might also be that allowing the IRQs will result in
254  * need_resched() becoming true. If scheduling is needed, async compaction
255  * aborts. Sync compaction schedules.
256  * Either compaction type will also abort if a fatal signal is pending.
257  * In either case if the lock was locked, it is dropped and not regained.
258  *
259  * Returns true if compaction should abort due to fatal signal pending, or
260  *		async compaction due to need_resched()
261  * Returns false when compaction can continue (sync compaction might have
262  *		scheduled)
263  */
264 static bool compact_unlock_should_abort(spinlock_t *lock,
265 		unsigned long flags, bool *locked, struct compact_control *cc)
266 {
267 	if (*locked) {
268 		spin_unlock_irqrestore(lock, flags);
269 		*locked = false;
270 	}
271 
272 	if (fatal_signal_pending(current)) {
273 		cc->contended = COMPACT_CONTENDED_SCHED;
274 		return true;
275 	}
276 
277 	if (need_resched()) {
278 		if (cc->mode == MIGRATE_ASYNC) {
279 			cc->contended = COMPACT_CONTENDED_SCHED;
280 			return true;
281 		}
282 		cond_resched();
283 	}
284 
285 	return false;
286 }
287 
288 /*
289  * Aside from avoiding lock contention, compaction also periodically checks
290  * need_resched() and either schedules in sync compaction or aborts async
291  * compaction. This is similar to what compact_unlock_should_abort() does, but
292  * is used where no lock is concerned.
293  *
294  * Returns false when no scheduling was needed, or sync compaction scheduled.
295  * Returns true when async compaction should abort.
296  */
297 static inline bool compact_should_abort(struct compact_control *cc)
298 {
299 	/* async compaction aborts if contended */
300 	if (need_resched()) {
301 		if (cc->mode == MIGRATE_ASYNC) {
302 			cc->contended = COMPACT_CONTENDED_SCHED;
303 			return true;
304 		}
305 
306 		cond_resched();
307 	}
308 
309 	return false;
310 }
311 
312 /* Returns true if the page is within a block suitable for migration to */
313 static bool suitable_migration_target(struct page *page)
314 {
315 	/* If the page is a large free page, then disallow migration */
316 	if (PageBuddy(page)) {
317 		/*
318 		 * We are checking page_order without zone->lock taken. But
319 		 * the only small danger is that we skip a potentially suitable
320 		 * pageblock, so it's not worth to check order for valid range.
321 		 */
322 		if (page_order_unsafe(page) >= pageblock_order)
323 			return false;
324 	}
325 
326 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
327 	if (migrate_async_suitable(get_pageblock_migratetype(page)))
328 		return true;
329 
330 	/* Otherwise skip the block */
331 	return false;
332 }
333 
334 /*
335  * Isolate free pages onto a private freelist. If @strict is true, will abort
336  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
337  * (even though it may still end up isolating some pages).
338  */
339 static unsigned long isolate_freepages_block(struct compact_control *cc,
340 				unsigned long *start_pfn,
341 				unsigned long end_pfn,
342 				struct list_head *freelist,
343 				bool strict)
344 {
345 	int nr_scanned = 0, total_isolated = 0;
346 	struct page *cursor, *valid_page = NULL;
347 	unsigned long flags = 0;
348 	bool locked = false;
349 	unsigned long blockpfn = *start_pfn;
350 
351 	cursor = pfn_to_page(blockpfn);
352 
353 	/* Isolate free pages. */
354 	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
355 		int isolated, i;
356 		struct page *page = cursor;
357 
358 		/*
359 		 * Periodically drop the lock (if held) regardless of its
360 		 * contention, to give chance to IRQs. Abort if fatal signal
361 		 * pending or async compaction detects need_resched()
362 		 */
363 		if (!(blockpfn % SWAP_CLUSTER_MAX)
364 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
365 								&locked, cc))
366 			break;
367 
368 		nr_scanned++;
369 		if (!pfn_valid_within(blockpfn))
370 			goto isolate_fail;
371 
372 		if (!valid_page)
373 			valid_page = page;
374 		if (!PageBuddy(page))
375 			goto isolate_fail;
376 
377 		/*
378 		 * If we already hold the lock, we can skip some rechecking.
379 		 * Note that if we hold the lock now, checked_pageblock was
380 		 * already set in some previous iteration (or strict is true),
381 		 * so it is correct to skip the suitable migration target
382 		 * recheck as well.
383 		 */
384 		if (!locked) {
385 			/*
386 			 * The zone lock must be held to isolate freepages.
387 			 * Unfortunately this is a very coarse lock and can be
388 			 * heavily contended if there are parallel allocations
389 			 * or parallel compactions. For async compaction do not
390 			 * spin on the lock and we acquire the lock as late as
391 			 * possible.
392 			 */
393 			locked = compact_trylock_irqsave(&cc->zone->lock,
394 								&flags, cc);
395 			if (!locked)
396 				break;
397 
398 			/* Recheck this is a buddy page under lock */
399 			if (!PageBuddy(page))
400 				goto isolate_fail;
401 		}
402 
403 		/* Found a free page, break it into order-0 pages */
404 		isolated = split_free_page(page);
405 		total_isolated += isolated;
406 		for (i = 0; i < isolated; i++) {
407 			list_add(&page->lru, freelist);
408 			page++;
409 		}
410 
411 		/* If a page was split, advance to the end of it */
412 		if (isolated) {
413 			blockpfn += isolated - 1;
414 			cursor += isolated - 1;
415 			continue;
416 		}
417 
418 isolate_fail:
419 		if (strict)
420 			break;
421 		else
422 			continue;
423 
424 	}
425 
426 	/* Record how far we have got within the block */
427 	*start_pfn = blockpfn;
428 
429 	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
430 
431 	/*
432 	 * If strict isolation is requested by CMA then check that all the
433 	 * pages requested were isolated. If there were any failures, 0 is
434 	 * returned and CMA will fail.
435 	 */
436 	if (strict && blockpfn < end_pfn)
437 		total_isolated = 0;
438 
439 	if (locked)
440 		spin_unlock_irqrestore(&cc->zone->lock, flags);
441 
442 	/* Update the pageblock-skip if the whole pageblock was scanned */
443 	if (blockpfn == end_pfn)
444 		update_pageblock_skip(cc, valid_page, total_isolated, false);
445 
446 	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
447 	if (total_isolated)
448 		count_compact_events(COMPACTISOLATED, total_isolated);
449 	return total_isolated;
450 }
451 
452 /**
453  * isolate_freepages_range() - isolate free pages.
454  * @start_pfn: The first PFN to start isolating.
455  * @end_pfn:   The one-past-last PFN.
456  *
457  * Non-free pages, invalid PFNs, or zone boundaries within the
458  * [start_pfn, end_pfn) range are considered errors, cause function to
459  * undo its actions and return zero.
460  *
461  * Otherwise, function returns one-past-the-last PFN of isolated page
462  * (which may be greater then end_pfn if end fell in a middle of
463  * a free page).
464  */
465 unsigned long
466 isolate_freepages_range(struct compact_control *cc,
467 			unsigned long start_pfn, unsigned long end_pfn)
468 {
469 	unsigned long isolated, pfn, block_end_pfn;
470 	LIST_HEAD(freelist);
471 
472 	pfn = start_pfn;
473 	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
474 
475 	for (; pfn < end_pfn; pfn += isolated,
476 				block_end_pfn += pageblock_nr_pages) {
477 		/* Protect pfn from changing by isolate_freepages_block */
478 		unsigned long isolate_start_pfn = pfn;
479 
480 		block_end_pfn = min(block_end_pfn, end_pfn);
481 
482 		/*
483 		 * pfn could pass the block_end_pfn if isolated freepage
484 		 * is more than pageblock order. In this case, we adjust
485 		 * scanning range to right one.
486 		 */
487 		if (pfn >= block_end_pfn) {
488 			block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
489 			block_end_pfn = min(block_end_pfn, end_pfn);
490 		}
491 
492 		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
493 			break;
494 
495 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
496 						block_end_pfn, &freelist, true);
497 
498 		/*
499 		 * In strict mode, isolate_freepages_block() returns 0 if
500 		 * there are any holes in the block (ie. invalid PFNs or
501 		 * non-free pages).
502 		 */
503 		if (!isolated)
504 			break;
505 
506 		/*
507 		 * If we managed to isolate pages, it is always (1 << n) *
508 		 * pageblock_nr_pages for some non-negative n.  (Max order
509 		 * page may span two pageblocks).
510 		 */
511 	}
512 
513 	/* split_free_page does not map the pages */
514 	map_pages(&freelist);
515 
516 	if (pfn < end_pfn) {
517 		/* Loop terminated early, cleanup. */
518 		release_freepages(&freelist);
519 		return 0;
520 	}
521 
522 	/* We don't use freelists for anything. */
523 	return pfn;
524 }
525 
526 /* Update the number of anon and file isolated pages in the zone */
527 static void acct_isolated(struct zone *zone, struct compact_control *cc)
528 {
529 	struct page *page;
530 	unsigned int count[2] = { 0, };
531 
532 	if (list_empty(&cc->migratepages))
533 		return;
534 
535 	list_for_each_entry(page, &cc->migratepages, lru)
536 		count[!!page_is_file_cache(page)]++;
537 
538 	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
539 	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
540 }
541 
542 /* Similar to reclaim, but different enough that they don't share logic */
543 static bool too_many_isolated(struct zone *zone)
544 {
545 	unsigned long active, inactive, isolated;
546 
547 	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
548 					zone_page_state(zone, NR_INACTIVE_ANON);
549 	active = zone_page_state(zone, NR_ACTIVE_FILE) +
550 					zone_page_state(zone, NR_ACTIVE_ANON);
551 	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
552 					zone_page_state(zone, NR_ISOLATED_ANON);
553 
554 	return isolated > (inactive + active) / 2;
555 }
556 
557 /**
558  * isolate_migratepages_block() - isolate all migrate-able pages within
559  *				  a single pageblock
560  * @cc:		Compaction control structure.
561  * @low_pfn:	The first PFN to isolate
562  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
563  * @isolate_mode: Isolation mode to be used.
564  *
565  * Isolate all pages that can be migrated from the range specified by
566  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
567  * Returns zero if there is a fatal signal pending, otherwise PFN of the
568  * first page that was not scanned (which may be both less, equal to or more
569  * than end_pfn).
570  *
571  * The pages are isolated on cc->migratepages list (not required to be empty),
572  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
573  * is neither read nor updated.
574  */
575 static unsigned long
576 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
577 			unsigned long end_pfn, isolate_mode_t isolate_mode)
578 {
579 	struct zone *zone = cc->zone;
580 	unsigned long nr_scanned = 0, nr_isolated = 0;
581 	struct list_head *migratelist = &cc->migratepages;
582 	struct lruvec *lruvec;
583 	unsigned long flags = 0;
584 	bool locked = false;
585 	struct page *page = NULL, *valid_page = NULL;
586 
587 	/*
588 	 * Ensure that there are not too many pages isolated from the LRU
589 	 * list by either parallel reclaimers or compaction. If there are,
590 	 * delay for some time until fewer pages are isolated
591 	 */
592 	while (unlikely(too_many_isolated(zone))) {
593 		/* async migration should just abort */
594 		if (cc->mode == MIGRATE_ASYNC)
595 			return 0;
596 
597 		congestion_wait(BLK_RW_ASYNC, HZ/10);
598 
599 		if (fatal_signal_pending(current))
600 			return 0;
601 	}
602 
603 	if (compact_should_abort(cc))
604 		return 0;
605 
606 	/* Time to isolate some pages for migration */
607 	for (; low_pfn < end_pfn; low_pfn++) {
608 		/*
609 		 * Periodically drop the lock (if held) regardless of its
610 		 * contention, to give chance to IRQs. Abort async compaction
611 		 * if contended.
612 		 */
613 		if (!(low_pfn % SWAP_CLUSTER_MAX)
614 		    && compact_unlock_should_abort(&zone->lru_lock, flags,
615 								&locked, cc))
616 			break;
617 
618 		if (!pfn_valid_within(low_pfn))
619 			continue;
620 		nr_scanned++;
621 
622 		page = pfn_to_page(low_pfn);
623 
624 		if (!valid_page)
625 			valid_page = page;
626 
627 		/*
628 		 * Skip if free. We read page order here without zone lock
629 		 * which is generally unsafe, but the race window is small and
630 		 * the worst thing that can happen is that we skip some
631 		 * potential isolation targets.
632 		 */
633 		if (PageBuddy(page)) {
634 			unsigned long freepage_order = page_order_unsafe(page);
635 
636 			/*
637 			 * Without lock, we cannot be sure that what we got is
638 			 * a valid page order. Consider only values in the
639 			 * valid order range to prevent low_pfn overflow.
640 			 */
641 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
642 				low_pfn += (1UL << freepage_order) - 1;
643 			continue;
644 		}
645 
646 		/*
647 		 * Check may be lockless but that's ok as we recheck later.
648 		 * It's possible to migrate LRU pages and balloon pages
649 		 * Skip any other type of page
650 		 */
651 		if (!PageLRU(page)) {
652 			if (unlikely(balloon_page_movable(page))) {
653 				if (balloon_page_isolate(page)) {
654 					/* Successfully isolated */
655 					goto isolate_success;
656 				}
657 			}
658 			continue;
659 		}
660 
661 		/*
662 		 * PageLRU is set. lru_lock normally excludes isolation
663 		 * splitting and collapsing (collapsing has already happened
664 		 * if PageLRU is set) but the lock is not necessarily taken
665 		 * here and it is wasteful to take it just to check transhuge.
666 		 * Check TransHuge without lock and skip the whole pageblock if
667 		 * it's either a transhuge or hugetlbfs page, as calling
668 		 * compound_order() without preventing THP from splitting the
669 		 * page underneath us may return surprising results.
670 		 */
671 		if (PageTransHuge(page)) {
672 			if (!locked)
673 				low_pfn = ALIGN(low_pfn + 1,
674 						pageblock_nr_pages) - 1;
675 			else
676 				low_pfn += (1 << compound_order(page)) - 1;
677 
678 			continue;
679 		}
680 
681 		/*
682 		 * Migration will fail if an anonymous page is pinned in memory,
683 		 * so avoid taking lru_lock and isolating it unnecessarily in an
684 		 * admittedly racy check.
685 		 */
686 		if (!page_mapping(page) &&
687 		    page_count(page) > page_mapcount(page))
688 			continue;
689 
690 		/* If we already hold the lock, we can skip some rechecking */
691 		if (!locked) {
692 			locked = compact_trylock_irqsave(&zone->lru_lock,
693 								&flags, cc);
694 			if (!locked)
695 				break;
696 
697 			/* Recheck PageLRU and PageTransHuge under lock */
698 			if (!PageLRU(page))
699 				continue;
700 			if (PageTransHuge(page)) {
701 				low_pfn += (1 << compound_order(page)) - 1;
702 				continue;
703 			}
704 		}
705 
706 		lruvec = mem_cgroup_page_lruvec(page, zone);
707 
708 		/* Try isolate the page */
709 		if (__isolate_lru_page(page, isolate_mode) != 0)
710 			continue;
711 
712 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
713 
714 		/* Successfully isolated */
715 		del_page_from_lru_list(page, lruvec, page_lru(page));
716 
717 isolate_success:
718 		cc->finished_update_migrate = true;
719 		list_add(&page->lru, migratelist);
720 		cc->nr_migratepages++;
721 		nr_isolated++;
722 
723 		/* Avoid isolating too much */
724 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
725 			++low_pfn;
726 			break;
727 		}
728 	}
729 
730 	/*
731 	 * The PageBuddy() check could have potentially brought us outside
732 	 * the range to be scanned.
733 	 */
734 	if (unlikely(low_pfn > end_pfn))
735 		low_pfn = end_pfn;
736 
737 	if (locked)
738 		spin_unlock_irqrestore(&zone->lru_lock, flags);
739 
740 	/*
741 	 * Update the pageblock-skip information and cached scanner pfn,
742 	 * if the whole pageblock was scanned without isolating any page.
743 	 */
744 	if (low_pfn == end_pfn)
745 		update_pageblock_skip(cc, valid_page, nr_isolated, true);
746 
747 	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
748 
749 	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
750 	if (nr_isolated)
751 		count_compact_events(COMPACTISOLATED, nr_isolated);
752 
753 	return low_pfn;
754 }
755 
756 /**
757  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
758  * @cc:        Compaction control structure.
759  * @start_pfn: The first PFN to start isolating.
760  * @end_pfn:   The one-past-last PFN.
761  *
762  * Returns zero if isolation fails fatally due to e.g. pending signal.
763  * Otherwise, function returns one-past-the-last PFN of isolated page
764  * (which may be greater than end_pfn if end fell in a middle of a THP page).
765  */
766 unsigned long
767 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
768 							unsigned long end_pfn)
769 {
770 	unsigned long pfn, block_end_pfn;
771 
772 	/* Scan block by block. First and last block may be incomplete */
773 	pfn = start_pfn;
774 	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
775 
776 	for (; pfn < end_pfn; pfn = block_end_pfn,
777 				block_end_pfn += pageblock_nr_pages) {
778 
779 		block_end_pfn = min(block_end_pfn, end_pfn);
780 
781 		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
782 			continue;
783 
784 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
785 							ISOLATE_UNEVICTABLE);
786 
787 		/*
788 		 * In case of fatal failure, release everything that might
789 		 * have been isolated in the previous iteration, and signal
790 		 * the failure back to caller.
791 		 */
792 		if (!pfn) {
793 			putback_movable_pages(&cc->migratepages);
794 			cc->nr_migratepages = 0;
795 			break;
796 		}
797 
798 		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
799 			break;
800 	}
801 	acct_isolated(cc->zone, cc);
802 
803 	return pfn;
804 }
805 
806 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
807 #ifdef CONFIG_COMPACTION
808 /*
809  * Based on information in the current compact_control, find blocks
810  * suitable for isolating free pages from and then isolate them.
811  */
812 static void isolate_freepages(struct compact_control *cc)
813 {
814 	struct zone *zone = cc->zone;
815 	struct page *page;
816 	unsigned long block_start_pfn;	/* start of current pageblock */
817 	unsigned long isolate_start_pfn; /* exact pfn we start at */
818 	unsigned long block_end_pfn;	/* end of current pageblock */
819 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
820 	int nr_freepages = cc->nr_freepages;
821 	struct list_head *freelist = &cc->freepages;
822 
823 	/*
824 	 * Initialise the free scanner. The starting point is where we last
825 	 * successfully isolated from, zone-cached value, or the end of the
826 	 * zone when isolating for the first time. For looping we also need
827 	 * this pfn aligned down to the pageblock boundary, because we do
828 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
829 	 * For ending point, take care when isolating in last pageblock of a
830 	 * a zone which ends in the middle of a pageblock.
831 	 * The low boundary is the end of the pageblock the migration scanner
832 	 * is using.
833 	 */
834 	isolate_start_pfn = cc->free_pfn;
835 	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
836 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
837 						zone_end_pfn(zone));
838 	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
839 
840 	/*
841 	 * Isolate free pages until enough are available to migrate the
842 	 * pages on cc->migratepages. We stop searching if the migrate
843 	 * and free page scanners meet or enough free pages are isolated.
844 	 */
845 	for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
846 				block_end_pfn = block_start_pfn,
847 				block_start_pfn -= pageblock_nr_pages,
848 				isolate_start_pfn = block_start_pfn) {
849 		unsigned long isolated;
850 
851 		/*
852 		 * This can iterate a massively long zone without finding any
853 		 * suitable migration targets, so periodically check if we need
854 		 * to schedule, or even abort async compaction.
855 		 */
856 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
857 						&& compact_should_abort(cc))
858 			break;
859 
860 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
861 									zone);
862 		if (!page)
863 			continue;
864 
865 		/* Check the block is suitable for migration */
866 		if (!suitable_migration_target(page))
867 			continue;
868 
869 		/* If isolation recently failed, do not retry */
870 		if (!isolation_suitable(cc, page))
871 			continue;
872 
873 		/* Found a block suitable for isolating free pages from. */
874 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
875 					block_end_pfn, freelist, false);
876 		nr_freepages += isolated;
877 
878 		/*
879 		 * Remember where the free scanner should restart next time,
880 		 * which is where isolate_freepages_block() left off.
881 		 * But if it scanned the whole pageblock, isolate_start_pfn
882 		 * now points at block_end_pfn, which is the start of the next
883 		 * pageblock.
884 		 * In that case we will however want to restart at the start
885 		 * of the previous pageblock.
886 		 */
887 		cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
888 				isolate_start_pfn :
889 				block_start_pfn - pageblock_nr_pages;
890 
891 		/*
892 		 * Set a flag that we successfully isolated in this pageblock.
893 		 * In the next loop iteration, zone->compact_cached_free_pfn
894 		 * will not be updated and thus it will effectively contain the
895 		 * highest pageblock we isolated pages from.
896 		 */
897 		if (isolated)
898 			cc->finished_update_free = true;
899 
900 		/*
901 		 * isolate_freepages_block() might have aborted due to async
902 		 * compaction being contended
903 		 */
904 		if (cc->contended)
905 			break;
906 	}
907 
908 	/* split_free_page does not map the pages */
909 	map_pages(freelist);
910 
911 	/*
912 	 * If we crossed the migrate scanner, we want to keep it that way
913 	 * so that compact_finished() may detect this
914 	 */
915 	if (block_start_pfn < low_pfn)
916 		cc->free_pfn = cc->migrate_pfn;
917 
918 	cc->nr_freepages = nr_freepages;
919 }
920 
921 /*
922  * This is a migrate-callback that "allocates" freepages by taking pages
923  * from the isolated freelists in the block we are migrating to.
924  */
925 static struct page *compaction_alloc(struct page *migratepage,
926 					unsigned long data,
927 					int **result)
928 {
929 	struct compact_control *cc = (struct compact_control *)data;
930 	struct page *freepage;
931 
932 	/*
933 	 * Isolate free pages if necessary, and if we are not aborting due to
934 	 * contention.
935 	 */
936 	if (list_empty(&cc->freepages)) {
937 		if (!cc->contended)
938 			isolate_freepages(cc);
939 
940 		if (list_empty(&cc->freepages))
941 			return NULL;
942 	}
943 
944 	freepage = list_entry(cc->freepages.next, struct page, lru);
945 	list_del(&freepage->lru);
946 	cc->nr_freepages--;
947 
948 	return freepage;
949 }
950 
951 /*
952  * This is a migrate-callback that "frees" freepages back to the isolated
953  * freelist.  All pages on the freelist are from the same zone, so there is no
954  * special handling needed for NUMA.
955  */
956 static void compaction_free(struct page *page, unsigned long data)
957 {
958 	struct compact_control *cc = (struct compact_control *)data;
959 
960 	list_add(&page->lru, &cc->freepages);
961 	cc->nr_freepages++;
962 }
963 
964 /* possible outcome of isolate_migratepages */
965 typedef enum {
966 	ISOLATE_ABORT,		/* Abort compaction now */
967 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
968 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
969 } isolate_migrate_t;
970 
971 /*
972  * Isolate all pages that can be migrated from the first suitable block,
973  * starting at the block pointed to by the migrate scanner pfn within
974  * compact_control.
975  */
976 static isolate_migrate_t isolate_migratepages(struct zone *zone,
977 					struct compact_control *cc)
978 {
979 	unsigned long low_pfn, end_pfn;
980 	struct page *page;
981 	const isolate_mode_t isolate_mode =
982 		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
983 
984 	/*
985 	 * Start at where we last stopped, or beginning of the zone as
986 	 * initialized by compact_zone()
987 	 */
988 	low_pfn = cc->migrate_pfn;
989 
990 	/* Only scan within a pageblock boundary */
991 	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
992 
993 	/*
994 	 * Iterate over whole pageblocks until we find the first suitable.
995 	 * Do not cross the free scanner.
996 	 */
997 	for (; end_pfn <= cc->free_pfn;
998 			low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
999 
1000 		/*
1001 		 * This can potentially iterate a massively long zone with
1002 		 * many pageblocks unsuitable, so periodically check if we
1003 		 * need to schedule, or even abort async compaction.
1004 		 */
1005 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1006 						&& compact_should_abort(cc))
1007 			break;
1008 
1009 		page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1010 		if (!page)
1011 			continue;
1012 
1013 		/* If isolation recently failed, do not retry */
1014 		if (!isolation_suitable(cc, page))
1015 			continue;
1016 
1017 		/*
1018 		 * For async compaction, also only scan in MOVABLE blocks.
1019 		 * Async compaction is optimistic to see if the minimum amount
1020 		 * of work satisfies the allocation.
1021 		 */
1022 		if (cc->mode == MIGRATE_ASYNC &&
1023 		    !migrate_async_suitable(get_pageblock_migratetype(page)))
1024 			continue;
1025 
1026 		/* Perform the isolation */
1027 		low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1028 								isolate_mode);
1029 
1030 		if (!low_pfn || cc->contended)
1031 			return ISOLATE_ABORT;
1032 
1033 		/*
1034 		 * Either we isolated something and proceed with migration. Or
1035 		 * we failed and compact_zone should decide if we should
1036 		 * continue or not.
1037 		 */
1038 		break;
1039 	}
1040 
1041 	acct_isolated(zone, cc);
1042 	/*
1043 	 * Record where migration scanner will be restarted. If we end up in
1044 	 * the same pageblock as the free scanner, make the scanners fully
1045 	 * meet so that compact_finished() terminates compaction.
1046 	 */
1047 	cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
1048 
1049 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1050 }
1051 
1052 static int compact_finished(struct zone *zone, struct compact_control *cc,
1053 			    const int migratetype)
1054 {
1055 	unsigned int order;
1056 	unsigned long watermark;
1057 
1058 	if (cc->contended || fatal_signal_pending(current))
1059 		return COMPACT_PARTIAL;
1060 
1061 	/* Compaction run completes if the migrate and free scanner meet */
1062 	if (cc->free_pfn <= cc->migrate_pfn) {
1063 		/* Let the next compaction start anew. */
1064 		zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
1065 		zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1066 		zone->compact_cached_free_pfn = zone_end_pfn(zone);
1067 
1068 		/*
1069 		 * Mark that the PG_migrate_skip information should be cleared
1070 		 * by kswapd when it goes to sleep. kswapd does not set the
1071 		 * flag itself as the decision to be clear should be directly
1072 		 * based on an allocation request.
1073 		 */
1074 		if (!current_is_kswapd())
1075 			zone->compact_blockskip_flush = true;
1076 
1077 		return COMPACT_COMPLETE;
1078 	}
1079 
1080 	/*
1081 	 * order == -1 is expected when compacting via
1082 	 * /proc/sys/vm/compact_memory
1083 	 */
1084 	if (cc->order == -1)
1085 		return COMPACT_CONTINUE;
1086 
1087 	/* Compaction run is not finished if the watermark is not met */
1088 	watermark = low_wmark_pages(zone);
1089 	watermark += (1 << cc->order);
1090 
1091 	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
1092 		return COMPACT_CONTINUE;
1093 
1094 	/* Direct compactor: Is a suitable page free? */
1095 	for (order = cc->order; order < MAX_ORDER; order++) {
1096 		struct free_area *area = &zone->free_area[order];
1097 
1098 		/* Job done if page is free of the right migratetype */
1099 		if (!list_empty(&area->free_list[migratetype]))
1100 			return COMPACT_PARTIAL;
1101 
1102 		/* Job done if allocation would set block type */
1103 		if (cc->order >= pageblock_order && area->nr_free)
1104 			return COMPACT_PARTIAL;
1105 	}
1106 
1107 	return COMPACT_CONTINUE;
1108 }
1109 
1110 /*
1111  * compaction_suitable: Is this suitable to run compaction on this zone now?
1112  * Returns
1113  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1114  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1115  *   COMPACT_CONTINUE - If compaction should run now
1116  */
1117 unsigned long compaction_suitable(struct zone *zone, int order)
1118 {
1119 	int fragindex;
1120 	unsigned long watermark;
1121 
1122 	/*
1123 	 * order == -1 is expected when compacting via
1124 	 * /proc/sys/vm/compact_memory
1125 	 */
1126 	if (order == -1)
1127 		return COMPACT_CONTINUE;
1128 
1129 	/*
1130 	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1131 	 * This is because during migration, copies of pages need to be
1132 	 * allocated and for a short time, the footprint is higher
1133 	 */
1134 	watermark = low_wmark_pages(zone) + (2UL << order);
1135 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1136 		return COMPACT_SKIPPED;
1137 
1138 	/*
1139 	 * fragmentation index determines if allocation failures are due to
1140 	 * low memory or external fragmentation
1141 	 *
1142 	 * index of -1000 implies allocations might succeed depending on
1143 	 * watermarks
1144 	 * index towards 0 implies failure is due to lack of memory
1145 	 * index towards 1000 implies failure is due to fragmentation
1146 	 *
1147 	 * Only compact if a failure would be due to fragmentation.
1148 	 */
1149 	fragindex = fragmentation_index(zone, order);
1150 	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1151 		return COMPACT_SKIPPED;
1152 
1153 	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
1154 	    0, 0))
1155 		return COMPACT_PARTIAL;
1156 
1157 	return COMPACT_CONTINUE;
1158 }
1159 
1160 static int compact_zone(struct zone *zone, struct compact_control *cc)
1161 {
1162 	int ret;
1163 	unsigned long start_pfn = zone->zone_start_pfn;
1164 	unsigned long end_pfn = zone_end_pfn(zone);
1165 	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1166 	const bool sync = cc->mode != MIGRATE_ASYNC;
1167 
1168 	ret = compaction_suitable(zone, cc->order);
1169 	switch (ret) {
1170 	case COMPACT_PARTIAL:
1171 	case COMPACT_SKIPPED:
1172 		/* Compaction is likely to fail */
1173 		return ret;
1174 	case COMPACT_CONTINUE:
1175 		/* Fall through to compaction */
1176 		;
1177 	}
1178 
1179 	/*
1180 	 * Clear pageblock skip if there were failures recently and compaction
1181 	 * is about to be retried after being deferred. kswapd does not do
1182 	 * this reset as it'll reset the cached information when going to sleep.
1183 	 */
1184 	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1185 		__reset_isolation_suitable(zone);
1186 
1187 	/*
1188 	 * Setup to move all movable pages to the end of the zone. Used cached
1189 	 * information on where the scanners should start but check that it
1190 	 * is initialised by ensuring the values are within zone boundaries.
1191 	 */
1192 	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1193 	cc->free_pfn = zone->compact_cached_free_pfn;
1194 	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1195 		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1196 		zone->compact_cached_free_pfn = cc->free_pfn;
1197 	}
1198 	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1199 		cc->migrate_pfn = start_pfn;
1200 		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1201 		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1202 	}
1203 
1204 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
1205 
1206 	migrate_prep_local();
1207 
1208 	while ((ret = compact_finished(zone, cc, migratetype)) ==
1209 						COMPACT_CONTINUE) {
1210 		int err;
1211 
1212 		switch (isolate_migratepages(zone, cc)) {
1213 		case ISOLATE_ABORT:
1214 			ret = COMPACT_PARTIAL;
1215 			putback_movable_pages(&cc->migratepages);
1216 			cc->nr_migratepages = 0;
1217 			goto out;
1218 		case ISOLATE_NONE:
1219 			continue;
1220 		case ISOLATE_SUCCESS:
1221 			;
1222 		}
1223 
1224 		err = migrate_pages(&cc->migratepages, compaction_alloc,
1225 				compaction_free, (unsigned long)cc, cc->mode,
1226 				MR_COMPACTION);
1227 
1228 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1229 							&cc->migratepages);
1230 
1231 		/* All pages were either migrated or will be released */
1232 		cc->nr_migratepages = 0;
1233 		if (err) {
1234 			putback_movable_pages(&cc->migratepages);
1235 			/*
1236 			 * migrate_pages() may return -ENOMEM when scanners meet
1237 			 * and we want compact_finished() to detect it
1238 			 */
1239 			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1240 				ret = COMPACT_PARTIAL;
1241 				goto out;
1242 			}
1243 		}
1244 	}
1245 
1246 out:
1247 	/* Release free pages and check accounting */
1248 	cc->nr_freepages -= release_freepages(&cc->freepages);
1249 	VM_BUG_ON(cc->nr_freepages != 0);
1250 
1251 	trace_mm_compaction_end(ret);
1252 
1253 	return ret;
1254 }
1255 
1256 static unsigned long compact_zone_order(struct zone *zone, int order,
1257 		gfp_t gfp_mask, enum migrate_mode mode, int *contended)
1258 {
1259 	unsigned long ret;
1260 	struct compact_control cc = {
1261 		.nr_freepages = 0,
1262 		.nr_migratepages = 0,
1263 		.order = order,
1264 		.gfp_mask = gfp_mask,
1265 		.zone = zone,
1266 		.mode = mode,
1267 	};
1268 	INIT_LIST_HEAD(&cc.freepages);
1269 	INIT_LIST_HEAD(&cc.migratepages);
1270 
1271 	ret = compact_zone(zone, &cc);
1272 
1273 	VM_BUG_ON(!list_empty(&cc.freepages));
1274 	VM_BUG_ON(!list_empty(&cc.migratepages));
1275 
1276 	*contended = cc.contended;
1277 	return ret;
1278 }
1279 
1280 int sysctl_extfrag_threshold = 500;
1281 
1282 /**
1283  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1284  * @zonelist: The zonelist used for the current allocation
1285  * @order: The order of the current allocation
1286  * @gfp_mask: The GFP mask of the current allocation
1287  * @nodemask: The allowed nodes to allocate from
1288  * @mode: The migration mode for async, sync light, or sync migration
1289  * @contended: Return value that determines if compaction was aborted due to
1290  *	       need_resched() or lock contention
1291  * @candidate_zone: Return the zone where we think allocation should succeed
1292  *
1293  * This is the main entry point for direct page compaction.
1294  */
1295 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1296 			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1297 			enum migrate_mode mode, int *contended,
1298 			struct zone **candidate_zone)
1299 {
1300 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1301 	int may_enter_fs = gfp_mask & __GFP_FS;
1302 	int may_perform_io = gfp_mask & __GFP_IO;
1303 	struct zoneref *z;
1304 	struct zone *zone;
1305 	int rc = COMPACT_DEFERRED;
1306 	int alloc_flags = 0;
1307 	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1308 
1309 	*contended = COMPACT_CONTENDED_NONE;
1310 
1311 	/* Check if the GFP flags allow compaction */
1312 	if (!order || !may_enter_fs || !may_perform_io)
1313 		return COMPACT_SKIPPED;
1314 
1315 #ifdef CONFIG_CMA
1316 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1317 		alloc_flags |= ALLOC_CMA;
1318 #endif
1319 	/* Compact each zone in the list */
1320 	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1321 								nodemask) {
1322 		int status;
1323 		int zone_contended;
1324 
1325 		if (compaction_deferred(zone, order))
1326 			continue;
1327 
1328 		status = compact_zone_order(zone, order, gfp_mask, mode,
1329 							&zone_contended);
1330 		rc = max(status, rc);
1331 		/*
1332 		 * It takes at least one zone that wasn't lock contended
1333 		 * to clear all_zones_contended.
1334 		 */
1335 		all_zones_contended &= zone_contended;
1336 
1337 		/* If a normal allocation would succeed, stop compacting */
1338 		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1339 				      alloc_flags)) {
1340 			*candidate_zone = zone;
1341 			/*
1342 			 * We think the allocation will succeed in this zone,
1343 			 * but it is not certain, hence the false. The caller
1344 			 * will repeat this with true if allocation indeed
1345 			 * succeeds in this zone.
1346 			 */
1347 			compaction_defer_reset(zone, order, false);
1348 			/*
1349 			 * It is possible that async compaction aborted due to
1350 			 * need_resched() and the watermarks were ok thanks to
1351 			 * somebody else freeing memory. The allocation can
1352 			 * however still fail so we better signal the
1353 			 * need_resched() contention anyway (this will not
1354 			 * prevent the allocation attempt).
1355 			 */
1356 			if (zone_contended == COMPACT_CONTENDED_SCHED)
1357 				*contended = COMPACT_CONTENDED_SCHED;
1358 
1359 			goto break_loop;
1360 		}
1361 
1362 		if (mode != MIGRATE_ASYNC) {
1363 			/*
1364 			 * We think that allocation won't succeed in this zone
1365 			 * so we defer compaction there. If it ends up
1366 			 * succeeding after all, it will be reset.
1367 			 */
1368 			defer_compaction(zone, order);
1369 		}
1370 
1371 		/*
1372 		 * We might have stopped compacting due to need_resched() in
1373 		 * async compaction, or due to a fatal signal detected. In that
1374 		 * case do not try further zones and signal need_resched()
1375 		 * contention.
1376 		 */
1377 		if ((zone_contended == COMPACT_CONTENDED_SCHED)
1378 					|| fatal_signal_pending(current)) {
1379 			*contended = COMPACT_CONTENDED_SCHED;
1380 			goto break_loop;
1381 		}
1382 
1383 		continue;
1384 break_loop:
1385 		/*
1386 		 * We might not have tried all the zones, so  be conservative
1387 		 * and assume they are not all lock contended.
1388 		 */
1389 		all_zones_contended = 0;
1390 		break;
1391 	}
1392 
1393 	/*
1394 	 * If at least one zone wasn't deferred or skipped, we report if all
1395 	 * zones that were tried were lock contended.
1396 	 */
1397 	if (rc > COMPACT_SKIPPED && all_zones_contended)
1398 		*contended = COMPACT_CONTENDED_LOCK;
1399 
1400 	return rc;
1401 }
1402 
1403 
1404 /* Compact all zones within a node */
1405 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1406 {
1407 	int zoneid;
1408 	struct zone *zone;
1409 
1410 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1411 
1412 		zone = &pgdat->node_zones[zoneid];
1413 		if (!populated_zone(zone))
1414 			continue;
1415 
1416 		cc->nr_freepages = 0;
1417 		cc->nr_migratepages = 0;
1418 		cc->zone = zone;
1419 		INIT_LIST_HEAD(&cc->freepages);
1420 		INIT_LIST_HEAD(&cc->migratepages);
1421 
1422 		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1423 			compact_zone(zone, cc);
1424 
1425 		if (cc->order > 0) {
1426 			if (zone_watermark_ok(zone, cc->order,
1427 						low_wmark_pages(zone), 0, 0))
1428 				compaction_defer_reset(zone, cc->order, false);
1429 		}
1430 
1431 		VM_BUG_ON(!list_empty(&cc->freepages));
1432 		VM_BUG_ON(!list_empty(&cc->migratepages));
1433 	}
1434 }
1435 
1436 void compact_pgdat(pg_data_t *pgdat, int order)
1437 {
1438 	struct compact_control cc = {
1439 		.order = order,
1440 		.mode = MIGRATE_ASYNC,
1441 	};
1442 
1443 	if (!order)
1444 		return;
1445 
1446 	__compact_pgdat(pgdat, &cc);
1447 }
1448 
1449 static void compact_node(int nid)
1450 {
1451 	struct compact_control cc = {
1452 		.order = -1,
1453 		.mode = MIGRATE_SYNC,
1454 		.ignore_skip_hint = true,
1455 	};
1456 
1457 	__compact_pgdat(NODE_DATA(nid), &cc);
1458 }
1459 
1460 /* Compact all nodes in the system */
1461 static void compact_nodes(void)
1462 {
1463 	int nid;
1464 
1465 	/* Flush pending updates to the LRU lists */
1466 	lru_add_drain_all();
1467 
1468 	for_each_online_node(nid)
1469 		compact_node(nid);
1470 }
1471 
1472 /* The written value is actually unused, all memory is compacted */
1473 int sysctl_compact_memory;
1474 
1475 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1476 int sysctl_compaction_handler(struct ctl_table *table, int write,
1477 			void __user *buffer, size_t *length, loff_t *ppos)
1478 {
1479 	if (write)
1480 		compact_nodes();
1481 
1482 	return 0;
1483 }
1484 
1485 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1486 			void __user *buffer, size_t *length, loff_t *ppos)
1487 {
1488 	proc_dointvec_minmax(table, write, buffer, length, ppos);
1489 
1490 	return 0;
1491 }
1492 
1493 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1494 static ssize_t sysfs_compact_node(struct device *dev,
1495 			struct device_attribute *attr,
1496 			const char *buf, size_t count)
1497 {
1498 	int nid = dev->id;
1499 
1500 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1501 		/* Flush pending updates to the LRU lists */
1502 		lru_add_drain_all();
1503 
1504 		compact_node(nid);
1505 	}
1506 
1507 	return count;
1508 }
1509 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1510 
1511 int compaction_register_node(struct node *node)
1512 {
1513 	return device_create_file(&node->dev, &dev_attr_compact);
1514 }
1515 
1516 void compaction_unregister_node(struct node *node)
1517 {
1518 	return device_remove_file(&node->dev, &dev_attr_compact);
1519 }
1520 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1521 
1522 #endif /* CONFIG_COMPACTION */
1523