1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/compaction.c 4 * 5 * Memory compaction for the reduction of external fragmentation. Note that 6 * this heavily depends upon page migration to do all the real heavy 7 * lifting 8 * 9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> 10 */ 11 #include <linux/cpu.h> 12 #include <linux/swap.h> 13 #include <linux/migrate.h> 14 #include <linux/compaction.h> 15 #include <linux/mm_inline.h> 16 #include <linux/sched/signal.h> 17 #include <linux/backing-dev.h> 18 #include <linux/sysctl.h> 19 #include <linux/sysfs.h> 20 #include <linux/page-isolation.h> 21 #include <linux/kasan.h> 22 #include <linux/kthread.h> 23 #include <linux/freezer.h> 24 #include <linux/page_owner.h> 25 #include <linux/psi.h> 26 #include "internal.h" 27 28 #ifdef CONFIG_COMPACTION 29 static inline void count_compact_event(enum vm_event_item item) 30 { 31 count_vm_event(item); 32 } 33 34 static inline void count_compact_events(enum vm_event_item item, long delta) 35 { 36 count_vm_events(item, delta); 37 } 38 #else 39 #define count_compact_event(item) do { } while (0) 40 #define count_compact_events(item, delta) do { } while (0) 41 #endif 42 43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/compaction.h> 47 48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order)) 49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order)) 50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order) 51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order) 52 53 static unsigned long release_freepages(struct list_head *freelist) 54 { 55 struct page *page, *next; 56 unsigned long high_pfn = 0; 57 58 list_for_each_entry_safe(page, next, freelist, lru) { 59 unsigned long pfn = page_to_pfn(page); 60 list_del(&page->lru); 61 __free_page(page); 62 if (pfn > high_pfn) 63 high_pfn = pfn; 64 } 65 66 return high_pfn; 67 } 68 69 static void split_map_pages(struct list_head *list) 70 { 71 unsigned int i, order, nr_pages; 72 struct page *page, *next; 73 LIST_HEAD(tmp_list); 74 75 list_for_each_entry_safe(page, next, list, lru) { 76 list_del(&page->lru); 77 78 order = page_private(page); 79 nr_pages = 1 << order; 80 81 post_alloc_hook(page, order, __GFP_MOVABLE); 82 if (order) 83 split_page(page, order); 84 85 for (i = 0; i < nr_pages; i++) { 86 list_add(&page->lru, &tmp_list); 87 page++; 88 } 89 } 90 91 list_splice(&tmp_list, list); 92 } 93 94 #ifdef CONFIG_COMPACTION 95 96 int PageMovable(struct page *page) 97 { 98 struct address_space *mapping; 99 100 VM_BUG_ON_PAGE(!PageLocked(page), page); 101 if (!__PageMovable(page)) 102 return 0; 103 104 mapping = page_mapping(page); 105 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page) 106 return 1; 107 108 return 0; 109 } 110 EXPORT_SYMBOL(PageMovable); 111 112 void __SetPageMovable(struct page *page, struct address_space *mapping) 113 { 114 VM_BUG_ON_PAGE(!PageLocked(page), page); 115 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page); 116 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE); 117 } 118 EXPORT_SYMBOL(__SetPageMovable); 119 120 void __ClearPageMovable(struct page *page) 121 { 122 VM_BUG_ON_PAGE(!PageLocked(page), page); 123 VM_BUG_ON_PAGE(!PageMovable(page), page); 124 /* 125 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE 126 * flag so that VM can catch up released page by driver after isolation. 127 * With it, VM migration doesn't try to put it back. 128 */ 129 page->mapping = (void *)((unsigned long)page->mapping & 130 PAGE_MAPPING_MOVABLE); 131 } 132 EXPORT_SYMBOL(__ClearPageMovable); 133 134 /* Do not skip compaction more than 64 times */ 135 #define COMPACT_MAX_DEFER_SHIFT 6 136 137 /* 138 * Compaction is deferred when compaction fails to result in a page 139 * allocation success. 1 << compact_defer_limit compactions are skipped up 140 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT 141 */ 142 void defer_compaction(struct zone *zone, int order) 143 { 144 zone->compact_considered = 0; 145 zone->compact_defer_shift++; 146 147 if (order < zone->compact_order_failed) 148 zone->compact_order_failed = order; 149 150 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT) 151 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT; 152 153 trace_mm_compaction_defer_compaction(zone, order); 154 } 155 156 /* Returns true if compaction should be skipped this time */ 157 bool compaction_deferred(struct zone *zone, int order) 158 { 159 unsigned long defer_limit = 1UL << zone->compact_defer_shift; 160 161 if (order < zone->compact_order_failed) 162 return false; 163 164 /* Avoid possible overflow */ 165 if (++zone->compact_considered > defer_limit) 166 zone->compact_considered = defer_limit; 167 168 if (zone->compact_considered >= defer_limit) 169 return false; 170 171 trace_mm_compaction_deferred(zone, order); 172 173 return true; 174 } 175 176 /* 177 * Update defer tracking counters after successful compaction of given order, 178 * which means an allocation either succeeded (alloc_success == true) or is 179 * expected to succeed. 180 */ 181 void compaction_defer_reset(struct zone *zone, int order, 182 bool alloc_success) 183 { 184 if (alloc_success) { 185 zone->compact_considered = 0; 186 zone->compact_defer_shift = 0; 187 } 188 if (order >= zone->compact_order_failed) 189 zone->compact_order_failed = order + 1; 190 191 trace_mm_compaction_defer_reset(zone, order); 192 } 193 194 /* Returns true if restarting compaction after many failures */ 195 bool compaction_restarting(struct zone *zone, int order) 196 { 197 if (order < zone->compact_order_failed) 198 return false; 199 200 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT && 201 zone->compact_considered >= 1UL << zone->compact_defer_shift; 202 } 203 204 /* Returns true if the pageblock should be scanned for pages to isolate. */ 205 static inline bool isolation_suitable(struct compact_control *cc, 206 struct page *page) 207 { 208 if (cc->ignore_skip_hint) 209 return true; 210 211 return !get_pageblock_skip(page); 212 } 213 214 static void reset_cached_positions(struct zone *zone) 215 { 216 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn; 217 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn; 218 zone->compact_cached_free_pfn = 219 pageblock_start_pfn(zone_end_pfn(zone) - 1); 220 } 221 222 /* 223 * Compound pages of >= pageblock_order should consistenly be skipped until 224 * released. It is always pointless to compact pages of such order (if they are 225 * migratable), and the pageblocks they occupy cannot contain any free pages. 226 */ 227 static bool pageblock_skip_persistent(struct page *page) 228 { 229 if (!PageCompound(page)) 230 return false; 231 232 page = compound_head(page); 233 234 if (compound_order(page) >= pageblock_order) 235 return true; 236 237 return false; 238 } 239 240 static bool 241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source, 242 bool check_target) 243 { 244 struct page *page = pfn_to_online_page(pfn); 245 struct page *block_page; 246 struct page *end_page; 247 unsigned long block_pfn; 248 249 if (!page) 250 return false; 251 if (zone != page_zone(page)) 252 return false; 253 if (pageblock_skip_persistent(page)) 254 return false; 255 256 /* 257 * If skip is already cleared do no further checking once the 258 * restart points have been set. 259 */ 260 if (check_source && check_target && !get_pageblock_skip(page)) 261 return true; 262 263 /* 264 * If clearing skip for the target scanner, do not select a 265 * non-movable pageblock as the starting point. 266 */ 267 if (!check_source && check_target && 268 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 269 return false; 270 271 /* Ensure the start of the pageblock or zone is online and valid */ 272 block_pfn = pageblock_start_pfn(pfn); 273 block_pfn = max(block_pfn, zone->zone_start_pfn); 274 block_page = pfn_to_online_page(block_pfn); 275 if (block_page) { 276 page = block_page; 277 pfn = block_pfn; 278 } 279 280 /* Ensure the end of the pageblock or zone is online and valid */ 281 block_pfn = pageblock_end_pfn(pfn) - 1; 282 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1); 283 end_page = pfn_to_online_page(block_pfn); 284 if (!end_page) 285 return false; 286 287 /* 288 * Only clear the hint if a sample indicates there is either a 289 * free page or an LRU page in the block. One or other condition 290 * is necessary for the block to be a migration source/target. 291 */ 292 do { 293 if (pfn_valid_within(pfn)) { 294 if (check_source && PageLRU(page)) { 295 clear_pageblock_skip(page); 296 return true; 297 } 298 299 if (check_target && PageBuddy(page)) { 300 clear_pageblock_skip(page); 301 return true; 302 } 303 } 304 305 page += (1 << PAGE_ALLOC_COSTLY_ORDER); 306 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER); 307 } while (page <= end_page); 308 309 return false; 310 } 311 312 /* 313 * This function is called to clear all cached information on pageblocks that 314 * should be skipped for page isolation when the migrate and free page scanner 315 * meet. 316 */ 317 static void __reset_isolation_suitable(struct zone *zone) 318 { 319 unsigned long migrate_pfn = zone->zone_start_pfn; 320 unsigned long free_pfn = zone_end_pfn(zone) - 1; 321 unsigned long reset_migrate = free_pfn; 322 unsigned long reset_free = migrate_pfn; 323 bool source_set = false; 324 bool free_set = false; 325 326 if (!zone->compact_blockskip_flush) 327 return; 328 329 zone->compact_blockskip_flush = false; 330 331 /* 332 * Walk the zone and update pageblock skip information. Source looks 333 * for PageLRU while target looks for PageBuddy. When the scanner 334 * is found, both PageBuddy and PageLRU are checked as the pageblock 335 * is suitable as both source and target. 336 */ 337 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages, 338 free_pfn -= pageblock_nr_pages) { 339 cond_resched(); 340 341 /* Update the migrate PFN */ 342 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) && 343 migrate_pfn < reset_migrate) { 344 source_set = true; 345 reset_migrate = migrate_pfn; 346 zone->compact_init_migrate_pfn = reset_migrate; 347 zone->compact_cached_migrate_pfn[0] = reset_migrate; 348 zone->compact_cached_migrate_pfn[1] = reset_migrate; 349 } 350 351 /* Update the free PFN */ 352 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) && 353 free_pfn > reset_free) { 354 free_set = true; 355 reset_free = free_pfn; 356 zone->compact_init_free_pfn = reset_free; 357 zone->compact_cached_free_pfn = reset_free; 358 } 359 } 360 361 /* Leave no distance if no suitable block was reset */ 362 if (reset_migrate >= reset_free) { 363 zone->compact_cached_migrate_pfn[0] = migrate_pfn; 364 zone->compact_cached_migrate_pfn[1] = migrate_pfn; 365 zone->compact_cached_free_pfn = free_pfn; 366 } 367 } 368 369 void reset_isolation_suitable(pg_data_t *pgdat) 370 { 371 int zoneid; 372 373 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 374 struct zone *zone = &pgdat->node_zones[zoneid]; 375 if (!populated_zone(zone)) 376 continue; 377 378 /* Only flush if a full compaction finished recently */ 379 if (zone->compact_blockskip_flush) 380 __reset_isolation_suitable(zone); 381 } 382 } 383 384 /* 385 * Sets the pageblock skip bit if it was clear. Note that this is a hint as 386 * locks are not required for read/writers. Returns true if it was already set. 387 */ 388 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 389 unsigned long pfn) 390 { 391 bool skip; 392 393 /* Do no update if skip hint is being ignored */ 394 if (cc->ignore_skip_hint) 395 return false; 396 397 if (!IS_ALIGNED(pfn, pageblock_nr_pages)) 398 return false; 399 400 skip = get_pageblock_skip(page); 401 if (!skip && !cc->no_set_skip_hint) 402 set_pageblock_skip(page); 403 404 return skip; 405 } 406 407 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 408 { 409 struct zone *zone = cc->zone; 410 411 pfn = pageblock_end_pfn(pfn); 412 413 /* Set for isolation rather than compaction */ 414 if (cc->no_set_skip_hint) 415 return; 416 417 if (pfn > zone->compact_cached_migrate_pfn[0]) 418 zone->compact_cached_migrate_pfn[0] = pfn; 419 if (cc->mode != MIGRATE_ASYNC && 420 pfn > zone->compact_cached_migrate_pfn[1]) 421 zone->compact_cached_migrate_pfn[1] = pfn; 422 } 423 424 /* 425 * If no pages were isolated then mark this pageblock to be skipped in the 426 * future. The information is later cleared by __reset_isolation_suitable(). 427 */ 428 static void update_pageblock_skip(struct compact_control *cc, 429 struct page *page, unsigned long pfn) 430 { 431 struct zone *zone = cc->zone; 432 433 if (cc->no_set_skip_hint) 434 return; 435 436 if (!page) 437 return; 438 439 set_pageblock_skip(page); 440 441 /* Update where async and sync compaction should restart */ 442 if (pfn < zone->compact_cached_free_pfn) 443 zone->compact_cached_free_pfn = pfn; 444 } 445 #else 446 static inline bool isolation_suitable(struct compact_control *cc, 447 struct page *page) 448 { 449 return true; 450 } 451 452 static inline bool pageblock_skip_persistent(struct page *page) 453 { 454 return false; 455 } 456 457 static inline void update_pageblock_skip(struct compact_control *cc, 458 struct page *page, unsigned long pfn) 459 { 460 } 461 462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn) 463 { 464 } 465 466 static bool test_and_set_skip(struct compact_control *cc, struct page *page, 467 unsigned long pfn) 468 { 469 return false; 470 } 471 #endif /* CONFIG_COMPACTION */ 472 473 /* 474 * Compaction requires the taking of some coarse locks that are potentially 475 * very heavily contended. For async compaction, trylock and record if the 476 * lock is contended. The lock will still be acquired but compaction will 477 * abort when the current block is finished regardless of success rate. 478 * Sync compaction acquires the lock. 479 * 480 * Always returns true which makes it easier to track lock state in callers. 481 */ 482 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags, 483 struct compact_control *cc) 484 __acquires(lock) 485 { 486 /* Track if the lock is contended in async mode */ 487 if (cc->mode == MIGRATE_ASYNC && !cc->contended) { 488 if (spin_trylock_irqsave(lock, *flags)) 489 return true; 490 491 cc->contended = true; 492 } 493 494 spin_lock_irqsave(lock, *flags); 495 return true; 496 } 497 498 /* 499 * Compaction requires the taking of some coarse locks that are potentially 500 * very heavily contended. The lock should be periodically unlocked to avoid 501 * having disabled IRQs for a long time, even when there is nobody waiting on 502 * the lock. It might also be that allowing the IRQs will result in 503 * need_resched() becoming true. If scheduling is needed, async compaction 504 * aborts. Sync compaction schedules. 505 * Either compaction type will also abort if a fatal signal is pending. 506 * In either case if the lock was locked, it is dropped and not regained. 507 * 508 * Returns true if compaction should abort due to fatal signal pending, or 509 * async compaction due to need_resched() 510 * Returns false when compaction can continue (sync compaction might have 511 * scheduled) 512 */ 513 static bool compact_unlock_should_abort(spinlock_t *lock, 514 unsigned long flags, bool *locked, struct compact_control *cc) 515 { 516 if (*locked) { 517 spin_unlock_irqrestore(lock, flags); 518 *locked = false; 519 } 520 521 if (fatal_signal_pending(current)) { 522 cc->contended = true; 523 return true; 524 } 525 526 cond_resched(); 527 528 return false; 529 } 530 531 /* 532 * Isolate free pages onto a private freelist. If @strict is true, will abort 533 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock 534 * (even though it may still end up isolating some pages). 535 */ 536 static unsigned long isolate_freepages_block(struct compact_control *cc, 537 unsigned long *start_pfn, 538 unsigned long end_pfn, 539 struct list_head *freelist, 540 unsigned int stride, 541 bool strict) 542 { 543 int nr_scanned = 0, total_isolated = 0; 544 struct page *cursor; 545 unsigned long flags = 0; 546 bool locked = false; 547 unsigned long blockpfn = *start_pfn; 548 unsigned int order; 549 550 /* Strict mode is for isolation, speed is secondary */ 551 if (strict) 552 stride = 1; 553 554 cursor = pfn_to_page(blockpfn); 555 556 /* Isolate free pages. */ 557 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) { 558 int isolated; 559 struct page *page = cursor; 560 561 /* 562 * Periodically drop the lock (if held) regardless of its 563 * contention, to give chance to IRQs. Abort if fatal signal 564 * pending or async compaction detects need_resched() 565 */ 566 if (!(blockpfn % SWAP_CLUSTER_MAX) 567 && compact_unlock_should_abort(&cc->zone->lock, flags, 568 &locked, cc)) 569 break; 570 571 nr_scanned++; 572 if (!pfn_valid_within(blockpfn)) 573 goto isolate_fail; 574 575 /* 576 * For compound pages such as THP and hugetlbfs, we can save 577 * potentially a lot of iterations if we skip them at once. 578 * The check is racy, but we can consider only valid values 579 * and the only danger is skipping too much. 580 */ 581 if (PageCompound(page)) { 582 const unsigned int order = compound_order(page); 583 584 if (likely(order < MAX_ORDER)) { 585 blockpfn += (1UL << order) - 1; 586 cursor += (1UL << order) - 1; 587 } 588 goto isolate_fail; 589 } 590 591 if (!PageBuddy(page)) 592 goto isolate_fail; 593 594 /* 595 * If we already hold the lock, we can skip some rechecking. 596 * Note that if we hold the lock now, checked_pageblock was 597 * already set in some previous iteration (or strict is true), 598 * so it is correct to skip the suitable migration target 599 * recheck as well. 600 */ 601 if (!locked) { 602 locked = compact_lock_irqsave(&cc->zone->lock, 603 &flags, cc); 604 605 /* Recheck this is a buddy page under lock */ 606 if (!PageBuddy(page)) 607 goto isolate_fail; 608 } 609 610 /* Found a free page, will break it into order-0 pages */ 611 order = page_order(page); 612 isolated = __isolate_free_page(page, order); 613 if (!isolated) 614 break; 615 set_page_private(page, order); 616 617 total_isolated += isolated; 618 cc->nr_freepages += isolated; 619 list_add_tail(&page->lru, freelist); 620 621 if (!strict && cc->nr_migratepages <= cc->nr_freepages) { 622 blockpfn += isolated; 623 break; 624 } 625 /* Advance to the end of split page */ 626 blockpfn += isolated - 1; 627 cursor += isolated - 1; 628 continue; 629 630 isolate_fail: 631 if (strict) 632 break; 633 else 634 continue; 635 636 } 637 638 if (locked) 639 spin_unlock_irqrestore(&cc->zone->lock, flags); 640 641 /* 642 * There is a tiny chance that we have read bogus compound_order(), 643 * so be careful to not go outside of the pageblock. 644 */ 645 if (unlikely(blockpfn > end_pfn)) 646 blockpfn = end_pfn; 647 648 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn, 649 nr_scanned, total_isolated); 650 651 /* Record how far we have got within the block */ 652 *start_pfn = blockpfn; 653 654 /* 655 * If strict isolation is requested by CMA then check that all the 656 * pages requested were isolated. If there were any failures, 0 is 657 * returned and CMA will fail. 658 */ 659 if (strict && blockpfn < end_pfn) 660 total_isolated = 0; 661 662 cc->total_free_scanned += nr_scanned; 663 if (total_isolated) 664 count_compact_events(COMPACTISOLATED, total_isolated); 665 return total_isolated; 666 } 667 668 /** 669 * isolate_freepages_range() - isolate free pages. 670 * @cc: Compaction control structure. 671 * @start_pfn: The first PFN to start isolating. 672 * @end_pfn: The one-past-last PFN. 673 * 674 * Non-free pages, invalid PFNs, or zone boundaries within the 675 * [start_pfn, end_pfn) range are considered errors, cause function to 676 * undo its actions and return zero. 677 * 678 * Otherwise, function returns one-past-the-last PFN of isolated page 679 * (which may be greater then end_pfn if end fell in a middle of 680 * a free page). 681 */ 682 unsigned long 683 isolate_freepages_range(struct compact_control *cc, 684 unsigned long start_pfn, unsigned long end_pfn) 685 { 686 unsigned long isolated, pfn, block_start_pfn, block_end_pfn; 687 LIST_HEAD(freelist); 688 689 pfn = start_pfn; 690 block_start_pfn = pageblock_start_pfn(pfn); 691 if (block_start_pfn < cc->zone->zone_start_pfn) 692 block_start_pfn = cc->zone->zone_start_pfn; 693 block_end_pfn = pageblock_end_pfn(pfn); 694 695 for (; pfn < end_pfn; pfn += isolated, 696 block_start_pfn = block_end_pfn, 697 block_end_pfn += pageblock_nr_pages) { 698 /* Protect pfn from changing by isolate_freepages_block */ 699 unsigned long isolate_start_pfn = pfn; 700 701 block_end_pfn = min(block_end_pfn, end_pfn); 702 703 /* 704 * pfn could pass the block_end_pfn if isolated freepage 705 * is more than pageblock order. In this case, we adjust 706 * scanning range to right one. 707 */ 708 if (pfn >= block_end_pfn) { 709 block_start_pfn = pageblock_start_pfn(pfn); 710 block_end_pfn = pageblock_end_pfn(pfn); 711 block_end_pfn = min(block_end_pfn, end_pfn); 712 } 713 714 if (!pageblock_pfn_to_page(block_start_pfn, 715 block_end_pfn, cc->zone)) 716 break; 717 718 isolated = isolate_freepages_block(cc, &isolate_start_pfn, 719 block_end_pfn, &freelist, 0, true); 720 721 /* 722 * In strict mode, isolate_freepages_block() returns 0 if 723 * there are any holes in the block (ie. invalid PFNs or 724 * non-free pages). 725 */ 726 if (!isolated) 727 break; 728 729 /* 730 * If we managed to isolate pages, it is always (1 << n) * 731 * pageblock_nr_pages for some non-negative n. (Max order 732 * page may span two pageblocks). 733 */ 734 } 735 736 /* __isolate_free_page() does not map the pages */ 737 split_map_pages(&freelist); 738 739 if (pfn < end_pfn) { 740 /* Loop terminated early, cleanup. */ 741 release_freepages(&freelist); 742 return 0; 743 } 744 745 /* We don't use freelists for anything. */ 746 return pfn; 747 } 748 749 /* Similar to reclaim, but different enough that they don't share logic */ 750 static bool too_many_isolated(pg_data_t *pgdat) 751 { 752 unsigned long active, inactive, isolated; 753 754 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) + 755 node_page_state(pgdat, NR_INACTIVE_ANON); 756 active = node_page_state(pgdat, NR_ACTIVE_FILE) + 757 node_page_state(pgdat, NR_ACTIVE_ANON); 758 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) + 759 node_page_state(pgdat, NR_ISOLATED_ANON); 760 761 return isolated > (inactive + active) / 2; 762 } 763 764 /** 765 * isolate_migratepages_block() - isolate all migrate-able pages within 766 * a single pageblock 767 * @cc: Compaction control structure. 768 * @low_pfn: The first PFN to isolate 769 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock 770 * @isolate_mode: Isolation mode to be used. 771 * 772 * Isolate all pages that can be migrated from the range specified by 773 * [low_pfn, end_pfn). The range is expected to be within same pageblock. 774 * Returns zero if there is a fatal signal pending, otherwise PFN of the 775 * first page that was not scanned (which may be both less, equal to or more 776 * than end_pfn). 777 * 778 * The pages are isolated on cc->migratepages list (not required to be empty), 779 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field 780 * is neither read nor updated. 781 */ 782 static unsigned long 783 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, 784 unsigned long end_pfn, isolate_mode_t isolate_mode) 785 { 786 pg_data_t *pgdat = cc->zone->zone_pgdat; 787 unsigned long nr_scanned = 0, nr_isolated = 0; 788 struct lruvec *lruvec; 789 unsigned long flags = 0; 790 bool locked = false; 791 struct page *page = NULL, *valid_page = NULL; 792 unsigned long start_pfn = low_pfn; 793 bool skip_on_failure = false; 794 unsigned long next_skip_pfn = 0; 795 bool skip_updated = false; 796 797 /* 798 * Ensure that there are not too many pages isolated from the LRU 799 * list by either parallel reclaimers or compaction. If there are, 800 * delay for some time until fewer pages are isolated 801 */ 802 while (unlikely(too_many_isolated(pgdat))) { 803 /* async migration should just abort */ 804 if (cc->mode == MIGRATE_ASYNC) 805 return 0; 806 807 congestion_wait(BLK_RW_ASYNC, HZ/10); 808 809 if (fatal_signal_pending(current)) 810 return 0; 811 } 812 813 cond_resched(); 814 815 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) { 816 skip_on_failure = true; 817 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 818 } 819 820 /* Time to isolate some pages for migration */ 821 for (; low_pfn < end_pfn; low_pfn++) { 822 823 if (skip_on_failure && low_pfn >= next_skip_pfn) { 824 /* 825 * We have isolated all migration candidates in the 826 * previous order-aligned block, and did not skip it due 827 * to failure. We should migrate the pages now and 828 * hopefully succeed compaction. 829 */ 830 if (nr_isolated) 831 break; 832 833 /* 834 * We failed to isolate in the previous order-aligned 835 * block. Set the new boundary to the end of the 836 * current block. Note we can't simply increase 837 * next_skip_pfn by 1 << order, as low_pfn might have 838 * been incremented by a higher number due to skipping 839 * a compound or a high-order buddy page in the 840 * previous loop iteration. 841 */ 842 next_skip_pfn = block_end_pfn(low_pfn, cc->order); 843 } 844 845 /* 846 * Periodically drop the lock (if held) regardless of its 847 * contention, to give chance to IRQs. Abort completely if 848 * a fatal signal is pending. 849 */ 850 if (!(low_pfn % SWAP_CLUSTER_MAX) 851 && compact_unlock_should_abort(&pgdat->lru_lock, 852 flags, &locked, cc)) { 853 low_pfn = 0; 854 goto fatal_pending; 855 } 856 857 if (!pfn_valid_within(low_pfn)) 858 goto isolate_fail; 859 nr_scanned++; 860 861 page = pfn_to_page(low_pfn); 862 863 /* 864 * Check if the pageblock has already been marked skipped. 865 * Only the aligned PFN is checked as the caller isolates 866 * COMPACT_CLUSTER_MAX at a time so the second call must 867 * not falsely conclude that the block should be skipped. 868 */ 869 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) { 870 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) { 871 low_pfn = end_pfn; 872 goto isolate_abort; 873 } 874 valid_page = page; 875 } 876 877 /* 878 * Skip if free. We read page order here without zone lock 879 * which is generally unsafe, but the race window is small and 880 * the worst thing that can happen is that we skip some 881 * potential isolation targets. 882 */ 883 if (PageBuddy(page)) { 884 unsigned long freepage_order = page_order_unsafe(page); 885 886 /* 887 * Without lock, we cannot be sure that what we got is 888 * a valid page order. Consider only values in the 889 * valid order range to prevent low_pfn overflow. 890 */ 891 if (freepage_order > 0 && freepage_order < MAX_ORDER) 892 low_pfn += (1UL << freepage_order) - 1; 893 continue; 894 } 895 896 /* 897 * Regardless of being on LRU, compound pages such as THP and 898 * hugetlbfs are not to be compacted unless we are attempting 899 * an allocation much larger than the huge page size (eg CMA). 900 * We can potentially save a lot of iterations if we skip them 901 * at once. The check is racy, but we can consider only valid 902 * values and the only danger is skipping too much. 903 */ 904 if (PageCompound(page) && !cc->alloc_contig) { 905 const unsigned int order = compound_order(page); 906 907 if (likely(order < MAX_ORDER)) 908 low_pfn += (1UL << order) - 1; 909 goto isolate_fail; 910 } 911 912 /* 913 * Check may be lockless but that's ok as we recheck later. 914 * It's possible to migrate LRU and non-lru movable pages. 915 * Skip any other type of page 916 */ 917 if (!PageLRU(page)) { 918 /* 919 * __PageMovable can return false positive so we need 920 * to verify it under page_lock. 921 */ 922 if (unlikely(__PageMovable(page)) && 923 !PageIsolated(page)) { 924 if (locked) { 925 spin_unlock_irqrestore(&pgdat->lru_lock, 926 flags); 927 locked = false; 928 } 929 930 if (!isolate_movable_page(page, isolate_mode)) 931 goto isolate_success; 932 } 933 934 goto isolate_fail; 935 } 936 937 /* 938 * Migration will fail if an anonymous page is pinned in memory, 939 * so avoid taking lru_lock and isolating it unnecessarily in an 940 * admittedly racy check. 941 */ 942 if (!page_mapping(page) && 943 page_count(page) > page_mapcount(page)) 944 goto isolate_fail; 945 946 /* 947 * Only allow to migrate anonymous pages in GFP_NOFS context 948 * because those do not depend on fs locks. 949 */ 950 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page)) 951 goto isolate_fail; 952 953 /* If we already hold the lock, we can skip some rechecking */ 954 if (!locked) { 955 locked = compact_lock_irqsave(&pgdat->lru_lock, 956 &flags, cc); 957 958 /* Try get exclusive access under lock */ 959 if (!skip_updated) { 960 skip_updated = true; 961 if (test_and_set_skip(cc, page, low_pfn)) 962 goto isolate_abort; 963 } 964 965 /* Recheck PageLRU and PageCompound under lock */ 966 if (!PageLRU(page)) 967 goto isolate_fail; 968 969 /* 970 * Page become compound since the non-locked check, 971 * and it's on LRU. It can only be a THP so the order 972 * is safe to read and it's 0 for tail pages. 973 */ 974 if (unlikely(PageCompound(page) && !cc->alloc_contig)) { 975 low_pfn += compound_nr(page) - 1; 976 goto isolate_fail; 977 } 978 } 979 980 lruvec = mem_cgroup_page_lruvec(page, pgdat); 981 982 /* Try isolate the page */ 983 if (__isolate_lru_page(page, isolate_mode) != 0) 984 goto isolate_fail; 985 986 /* The whole page is taken off the LRU; skip the tail pages. */ 987 if (PageCompound(page)) 988 low_pfn += compound_nr(page) - 1; 989 990 /* Successfully isolated */ 991 del_page_from_lru_list(page, lruvec, page_lru(page)); 992 mod_node_page_state(page_pgdat(page), 993 NR_ISOLATED_ANON + page_is_file_lru(page), 994 hpage_nr_pages(page)); 995 996 isolate_success: 997 list_add(&page->lru, &cc->migratepages); 998 cc->nr_migratepages++; 999 nr_isolated++; 1000 1001 /* 1002 * Avoid isolating too much unless this block is being 1003 * rescanned (e.g. dirty/writeback pages, parallel allocation) 1004 * or a lock is contended. For contention, isolate quickly to 1005 * potentially remove one source of contention. 1006 */ 1007 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX && 1008 !cc->rescan && !cc->contended) { 1009 ++low_pfn; 1010 break; 1011 } 1012 1013 continue; 1014 isolate_fail: 1015 if (!skip_on_failure) 1016 continue; 1017 1018 /* 1019 * We have isolated some pages, but then failed. Release them 1020 * instead of migrating, as we cannot form the cc->order buddy 1021 * page anyway. 1022 */ 1023 if (nr_isolated) { 1024 if (locked) { 1025 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1026 locked = false; 1027 } 1028 putback_movable_pages(&cc->migratepages); 1029 cc->nr_migratepages = 0; 1030 nr_isolated = 0; 1031 } 1032 1033 if (low_pfn < next_skip_pfn) { 1034 low_pfn = next_skip_pfn - 1; 1035 /* 1036 * The check near the loop beginning would have updated 1037 * next_skip_pfn too, but this is a bit simpler. 1038 */ 1039 next_skip_pfn += 1UL << cc->order; 1040 } 1041 } 1042 1043 /* 1044 * The PageBuddy() check could have potentially brought us outside 1045 * the range to be scanned. 1046 */ 1047 if (unlikely(low_pfn > end_pfn)) 1048 low_pfn = end_pfn; 1049 1050 isolate_abort: 1051 if (locked) 1052 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 1053 1054 /* 1055 * Updated the cached scanner pfn once the pageblock has been scanned 1056 * Pages will either be migrated in which case there is no point 1057 * scanning in the near future or migration failed in which case the 1058 * failure reason may persist. The block is marked for skipping if 1059 * there were no pages isolated in the block or if the block is 1060 * rescanned twice in a row. 1061 */ 1062 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) { 1063 if (valid_page && !skip_updated) 1064 set_pageblock_skip(valid_page); 1065 update_cached_migrate(cc, low_pfn); 1066 } 1067 1068 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn, 1069 nr_scanned, nr_isolated); 1070 1071 fatal_pending: 1072 cc->total_migrate_scanned += nr_scanned; 1073 if (nr_isolated) 1074 count_compact_events(COMPACTISOLATED, nr_isolated); 1075 1076 return low_pfn; 1077 } 1078 1079 /** 1080 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range 1081 * @cc: Compaction control structure. 1082 * @start_pfn: The first PFN to start isolating. 1083 * @end_pfn: The one-past-last PFN. 1084 * 1085 * Returns zero if isolation fails fatally due to e.g. pending signal. 1086 * Otherwise, function returns one-past-the-last PFN of isolated page 1087 * (which may be greater than end_pfn if end fell in a middle of a THP page). 1088 */ 1089 unsigned long 1090 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn, 1091 unsigned long end_pfn) 1092 { 1093 unsigned long pfn, block_start_pfn, block_end_pfn; 1094 1095 /* Scan block by block. First and last block may be incomplete */ 1096 pfn = start_pfn; 1097 block_start_pfn = pageblock_start_pfn(pfn); 1098 if (block_start_pfn < cc->zone->zone_start_pfn) 1099 block_start_pfn = cc->zone->zone_start_pfn; 1100 block_end_pfn = pageblock_end_pfn(pfn); 1101 1102 for (; pfn < end_pfn; pfn = block_end_pfn, 1103 block_start_pfn = block_end_pfn, 1104 block_end_pfn += pageblock_nr_pages) { 1105 1106 block_end_pfn = min(block_end_pfn, end_pfn); 1107 1108 if (!pageblock_pfn_to_page(block_start_pfn, 1109 block_end_pfn, cc->zone)) 1110 continue; 1111 1112 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn, 1113 ISOLATE_UNEVICTABLE); 1114 1115 if (!pfn) 1116 break; 1117 1118 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) 1119 break; 1120 } 1121 1122 return pfn; 1123 } 1124 1125 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 1126 #ifdef CONFIG_COMPACTION 1127 1128 static bool suitable_migration_source(struct compact_control *cc, 1129 struct page *page) 1130 { 1131 int block_mt; 1132 1133 if (pageblock_skip_persistent(page)) 1134 return false; 1135 1136 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction) 1137 return true; 1138 1139 block_mt = get_pageblock_migratetype(page); 1140 1141 if (cc->migratetype == MIGRATE_MOVABLE) 1142 return is_migrate_movable(block_mt); 1143 else 1144 return block_mt == cc->migratetype; 1145 } 1146 1147 /* Returns true if the page is within a block suitable for migration to */ 1148 static bool suitable_migration_target(struct compact_control *cc, 1149 struct page *page) 1150 { 1151 /* If the page is a large free page, then disallow migration */ 1152 if (PageBuddy(page)) { 1153 /* 1154 * We are checking page_order without zone->lock taken. But 1155 * the only small danger is that we skip a potentially suitable 1156 * pageblock, so it's not worth to check order for valid range. 1157 */ 1158 if (page_order_unsafe(page) >= pageblock_order) 1159 return false; 1160 } 1161 1162 if (cc->ignore_block_suitable) 1163 return true; 1164 1165 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ 1166 if (is_migrate_movable(get_pageblock_migratetype(page))) 1167 return true; 1168 1169 /* Otherwise skip the block */ 1170 return false; 1171 } 1172 1173 static inline unsigned int 1174 freelist_scan_limit(struct compact_control *cc) 1175 { 1176 unsigned short shift = BITS_PER_LONG - 1; 1177 1178 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1; 1179 } 1180 1181 /* 1182 * Test whether the free scanner has reached the same or lower pageblock than 1183 * the migration scanner, and compaction should thus terminate. 1184 */ 1185 static inline bool compact_scanners_met(struct compact_control *cc) 1186 { 1187 return (cc->free_pfn >> pageblock_order) 1188 <= (cc->migrate_pfn >> pageblock_order); 1189 } 1190 1191 /* 1192 * Used when scanning for a suitable migration target which scans freelists 1193 * in reverse. Reorders the list such as the unscanned pages are scanned 1194 * first on the next iteration of the free scanner 1195 */ 1196 static void 1197 move_freelist_head(struct list_head *freelist, struct page *freepage) 1198 { 1199 LIST_HEAD(sublist); 1200 1201 if (!list_is_last(freelist, &freepage->lru)) { 1202 list_cut_before(&sublist, freelist, &freepage->lru); 1203 if (!list_empty(&sublist)) 1204 list_splice_tail(&sublist, freelist); 1205 } 1206 } 1207 1208 /* 1209 * Similar to move_freelist_head except used by the migration scanner 1210 * when scanning forward. It's possible for these list operations to 1211 * move against each other if they search the free list exactly in 1212 * lockstep. 1213 */ 1214 static void 1215 move_freelist_tail(struct list_head *freelist, struct page *freepage) 1216 { 1217 LIST_HEAD(sublist); 1218 1219 if (!list_is_first(freelist, &freepage->lru)) { 1220 list_cut_position(&sublist, freelist, &freepage->lru); 1221 if (!list_empty(&sublist)) 1222 list_splice_tail(&sublist, freelist); 1223 } 1224 } 1225 1226 static void 1227 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated) 1228 { 1229 unsigned long start_pfn, end_pfn; 1230 struct page *page = pfn_to_page(pfn); 1231 1232 /* Do not search around if there are enough pages already */ 1233 if (cc->nr_freepages >= cc->nr_migratepages) 1234 return; 1235 1236 /* Minimise scanning during async compaction */ 1237 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC) 1238 return; 1239 1240 /* Pageblock boundaries */ 1241 start_pfn = pageblock_start_pfn(pfn); 1242 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1; 1243 1244 /* Scan before */ 1245 if (start_pfn != pfn) { 1246 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false); 1247 if (cc->nr_freepages >= cc->nr_migratepages) 1248 return; 1249 } 1250 1251 /* Scan after */ 1252 start_pfn = pfn + nr_isolated; 1253 if (start_pfn < end_pfn) 1254 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false); 1255 1256 /* Skip this pageblock in the future as it's full or nearly full */ 1257 if (cc->nr_freepages < cc->nr_migratepages) 1258 set_pageblock_skip(page); 1259 } 1260 1261 /* Search orders in round-robin fashion */ 1262 static int next_search_order(struct compact_control *cc, int order) 1263 { 1264 order--; 1265 if (order < 0) 1266 order = cc->order - 1; 1267 1268 /* Search wrapped around? */ 1269 if (order == cc->search_order) { 1270 cc->search_order--; 1271 if (cc->search_order < 0) 1272 cc->search_order = cc->order - 1; 1273 return -1; 1274 } 1275 1276 return order; 1277 } 1278 1279 static unsigned long 1280 fast_isolate_freepages(struct compact_control *cc) 1281 { 1282 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1); 1283 unsigned int nr_scanned = 0; 1284 unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0; 1285 unsigned long nr_isolated = 0; 1286 unsigned long distance; 1287 struct page *page = NULL; 1288 bool scan_start = false; 1289 int order; 1290 1291 /* Full compaction passes in a negative order */ 1292 if (cc->order <= 0) 1293 return cc->free_pfn; 1294 1295 /* 1296 * If starting the scan, use a deeper search and use the highest 1297 * PFN found if a suitable one is not found. 1298 */ 1299 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) { 1300 limit = pageblock_nr_pages >> 1; 1301 scan_start = true; 1302 } 1303 1304 /* 1305 * Preferred point is in the top quarter of the scan space but take 1306 * a pfn from the top half if the search is problematic. 1307 */ 1308 distance = (cc->free_pfn - cc->migrate_pfn); 1309 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2)); 1310 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1)); 1311 1312 if (WARN_ON_ONCE(min_pfn > low_pfn)) 1313 low_pfn = min_pfn; 1314 1315 /* 1316 * Search starts from the last successful isolation order or the next 1317 * order to search after a previous failure 1318 */ 1319 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order); 1320 1321 for (order = cc->search_order; 1322 !page && order >= 0; 1323 order = next_search_order(cc, order)) { 1324 struct free_area *area = &cc->zone->free_area[order]; 1325 struct list_head *freelist; 1326 struct page *freepage; 1327 unsigned long flags; 1328 unsigned int order_scanned = 0; 1329 1330 if (!area->nr_free) 1331 continue; 1332 1333 spin_lock_irqsave(&cc->zone->lock, flags); 1334 freelist = &area->free_list[MIGRATE_MOVABLE]; 1335 list_for_each_entry_reverse(freepage, freelist, lru) { 1336 unsigned long pfn; 1337 1338 order_scanned++; 1339 nr_scanned++; 1340 pfn = page_to_pfn(freepage); 1341 1342 if (pfn >= highest) 1343 highest = pageblock_start_pfn(pfn); 1344 1345 if (pfn >= low_pfn) { 1346 cc->fast_search_fail = 0; 1347 cc->search_order = order; 1348 page = freepage; 1349 break; 1350 } 1351 1352 if (pfn >= min_pfn && pfn > high_pfn) { 1353 high_pfn = pfn; 1354 1355 /* Shorten the scan if a candidate is found */ 1356 limit >>= 1; 1357 } 1358 1359 if (order_scanned >= limit) 1360 break; 1361 } 1362 1363 /* Use a minimum pfn if a preferred one was not found */ 1364 if (!page && high_pfn) { 1365 page = pfn_to_page(high_pfn); 1366 1367 /* Update freepage for the list reorder below */ 1368 freepage = page; 1369 } 1370 1371 /* Reorder to so a future search skips recent pages */ 1372 move_freelist_head(freelist, freepage); 1373 1374 /* Isolate the page if available */ 1375 if (page) { 1376 if (__isolate_free_page(page, order)) { 1377 set_page_private(page, order); 1378 nr_isolated = 1 << order; 1379 cc->nr_freepages += nr_isolated; 1380 list_add_tail(&page->lru, &cc->freepages); 1381 count_compact_events(COMPACTISOLATED, nr_isolated); 1382 } else { 1383 /* If isolation fails, abort the search */ 1384 order = cc->search_order + 1; 1385 page = NULL; 1386 } 1387 } 1388 1389 spin_unlock_irqrestore(&cc->zone->lock, flags); 1390 1391 /* 1392 * Smaller scan on next order so the total scan ig related 1393 * to freelist_scan_limit. 1394 */ 1395 if (order_scanned >= limit) 1396 limit = min(1U, limit >> 1); 1397 } 1398 1399 if (!page) { 1400 cc->fast_search_fail++; 1401 if (scan_start) { 1402 /* 1403 * Use the highest PFN found above min. If one was 1404 * not found, be pessimistic for direct compaction 1405 * and use the min mark. 1406 */ 1407 if (highest) { 1408 page = pfn_to_page(highest); 1409 cc->free_pfn = highest; 1410 } else { 1411 if (cc->direct_compaction && pfn_valid(min_pfn)) { 1412 page = pageblock_pfn_to_page(min_pfn, 1413 pageblock_end_pfn(min_pfn), 1414 cc->zone); 1415 cc->free_pfn = min_pfn; 1416 } 1417 } 1418 } 1419 } 1420 1421 if (highest && highest >= cc->zone->compact_cached_free_pfn) { 1422 highest -= pageblock_nr_pages; 1423 cc->zone->compact_cached_free_pfn = highest; 1424 } 1425 1426 cc->total_free_scanned += nr_scanned; 1427 if (!page) 1428 return cc->free_pfn; 1429 1430 low_pfn = page_to_pfn(page); 1431 fast_isolate_around(cc, low_pfn, nr_isolated); 1432 return low_pfn; 1433 } 1434 1435 /* 1436 * Based on information in the current compact_control, find blocks 1437 * suitable for isolating free pages from and then isolate them. 1438 */ 1439 static void isolate_freepages(struct compact_control *cc) 1440 { 1441 struct zone *zone = cc->zone; 1442 struct page *page; 1443 unsigned long block_start_pfn; /* start of current pageblock */ 1444 unsigned long isolate_start_pfn; /* exact pfn we start at */ 1445 unsigned long block_end_pfn; /* end of current pageblock */ 1446 unsigned long low_pfn; /* lowest pfn scanner is able to scan */ 1447 struct list_head *freelist = &cc->freepages; 1448 unsigned int stride; 1449 1450 /* Try a small search of the free lists for a candidate */ 1451 isolate_start_pfn = fast_isolate_freepages(cc); 1452 if (cc->nr_freepages) 1453 goto splitmap; 1454 1455 /* 1456 * Initialise the free scanner. The starting point is where we last 1457 * successfully isolated from, zone-cached value, or the end of the 1458 * zone when isolating for the first time. For looping we also need 1459 * this pfn aligned down to the pageblock boundary, because we do 1460 * block_start_pfn -= pageblock_nr_pages in the for loop. 1461 * For ending point, take care when isolating in last pageblock of a 1462 * a zone which ends in the middle of a pageblock. 1463 * The low boundary is the end of the pageblock the migration scanner 1464 * is using. 1465 */ 1466 isolate_start_pfn = cc->free_pfn; 1467 block_start_pfn = pageblock_start_pfn(isolate_start_pfn); 1468 block_end_pfn = min(block_start_pfn + pageblock_nr_pages, 1469 zone_end_pfn(zone)); 1470 low_pfn = pageblock_end_pfn(cc->migrate_pfn); 1471 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1; 1472 1473 /* 1474 * Isolate free pages until enough are available to migrate the 1475 * pages on cc->migratepages. We stop searching if the migrate 1476 * and free page scanners meet or enough free pages are isolated. 1477 */ 1478 for (; block_start_pfn >= low_pfn; 1479 block_end_pfn = block_start_pfn, 1480 block_start_pfn -= pageblock_nr_pages, 1481 isolate_start_pfn = block_start_pfn) { 1482 unsigned long nr_isolated; 1483 1484 /* 1485 * This can iterate a massively long zone without finding any 1486 * suitable migration targets, so periodically check resched. 1487 */ 1488 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1489 cond_resched(); 1490 1491 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn, 1492 zone); 1493 if (!page) 1494 continue; 1495 1496 /* Check the block is suitable for migration */ 1497 if (!suitable_migration_target(cc, page)) 1498 continue; 1499 1500 /* If isolation recently failed, do not retry */ 1501 if (!isolation_suitable(cc, page)) 1502 continue; 1503 1504 /* Found a block suitable for isolating free pages from. */ 1505 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn, 1506 block_end_pfn, freelist, stride, false); 1507 1508 /* Update the skip hint if the full pageblock was scanned */ 1509 if (isolate_start_pfn == block_end_pfn) 1510 update_pageblock_skip(cc, page, block_start_pfn); 1511 1512 /* Are enough freepages isolated? */ 1513 if (cc->nr_freepages >= cc->nr_migratepages) { 1514 if (isolate_start_pfn >= block_end_pfn) { 1515 /* 1516 * Restart at previous pageblock if more 1517 * freepages can be isolated next time. 1518 */ 1519 isolate_start_pfn = 1520 block_start_pfn - pageblock_nr_pages; 1521 } 1522 break; 1523 } else if (isolate_start_pfn < block_end_pfn) { 1524 /* 1525 * If isolation failed early, do not continue 1526 * needlessly. 1527 */ 1528 break; 1529 } 1530 1531 /* Adjust stride depending on isolation */ 1532 if (nr_isolated) { 1533 stride = 1; 1534 continue; 1535 } 1536 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1); 1537 } 1538 1539 /* 1540 * Record where the free scanner will restart next time. Either we 1541 * broke from the loop and set isolate_start_pfn based on the last 1542 * call to isolate_freepages_block(), or we met the migration scanner 1543 * and the loop terminated due to isolate_start_pfn < low_pfn 1544 */ 1545 cc->free_pfn = isolate_start_pfn; 1546 1547 splitmap: 1548 /* __isolate_free_page() does not map the pages */ 1549 split_map_pages(freelist); 1550 } 1551 1552 /* 1553 * This is a migrate-callback that "allocates" freepages by taking pages 1554 * from the isolated freelists in the block we are migrating to. 1555 */ 1556 static struct page *compaction_alloc(struct page *migratepage, 1557 unsigned long data) 1558 { 1559 struct compact_control *cc = (struct compact_control *)data; 1560 struct page *freepage; 1561 1562 if (list_empty(&cc->freepages)) { 1563 isolate_freepages(cc); 1564 1565 if (list_empty(&cc->freepages)) 1566 return NULL; 1567 } 1568 1569 freepage = list_entry(cc->freepages.next, struct page, lru); 1570 list_del(&freepage->lru); 1571 cc->nr_freepages--; 1572 1573 return freepage; 1574 } 1575 1576 /* 1577 * This is a migrate-callback that "frees" freepages back to the isolated 1578 * freelist. All pages on the freelist are from the same zone, so there is no 1579 * special handling needed for NUMA. 1580 */ 1581 static void compaction_free(struct page *page, unsigned long data) 1582 { 1583 struct compact_control *cc = (struct compact_control *)data; 1584 1585 list_add(&page->lru, &cc->freepages); 1586 cc->nr_freepages++; 1587 } 1588 1589 /* possible outcome of isolate_migratepages */ 1590 typedef enum { 1591 ISOLATE_ABORT, /* Abort compaction now */ 1592 ISOLATE_NONE, /* No pages isolated, continue scanning */ 1593 ISOLATE_SUCCESS, /* Pages isolated, migrate */ 1594 } isolate_migrate_t; 1595 1596 /* 1597 * Allow userspace to control policy on scanning the unevictable LRU for 1598 * compactable pages. 1599 */ 1600 #ifdef CONFIG_PREEMPT_RT 1601 int sysctl_compact_unevictable_allowed __read_mostly = 0; 1602 #else 1603 int sysctl_compact_unevictable_allowed __read_mostly = 1; 1604 #endif 1605 1606 static inline void 1607 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn) 1608 { 1609 if (cc->fast_start_pfn == ULONG_MAX) 1610 return; 1611 1612 if (!cc->fast_start_pfn) 1613 cc->fast_start_pfn = pfn; 1614 1615 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn); 1616 } 1617 1618 static inline unsigned long 1619 reinit_migrate_pfn(struct compact_control *cc) 1620 { 1621 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX) 1622 return cc->migrate_pfn; 1623 1624 cc->migrate_pfn = cc->fast_start_pfn; 1625 cc->fast_start_pfn = ULONG_MAX; 1626 1627 return cc->migrate_pfn; 1628 } 1629 1630 /* 1631 * Briefly search the free lists for a migration source that already has 1632 * some free pages to reduce the number of pages that need migration 1633 * before a pageblock is free. 1634 */ 1635 static unsigned long fast_find_migrateblock(struct compact_control *cc) 1636 { 1637 unsigned int limit = freelist_scan_limit(cc); 1638 unsigned int nr_scanned = 0; 1639 unsigned long distance; 1640 unsigned long pfn = cc->migrate_pfn; 1641 unsigned long high_pfn; 1642 int order; 1643 1644 /* Skip hints are relied on to avoid repeats on the fast search */ 1645 if (cc->ignore_skip_hint) 1646 return pfn; 1647 1648 /* 1649 * If the migrate_pfn is not at the start of a zone or the start 1650 * of a pageblock then assume this is a continuation of a previous 1651 * scan restarted due to COMPACT_CLUSTER_MAX. 1652 */ 1653 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn)) 1654 return pfn; 1655 1656 /* 1657 * For smaller orders, just linearly scan as the number of pages 1658 * to migrate should be relatively small and does not necessarily 1659 * justify freeing up a large block for a small allocation. 1660 */ 1661 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER) 1662 return pfn; 1663 1664 /* 1665 * Only allow kcompactd and direct requests for movable pages to 1666 * quickly clear out a MOVABLE pageblock for allocation. This 1667 * reduces the risk that a large movable pageblock is freed for 1668 * an unmovable/reclaimable small allocation. 1669 */ 1670 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE) 1671 return pfn; 1672 1673 /* 1674 * When starting the migration scanner, pick any pageblock within the 1675 * first half of the search space. Otherwise try and pick a pageblock 1676 * within the first eighth to reduce the chances that a migration 1677 * target later becomes a source. 1678 */ 1679 distance = (cc->free_pfn - cc->migrate_pfn) >> 1; 1680 if (cc->migrate_pfn != cc->zone->zone_start_pfn) 1681 distance >>= 2; 1682 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); 1683 1684 for (order = cc->order - 1; 1685 order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit; 1686 order--) { 1687 struct free_area *area = &cc->zone->free_area[order]; 1688 struct list_head *freelist; 1689 unsigned long flags; 1690 struct page *freepage; 1691 1692 if (!area->nr_free) 1693 continue; 1694 1695 spin_lock_irqsave(&cc->zone->lock, flags); 1696 freelist = &area->free_list[MIGRATE_MOVABLE]; 1697 list_for_each_entry(freepage, freelist, lru) { 1698 unsigned long free_pfn; 1699 1700 nr_scanned++; 1701 free_pfn = page_to_pfn(freepage); 1702 if (free_pfn < high_pfn) { 1703 /* 1704 * Avoid if skipped recently. Ideally it would 1705 * move to the tail but even safe iteration of 1706 * the list assumes an entry is deleted, not 1707 * reordered. 1708 */ 1709 if (get_pageblock_skip(freepage)) { 1710 if (list_is_last(freelist, &freepage->lru)) 1711 break; 1712 1713 continue; 1714 } 1715 1716 /* Reorder to so a future search skips recent pages */ 1717 move_freelist_tail(freelist, freepage); 1718 1719 update_fast_start_pfn(cc, free_pfn); 1720 pfn = pageblock_start_pfn(free_pfn); 1721 cc->fast_search_fail = 0; 1722 set_pageblock_skip(freepage); 1723 break; 1724 } 1725 1726 if (nr_scanned >= limit) { 1727 cc->fast_search_fail++; 1728 move_freelist_tail(freelist, freepage); 1729 break; 1730 } 1731 } 1732 spin_unlock_irqrestore(&cc->zone->lock, flags); 1733 } 1734 1735 cc->total_migrate_scanned += nr_scanned; 1736 1737 /* 1738 * If fast scanning failed then use a cached entry for a page block 1739 * that had free pages as the basis for starting a linear scan. 1740 */ 1741 if (pfn == cc->migrate_pfn) 1742 pfn = reinit_migrate_pfn(cc); 1743 1744 return pfn; 1745 } 1746 1747 /* 1748 * Isolate all pages that can be migrated from the first suitable block, 1749 * starting at the block pointed to by the migrate scanner pfn within 1750 * compact_control. 1751 */ 1752 static isolate_migrate_t isolate_migratepages(struct compact_control *cc) 1753 { 1754 unsigned long block_start_pfn; 1755 unsigned long block_end_pfn; 1756 unsigned long low_pfn; 1757 struct page *page; 1758 const isolate_mode_t isolate_mode = 1759 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) | 1760 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0); 1761 bool fast_find_block; 1762 1763 /* 1764 * Start at where we last stopped, or beginning of the zone as 1765 * initialized by compact_zone(). The first failure will use 1766 * the lowest PFN as the starting point for linear scanning. 1767 */ 1768 low_pfn = fast_find_migrateblock(cc); 1769 block_start_pfn = pageblock_start_pfn(low_pfn); 1770 if (block_start_pfn < cc->zone->zone_start_pfn) 1771 block_start_pfn = cc->zone->zone_start_pfn; 1772 1773 /* 1774 * fast_find_migrateblock marks a pageblock skipped so to avoid 1775 * the isolation_suitable check below, check whether the fast 1776 * search was successful. 1777 */ 1778 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail; 1779 1780 /* Only scan within a pageblock boundary */ 1781 block_end_pfn = pageblock_end_pfn(low_pfn); 1782 1783 /* 1784 * Iterate over whole pageblocks until we find the first suitable. 1785 * Do not cross the free scanner. 1786 */ 1787 for (; block_end_pfn <= cc->free_pfn; 1788 fast_find_block = false, 1789 low_pfn = block_end_pfn, 1790 block_start_pfn = block_end_pfn, 1791 block_end_pfn += pageblock_nr_pages) { 1792 1793 /* 1794 * This can potentially iterate a massively long zone with 1795 * many pageblocks unsuitable, so periodically check if we 1796 * need to schedule. 1797 */ 1798 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))) 1799 cond_resched(); 1800 1801 page = pageblock_pfn_to_page(block_start_pfn, 1802 block_end_pfn, cc->zone); 1803 if (!page) 1804 continue; 1805 1806 /* 1807 * If isolation recently failed, do not retry. Only check the 1808 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock 1809 * to be visited multiple times. Assume skip was checked 1810 * before making it "skip" so other compaction instances do 1811 * not scan the same block. 1812 */ 1813 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) && 1814 !fast_find_block && !isolation_suitable(cc, page)) 1815 continue; 1816 1817 /* 1818 * For async compaction, also only scan in MOVABLE blocks 1819 * without huge pages. Async compaction is optimistic to see 1820 * if the minimum amount of work satisfies the allocation. 1821 * The cached PFN is updated as it's possible that all 1822 * remaining blocks between source and target are unsuitable 1823 * and the compaction scanners fail to meet. 1824 */ 1825 if (!suitable_migration_source(cc, page)) { 1826 update_cached_migrate(cc, block_end_pfn); 1827 continue; 1828 } 1829 1830 /* Perform the isolation */ 1831 low_pfn = isolate_migratepages_block(cc, low_pfn, 1832 block_end_pfn, isolate_mode); 1833 1834 if (!low_pfn) 1835 return ISOLATE_ABORT; 1836 1837 /* 1838 * Either we isolated something and proceed with migration. Or 1839 * we failed and compact_zone should decide if we should 1840 * continue or not. 1841 */ 1842 break; 1843 } 1844 1845 /* Record where migration scanner will be restarted. */ 1846 cc->migrate_pfn = low_pfn; 1847 1848 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE; 1849 } 1850 1851 /* 1852 * order == -1 is expected when compacting via 1853 * /proc/sys/vm/compact_memory 1854 */ 1855 static inline bool is_via_compact_memory(int order) 1856 { 1857 return order == -1; 1858 } 1859 1860 static enum compact_result __compact_finished(struct compact_control *cc) 1861 { 1862 unsigned int order; 1863 const int migratetype = cc->migratetype; 1864 int ret; 1865 1866 /* Compaction run completes if the migrate and free scanner meet */ 1867 if (compact_scanners_met(cc)) { 1868 /* Let the next compaction start anew. */ 1869 reset_cached_positions(cc->zone); 1870 1871 /* 1872 * Mark that the PG_migrate_skip information should be cleared 1873 * by kswapd when it goes to sleep. kcompactd does not set the 1874 * flag itself as the decision to be clear should be directly 1875 * based on an allocation request. 1876 */ 1877 if (cc->direct_compaction) 1878 cc->zone->compact_blockskip_flush = true; 1879 1880 if (cc->whole_zone) 1881 return COMPACT_COMPLETE; 1882 else 1883 return COMPACT_PARTIAL_SKIPPED; 1884 } 1885 1886 if (is_via_compact_memory(cc->order)) 1887 return COMPACT_CONTINUE; 1888 1889 /* 1890 * Always finish scanning a pageblock to reduce the possibility of 1891 * fallbacks in the future. This is particularly important when 1892 * migration source is unmovable/reclaimable but it's not worth 1893 * special casing. 1894 */ 1895 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages)) 1896 return COMPACT_CONTINUE; 1897 1898 /* Direct compactor: Is a suitable page free? */ 1899 ret = COMPACT_NO_SUITABLE_PAGE; 1900 for (order = cc->order; order < MAX_ORDER; order++) { 1901 struct free_area *area = &cc->zone->free_area[order]; 1902 bool can_steal; 1903 1904 /* Job done if page is free of the right migratetype */ 1905 if (!free_area_empty(area, migratetype)) 1906 return COMPACT_SUCCESS; 1907 1908 #ifdef CONFIG_CMA 1909 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */ 1910 if (migratetype == MIGRATE_MOVABLE && 1911 !free_area_empty(area, MIGRATE_CMA)) 1912 return COMPACT_SUCCESS; 1913 #endif 1914 /* 1915 * Job done if allocation would steal freepages from 1916 * other migratetype buddy lists. 1917 */ 1918 if (find_suitable_fallback(area, order, migratetype, 1919 true, &can_steal) != -1) { 1920 1921 /* movable pages are OK in any pageblock */ 1922 if (migratetype == MIGRATE_MOVABLE) 1923 return COMPACT_SUCCESS; 1924 1925 /* 1926 * We are stealing for a non-movable allocation. Make 1927 * sure we finish compacting the current pageblock 1928 * first so it is as free as possible and we won't 1929 * have to steal another one soon. This only applies 1930 * to sync compaction, as async compaction operates 1931 * on pageblocks of the same migratetype. 1932 */ 1933 if (cc->mode == MIGRATE_ASYNC || 1934 IS_ALIGNED(cc->migrate_pfn, 1935 pageblock_nr_pages)) { 1936 return COMPACT_SUCCESS; 1937 } 1938 1939 ret = COMPACT_CONTINUE; 1940 break; 1941 } 1942 } 1943 1944 if (cc->contended || fatal_signal_pending(current)) 1945 ret = COMPACT_CONTENDED; 1946 1947 return ret; 1948 } 1949 1950 static enum compact_result compact_finished(struct compact_control *cc) 1951 { 1952 int ret; 1953 1954 ret = __compact_finished(cc); 1955 trace_mm_compaction_finished(cc->zone, cc->order, ret); 1956 if (ret == COMPACT_NO_SUITABLE_PAGE) 1957 ret = COMPACT_CONTINUE; 1958 1959 return ret; 1960 } 1961 1962 /* 1963 * compaction_suitable: Is this suitable to run compaction on this zone now? 1964 * Returns 1965 * COMPACT_SKIPPED - If there are too few free pages for compaction 1966 * COMPACT_SUCCESS - If the allocation would succeed without compaction 1967 * COMPACT_CONTINUE - If compaction should run now 1968 */ 1969 static enum compact_result __compaction_suitable(struct zone *zone, int order, 1970 unsigned int alloc_flags, 1971 int highest_zoneidx, 1972 unsigned long wmark_target) 1973 { 1974 unsigned long watermark; 1975 1976 if (is_via_compact_memory(order)) 1977 return COMPACT_CONTINUE; 1978 1979 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 1980 /* 1981 * If watermarks for high-order allocation are already met, there 1982 * should be no need for compaction at all. 1983 */ 1984 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx, 1985 alloc_flags)) 1986 return COMPACT_SUCCESS; 1987 1988 /* 1989 * Watermarks for order-0 must be met for compaction to be able to 1990 * isolate free pages for migration targets. This means that the 1991 * watermark and alloc_flags have to match, or be more pessimistic than 1992 * the check in __isolate_free_page(). We don't use the direct 1993 * compactor's alloc_flags, as they are not relevant for freepage 1994 * isolation. We however do use the direct compactor's highest_zoneidx 1995 * to skip over zones where lowmem reserves would prevent allocation 1996 * even if compaction succeeds. 1997 * For costly orders, we require low watermark instead of min for 1998 * compaction to proceed to increase its chances. 1999 * ALLOC_CMA is used, as pages in CMA pageblocks are considered 2000 * suitable migration targets 2001 */ 2002 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ? 2003 low_wmark_pages(zone) : min_wmark_pages(zone); 2004 watermark += compact_gap(order); 2005 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx, 2006 ALLOC_CMA, wmark_target)) 2007 return COMPACT_SKIPPED; 2008 2009 return COMPACT_CONTINUE; 2010 } 2011 2012 enum compact_result compaction_suitable(struct zone *zone, int order, 2013 unsigned int alloc_flags, 2014 int highest_zoneidx) 2015 { 2016 enum compact_result ret; 2017 int fragindex; 2018 2019 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx, 2020 zone_page_state(zone, NR_FREE_PAGES)); 2021 /* 2022 * fragmentation index determines if allocation failures are due to 2023 * low memory or external fragmentation 2024 * 2025 * index of -1000 would imply allocations might succeed depending on 2026 * watermarks, but we already failed the high-order watermark check 2027 * index towards 0 implies failure is due to lack of memory 2028 * index towards 1000 implies failure is due to fragmentation 2029 * 2030 * Only compact if a failure would be due to fragmentation. Also 2031 * ignore fragindex for non-costly orders where the alternative to 2032 * a successful reclaim/compaction is OOM. Fragindex and the 2033 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent 2034 * excessive compaction for costly orders, but it should not be at the 2035 * expense of system stability. 2036 */ 2037 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) { 2038 fragindex = fragmentation_index(zone, order); 2039 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) 2040 ret = COMPACT_NOT_SUITABLE_ZONE; 2041 } 2042 2043 trace_mm_compaction_suitable(zone, order, ret); 2044 if (ret == COMPACT_NOT_SUITABLE_ZONE) 2045 ret = COMPACT_SKIPPED; 2046 2047 return ret; 2048 } 2049 2050 bool compaction_zonelist_suitable(struct alloc_context *ac, int order, 2051 int alloc_flags) 2052 { 2053 struct zone *zone; 2054 struct zoneref *z; 2055 2056 /* 2057 * Make sure at least one zone would pass __compaction_suitable if we continue 2058 * retrying the reclaim. 2059 */ 2060 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2061 ac->highest_zoneidx, ac->nodemask) { 2062 unsigned long available; 2063 enum compact_result compact_result; 2064 2065 /* 2066 * Do not consider all the reclaimable memory because we do not 2067 * want to trash just for a single high order allocation which 2068 * is even not guaranteed to appear even if __compaction_suitable 2069 * is happy about the watermark check. 2070 */ 2071 available = zone_reclaimable_pages(zone) / order; 2072 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 2073 compact_result = __compaction_suitable(zone, order, alloc_flags, 2074 ac->highest_zoneidx, available); 2075 if (compact_result != COMPACT_SKIPPED) 2076 return true; 2077 } 2078 2079 return false; 2080 } 2081 2082 static enum compact_result 2083 compact_zone(struct compact_control *cc, struct capture_control *capc) 2084 { 2085 enum compact_result ret; 2086 unsigned long start_pfn = cc->zone->zone_start_pfn; 2087 unsigned long end_pfn = zone_end_pfn(cc->zone); 2088 unsigned long last_migrated_pfn; 2089 const bool sync = cc->mode != MIGRATE_ASYNC; 2090 bool update_cached; 2091 2092 /* 2093 * These counters track activities during zone compaction. Initialize 2094 * them before compacting a new zone. 2095 */ 2096 cc->total_migrate_scanned = 0; 2097 cc->total_free_scanned = 0; 2098 cc->nr_migratepages = 0; 2099 cc->nr_freepages = 0; 2100 INIT_LIST_HEAD(&cc->freepages); 2101 INIT_LIST_HEAD(&cc->migratepages); 2102 2103 cc->migratetype = gfp_migratetype(cc->gfp_mask); 2104 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags, 2105 cc->highest_zoneidx); 2106 /* Compaction is likely to fail */ 2107 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED) 2108 return ret; 2109 2110 /* huh, compaction_suitable is returning something unexpected */ 2111 VM_BUG_ON(ret != COMPACT_CONTINUE); 2112 2113 /* 2114 * Clear pageblock skip if there were failures recently and compaction 2115 * is about to be retried after being deferred. 2116 */ 2117 if (compaction_restarting(cc->zone, cc->order)) 2118 __reset_isolation_suitable(cc->zone); 2119 2120 /* 2121 * Setup to move all movable pages to the end of the zone. Used cached 2122 * information on where the scanners should start (unless we explicitly 2123 * want to compact the whole zone), but check that it is initialised 2124 * by ensuring the values are within zone boundaries. 2125 */ 2126 cc->fast_start_pfn = 0; 2127 if (cc->whole_zone) { 2128 cc->migrate_pfn = start_pfn; 2129 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2130 } else { 2131 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync]; 2132 cc->free_pfn = cc->zone->compact_cached_free_pfn; 2133 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) { 2134 cc->free_pfn = pageblock_start_pfn(end_pfn - 1); 2135 cc->zone->compact_cached_free_pfn = cc->free_pfn; 2136 } 2137 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) { 2138 cc->migrate_pfn = start_pfn; 2139 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn; 2140 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn; 2141 } 2142 2143 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn) 2144 cc->whole_zone = true; 2145 } 2146 2147 last_migrated_pfn = 0; 2148 2149 /* 2150 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on 2151 * the basis that some migrations will fail in ASYNC mode. However, 2152 * if the cached PFNs match and pageblocks are skipped due to having 2153 * no isolation candidates, then the sync state does not matter. 2154 * Until a pageblock with isolation candidates is found, keep the 2155 * cached PFNs in sync to avoid revisiting the same blocks. 2156 */ 2157 update_cached = !sync && 2158 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1]; 2159 2160 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, 2161 cc->free_pfn, end_pfn, sync); 2162 2163 migrate_prep_local(); 2164 2165 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) { 2166 int err; 2167 unsigned long start_pfn = cc->migrate_pfn; 2168 2169 /* 2170 * Avoid multiple rescans which can happen if a page cannot be 2171 * isolated (dirty/writeback in async mode) or if the migrated 2172 * pages are being allocated before the pageblock is cleared. 2173 * The first rescan will capture the entire pageblock for 2174 * migration. If it fails, it'll be marked skip and scanning 2175 * will proceed as normal. 2176 */ 2177 cc->rescan = false; 2178 if (pageblock_start_pfn(last_migrated_pfn) == 2179 pageblock_start_pfn(start_pfn)) { 2180 cc->rescan = true; 2181 } 2182 2183 switch (isolate_migratepages(cc)) { 2184 case ISOLATE_ABORT: 2185 ret = COMPACT_CONTENDED; 2186 putback_movable_pages(&cc->migratepages); 2187 cc->nr_migratepages = 0; 2188 goto out; 2189 case ISOLATE_NONE: 2190 if (update_cached) { 2191 cc->zone->compact_cached_migrate_pfn[1] = 2192 cc->zone->compact_cached_migrate_pfn[0]; 2193 } 2194 2195 /* 2196 * We haven't isolated and migrated anything, but 2197 * there might still be unflushed migrations from 2198 * previous cc->order aligned block. 2199 */ 2200 goto check_drain; 2201 case ISOLATE_SUCCESS: 2202 update_cached = false; 2203 last_migrated_pfn = start_pfn; 2204 ; 2205 } 2206 2207 err = migrate_pages(&cc->migratepages, compaction_alloc, 2208 compaction_free, (unsigned long)cc, cc->mode, 2209 MR_COMPACTION); 2210 2211 trace_mm_compaction_migratepages(cc->nr_migratepages, err, 2212 &cc->migratepages); 2213 2214 /* All pages were either migrated or will be released */ 2215 cc->nr_migratepages = 0; 2216 if (err) { 2217 putback_movable_pages(&cc->migratepages); 2218 /* 2219 * migrate_pages() may return -ENOMEM when scanners meet 2220 * and we want compact_finished() to detect it 2221 */ 2222 if (err == -ENOMEM && !compact_scanners_met(cc)) { 2223 ret = COMPACT_CONTENDED; 2224 goto out; 2225 } 2226 /* 2227 * We failed to migrate at least one page in the current 2228 * order-aligned block, so skip the rest of it. 2229 */ 2230 if (cc->direct_compaction && 2231 (cc->mode == MIGRATE_ASYNC)) { 2232 cc->migrate_pfn = block_end_pfn( 2233 cc->migrate_pfn - 1, cc->order); 2234 /* Draining pcplists is useless in this case */ 2235 last_migrated_pfn = 0; 2236 } 2237 } 2238 2239 check_drain: 2240 /* 2241 * Has the migration scanner moved away from the previous 2242 * cc->order aligned block where we migrated from? If yes, 2243 * flush the pages that were freed, so that they can merge and 2244 * compact_finished() can detect immediately if allocation 2245 * would succeed. 2246 */ 2247 if (cc->order > 0 && last_migrated_pfn) { 2248 unsigned long current_block_start = 2249 block_start_pfn(cc->migrate_pfn, cc->order); 2250 2251 if (last_migrated_pfn < current_block_start) { 2252 lru_add_drain_cpu_zone(cc->zone); 2253 /* No more flushing until we migrate again */ 2254 last_migrated_pfn = 0; 2255 } 2256 } 2257 2258 /* Stop if a page has been captured */ 2259 if (capc && capc->page) { 2260 ret = COMPACT_SUCCESS; 2261 break; 2262 } 2263 } 2264 2265 out: 2266 /* 2267 * Release free pages and update where the free scanner should restart, 2268 * so we don't leave any returned pages behind in the next attempt. 2269 */ 2270 if (cc->nr_freepages > 0) { 2271 unsigned long free_pfn = release_freepages(&cc->freepages); 2272 2273 cc->nr_freepages = 0; 2274 VM_BUG_ON(free_pfn == 0); 2275 /* The cached pfn is always the first in a pageblock */ 2276 free_pfn = pageblock_start_pfn(free_pfn); 2277 /* 2278 * Only go back, not forward. The cached pfn might have been 2279 * already reset to zone end in compact_finished() 2280 */ 2281 if (free_pfn > cc->zone->compact_cached_free_pfn) 2282 cc->zone->compact_cached_free_pfn = free_pfn; 2283 } 2284 2285 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned); 2286 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned); 2287 2288 trace_mm_compaction_end(start_pfn, cc->migrate_pfn, 2289 cc->free_pfn, end_pfn, sync, ret); 2290 2291 return ret; 2292 } 2293 2294 static enum compact_result compact_zone_order(struct zone *zone, int order, 2295 gfp_t gfp_mask, enum compact_priority prio, 2296 unsigned int alloc_flags, int highest_zoneidx, 2297 struct page **capture) 2298 { 2299 enum compact_result ret; 2300 struct compact_control cc = { 2301 .order = order, 2302 .search_order = order, 2303 .gfp_mask = gfp_mask, 2304 .zone = zone, 2305 .mode = (prio == COMPACT_PRIO_ASYNC) ? 2306 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT, 2307 .alloc_flags = alloc_flags, 2308 .highest_zoneidx = highest_zoneidx, 2309 .direct_compaction = true, 2310 .whole_zone = (prio == MIN_COMPACT_PRIORITY), 2311 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY), 2312 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY) 2313 }; 2314 struct capture_control capc = { 2315 .cc = &cc, 2316 .page = NULL, 2317 }; 2318 2319 /* 2320 * Make sure the structs are really initialized before we expose the 2321 * capture control, in case we are interrupted and the interrupt handler 2322 * frees a page. 2323 */ 2324 barrier(); 2325 WRITE_ONCE(current->capture_control, &capc); 2326 2327 ret = compact_zone(&cc, &capc); 2328 2329 VM_BUG_ON(!list_empty(&cc.freepages)); 2330 VM_BUG_ON(!list_empty(&cc.migratepages)); 2331 2332 /* 2333 * Make sure we hide capture control first before we read the captured 2334 * page pointer, otherwise an interrupt could free and capture a page 2335 * and we would leak it. 2336 */ 2337 WRITE_ONCE(current->capture_control, NULL); 2338 *capture = READ_ONCE(capc.page); 2339 2340 return ret; 2341 } 2342 2343 int sysctl_extfrag_threshold = 500; 2344 2345 /** 2346 * try_to_compact_pages - Direct compact to satisfy a high-order allocation 2347 * @gfp_mask: The GFP mask of the current allocation 2348 * @order: The order of the current allocation 2349 * @alloc_flags: The allocation flags of the current allocation 2350 * @ac: The context of current allocation 2351 * @prio: Determines how hard direct compaction should try to succeed 2352 * @capture: Pointer to free page created by compaction will be stored here 2353 * 2354 * This is the main entry point for direct page compaction. 2355 */ 2356 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order, 2357 unsigned int alloc_flags, const struct alloc_context *ac, 2358 enum compact_priority prio, struct page **capture) 2359 { 2360 int may_perform_io = gfp_mask & __GFP_IO; 2361 struct zoneref *z; 2362 struct zone *zone; 2363 enum compact_result rc = COMPACT_SKIPPED; 2364 2365 /* 2366 * Check if the GFP flags allow compaction - GFP_NOIO is really 2367 * tricky context because the migration might require IO 2368 */ 2369 if (!may_perform_io) 2370 return COMPACT_SKIPPED; 2371 2372 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio); 2373 2374 /* Compact each zone in the list */ 2375 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2376 ac->highest_zoneidx, ac->nodemask) { 2377 enum compact_result status; 2378 2379 if (prio > MIN_COMPACT_PRIORITY 2380 && compaction_deferred(zone, order)) { 2381 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc); 2382 continue; 2383 } 2384 2385 status = compact_zone_order(zone, order, gfp_mask, prio, 2386 alloc_flags, ac->highest_zoneidx, capture); 2387 rc = max(status, rc); 2388 2389 /* The allocation should succeed, stop compacting */ 2390 if (status == COMPACT_SUCCESS) { 2391 /* 2392 * We think the allocation will succeed in this zone, 2393 * but it is not certain, hence the false. The caller 2394 * will repeat this with true if allocation indeed 2395 * succeeds in this zone. 2396 */ 2397 compaction_defer_reset(zone, order, false); 2398 2399 break; 2400 } 2401 2402 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE || 2403 status == COMPACT_PARTIAL_SKIPPED)) 2404 /* 2405 * We think that allocation won't succeed in this zone 2406 * so we defer compaction there. If it ends up 2407 * succeeding after all, it will be reset. 2408 */ 2409 defer_compaction(zone, order); 2410 2411 /* 2412 * We might have stopped compacting due to need_resched() in 2413 * async compaction, or due to a fatal signal detected. In that 2414 * case do not try further zones 2415 */ 2416 if ((prio == COMPACT_PRIO_ASYNC && need_resched()) 2417 || fatal_signal_pending(current)) 2418 break; 2419 } 2420 2421 return rc; 2422 } 2423 2424 2425 /* Compact all zones within a node */ 2426 static void compact_node(int nid) 2427 { 2428 pg_data_t *pgdat = NODE_DATA(nid); 2429 int zoneid; 2430 struct zone *zone; 2431 struct compact_control cc = { 2432 .order = -1, 2433 .mode = MIGRATE_SYNC, 2434 .ignore_skip_hint = true, 2435 .whole_zone = true, 2436 .gfp_mask = GFP_KERNEL, 2437 }; 2438 2439 2440 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 2441 2442 zone = &pgdat->node_zones[zoneid]; 2443 if (!populated_zone(zone)) 2444 continue; 2445 2446 cc.zone = zone; 2447 2448 compact_zone(&cc, NULL); 2449 2450 VM_BUG_ON(!list_empty(&cc.freepages)); 2451 VM_BUG_ON(!list_empty(&cc.migratepages)); 2452 } 2453 } 2454 2455 /* Compact all nodes in the system */ 2456 static void compact_nodes(void) 2457 { 2458 int nid; 2459 2460 /* Flush pending updates to the LRU lists */ 2461 lru_add_drain_all(); 2462 2463 for_each_online_node(nid) 2464 compact_node(nid); 2465 } 2466 2467 /* The written value is actually unused, all memory is compacted */ 2468 int sysctl_compact_memory; 2469 2470 /* 2471 * This is the entry point for compacting all nodes via 2472 * /proc/sys/vm/compact_memory 2473 */ 2474 int sysctl_compaction_handler(struct ctl_table *table, int write, 2475 void *buffer, size_t *length, loff_t *ppos) 2476 { 2477 if (write) 2478 compact_nodes(); 2479 2480 return 0; 2481 } 2482 2483 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) 2484 static ssize_t sysfs_compact_node(struct device *dev, 2485 struct device_attribute *attr, 2486 const char *buf, size_t count) 2487 { 2488 int nid = dev->id; 2489 2490 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { 2491 /* Flush pending updates to the LRU lists */ 2492 lru_add_drain_all(); 2493 2494 compact_node(nid); 2495 } 2496 2497 return count; 2498 } 2499 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node); 2500 2501 int compaction_register_node(struct node *node) 2502 { 2503 return device_create_file(&node->dev, &dev_attr_compact); 2504 } 2505 2506 void compaction_unregister_node(struct node *node) 2507 { 2508 return device_remove_file(&node->dev, &dev_attr_compact); 2509 } 2510 #endif /* CONFIG_SYSFS && CONFIG_NUMA */ 2511 2512 static inline bool kcompactd_work_requested(pg_data_t *pgdat) 2513 { 2514 return pgdat->kcompactd_max_order > 0 || kthread_should_stop(); 2515 } 2516 2517 static bool kcompactd_node_suitable(pg_data_t *pgdat) 2518 { 2519 int zoneid; 2520 struct zone *zone; 2521 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx; 2522 2523 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) { 2524 zone = &pgdat->node_zones[zoneid]; 2525 2526 if (!populated_zone(zone)) 2527 continue; 2528 2529 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0, 2530 highest_zoneidx) == COMPACT_CONTINUE) 2531 return true; 2532 } 2533 2534 return false; 2535 } 2536 2537 static void kcompactd_do_work(pg_data_t *pgdat) 2538 { 2539 /* 2540 * With no special task, compact all zones so that a page of requested 2541 * order is allocatable. 2542 */ 2543 int zoneid; 2544 struct zone *zone; 2545 struct compact_control cc = { 2546 .order = pgdat->kcompactd_max_order, 2547 .search_order = pgdat->kcompactd_max_order, 2548 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx, 2549 .mode = MIGRATE_SYNC_LIGHT, 2550 .ignore_skip_hint = false, 2551 .gfp_mask = GFP_KERNEL, 2552 }; 2553 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order, 2554 cc.highest_zoneidx); 2555 count_compact_event(KCOMPACTD_WAKE); 2556 2557 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) { 2558 int status; 2559 2560 zone = &pgdat->node_zones[zoneid]; 2561 if (!populated_zone(zone)) 2562 continue; 2563 2564 if (compaction_deferred(zone, cc.order)) 2565 continue; 2566 2567 if (compaction_suitable(zone, cc.order, 0, zoneid) != 2568 COMPACT_CONTINUE) 2569 continue; 2570 2571 if (kthread_should_stop()) 2572 return; 2573 2574 cc.zone = zone; 2575 status = compact_zone(&cc, NULL); 2576 2577 if (status == COMPACT_SUCCESS) { 2578 compaction_defer_reset(zone, cc.order, false); 2579 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) { 2580 /* 2581 * Buddy pages may become stranded on pcps that could 2582 * otherwise coalesce on the zone's free area for 2583 * order >= cc.order. This is ratelimited by the 2584 * upcoming deferral. 2585 */ 2586 drain_all_pages(zone); 2587 2588 /* 2589 * We use sync migration mode here, so we defer like 2590 * sync direct compaction does. 2591 */ 2592 defer_compaction(zone, cc.order); 2593 } 2594 2595 count_compact_events(KCOMPACTD_MIGRATE_SCANNED, 2596 cc.total_migrate_scanned); 2597 count_compact_events(KCOMPACTD_FREE_SCANNED, 2598 cc.total_free_scanned); 2599 2600 VM_BUG_ON(!list_empty(&cc.freepages)); 2601 VM_BUG_ON(!list_empty(&cc.migratepages)); 2602 } 2603 2604 /* 2605 * Regardless of success, we are done until woken up next. But remember 2606 * the requested order/highest_zoneidx in case it was higher/tighter 2607 * than our current ones 2608 */ 2609 if (pgdat->kcompactd_max_order <= cc.order) 2610 pgdat->kcompactd_max_order = 0; 2611 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx) 2612 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2613 } 2614 2615 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx) 2616 { 2617 if (!order) 2618 return; 2619 2620 if (pgdat->kcompactd_max_order < order) 2621 pgdat->kcompactd_max_order = order; 2622 2623 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx) 2624 pgdat->kcompactd_highest_zoneidx = highest_zoneidx; 2625 2626 /* 2627 * Pairs with implicit barrier in wait_event_freezable() 2628 * such that wakeups are not missed. 2629 */ 2630 if (!wq_has_sleeper(&pgdat->kcompactd_wait)) 2631 return; 2632 2633 if (!kcompactd_node_suitable(pgdat)) 2634 return; 2635 2636 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order, 2637 highest_zoneidx); 2638 wake_up_interruptible(&pgdat->kcompactd_wait); 2639 } 2640 2641 /* 2642 * The background compaction daemon, started as a kernel thread 2643 * from the init process. 2644 */ 2645 static int kcompactd(void *p) 2646 { 2647 pg_data_t *pgdat = (pg_data_t*)p; 2648 struct task_struct *tsk = current; 2649 2650 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2651 2652 if (!cpumask_empty(cpumask)) 2653 set_cpus_allowed_ptr(tsk, cpumask); 2654 2655 set_freezable(); 2656 2657 pgdat->kcompactd_max_order = 0; 2658 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1; 2659 2660 while (!kthread_should_stop()) { 2661 unsigned long pflags; 2662 2663 trace_mm_compaction_kcompactd_sleep(pgdat->node_id); 2664 wait_event_freezable(pgdat->kcompactd_wait, 2665 kcompactd_work_requested(pgdat)); 2666 2667 psi_memstall_enter(&pflags); 2668 kcompactd_do_work(pgdat); 2669 psi_memstall_leave(&pflags); 2670 } 2671 2672 return 0; 2673 } 2674 2675 /* 2676 * This kcompactd start function will be called by init and node-hot-add. 2677 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added. 2678 */ 2679 int kcompactd_run(int nid) 2680 { 2681 pg_data_t *pgdat = NODE_DATA(nid); 2682 int ret = 0; 2683 2684 if (pgdat->kcompactd) 2685 return 0; 2686 2687 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid); 2688 if (IS_ERR(pgdat->kcompactd)) { 2689 pr_err("Failed to start kcompactd on node %d\n", nid); 2690 ret = PTR_ERR(pgdat->kcompactd); 2691 pgdat->kcompactd = NULL; 2692 } 2693 return ret; 2694 } 2695 2696 /* 2697 * Called by memory hotplug when all memory in a node is offlined. Caller must 2698 * hold mem_hotplug_begin/end(). 2699 */ 2700 void kcompactd_stop(int nid) 2701 { 2702 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd; 2703 2704 if (kcompactd) { 2705 kthread_stop(kcompactd); 2706 NODE_DATA(nid)->kcompactd = NULL; 2707 } 2708 } 2709 2710 /* 2711 * It's optimal to keep kcompactd on the same CPUs as their memory, but 2712 * not required for correctness. So if the last cpu in a node goes 2713 * away, we get changed to run anywhere: as the first one comes back, 2714 * restore their cpu bindings. 2715 */ 2716 static int kcompactd_cpu_online(unsigned int cpu) 2717 { 2718 int nid; 2719 2720 for_each_node_state(nid, N_MEMORY) { 2721 pg_data_t *pgdat = NODE_DATA(nid); 2722 const struct cpumask *mask; 2723 2724 mask = cpumask_of_node(pgdat->node_id); 2725 2726 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 2727 /* One of our CPUs online: restore mask */ 2728 set_cpus_allowed_ptr(pgdat->kcompactd, mask); 2729 } 2730 return 0; 2731 } 2732 2733 static int __init kcompactd_init(void) 2734 { 2735 int nid; 2736 int ret; 2737 2738 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 2739 "mm/compaction:online", 2740 kcompactd_cpu_online, NULL); 2741 if (ret < 0) { 2742 pr_err("kcompactd: failed to register hotplug callbacks.\n"); 2743 return ret; 2744 } 2745 2746 for_each_node_state(nid, N_MEMORY) 2747 kcompactd_run(nid); 2748 return 0; 2749 } 2750 subsys_initcall(kcompactd_init) 2751 2752 #endif /* CONFIG_COMPACTION */ 2753