1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 /*
30 * Fragmentation score check interval for proactive compaction purposes.
31 */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
33
count_compact_event(enum vm_event_item item)34 static inline void count_compact_event(enum vm_event_item item)
35 {
36 count_vm_event(item);
37 }
38
count_compact_events(enum vm_event_item item,long delta)39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41 count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
55
56 /*
57 * Page order with-respect-to which proactive compaction
58 * calculates external fragmentation, which is used as
59 * the "fragmentation score" of a node/zone.
60 */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
67 #endif
68
release_freepages(struct list_head * freelist)69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71 struct page *page, *next;
72 unsigned long high_pfn = 0;
73
74 list_for_each_entry_safe(page, next, freelist, lru) {
75 unsigned long pfn = page_to_pfn(page);
76 list_del(&page->lru);
77 __free_page(page);
78 if (pfn > high_pfn)
79 high_pfn = pfn;
80 }
81
82 return high_pfn;
83 }
84
split_map_pages(struct list_head * list)85 static void split_map_pages(struct list_head *list)
86 {
87 unsigned int i, order, nr_pages;
88 struct page *page, *next;
89 LIST_HEAD(tmp_list);
90
91 list_for_each_entry_safe(page, next, list, lru) {
92 list_del(&page->lru);
93
94 order = page_private(page);
95 nr_pages = 1 << order;
96
97 post_alloc_hook(page, order, __GFP_MOVABLE);
98 if (order)
99 split_page(page, order);
100
101 for (i = 0; i < nr_pages; i++) {
102 list_add(&page->lru, &tmp_list);
103 page++;
104 }
105 }
106
107 list_splice(&tmp_list, list);
108 }
109
110 #ifdef CONFIG_COMPACTION
PageMovable(struct page * page)111 bool PageMovable(struct page *page)
112 {
113 const struct movable_operations *mops;
114
115 VM_BUG_ON_PAGE(!PageLocked(page), page);
116 if (!__PageMovable(page))
117 return false;
118
119 mops = page_movable_ops(page);
120 if (mops)
121 return true;
122
123 return false;
124 }
125
__SetPageMovable(struct page * page,const struct movable_operations * mops)126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127 {
128 VM_BUG_ON_PAGE(!PageLocked(page), page);
129 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__SetPageMovable);
133
__ClearPageMovable(struct page * page)134 void __ClearPageMovable(struct page *page)
135 {
136 VM_BUG_ON_PAGE(!PageMovable(page), page);
137 /*
138 * This page still has the type of a movable page, but it's
139 * actually not movable any more.
140 */
141 page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142 }
143 EXPORT_SYMBOL(__ClearPageMovable);
144
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
147
148 /*
149 * Compaction is deferred when compaction fails to result in a page
150 * allocation success. 1 << compact_defer_shift, compactions are skipped up
151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152 */
defer_compaction(struct zone * zone,int order)153 static void defer_compaction(struct zone *zone, int order)
154 {
155 zone->compact_considered = 0;
156 zone->compact_defer_shift++;
157
158 if (order < zone->compact_order_failed)
159 zone->compact_order_failed = order;
160
161 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163
164 trace_mm_compaction_defer_compaction(zone, order);
165 }
166
167 /* Returns true if compaction should be skipped this time */
compaction_deferred(struct zone * zone,int order)168 static bool compaction_deferred(struct zone *zone, int order)
169 {
170 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171
172 if (order < zone->compact_order_failed)
173 return false;
174
175 /* Avoid possible overflow */
176 if (++zone->compact_considered >= defer_limit) {
177 zone->compact_considered = defer_limit;
178 return false;
179 }
180
181 trace_mm_compaction_deferred(zone, order);
182
183 return true;
184 }
185
186 /*
187 * Update defer tracking counters after successful compaction of given order,
188 * which means an allocation either succeeded (alloc_success == true) or is
189 * expected to succeed.
190 */
compaction_defer_reset(struct zone * zone,int order,bool alloc_success)191 void compaction_defer_reset(struct zone *zone, int order,
192 bool alloc_success)
193 {
194 if (alloc_success) {
195 zone->compact_considered = 0;
196 zone->compact_defer_shift = 0;
197 }
198 if (order >= zone->compact_order_failed)
199 zone->compact_order_failed = order + 1;
200
201 trace_mm_compaction_defer_reset(zone, order);
202 }
203
204 /* Returns true if restarting compaction after many failures */
compaction_restarting(struct zone * zone,int order)205 static bool compaction_restarting(struct zone *zone, int order)
206 {
207 if (order < zone->compact_order_failed)
208 return false;
209
210 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211 zone->compact_considered >= 1UL << zone->compact_defer_shift;
212 }
213
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
isolation_suitable(struct compact_control * cc,struct page * page)215 static inline bool isolation_suitable(struct compact_control *cc,
216 struct page *page)
217 {
218 if (cc->ignore_skip_hint)
219 return true;
220
221 return !get_pageblock_skip(page);
222 }
223
reset_cached_positions(struct zone * zone)224 static void reset_cached_positions(struct zone *zone)
225 {
226 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228 zone->compact_cached_free_pfn =
229 pageblock_start_pfn(zone_end_pfn(zone) - 1);
230 }
231
232 #ifdef CONFIG_SPARSEMEM
233 /*
234 * If the PFN falls into an offline section, return the start PFN of the
235 * next online section. If the PFN falls into an online section or if
236 * there is no next online section, return 0.
237 */
skip_offline_sections(unsigned long start_pfn)238 static unsigned long skip_offline_sections(unsigned long start_pfn)
239 {
240 unsigned long start_nr = pfn_to_section_nr(start_pfn);
241
242 if (online_section_nr(start_nr))
243 return 0;
244
245 while (++start_nr <= __highest_present_section_nr) {
246 if (online_section_nr(start_nr))
247 return section_nr_to_pfn(start_nr);
248 }
249
250 return 0;
251 }
252
253 /*
254 * If the PFN falls into an offline section, return the end PFN of the
255 * next online section in reverse. If the PFN falls into an online section
256 * or if there is no next online section in reverse, return 0.
257 */
skip_offline_sections_reverse(unsigned long start_pfn)258 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
259 {
260 unsigned long start_nr = pfn_to_section_nr(start_pfn);
261
262 if (!start_nr || online_section_nr(start_nr))
263 return 0;
264
265 while (start_nr-- > 0) {
266 if (online_section_nr(start_nr))
267 return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
268 }
269
270 return 0;
271 }
272 #else
skip_offline_sections(unsigned long start_pfn)273 static unsigned long skip_offline_sections(unsigned long start_pfn)
274 {
275 return 0;
276 }
277
skip_offline_sections_reverse(unsigned long start_pfn)278 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
279 {
280 return 0;
281 }
282 #endif
283
284 /*
285 * Compound pages of >= pageblock_order should consistently be skipped until
286 * released. It is always pointless to compact pages of such order (if they are
287 * migratable), and the pageblocks they occupy cannot contain any free pages.
288 */
pageblock_skip_persistent(struct page * page)289 static bool pageblock_skip_persistent(struct page *page)
290 {
291 if (!PageCompound(page))
292 return false;
293
294 page = compound_head(page);
295
296 if (compound_order(page) >= pageblock_order)
297 return true;
298
299 return false;
300 }
301
302 static bool
__reset_isolation_pfn(struct zone * zone,unsigned long pfn,bool check_source,bool check_target)303 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
304 bool check_target)
305 {
306 struct page *page = pfn_to_online_page(pfn);
307 struct page *block_page;
308 struct page *end_page;
309 unsigned long block_pfn;
310
311 if (!page)
312 return false;
313 if (zone != page_zone(page))
314 return false;
315 if (pageblock_skip_persistent(page))
316 return false;
317
318 /*
319 * If skip is already cleared do no further checking once the
320 * restart points have been set.
321 */
322 if (check_source && check_target && !get_pageblock_skip(page))
323 return true;
324
325 /*
326 * If clearing skip for the target scanner, do not select a
327 * non-movable pageblock as the starting point.
328 */
329 if (!check_source && check_target &&
330 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
331 return false;
332
333 /* Ensure the start of the pageblock or zone is online and valid */
334 block_pfn = pageblock_start_pfn(pfn);
335 block_pfn = max(block_pfn, zone->zone_start_pfn);
336 block_page = pfn_to_online_page(block_pfn);
337 if (block_page) {
338 page = block_page;
339 pfn = block_pfn;
340 }
341
342 /* Ensure the end of the pageblock or zone is online and valid */
343 block_pfn = pageblock_end_pfn(pfn) - 1;
344 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
345 end_page = pfn_to_online_page(block_pfn);
346 if (!end_page)
347 return false;
348
349 /*
350 * Only clear the hint if a sample indicates there is either a
351 * free page or an LRU page in the block. One or other condition
352 * is necessary for the block to be a migration source/target.
353 */
354 do {
355 if (check_source && PageLRU(page)) {
356 clear_pageblock_skip(page);
357 return true;
358 }
359
360 if (check_target && PageBuddy(page)) {
361 clear_pageblock_skip(page);
362 return true;
363 }
364
365 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
366 } while (page <= end_page);
367
368 return false;
369 }
370
371 /*
372 * This function is called to clear all cached information on pageblocks that
373 * should be skipped for page isolation when the migrate and free page scanner
374 * meet.
375 */
__reset_isolation_suitable(struct zone * zone)376 static void __reset_isolation_suitable(struct zone *zone)
377 {
378 unsigned long migrate_pfn = zone->zone_start_pfn;
379 unsigned long free_pfn = zone_end_pfn(zone) - 1;
380 unsigned long reset_migrate = free_pfn;
381 unsigned long reset_free = migrate_pfn;
382 bool source_set = false;
383 bool free_set = false;
384
385 if (!zone->compact_blockskip_flush)
386 return;
387
388 zone->compact_blockskip_flush = false;
389
390 /*
391 * Walk the zone and update pageblock skip information. Source looks
392 * for PageLRU while target looks for PageBuddy. When the scanner
393 * is found, both PageBuddy and PageLRU are checked as the pageblock
394 * is suitable as both source and target.
395 */
396 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
397 free_pfn -= pageblock_nr_pages) {
398 cond_resched();
399
400 /* Update the migrate PFN */
401 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
402 migrate_pfn < reset_migrate) {
403 source_set = true;
404 reset_migrate = migrate_pfn;
405 zone->compact_init_migrate_pfn = reset_migrate;
406 zone->compact_cached_migrate_pfn[0] = reset_migrate;
407 zone->compact_cached_migrate_pfn[1] = reset_migrate;
408 }
409
410 /* Update the free PFN */
411 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
412 free_pfn > reset_free) {
413 free_set = true;
414 reset_free = free_pfn;
415 zone->compact_init_free_pfn = reset_free;
416 zone->compact_cached_free_pfn = reset_free;
417 }
418 }
419
420 /* Leave no distance if no suitable block was reset */
421 if (reset_migrate >= reset_free) {
422 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
423 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
424 zone->compact_cached_free_pfn = free_pfn;
425 }
426 }
427
reset_isolation_suitable(pg_data_t * pgdat)428 void reset_isolation_suitable(pg_data_t *pgdat)
429 {
430 int zoneid;
431
432 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
433 struct zone *zone = &pgdat->node_zones[zoneid];
434 if (!populated_zone(zone))
435 continue;
436
437 /* Only flush if a full compaction finished recently */
438 if (zone->compact_blockskip_flush)
439 __reset_isolation_suitable(zone);
440 }
441 }
442
443 /*
444 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
445 * locks are not required for read/writers. Returns true if it was already set.
446 */
test_and_set_skip(struct compact_control * cc,struct page * page)447 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
448 {
449 bool skip;
450
451 /* Do not update if skip hint is being ignored */
452 if (cc->ignore_skip_hint)
453 return false;
454
455 skip = get_pageblock_skip(page);
456 if (!skip && !cc->no_set_skip_hint)
457 set_pageblock_skip(page);
458
459 return skip;
460 }
461
update_cached_migrate(struct compact_control * cc,unsigned long pfn)462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
463 {
464 struct zone *zone = cc->zone;
465
466 /* Set for isolation rather than compaction */
467 if (cc->no_set_skip_hint)
468 return;
469
470 pfn = pageblock_end_pfn(pfn);
471
472 /* Update where async and sync compaction should restart */
473 if (pfn > zone->compact_cached_migrate_pfn[0])
474 zone->compact_cached_migrate_pfn[0] = pfn;
475 if (cc->mode != MIGRATE_ASYNC &&
476 pfn > zone->compact_cached_migrate_pfn[1])
477 zone->compact_cached_migrate_pfn[1] = pfn;
478 }
479
480 /*
481 * If no pages were isolated then mark this pageblock to be skipped in the
482 * future. The information is later cleared by __reset_isolation_suitable().
483 */
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)484 static void update_pageblock_skip(struct compact_control *cc,
485 struct page *page, unsigned long pfn)
486 {
487 struct zone *zone = cc->zone;
488
489 if (cc->no_set_skip_hint)
490 return;
491
492 set_pageblock_skip(page);
493
494 if (pfn < zone->compact_cached_free_pfn)
495 zone->compact_cached_free_pfn = pfn;
496 }
497 #else
isolation_suitable(struct compact_control * cc,struct page * page)498 static inline bool isolation_suitable(struct compact_control *cc,
499 struct page *page)
500 {
501 return true;
502 }
503
pageblock_skip_persistent(struct page * page)504 static inline bool pageblock_skip_persistent(struct page *page)
505 {
506 return false;
507 }
508
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)509 static inline void update_pageblock_skip(struct compact_control *cc,
510 struct page *page, unsigned long pfn)
511 {
512 }
513
update_cached_migrate(struct compact_control * cc,unsigned long pfn)514 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
515 {
516 }
517
test_and_set_skip(struct compact_control * cc,struct page * page)518 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
519 {
520 return false;
521 }
522 #endif /* CONFIG_COMPACTION */
523
524 /*
525 * Compaction requires the taking of some coarse locks that are potentially
526 * very heavily contended. For async compaction, trylock and record if the
527 * lock is contended. The lock will still be acquired but compaction will
528 * abort when the current block is finished regardless of success rate.
529 * Sync compaction acquires the lock.
530 *
531 * Always returns true which makes it easier to track lock state in callers.
532 */
compact_lock_irqsave(spinlock_t * lock,unsigned long * flags,struct compact_control * cc)533 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
534 struct compact_control *cc)
535 __acquires(lock)
536 {
537 /* Track if the lock is contended in async mode */
538 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
539 if (spin_trylock_irqsave(lock, *flags))
540 return true;
541
542 cc->contended = true;
543 }
544
545 spin_lock_irqsave(lock, *flags);
546 return true;
547 }
548
549 /*
550 * Compaction requires the taking of some coarse locks that are potentially
551 * very heavily contended. The lock should be periodically unlocked to avoid
552 * having disabled IRQs for a long time, even when there is nobody waiting on
553 * the lock. It might also be that allowing the IRQs will result in
554 * need_resched() becoming true. If scheduling is needed, compaction schedules.
555 * Either compaction type will also abort if a fatal signal is pending.
556 * In either case if the lock was locked, it is dropped and not regained.
557 *
558 * Returns true if compaction should abort due to fatal signal pending.
559 * Returns false when compaction can continue.
560 */
compact_unlock_should_abort(spinlock_t * lock,unsigned long flags,bool * locked,struct compact_control * cc)561 static bool compact_unlock_should_abort(spinlock_t *lock,
562 unsigned long flags, bool *locked, struct compact_control *cc)
563 {
564 if (*locked) {
565 spin_unlock_irqrestore(lock, flags);
566 *locked = false;
567 }
568
569 if (fatal_signal_pending(current)) {
570 cc->contended = true;
571 return true;
572 }
573
574 cond_resched();
575
576 return false;
577 }
578
579 /*
580 * Isolate free pages onto a private freelist. If @strict is true, will abort
581 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
582 * (even though it may still end up isolating some pages).
583 */
isolate_freepages_block(struct compact_control * cc,unsigned long * start_pfn,unsigned long end_pfn,struct list_head * freelist,unsigned int stride,bool strict)584 static unsigned long isolate_freepages_block(struct compact_control *cc,
585 unsigned long *start_pfn,
586 unsigned long end_pfn,
587 struct list_head *freelist,
588 unsigned int stride,
589 bool strict)
590 {
591 int nr_scanned = 0, total_isolated = 0;
592 struct page *page;
593 unsigned long flags = 0;
594 bool locked = false;
595 unsigned long blockpfn = *start_pfn;
596 unsigned int order;
597
598 /* Strict mode is for isolation, speed is secondary */
599 if (strict)
600 stride = 1;
601
602 page = pfn_to_page(blockpfn);
603
604 /* Isolate free pages. */
605 for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
606 int isolated;
607
608 /*
609 * Periodically drop the lock (if held) regardless of its
610 * contention, to give chance to IRQs. Abort if fatal signal
611 * pending.
612 */
613 if (!(blockpfn % COMPACT_CLUSTER_MAX)
614 && compact_unlock_should_abort(&cc->zone->lock, flags,
615 &locked, cc))
616 break;
617
618 nr_scanned++;
619
620 /*
621 * For compound pages such as THP and hugetlbfs, we can save
622 * potentially a lot of iterations if we skip them at once.
623 * The check is racy, but we can consider only valid values
624 * and the only danger is skipping too much.
625 */
626 if (PageCompound(page)) {
627 const unsigned int order = compound_order(page);
628
629 if (likely(order <= MAX_ORDER)) {
630 blockpfn += (1UL << order) - 1;
631 page += (1UL << order) - 1;
632 nr_scanned += (1UL << order) - 1;
633 }
634 goto isolate_fail;
635 }
636
637 if (!PageBuddy(page))
638 goto isolate_fail;
639
640 /* If we already hold the lock, we can skip some rechecking. */
641 if (!locked) {
642 locked = compact_lock_irqsave(&cc->zone->lock,
643 &flags, cc);
644
645 /* Recheck this is a buddy page under lock */
646 if (!PageBuddy(page))
647 goto isolate_fail;
648 }
649
650 /* Found a free page, will break it into order-0 pages */
651 order = buddy_order(page);
652 isolated = __isolate_free_page(page, order);
653 if (!isolated)
654 break;
655 set_page_private(page, order);
656
657 nr_scanned += isolated - 1;
658 total_isolated += isolated;
659 cc->nr_freepages += isolated;
660 list_add_tail(&page->lru, freelist);
661
662 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
663 blockpfn += isolated;
664 break;
665 }
666 /* Advance to the end of split page */
667 blockpfn += isolated - 1;
668 page += isolated - 1;
669 continue;
670
671 isolate_fail:
672 if (strict)
673 break;
674
675 }
676
677 if (locked)
678 spin_unlock_irqrestore(&cc->zone->lock, flags);
679
680 /*
681 * There is a tiny chance that we have read bogus compound_order(),
682 * so be careful to not go outside of the pageblock.
683 */
684 if (unlikely(blockpfn > end_pfn))
685 blockpfn = end_pfn;
686
687 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
688 nr_scanned, total_isolated);
689
690 /* Record how far we have got within the block */
691 *start_pfn = blockpfn;
692
693 /*
694 * If strict isolation is requested by CMA then check that all the
695 * pages requested were isolated. If there were any failures, 0 is
696 * returned and CMA will fail.
697 */
698 if (strict && blockpfn < end_pfn)
699 total_isolated = 0;
700
701 cc->total_free_scanned += nr_scanned;
702 if (total_isolated)
703 count_compact_events(COMPACTISOLATED, total_isolated);
704 return total_isolated;
705 }
706
707 /**
708 * isolate_freepages_range() - isolate free pages.
709 * @cc: Compaction control structure.
710 * @start_pfn: The first PFN to start isolating.
711 * @end_pfn: The one-past-last PFN.
712 *
713 * Non-free pages, invalid PFNs, or zone boundaries within the
714 * [start_pfn, end_pfn) range are considered errors, cause function to
715 * undo its actions and return zero.
716 *
717 * Otherwise, function returns one-past-the-last PFN of isolated page
718 * (which may be greater then end_pfn if end fell in a middle of
719 * a free page).
720 */
721 unsigned long
isolate_freepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)722 isolate_freepages_range(struct compact_control *cc,
723 unsigned long start_pfn, unsigned long end_pfn)
724 {
725 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
726 LIST_HEAD(freelist);
727
728 pfn = start_pfn;
729 block_start_pfn = pageblock_start_pfn(pfn);
730 if (block_start_pfn < cc->zone->zone_start_pfn)
731 block_start_pfn = cc->zone->zone_start_pfn;
732 block_end_pfn = pageblock_end_pfn(pfn);
733
734 for (; pfn < end_pfn; pfn += isolated,
735 block_start_pfn = block_end_pfn,
736 block_end_pfn += pageblock_nr_pages) {
737 /* Protect pfn from changing by isolate_freepages_block */
738 unsigned long isolate_start_pfn = pfn;
739
740 /*
741 * pfn could pass the block_end_pfn if isolated freepage
742 * is more than pageblock order. In this case, we adjust
743 * scanning range to right one.
744 */
745 if (pfn >= block_end_pfn) {
746 block_start_pfn = pageblock_start_pfn(pfn);
747 block_end_pfn = pageblock_end_pfn(pfn);
748 }
749
750 block_end_pfn = min(block_end_pfn, end_pfn);
751
752 if (!pageblock_pfn_to_page(block_start_pfn,
753 block_end_pfn, cc->zone))
754 break;
755
756 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
757 block_end_pfn, &freelist, 0, true);
758
759 /*
760 * In strict mode, isolate_freepages_block() returns 0 if
761 * there are any holes in the block (ie. invalid PFNs or
762 * non-free pages).
763 */
764 if (!isolated)
765 break;
766
767 /*
768 * If we managed to isolate pages, it is always (1 << n) *
769 * pageblock_nr_pages for some non-negative n. (Max order
770 * page may span two pageblocks).
771 */
772 }
773
774 /* __isolate_free_page() does not map the pages */
775 split_map_pages(&freelist);
776
777 if (pfn < end_pfn) {
778 /* Loop terminated early, cleanup. */
779 release_freepages(&freelist);
780 return 0;
781 }
782
783 /* We don't use freelists for anything. */
784 return pfn;
785 }
786
787 /* Similar to reclaim, but different enough that they don't share logic */
too_many_isolated(struct compact_control * cc)788 static bool too_many_isolated(struct compact_control *cc)
789 {
790 pg_data_t *pgdat = cc->zone->zone_pgdat;
791 bool too_many;
792
793 unsigned long active, inactive, isolated;
794
795 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
796 node_page_state(pgdat, NR_INACTIVE_ANON);
797 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
798 node_page_state(pgdat, NR_ACTIVE_ANON);
799 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
800 node_page_state(pgdat, NR_ISOLATED_ANON);
801
802 /*
803 * Allow GFP_NOFS to isolate past the limit set for regular
804 * compaction runs. This prevents an ABBA deadlock when other
805 * compactors have already isolated to the limit, but are
806 * blocked on filesystem locks held by the GFP_NOFS thread.
807 */
808 if (cc->gfp_mask & __GFP_FS) {
809 inactive >>= 3;
810 active >>= 3;
811 }
812
813 too_many = isolated > (inactive + active) / 2;
814 if (!too_many)
815 wake_throttle_isolated(pgdat);
816
817 return too_many;
818 }
819
820 /**
821 * isolate_migratepages_block() - isolate all migrate-able pages within
822 * a single pageblock
823 * @cc: Compaction control structure.
824 * @low_pfn: The first PFN to isolate
825 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
826 * @mode: Isolation mode to be used.
827 *
828 * Isolate all pages that can be migrated from the range specified by
829 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
830 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
831 * -ENOMEM in case we could not allocate a page, or 0.
832 * cc->migrate_pfn will contain the next pfn to scan.
833 *
834 * The pages are isolated on cc->migratepages list (not required to be empty),
835 * and cc->nr_migratepages is updated accordingly.
836 */
837 static int
isolate_migratepages_block(struct compact_control * cc,unsigned long low_pfn,unsigned long end_pfn,isolate_mode_t mode)838 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
839 unsigned long end_pfn, isolate_mode_t mode)
840 {
841 pg_data_t *pgdat = cc->zone->zone_pgdat;
842 unsigned long nr_scanned = 0, nr_isolated = 0;
843 struct lruvec *lruvec;
844 unsigned long flags = 0;
845 struct lruvec *locked = NULL;
846 struct folio *folio = NULL;
847 struct page *page = NULL, *valid_page = NULL;
848 struct address_space *mapping;
849 unsigned long start_pfn = low_pfn;
850 bool skip_on_failure = false;
851 unsigned long next_skip_pfn = 0;
852 bool skip_updated = false;
853 int ret = 0;
854
855 cc->migrate_pfn = low_pfn;
856
857 /*
858 * Ensure that there are not too many pages isolated from the LRU
859 * list by either parallel reclaimers or compaction. If there are,
860 * delay for some time until fewer pages are isolated
861 */
862 while (unlikely(too_many_isolated(cc))) {
863 /* stop isolation if there are still pages not migrated */
864 if (cc->nr_migratepages)
865 return -EAGAIN;
866
867 /* async migration should just abort */
868 if (cc->mode == MIGRATE_ASYNC)
869 return -EAGAIN;
870
871 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
872
873 if (fatal_signal_pending(current))
874 return -EINTR;
875 }
876
877 cond_resched();
878
879 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
880 skip_on_failure = true;
881 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
882 }
883
884 /* Time to isolate some pages for migration */
885 for (; low_pfn < end_pfn; low_pfn++) {
886
887 if (skip_on_failure && low_pfn >= next_skip_pfn) {
888 /*
889 * We have isolated all migration candidates in the
890 * previous order-aligned block, and did not skip it due
891 * to failure. We should migrate the pages now and
892 * hopefully succeed compaction.
893 */
894 if (nr_isolated)
895 break;
896
897 /*
898 * We failed to isolate in the previous order-aligned
899 * block. Set the new boundary to the end of the
900 * current block. Note we can't simply increase
901 * next_skip_pfn by 1 << order, as low_pfn might have
902 * been incremented by a higher number due to skipping
903 * a compound or a high-order buddy page in the
904 * previous loop iteration.
905 */
906 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
907 }
908
909 /*
910 * Periodically drop the lock (if held) regardless of its
911 * contention, to give chance to IRQs. Abort completely if
912 * a fatal signal is pending.
913 */
914 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
915 if (locked) {
916 unlock_page_lruvec_irqrestore(locked, flags);
917 locked = NULL;
918 }
919
920 if (fatal_signal_pending(current)) {
921 cc->contended = true;
922 ret = -EINTR;
923
924 goto fatal_pending;
925 }
926
927 cond_resched();
928 }
929
930 nr_scanned++;
931
932 page = pfn_to_page(low_pfn);
933
934 /*
935 * Check if the pageblock has already been marked skipped.
936 * Only the first PFN is checked as the caller isolates
937 * COMPACT_CLUSTER_MAX at a time so the second call must
938 * not falsely conclude that the block should be skipped.
939 */
940 if (!valid_page && (pageblock_aligned(low_pfn) ||
941 low_pfn == cc->zone->zone_start_pfn)) {
942 if (!isolation_suitable(cc, page)) {
943 low_pfn = end_pfn;
944 folio = NULL;
945 goto isolate_abort;
946 }
947 valid_page = page;
948 }
949
950 if (PageHuge(page) && cc->alloc_contig) {
951 if (locked) {
952 unlock_page_lruvec_irqrestore(locked, flags);
953 locked = NULL;
954 }
955
956 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
957
958 /*
959 * Fail isolation in case isolate_or_dissolve_huge_page()
960 * reports an error. In case of -ENOMEM, abort right away.
961 */
962 if (ret < 0) {
963 /* Do not report -EBUSY down the chain */
964 if (ret == -EBUSY)
965 ret = 0;
966 low_pfn += compound_nr(page) - 1;
967 nr_scanned += compound_nr(page) - 1;
968 goto isolate_fail;
969 }
970
971 if (PageHuge(page)) {
972 /*
973 * Hugepage was successfully isolated and placed
974 * on the cc->migratepages list.
975 */
976 folio = page_folio(page);
977 low_pfn += folio_nr_pages(folio) - 1;
978 goto isolate_success_no_list;
979 }
980
981 /*
982 * Ok, the hugepage was dissolved. Now these pages are
983 * Buddy and cannot be re-allocated because they are
984 * isolated. Fall-through as the check below handles
985 * Buddy pages.
986 */
987 }
988
989 /*
990 * Skip if free. We read page order here without zone lock
991 * which is generally unsafe, but the race window is small and
992 * the worst thing that can happen is that we skip some
993 * potential isolation targets.
994 */
995 if (PageBuddy(page)) {
996 unsigned long freepage_order = buddy_order_unsafe(page);
997
998 /*
999 * Without lock, we cannot be sure that what we got is
1000 * a valid page order. Consider only values in the
1001 * valid order range to prevent low_pfn overflow.
1002 */
1003 if (freepage_order > 0 && freepage_order <= MAX_ORDER) {
1004 low_pfn += (1UL << freepage_order) - 1;
1005 nr_scanned += (1UL << freepage_order) - 1;
1006 }
1007 continue;
1008 }
1009
1010 /*
1011 * Regardless of being on LRU, compound pages such as THP and
1012 * hugetlbfs are not to be compacted unless we are attempting
1013 * an allocation much larger than the huge page size (eg CMA).
1014 * We can potentially save a lot of iterations if we skip them
1015 * at once. The check is racy, but we can consider only valid
1016 * values and the only danger is skipping too much.
1017 */
1018 if (PageCompound(page) && !cc->alloc_contig) {
1019 const unsigned int order = compound_order(page);
1020
1021 if (likely(order <= MAX_ORDER)) {
1022 low_pfn += (1UL << order) - 1;
1023 nr_scanned += (1UL << order) - 1;
1024 }
1025 goto isolate_fail;
1026 }
1027
1028 /*
1029 * Check may be lockless but that's ok as we recheck later.
1030 * It's possible to migrate LRU and non-lru movable pages.
1031 * Skip any other type of page
1032 */
1033 if (!PageLRU(page)) {
1034 /*
1035 * __PageMovable can return false positive so we need
1036 * to verify it under page_lock.
1037 */
1038 if (unlikely(__PageMovable(page)) &&
1039 !PageIsolated(page)) {
1040 if (locked) {
1041 unlock_page_lruvec_irqrestore(locked, flags);
1042 locked = NULL;
1043 }
1044
1045 if (isolate_movable_page(page, mode)) {
1046 folio = page_folio(page);
1047 goto isolate_success;
1048 }
1049 }
1050
1051 goto isolate_fail;
1052 }
1053
1054 /*
1055 * Be careful not to clear PageLRU until after we're
1056 * sure the page is not being freed elsewhere -- the
1057 * page release code relies on it.
1058 */
1059 folio = folio_get_nontail_page(page);
1060 if (unlikely(!folio))
1061 goto isolate_fail;
1062
1063 /*
1064 * Migration will fail if an anonymous page is pinned in memory,
1065 * so avoid taking lru_lock and isolating it unnecessarily in an
1066 * admittedly racy check.
1067 */
1068 mapping = folio_mapping(folio);
1069 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1070 goto isolate_fail_put;
1071
1072 /*
1073 * Only allow to migrate anonymous pages in GFP_NOFS context
1074 * because those do not depend on fs locks.
1075 */
1076 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1077 goto isolate_fail_put;
1078
1079 /* Only take pages on LRU: a check now makes later tests safe */
1080 if (!folio_test_lru(folio))
1081 goto isolate_fail_put;
1082
1083 /* Compaction might skip unevictable pages but CMA takes them */
1084 if (!(mode & ISOLATE_UNEVICTABLE) && folio_test_unevictable(folio))
1085 goto isolate_fail_put;
1086
1087 /*
1088 * To minimise LRU disruption, the caller can indicate with
1089 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1090 * it will be able to migrate without blocking - clean pages
1091 * for the most part. PageWriteback would require blocking.
1092 */
1093 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1094 goto isolate_fail_put;
1095
1096 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_dirty(folio)) {
1097 bool migrate_dirty;
1098
1099 /*
1100 * Only folios without mappings or that have
1101 * a ->migrate_folio callback are possible to
1102 * migrate without blocking. However, we may
1103 * be racing with truncation, which can free
1104 * the mapping. Truncation holds the folio lock
1105 * until after the folio is removed from the page
1106 * cache so holding it ourselves is sufficient.
1107 */
1108 if (!folio_trylock(folio))
1109 goto isolate_fail_put;
1110
1111 mapping = folio_mapping(folio);
1112 migrate_dirty = !mapping ||
1113 mapping->a_ops->migrate_folio;
1114 folio_unlock(folio);
1115 if (!migrate_dirty)
1116 goto isolate_fail_put;
1117 }
1118
1119 /* Try isolate the folio */
1120 if (!folio_test_clear_lru(folio))
1121 goto isolate_fail_put;
1122
1123 lruvec = folio_lruvec(folio);
1124
1125 /* If we already hold the lock, we can skip some rechecking */
1126 if (lruvec != locked) {
1127 if (locked)
1128 unlock_page_lruvec_irqrestore(locked, flags);
1129
1130 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1131 locked = lruvec;
1132
1133 lruvec_memcg_debug(lruvec, folio);
1134
1135 /*
1136 * Try get exclusive access under lock. If marked for
1137 * skip, the scan is aborted unless the current context
1138 * is a rescan to reach the end of the pageblock.
1139 */
1140 if (!skip_updated && valid_page) {
1141 skip_updated = true;
1142 if (test_and_set_skip(cc, valid_page) &&
1143 !cc->finish_pageblock) {
1144 low_pfn = end_pfn;
1145 goto isolate_abort;
1146 }
1147 }
1148
1149 /*
1150 * folio become large since the non-locked check,
1151 * and it's on LRU.
1152 */
1153 if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) {
1154 low_pfn += folio_nr_pages(folio) - 1;
1155 nr_scanned += folio_nr_pages(folio) - 1;
1156 folio_set_lru(folio);
1157 goto isolate_fail_put;
1158 }
1159 }
1160
1161 /* The folio is taken off the LRU */
1162 if (folio_test_large(folio))
1163 low_pfn += folio_nr_pages(folio) - 1;
1164
1165 /* Successfully isolated */
1166 lruvec_del_folio(lruvec, folio);
1167 node_stat_mod_folio(folio,
1168 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1169 folio_nr_pages(folio));
1170
1171 isolate_success:
1172 list_add(&folio->lru, &cc->migratepages);
1173 isolate_success_no_list:
1174 cc->nr_migratepages += folio_nr_pages(folio);
1175 nr_isolated += folio_nr_pages(folio);
1176 nr_scanned += folio_nr_pages(folio) - 1;
1177
1178 /*
1179 * Avoid isolating too much unless this block is being
1180 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1181 * or a lock is contended. For contention, isolate quickly to
1182 * potentially remove one source of contention.
1183 */
1184 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1185 !cc->finish_pageblock && !cc->contended) {
1186 ++low_pfn;
1187 break;
1188 }
1189
1190 continue;
1191
1192 isolate_fail_put:
1193 /* Avoid potential deadlock in freeing page under lru_lock */
1194 if (locked) {
1195 unlock_page_lruvec_irqrestore(locked, flags);
1196 locked = NULL;
1197 }
1198 folio_put(folio);
1199
1200 isolate_fail:
1201 if (!skip_on_failure && ret != -ENOMEM)
1202 continue;
1203
1204 /*
1205 * We have isolated some pages, but then failed. Release them
1206 * instead of migrating, as we cannot form the cc->order buddy
1207 * page anyway.
1208 */
1209 if (nr_isolated) {
1210 if (locked) {
1211 unlock_page_lruvec_irqrestore(locked, flags);
1212 locked = NULL;
1213 }
1214 putback_movable_pages(&cc->migratepages);
1215 cc->nr_migratepages = 0;
1216 nr_isolated = 0;
1217 }
1218
1219 if (low_pfn < next_skip_pfn) {
1220 low_pfn = next_skip_pfn - 1;
1221 /*
1222 * The check near the loop beginning would have updated
1223 * next_skip_pfn too, but this is a bit simpler.
1224 */
1225 next_skip_pfn += 1UL << cc->order;
1226 }
1227
1228 if (ret == -ENOMEM)
1229 break;
1230 }
1231
1232 /*
1233 * The PageBuddy() check could have potentially brought us outside
1234 * the range to be scanned.
1235 */
1236 if (unlikely(low_pfn > end_pfn))
1237 low_pfn = end_pfn;
1238
1239 folio = NULL;
1240
1241 isolate_abort:
1242 if (locked)
1243 unlock_page_lruvec_irqrestore(locked, flags);
1244 if (folio) {
1245 folio_set_lru(folio);
1246 folio_put(folio);
1247 }
1248
1249 /*
1250 * Update the cached scanner pfn once the pageblock has been scanned.
1251 * Pages will either be migrated in which case there is no point
1252 * scanning in the near future or migration failed in which case the
1253 * failure reason may persist. The block is marked for skipping if
1254 * there were no pages isolated in the block or if the block is
1255 * rescanned twice in a row.
1256 */
1257 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1258 if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1259 set_pageblock_skip(valid_page);
1260 update_cached_migrate(cc, low_pfn);
1261 }
1262
1263 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1264 nr_scanned, nr_isolated);
1265
1266 fatal_pending:
1267 cc->total_migrate_scanned += nr_scanned;
1268 if (nr_isolated)
1269 count_compact_events(COMPACTISOLATED, nr_isolated);
1270
1271 cc->migrate_pfn = low_pfn;
1272
1273 return ret;
1274 }
1275
1276 /**
1277 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1278 * @cc: Compaction control structure.
1279 * @start_pfn: The first PFN to start isolating.
1280 * @end_pfn: The one-past-last PFN.
1281 *
1282 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1283 * in case we could not allocate a page, or 0.
1284 */
1285 int
isolate_migratepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)1286 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1287 unsigned long end_pfn)
1288 {
1289 unsigned long pfn, block_start_pfn, block_end_pfn;
1290 int ret = 0;
1291
1292 /* Scan block by block. First and last block may be incomplete */
1293 pfn = start_pfn;
1294 block_start_pfn = pageblock_start_pfn(pfn);
1295 if (block_start_pfn < cc->zone->zone_start_pfn)
1296 block_start_pfn = cc->zone->zone_start_pfn;
1297 block_end_pfn = pageblock_end_pfn(pfn);
1298
1299 for (; pfn < end_pfn; pfn = block_end_pfn,
1300 block_start_pfn = block_end_pfn,
1301 block_end_pfn += pageblock_nr_pages) {
1302
1303 block_end_pfn = min(block_end_pfn, end_pfn);
1304
1305 if (!pageblock_pfn_to_page(block_start_pfn,
1306 block_end_pfn, cc->zone))
1307 continue;
1308
1309 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1310 ISOLATE_UNEVICTABLE);
1311
1312 if (ret)
1313 break;
1314
1315 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1316 break;
1317 }
1318
1319 return ret;
1320 }
1321
1322 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1323 #ifdef CONFIG_COMPACTION
1324
suitable_migration_source(struct compact_control * cc,struct page * page)1325 static bool suitable_migration_source(struct compact_control *cc,
1326 struct page *page)
1327 {
1328 int block_mt;
1329
1330 if (pageblock_skip_persistent(page))
1331 return false;
1332
1333 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1334 return true;
1335
1336 block_mt = get_pageblock_migratetype(page);
1337
1338 if (cc->migratetype == MIGRATE_MOVABLE)
1339 return is_migrate_movable(block_mt);
1340 else
1341 return block_mt == cc->migratetype;
1342 }
1343
1344 /* Returns true if the page is within a block suitable for migration to */
suitable_migration_target(struct compact_control * cc,struct page * page)1345 static bool suitable_migration_target(struct compact_control *cc,
1346 struct page *page)
1347 {
1348 /* If the page is a large free page, then disallow migration */
1349 if (PageBuddy(page)) {
1350 /*
1351 * We are checking page_order without zone->lock taken. But
1352 * the only small danger is that we skip a potentially suitable
1353 * pageblock, so it's not worth to check order for valid range.
1354 */
1355 if (buddy_order_unsafe(page) >= pageblock_order)
1356 return false;
1357 }
1358
1359 if (cc->ignore_block_suitable)
1360 return true;
1361
1362 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1363 if (is_migrate_movable(get_pageblock_migratetype(page)))
1364 return true;
1365
1366 /* Otherwise skip the block */
1367 return false;
1368 }
1369
1370 static inline unsigned int
freelist_scan_limit(struct compact_control * cc)1371 freelist_scan_limit(struct compact_control *cc)
1372 {
1373 unsigned short shift = BITS_PER_LONG - 1;
1374
1375 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1376 }
1377
1378 /*
1379 * Test whether the free scanner has reached the same or lower pageblock than
1380 * the migration scanner, and compaction should thus terminate.
1381 */
compact_scanners_met(struct compact_control * cc)1382 static inline bool compact_scanners_met(struct compact_control *cc)
1383 {
1384 return (cc->free_pfn >> pageblock_order)
1385 <= (cc->migrate_pfn >> pageblock_order);
1386 }
1387
1388 /*
1389 * Used when scanning for a suitable migration target which scans freelists
1390 * in reverse. Reorders the list such as the unscanned pages are scanned
1391 * first on the next iteration of the free scanner
1392 */
1393 static void
move_freelist_head(struct list_head * freelist,struct page * freepage)1394 move_freelist_head(struct list_head *freelist, struct page *freepage)
1395 {
1396 LIST_HEAD(sublist);
1397
1398 if (!list_is_last(freelist, &freepage->lru)) {
1399 list_cut_before(&sublist, freelist, &freepage->lru);
1400 list_splice_tail(&sublist, freelist);
1401 }
1402 }
1403
1404 /*
1405 * Similar to move_freelist_head except used by the migration scanner
1406 * when scanning forward. It's possible for these list operations to
1407 * move against each other if they search the free list exactly in
1408 * lockstep.
1409 */
1410 static void
move_freelist_tail(struct list_head * freelist,struct page * freepage)1411 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1412 {
1413 LIST_HEAD(sublist);
1414
1415 if (!list_is_first(freelist, &freepage->lru)) {
1416 list_cut_position(&sublist, freelist, &freepage->lru);
1417 list_splice_tail(&sublist, freelist);
1418 }
1419 }
1420
1421 static void
fast_isolate_around(struct compact_control * cc,unsigned long pfn)1422 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1423 {
1424 unsigned long start_pfn, end_pfn;
1425 struct page *page;
1426
1427 /* Do not search around if there are enough pages already */
1428 if (cc->nr_freepages >= cc->nr_migratepages)
1429 return;
1430
1431 /* Minimise scanning during async compaction */
1432 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1433 return;
1434
1435 /* Pageblock boundaries */
1436 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1437 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1438
1439 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1440 if (!page)
1441 return;
1442
1443 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1444
1445 /* Skip this pageblock in the future as it's full or nearly full */
1446 if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1447 set_pageblock_skip(page);
1448 }
1449
1450 /* Search orders in round-robin fashion */
next_search_order(struct compact_control * cc,int order)1451 static int next_search_order(struct compact_control *cc, int order)
1452 {
1453 order--;
1454 if (order < 0)
1455 order = cc->order - 1;
1456
1457 /* Search wrapped around? */
1458 if (order == cc->search_order) {
1459 cc->search_order--;
1460 if (cc->search_order < 0)
1461 cc->search_order = cc->order - 1;
1462 return -1;
1463 }
1464
1465 return order;
1466 }
1467
fast_isolate_freepages(struct compact_control * cc)1468 static void fast_isolate_freepages(struct compact_control *cc)
1469 {
1470 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1471 unsigned int nr_scanned = 0, total_isolated = 0;
1472 unsigned long low_pfn, min_pfn, highest = 0;
1473 unsigned long nr_isolated = 0;
1474 unsigned long distance;
1475 struct page *page = NULL;
1476 bool scan_start = false;
1477 int order;
1478
1479 /* Full compaction passes in a negative order */
1480 if (cc->order <= 0)
1481 return;
1482
1483 /*
1484 * If starting the scan, use a deeper search and use the highest
1485 * PFN found if a suitable one is not found.
1486 */
1487 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1488 limit = pageblock_nr_pages >> 1;
1489 scan_start = true;
1490 }
1491
1492 /*
1493 * Preferred point is in the top quarter of the scan space but take
1494 * a pfn from the top half if the search is problematic.
1495 */
1496 distance = (cc->free_pfn - cc->migrate_pfn);
1497 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1498 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1499
1500 if (WARN_ON_ONCE(min_pfn > low_pfn))
1501 low_pfn = min_pfn;
1502
1503 /*
1504 * Search starts from the last successful isolation order or the next
1505 * order to search after a previous failure
1506 */
1507 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1508
1509 for (order = cc->search_order;
1510 !page && order >= 0;
1511 order = next_search_order(cc, order)) {
1512 struct free_area *area = &cc->zone->free_area[order];
1513 struct list_head *freelist;
1514 struct page *freepage;
1515 unsigned long flags;
1516 unsigned int order_scanned = 0;
1517 unsigned long high_pfn = 0;
1518
1519 if (!area->nr_free)
1520 continue;
1521
1522 spin_lock_irqsave(&cc->zone->lock, flags);
1523 freelist = &area->free_list[MIGRATE_MOVABLE];
1524 list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1525 unsigned long pfn;
1526
1527 order_scanned++;
1528 nr_scanned++;
1529 pfn = page_to_pfn(freepage);
1530
1531 if (pfn >= highest)
1532 highest = max(pageblock_start_pfn(pfn),
1533 cc->zone->zone_start_pfn);
1534
1535 if (pfn >= low_pfn) {
1536 cc->fast_search_fail = 0;
1537 cc->search_order = order;
1538 page = freepage;
1539 break;
1540 }
1541
1542 if (pfn >= min_pfn && pfn > high_pfn) {
1543 high_pfn = pfn;
1544
1545 /* Shorten the scan if a candidate is found */
1546 limit >>= 1;
1547 }
1548
1549 if (order_scanned >= limit)
1550 break;
1551 }
1552
1553 /* Use a maximum candidate pfn if a preferred one was not found */
1554 if (!page && high_pfn) {
1555 page = pfn_to_page(high_pfn);
1556
1557 /* Update freepage for the list reorder below */
1558 freepage = page;
1559 }
1560
1561 /* Reorder to so a future search skips recent pages */
1562 move_freelist_head(freelist, freepage);
1563
1564 /* Isolate the page if available */
1565 if (page) {
1566 if (__isolate_free_page(page, order)) {
1567 set_page_private(page, order);
1568 nr_isolated = 1 << order;
1569 nr_scanned += nr_isolated - 1;
1570 total_isolated += nr_isolated;
1571 cc->nr_freepages += nr_isolated;
1572 list_add_tail(&page->lru, &cc->freepages);
1573 count_compact_events(COMPACTISOLATED, nr_isolated);
1574 } else {
1575 /* If isolation fails, abort the search */
1576 order = cc->search_order + 1;
1577 page = NULL;
1578 }
1579 }
1580
1581 spin_unlock_irqrestore(&cc->zone->lock, flags);
1582
1583 /* Skip fast search if enough freepages isolated */
1584 if (cc->nr_freepages >= cc->nr_migratepages)
1585 break;
1586
1587 /*
1588 * Smaller scan on next order so the total scan is related
1589 * to freelist_scan_limit.
1590 */
1591 if (order_scanned >= limit)
1592 limit = max(1U, limit >> 1);
1593 }
1594
1595 trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1596 nr_scanned, total_isolated);
1597
1598 if (!page) {
1599 cc->fast_search_fail++;
1600 if (scan_start) {
1601 /*
1602 * Use the highest PFN found above min. If one was
1603 * not found, be pessimistic for direct compaction
1604 * and use the min mark.
1605 */
1606 if (highest >= min_pfn) {
1607 page = pfn_to_page(highest);
1608 cc->free_pfn = highest;
1609 } else {
1610 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1611 page = pageblock_pfn_to_page(min_pfn,
1612 min(pageblock_end_pfn(min_pfn),
1613 zone_end_pfn(cc->zone)),
1614 cc->zone);
1615 cc->free_pfn = min_pfn;
1616 }
1617 }
1618 }
1619 }
1620
1621 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1622 highest -= pageblock_nr_pages;
1623 cc->zone->compact_cached_free_pfn = highest;
1624 }
1625
1626 cc->total_free_scanned += nr_scanned;
1627 if (!page)
1628 return;
1629
1630 low_pfn = page_to_pfn(page);
1631 fast_isolate_around(cc, low_pfn);
1632 }
1633
1634 /*
1635 * Based on information in the current compact_control, find blocks
1636 * suitable for isolating free pages from and then isolate them.
1637 */
isolate_freepages(struct compact_control * cc)1638 static void isolate_freepages(struct compact_control *cc)
1639 {
1640 struct zone *zone = cc->zone;
1641 struct page *page;
1642 unsigned long block_start_pfn; /* start of current pageblock */
1643 unsigned long isolate_start_pfn; /* exact pfn we start at */
1644 unsigned long block_end_pfn; /* end of current pageblock */
1645 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1646 struct list_head *freelist = &cc->freepages;
1647 unsigned int stride;
1648
1649 /* Try a small search of the free lists for a candidate */
1650 fast_isolate_freepages(cc);
1651 if (cc->nr_freepages)
1652 goto splitmap;
1653
1654 /*
1655 * Initialise the free scanner. The starting point is where we last
1656 * successfully isolated from, zone-cached value, or the end of the
1657 * zone when isolating for the first time. For looping we also need
1658 * this pfn aligned down to the pageblock boundary, because we do
1659 * block_start_pfn -= pageblock_nr_pages in the for loop.
1660 * For ending point, take care when isolating in last pageblock of a
1661 * zone which ends in the middle of a pageblock.
1662 * The low boundary is the end of the pageblock the migration scanner
1663 * is using.
1664 */
1665 isolate_start_pfn = cc->free_pfn;
1666 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1667 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1668 zone_end_pfn(zone));
1669 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1670 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1671
1672 /*
1673 * Isolate free pages until enough are available to migrate the
1674 * pages on cc->migratepages. We stop searching if the migrate
1675 * and free page scanners meet or enough free pages are isolated.
1676 */
1677 for (; block_start_pfn >= low_pfn;
1678 block_end_pfn = block_start_pfn,
1679 block_start_pfn -= pageblock_nr_pages,
1680 isolate_start_pfn = block_start_pfn) {
1681 unsigned long nr_isolated;
1682
1683 /*
1684 * This can iterate a massively long zone without finding any
1685 * suitable migration targets, so periodically check resched.
1686 */
1687 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1688 cond_resched();
1689
1690 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1691 zone);
1692 if (!page) {
1693 unsigned long next_pfn;
1694
1695 next_pfn = skip_offline_sections_reverse(block_start_pfn);
1696 if (next_pfn)
1697 block_start_pfn = max(next_pfn, low_pfn);
1698
1699 continue;
1700 }
1701
1702 /* Check the block is suitable for migration */
1703 if (!suitable_migration_target(cc, page))
1704 continue;
1705
1706 /* If isolation recently failed, do not retry */
1707 if (!isolation_suitable(cc, page))
1708 continue;
1709
1710 /* Found a block suitable for isolating free pages from. */
1711 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1712 block_end_pfn, freelist, stride, false);
1713
1714 /* Update the skip hint if the full pageblock was scanned */
1715 if (isolate_start_pfn == block_end_pfn)
1716 update_pageblock_skip(cc, page, block_start_pfn -
1717 pageblock_nr_pages);
1718
1719 /* Are enough freepages isolated? */
1720 if (cc->nr_freepages >= cc->nr_migratepages) {
1721 if (isolate_start_pfn >= block_end_pfn) {
1722 /*
1723 * Restart at previous pageblock if more
1724 * freepages can be isolated next time.
1725 */
1726 isolate_start_pfn =
1727 block_start_pfn - pageblock_nr_pages;
1728 }
1729 break;
1730 } else if (isolate_start_pfn < block_end_pfn) {
1731 /*
1732 * If isolation failed early, do not continue
1733 * needlessly.
1734 */
1735 break;
1736 }
1737
1738 /* Adjust stride depending on isolation */
1739 if (nr_isolated) {
1740 stride = 1;
1741 continue;
1742 }
1743 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1744 }
1745
1746 /*
1747 * Record where the free scanner will restart next time. Either we
1748 * broke from the loop and set isolate_start_pfn based on the last
1749 * call to isolate_freepages_block(), or we met the migration scanner
1750 * and the loop terminated due to isolate_start_pfn < low_pfn
1751 */
1752 cc->free_pfn = isolate_start_pfn;
1753
1754 splitmap:
1755 /* __isolate_free_page() does not map the pages */
1756 split_map_pages(freelist);
1757 }
1758
1759 /*
1760 * This is a migrate-callback that "allocates" freepages by taking pages
1761 * from the isolated freelists in the block we are migrating to.
1762 */
compaction_alloc(struct folio * src,unsigned long data)1763 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1764 {
1765 struct compact_control *cc = (struct compact_control *)data;
1766 struct folio *dst;
1767
1768 if (list_empty(&cc->freepages)) {
1769 isolate_freepages(cc);
1770
1771 if (list_empty(&cc->freepages))
1772 return NULL;
1773 }
1774
1775 dst = list_entry(cc->freepages.next, struct folio, lru);
1776 list_del(&dst->lru);
1777 cc->nr_freepages--;
1778
1779 return dst;
1780 }
1781
1782 /*
1783 * This is a migrate-callback that "frees" freepages back to the isolated
1784 * freelist. All pages on the freelist are from the same zone, so there is no
1785 * special handling needed for NUMA.
1786 */
compaction_free(struct folio * dst,unsigned long data)1787 static void compaction_free(struct folio *dst, unsigned long data)
1788 {
1789 struct compact_control *cc = (struct compact_control *)data;
1790
1791 list_add(&dst->lru, &cc->freepages);
1792 cc->nr_freepages++;
1793 }
1794
1795 /* possible outcome of isolate_migratepages */
1796 typedef enum {
1797 ISOLATE_ABORT, /* Abort compaction now */
1798 ISOLATE_NONE, /* No pages isolated, continue scanning */
1799 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1800 } isolate_migrate_t;
1801
1802 /*
1803 * Allow userspace to control policy on scanning the unevictable LRU for
1804 * compactable pages.
1805 */
1806 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1807 /*
1808 * Tunable for proactive compaction. It determines how
1809 * aggressively the kernel should compact memory in the
1810 * background. It takes values in the range [0, 100].
1811 */
1812 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1813 static int sysctl_extfrag_threshold = 500;
1814 static int __read_mostly sysctl_compact_memory;
1815
1816 static inline void
update_fast_start_pfn(struct compact_control * cc,unsigned long pfn)1817 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1818 {
1819 if (cc->fast_start_pfn == ULONG_MAX)
1820 return;
1821
1822 if (!cc->fast_start_pfn)
1823 cc->fast_start_pfn = pfn;
1824
1825 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1826 }
1827
1828 static inline unsigned long
reinit_migrate_pfn(struct compact_control * cc)1829 reinit_migrate_pfn(struct compact_control *cc)
1830 {
1831 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1832 return cc->migrate_pfn;
1833
1834 cc->migrate_pfn = cc->fast_start_pfn;
1835 cc->fast_start_pfn = ULONG_MAX;
1836
1837 return cc->migrate_pfn;
1838 }
1839
1840 /*
1841 * Briefly search the free lists for a migration source that already has
1842 * some free pages to reduce the number of pages that need migration
1843 * before a pageblock is free.
1844 */
fast_find_migrateblock(struct compact_control * cc)1845 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1846 {
1847 unsigned int limit = freelist_scan_limit(cc);
1848 unsigned int nr_scanned = 0;
1849 unsigned long distance;
1850 unsigned long pfn = cc->migrate_pfn;
1851 unsigned long high_pfn;
1852 int order;
1853 bool found_block = false;
1854
1855 /* Skip hints are relied on to avoid repeats on the fast search */
1856 if (cc->ignore_skip_hint)
1857 return pfn;
1858
1859 /*
1860 * If the pageblock should be finished then do not select a different
1861 * pageblock.
1862 */
1863 if (cc->finish_pageblock)
1864 return pfn;
1865
1866 /*
1867 * If the migrate_pfn is not at the start of a zone or the start
1868 * of a pageblock then assume this is a continuation of a previous
1869 * scan restarted due to COMPACT_CLUSTER_MAX.
1870 */
1871 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1872 return pfn;
1873
1874 /*
1875 * For smaller orders, just linearly scan as the number of pages
1876 * to migrate should be relatively small and does not necessarily
1877 * justify freeing up a large block for a small allocation.
1878 */
1879 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1880 return pfn;
1881
1882 /*
1883 * Only allow kcompactd and direct requests for movable pages to
1884 * quickly clear out a MOVABLE pageblock for allocation. This
1885 * reduces the risk that a large movable pageblock is freed for
1886 * an unmovable/reclaimable small allocation.
1887 */
1888 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1889 return pfn;
1890
1891 /*
1892 * When starting the migration scanner, pick any pageblock within the
1893 * first half of the search space. Otherwise try and pick a pageblock
1894 * within the first eighth to reduce the chances that a migration
1895 * target later becomes a source.
1896 */
1897 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1898 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1899 distance >>= 2;
1900 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1901
1902 for (order = cc->order - 1;
1903 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1904 order--) {
1905 struct free_area *area = &cc->zone->free_area[order];
1906 struct list_head *freelist;
1907 unsigned long flags;
1908 struct page *freepage;
1909
1910 if (!area->nr_free)
1911 continue;
1912
1913 spin_lock_irqsave(&cc->zone->lock, flags);
1914 freelist = &area->free_list[MIGRATE_MOVABLE];
1915 list_for_each_entry(freepage, freelist, buddy_list) {
1916 unsigned long free_pfn;
1917
1918 if (nr_scanned++ >= limit) {
1919 move_freelist_tail(freelist, freepage);
1920 break;
1921 }
1922
1923 free_pfn = page_to_pfn(freepage);
1924 if (free_pfn < high_pfn) {
1925 /*
1926 * Avoid if skipped recently. Ideally it would
1927 * move to the tail but even safe iteration of
1928 * the list assumes an entry is deleted, not
1929 * reordered.
1930 */
1931 if (get_pageblock_skip(freepage))
1932 continue;
1933
1934 /* Reorder to so a future search skips recent pages */
1935 move_freelist_tail(freelist, freepage);
1936
1937 update_fast_start_pfn(cc, free_pfn);
1938 pfn = pageblock_start_pfn(free_pfn);
1939 if (pfn < cc->zone->zone_start_pfn)
1940 pfn = cc->zone->zone_start_pfn;
1941 cc->fast_search_fail = 0;
1942 found_block = true;
1943 break;
1944 }
1945 }
1946 spin_unlock_irqrestore(&cc->zone->lock, flags);
1947 }
1948
1949 cc->total_migrate_scanned += nr_scanned;
1950
1951 /*
1952 * If fast scanning failed then use a cached entry for a page block
1953 * that had free pages as the basis for starting a linear scan.
1954 */
1955 if (!found_block) {
1956 cc->fast_search_fail++;
1957 pfn = reinit_migrate_pfn(cc);
1958 }
1959 return pfn;
1960 }
1961
1962 /*
1963 * Isolate all pages that can be migrated from the first suitable block,
1964 * starting at the block pointed to by the migrate scanner pfn within
1965 * compact_control.
1966 */
isolate_migratepages(struct compact_control * cc)1967 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1968 {
1969 unsigned long block_start_pfn;
1970 unsigned long block_end_pfn;
1971 unsigned long low_pfn;
1972 struct page *page;
1973 const isolate_mode_t isolate_mode =
1974 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1975 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1976 bool fast_find_block;
1977
1978 /*
1979 * Start at where we last stopped, or beginning of the zone as
1980 * initialized by compact_zone(). The first failure will use
1981 * the lowest PFN as the starting point for linear scanning.
1982 */
1983 low_pfn = fast_find_migrateblock(cc);
1984 block_start_pfn = pageblock_start_pfn(low_pfn);
1985 if (block_start_pfn < cc->zone->zone_start_pfn)
1986 block_start_pfn = cc->zone->zone_start_pfn;
1987
1988 /*
1989 * fast_find_migrateblock() has already ensured the pageblock is not
1990 * set with a skipped flag, so to avoid the isolation_suitable check
1991 * below again, check whether the fast search was successful.
1992 */
1993 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1994
1995 /* Only scan within a pageblock boundary */
1996 block_end_pfn = pageblock_end_pfn(low_pfn);
1997
1998 /*
1999 * Iterate over whole pageblocks until we find the first suitable.
2000 * Do not cross the free scanner.
2001 */
2002 for (; block_end_pfn <= cc->free_pfn;
2003 fast_find_block = false,
2004 cc->migrate_pfn = low_pfn = block_end_pfn,
2005 block_start_pfn = block_end_pfn,
2006 block_end_pfn += pageblock_nr_pages) {
2007
2008 /*
2009 * This can potentially iterate a massively long zone with
2010 * many pageblocks unsuitable, so periodically check if we
2011 * need to schedule.
2012 */
2013 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2014 cond_resched();
2015
2016 page = pageblock_pfn_to_page(block_start_pfn,
2017 block_end_pfn, cc->zone);
2018 if (!page) {
2019 unsigned long next_pfn;
2020
2021 next_pfn = skip_offline_sections(block_start_pfn);
2022 if (next_pfn)
2023 block_end_pfn = min(next_pfn, cc->free_pfn);
2024 continue;
2025 }
2026
2027 /*
2028 * If isolation recently failed, do not retry. Only check the
2029 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2030 * to be visited multiple times. Assume skip was checked
2031 * before making it "skip" so other compaction instances do
2032 * not scan the same block.
2033 */
2034 if ((pageblock_aligned(low_pfn) ||
2035 low_pfn == cc->zone->zone_start_pfn) &&
2036 !fast_find_block && !isolation_suitable(cc, page))
2037 continue;
2038
2039 /*
2040 * For async direct compaction, only scan the pageblocks of the
2041 * same migratetype without huge pages. Async direct compaction
2042 * is optimistic to see if the minimum amount of work satisfies
2043 * the allocation. The cached PFN is updated as it's possible
2044 * that all remaining blocks between source and target are
2045 * unsuitable and the compaction scanners fail to meet.
2046 */
2047 if (!suitable_migration_source(cc, page)) {
2048 update_cached_migrate(cc, block_end_pfn);
2049 continue;
2050 }
2051
2052 /* Perform the isolation */
2053 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2054 isolate_mode))
2055 return ISOLATE_ABORT;
2056
2057 /*
2058 * Either we isolated something and proceed with migration. Or
2059 * we failed and compact_zone should decide if we should
2060 * continue or not.
2061 */
2062 break;
2063 }
2064
2065 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2066 }
2067
2068 /*
2069 * order == -1 is expected when compacting via
2070 * /proc/sys/vm/compact_memory
2071 */
is_via_compact_memory(int order)2072 static inline bool is_via_compact_memory(int order)
2073 {
2074 return order == -1;
2075 }
2076
2077 /*
2078 * Determine whether kswapd is (or recently was!) running on this node.
2079 *
2080 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2081 * zero it.
2082 */
kswapd_is_running(pg_data_t * pgdat)2083 static bool kswapd_is_running(pg_data_t *pgdat)
2084 {
2085 bool running;
2086
2087 pgdat_kswapd_lock(pgdat);
2088 running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2089 pgdat_kswapd_unlock(pgdat);
2090
2091 return running;
2092 }
2093
2094 /*
2095 * A zone's fragmentation score is the external fragmentation wrt to the
2096 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2097 */
fragmentation_score_zone(struct zone * zone)2098 static unsigned int fragmentation_score_zone(struct zone *zone)
2099 {
2100 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2101 }
2102
2103 /*
2104 * A weighted zone's fragmentation score is the external fragmentation
2105 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2106 * returns a value in the range [0, 100].
2107 *
2108 * The scaling factor ensures that proactive compaction focuses on larger
2109 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2110 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2111 * and thus never exceeds the high threshold for proactive compaction.
2112 */
fragmentation_score_zone_weighted(struct zone * zone)2113 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2114 {
2115 unsigned long score;
2116
2117 score = zone->present_pages * fragmentation_score_zone(zone);
2118 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2119 }
2120
2121 /*
2122 * The per-node proactive (background) compaction process is started by its
2123 * corresponding kcompactd thread when the node's fragmentation score
2124 * exceeds the high threshold. The compaction process remains active till
2125 * the node's score falls below the low threshold, or one of the back-off
2126 * conditions is met.
2127 */
fragmentation_score_node(pg_data_t * pgdat)2128 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2129 {
2130 unsigned int score = 0;
2131 int zoneid;
2132
2133 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2134 struct zone *zone;
2135
2136 zone = &pgdat->node_zones[zoneid];
2137 if (!populated_zone(zone))
2138 continue;
2139 score += fragmentation_score_zone_weighted(zone);
2140 }
2141
2142 return score;
2143 }
2144
fragmentation_score_wmark(bool low)2145 static unsigned int fragmentation_score_wmark(bool low)
2146 {
2147 unsigned int wmark_low;
2148
2149 /*
2150 * Cap the low watermark to avoid excessive compaction
2151 * activity in case a user sets the proactiveness tunable
2152 * close to 100 (maximum).
2153 */
2154 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2155 return low ? wmark_low : min(wmark_low + 10, 100U);
2156 }
2157
should_proactive_compact_node(pg_data_t * pgdat)2158 static bool should_proactive_compact_node(pg_data_t *pgdat)
2159 {
2160 int wmark_high;
2161
2162 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2163 return false;
2164
2165 wmark_high = fragmentation_score_wmark(false);
2166 return fragmentation_score_node(pgdat) > wmark_high;
2167 }
2168
__compact_finished(struct compact_control * cc)2169 static enum compact_result __compact_finished(struct compact_control *cc)
2170 {
2171 unsigned int order;
2172 const int migratetype = cc->migratetype;
2173 int ret;
2174
2175 /* Compaction run completes if the migrate and free scanner meet */
2176 if (compact_scanners_met(cc)) {
2177 /* Let the next compaction start anew. */
2178 reset_cached_positions(cc->zone);
2179
2180 /*
2181 * Mark that the PG_migrate_skip information should be cleared
2182 * by kswapd when it goes to sleep. kcompactd does not set the
2183 * flag itself as the decision to be clear should be directly
2184 * based on an allocation request.
2185 */
2186 if (cc->direct_compaction)
2187 cc->zone->compact_blockskip_flush = true;
2188
2189 if (cc->whole_zone)
2190 return COMPACT_COMPLETE;
2191 else
2192 return COMPACT_PARTIAL_SKIPPED;
2193 }
2194
2195 if (cc->proactive_compaction) {
2196 int score, wmark_low;
2197 pg_data_t *pgdat;
2198
2199 pgdat = cc->zone->zone_pgdat;
2200 if (kswapd_is_running(pgdat))
2201 return COMPACT_PARTIAL_SKIPPED;
2202
2203 score = fragmentation_score_zone(cc->zone);
2204 wmark_low = fragmentation_score_wmark(true);
2205
2206 if (score > wmark_low)
2207 ret = COMPACT_CONTINUE;
2208 else
2209 ret = COMPACT_SUCCESS;
2210
2211 goto out;
2212 }
2213
2214 if (is_via_compact_memory(cc->order))
2215 return COMPACT_CONTINUE;
2216
2217 /*
2218 * Always finish scanning a pageblock to reduce the possibility of
2219 * fallbacks in the future. This is particularly important when
2220 * migration source is unmovable/reclaimable but it's not worth
2221 * special casing.
2222 */
2223 if (!pageblock_aligned(cc->migrate_pfn))
2224 return COMPACT_CONTINUE;
2225
2226 /* Direct compactor: Is a suitable page free? */
2227 ret = COMPACT_NO_SUITABLE_PAGE;
2228 for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2229 struct free_area *area = &cc->zone->free_area[order];
2230 bool can_steal;
2231
2232 /* Job done if page is free of the right migratetype */
2233 if (!free_area_empty(area, migratetype))
2234 return COMPACT_SUCCESS;
2235
2236 #ifdef CONFIG_CMA
2237 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2238 if (migratetype == MIGRATE_MOVABLE &&
2239 !free_area_empty(area, MIGRATE_CMA))
2240 return COMPACT_SUCCESS;
2241 #endif
2242 /*
2243 * Job done if allocation would steal freepages from
2244 * other migratetype buddy lists.
2245 */
2246 if (find_suitable_fallback(area, order, migratetype,
2247 true, &can_steal) != -1)
2248 /*
2249 * Movable pages are OK in any pageblock. If we are
2250 * stealing for a non-movable allocation, make sure
2251 * we finish compacting the current pageblock first
2252 * (which is assured by the above migrate_pfn align
2253 * check) so it is as free as possible and we won't
2254 * have to steal another one soon.
2255 */
2256 return COMPACT_SUCCESS;
2257 }
2258
2259 out:
2260 if (cc->contended || fatal_signal_pending(current))
2261 ret = COMPACT_CONTENDED;
2262
2263 return ret;
2264 }
2265
compact_finished(struct compact_control * cc)2266 static enum compact_result compact_finished(struct compact_control *cc)
2267 {
2268 int ret;
2269
2270 ret = __compact_finished(cc);
2271 trace_mm_compaction_finished(cc->zone, cc->order, ret);
2272 if (ret == COMPACT_NO_SUITABLE_PAGE)
2273 ret = COMPACT_CONTINUE;
2274
2275 return ret;
2276 }
2277
__compaction_suitable(struct zone * zone,int order,int highest_zoneidx,unsigned long wmark_target)2278 static bool __compaction_suitable(struct zone *zone, int order,
2279 int highest_zoneidx,
2280 unsigned long wmark_target)
2281 {
2282 unsigned long watermark;
2283 /*
2284 * Watermarks for order-0 must be met for compaction to be able to
2285 * isolate free pages for migration targets. This means that the
2286 * watermark and alloc_flags have to match, or be more pessimistic than
2287 * the check in __isolate_free_page(). We don't use the direct
2288 * compactor's alloc_flags, as they are not relevant for freepage
2289 * isolation. We however do use the direct compactor's highest_zoneidx
2290 * to skip over zones where lowmem reserves would prevent allocation
2291 * even if compaction succeeds.
2292 * For costly orders, we require low watermark instead of min for
2293 * compaction to proceed to increase its chances.
2294 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2295 * suitable migration targets
2296 */
2297 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2298 low_wmark_pages(zone) : min_wmark_pages(zone);
2299 watermark += compact_gap(order);
2300 return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2301 ALLOC_CMA, wmark_target);
2302 }
2303
2304 /*
2305 * compaction_suitable: Is this suitable to run compaction on this zone now?
2306 */
compaction_suitable(struct zone * zone,int order,int highest_zoneidx)2307 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2308 {
2309 enum compact_result compact_result;
2310 bool suitable;
2311
2312 suitable = __compaction_suitable(zone, order, highest_zoneidx,
2313 zone_page_state(zone, NR_FREE_PAGES));
2314 /*
2315 * fragmentation index determines if allocation failures are due to
2316 * low memory or external fragmentation
2317 *
2318 * index of -1000 would imply allocations might succeed depending on
2319 * watermarks, but we already failed the high-order watermark check
2320 * index towards 0 implies failure is due to lack of memory
2321 * index towards 1000 implies failure is due to fragmentation
2322 *
2323 * Only compact if a failure would be due to fragmentation. Also
2324 * ignore fragindex for non-costly orders where the alternative to
2325 * a successful reclaim/compaction is OOM. Fragindex and the
2326 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2327 * excessive compaction for costly orders, but it should not be at the
2328 * expense of system stability.
2329 */
2330 if (suitable) {
2331 compact_result = COMPACT_CONTINUE;
2332 if (order > PAGE_ALLOC_COSTLY_ORDER) {
2333 int fragindex = fragmentation_index(zone, order);
2334
2335 if (fragindex >= 0 &&
2336 fragindex <= sysctl_extfrag_threshold) {
2337 suitable = false;
2338 compact_result = COMPACT_NOT_SUITABLE_ZONE;
2339 }
2340 }
2341 } else {
2342 compact_result = COMPACT_SKIPPED;
2343 }
2344
2345 trace_mm_compaction_suitable(zone, order, compact_result);
2346
2347 return suitable;
2348 }
2349
compaction_zonelist_suitable(struct alloc_context * ac,int order,int alloc_flags)2350 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2351 int alloc_flags)
2352 {
2353 struct zone *zone;
2354 struct zoneref *z;
2355
2356 /*
2357 * Make sure at least one zone would pass __compaction_suitable if we continue
2358 * retrying the reclaim.
2359 */
2360 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2361 ac->highest_zoneidx, ac->nodemask) {
2362 unsigned long available;
2363
2364 /*
2365 * Do not consider all the reclaimable memory because we do not
2366 * want to trash just for a single high order allocation which
2367 * is even not guaranteed to appear even if __compaction_suitable
2368 * is happy about the watermark check.
2369 */
2370 available = zone_reclaimable_pages(zone) / order;
2371 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2372 if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2373 available))
2374 return true;
2375 }
2376
2377 return false;
2378 }
2379
2380 static enum compact_result
compact_zone(struct compact_control * cc,struct capture_control * capc)2381 compact_zone(struct compact_control *cc, struct capture_control *capc)
2382 {
2383 enum compact_result ret;
2384 unsigned long start_pfn = cc->zone->zone_start_pfn;
2385 unsigned long end_pfn = zone_end_pfn(cc->zone);
2386 unsigned long last_migrated_pfn;
2387 const bool sync = cc->mode != MIGRATE_ASYNC;
2388 bool update_cached;
2389 unsigned int nr_succeeded = 0;
2390
2391 /*
2392 * These counters track activities during zone compaction. Initialize
2393 * them before compacting a new zone.
2394 */
2395 cc->total_migrate_scanned = 0;
2396 cc->total_free_scanned = 0;
2397 cc->nr_migratepages = 0;
2398 cc->nr_freepages = 0;
2399 INIT_LIST_HEAD(&cc->freepages);
2400 INIT_LIST_HEAD(&cc->migratepages);
2401
2402 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2403
2404 if (!is_via_compact_memory(cc->order)) {
2405 unsigned long watermark;
2406
2407 /* Allocation can already succeed, nothing to do */
2408 watermark = wmark_pages(cc->zone,
2409 cc->alloc_flags & ALLOC_WMARK_MASK);
2410 if (zone_watermark_ok(cc->zone, cc->order, watermark,
2411 cc->highest_zoneidx, cc->alloc_flags))
2412 return COMPACT_SUCCESS;
2413
2414 /* Compaction is likely to fail */
2415 if (!compaction_suitable(cc->zone, cc->order,
2416 cc->highest_zoneidx))
2417 return COMPACT_SKIPPED;
2418 }
2419
2420 /*
2421 * Clear pageblock skip if there were failures recently and compaction
2422 * is about to be retried after being deferred.
2423 */
2424 if (compaction_restarting(cc->zone, cc->order))
2425 __reset_isolation_suitable(cc->zone);
2426
2427 /*
2428 * Setup to move all movable pages to the end of the zone. Used cached
2429 * information on where the scanners should start (unless we explicitly
2430 * want to compact the whole zone), but check that it is initialised
2431 * by ensuring the values are within zone boundaries.
2432 */
2433 cc->fast_start_pfn = 0;
2434 if (cc->whole_zone) {
2435 cc->migrate_pfn = start_pfn;
2436 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2437 } else {
2438 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2439 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2440 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2441 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2442 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2443 }
2444 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2445 cc->migrate_pfn = start_pfn;
2446 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2447 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2448 }
2449
2450 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2451 cc->whole_zone = true;
2452 }
2453
2454 last_migrated_pfn = 0;
2455
2456 /*
2457 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2458 * the basis that some migrations will fail in ASYNC mode. However,
2459 * if the cached PFNs match and pageblocks are skipped due to having
2460 * no isolation candidates, then the sync state does not matter.
2461 * Until a pageblock with isolation candidates is found, keep the
2462 * cached PFNs in sync to avoid revisiting the same blocks.
2463 */
2464 update_cached = !sync &&
2465 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2466
2467 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2468
2469 /* lru_add_drain_all could be expensive with involving other CPUs */
2470 lru_add_drain();
2471
2472 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2473 int err;
2474 unsigned long iteration_start_pfn = cc->migrate_pfn;
2475
2476 /*
2477 * Avoid multiple rescans of the same pageblock which can
2478 * happen if a page cannot be isolated (dirty/writeback in
2479 * async mode) or if the migrated pages are being allocated
2480 * before the pageblock is cleared. The first rescan will
2481 * capture the entire pageblock for migration. If it fails,
2482 * it'll be marked skip and scanning will proceed as normal.
2483 */
2484 cc->finish_pageblock = false;
2485 if (pageblock_start_pfn(last_migrated_pfn) ==
2486 pageblock_start_pfn(iteration_start_pfn)) {
2487 cc->finish_pageblock = true;
2488 }
2489
2490 rescan:
2491 switch (isolate_migratepages(cc)) {
2492 case ISOLATE_ABORT:
2493 ret = COMPACT_CONTENDED;
2494 putback_movable_pages(&cc->migratepages);
2495 cc->nr_migratepages = 0;
2496 goto out;
2497 case ISOLATE_NONE:
2498 if (update_cached) {
2499 cc->zone->compact_cached_migrate_pfn[1] =
2500 cc->zone->compact_cached_migrate_pfn[0];
2501 }
2502
2503 /*
2504 * We haven't isolated and migrated anything, but
2505 * there might still be unflushed migrations from
2506 * previous cc->order aligned block.
2507 */
2508 goto check_drain;
2509 case ISOLATE_SUCCESS:
2510 update_cached = false;
2511 last_migrated_pfn = max(cc->zone->zone_start_pfn,
2512 pageblock_start_pfn(cc->migrate_pfn - 1));
2513 }
2514
2515 err = migrate_pages(&cc->migratepages, compaction_alloc,
2516 compaction_free, (unsigned long)cc, cc->mode,
2517 MR_COMPACTION, &nr_succeeded);
2518
2519 trace_mm_compaction_migratepages(cc, nr_succeeded);
2520
2521 /* All pages were either migrated or will be released */
2522 cc->nr_migratepages = 0;
2523 if (err) {
2524 putback_movable_pages(&cc->migratepages);
2525 /*
2526 * migrate_pages() may return -ENOMEM when scanners meet
2527 * and we want compact_finished() to detect it
2528 */
2529 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2530 ret = COMPACT_CONTENDED;
2531 goto out;
2532 }
2533 /*
2534 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2535 * within the pageblock_order-aligned block and
2536 * fast_find_migrateblock may be used then scan the
2537 * remainder of the pageblock. This will mark the
2538 * pageblock "skip" to avoid rescanning in the near
2539 * future. This will isolate more pages than necessary
2540 * for the request but avoid loops due to
2541 * fast_find_migrateblock revisiting blocks that were
2542 * recently partially scanned.
2543 */
2544 if (!pageblock_aligned(cc->migrate_pfn) &&
2545 !cc->ignore_skip_hint && !cc->finish_pageblock &&
2546 (cc->mode < MIGRATE_SYNC)) {
2547 cc->finish_pageblock = true;
2548
2549 /*
2550 * Draining pcplists does not help THP if
2551 * any page failed to migrate. Even after
2552 * drain, the pageblock will not be free.
2553 */
2554 if (cc->order == COMPACTION_HPAGE_ORDER)
2555 last_migrated_pfn = 0;
2556
2557 goto rescan;
2558 }
2559 }
2560
2561 /* Stop if a page has been captured */
2562 if (capc && capc->page) {
2563 ret = COMPACT_SUCCESS;
2564 break;
2565 }
2566
2567 check_drain:
2568 /*
2569 * Has the migration scanner moved away from the previous
2570 * cc->order aligned block where we migrated from? If yes,
2571 * flush the pages that were freed, so that they can merge and
2572 * compact_finished() can detect immediately if allocation
2573 * would succeed.
2574 */
2575 if (cc->order > 0 && last_migrated_pfn) {
2576 unsigned long current_block_start =
2577 block_start_pfn(cc->migrate_pfn, cc->order);
2578
2579 if (last_migrated_pfn < current_block_start) {
2580 lru_add_drain_cpu_zone(cc->zone);
2581 /* No more flushing until we migrate again */
2582 last_migrated_pfn = 0;
2583 }
2584 }
2585 }
2586
2587 out:
2588 /*
2589 * Release free pages and update where the free scanner should restart,
2590 * so we don't leave any returned pages behind in the next attempt.
2591 */
2592 if (cc->nr_freepages > 0) {
2593 unsigned long free_pfn = release_freepages(&cc->freepages);
2594
2595 cc->nr_freepages = 0;
2596 VM_BUG_ON(free_pfn == 0);
2597 /* The cached pfn is always the first in a pageblock */
2598 free_pfn = pageblock_start_pfn(free_pfn);
2599 /*
2600 * Only go back, not forward. The cached pfn might have been
2601 * already reset to zone end in compact_finished()
2602 */
2603 if (free_pfn > cc->zone->compact_cached_free_pfn)
2604 cc->zone->compact_cached_free_pfn = free_pfn;
2605 }
2606
2607 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2608 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2609
2610 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2611
2612 VM_BUG_ON(!list_empty(&cc->freepages));
2613 VM_BUG_ON(!list_empty(&cc->migratepages));
2614
2615 return ret;
2616 }
2617
compact_zone_order(struct zone * zone,int order,gfp_t gfp_mask,enum compact_priority prio,unsigned int alloc_flags,int highest_zoneidx,struct page ** capture)2618 static enum compact_result compact_zone_order(struct zone *zone, int order,
2619 gfp_t gfp_mask, enum compact_priority prio,
2620 unsigned int alloc_flags, int highest_zoneidx,
2621 struct page **capture)
2622 {
2623 enum compact_result ret;
2624 struct compact_control cc = {
2625 .order = order,
2626 .search_order = order,
2627 .gfp_mask = gfp_mask,
2628 .zone = zone,
2629 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2630 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2631 .alloc_flags = alloc_flags,
2632 .highest_zoneidx = highest_zoneidx,
2633 .direct_compaction = true,
2634 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2635 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2636 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2637 };
2638 struct capture_control capc = {
2639 .cc = &cc,
2640 .page = NULL,
2641 };
2642
2643 /*
2644 * Make sure the structs are really initialized before we expose the
2645 * capture control, in case we are interrupted and the interrupt handler
2646 * frees a page.
2647 */
2648 barrier();
2649 WRITE_ONCE(current->capture_control, &capc);
2650
2651 ret = compact_zone(&cc, &capc);
2652
2653 /*
2654 * Make sure we hide capture control first before we read the captured
2655 * page pointer, otherwise an interrupt could free and capture a page
2656 * and we would leak it.
2657 */
2658 WRITE_ONCE(current->capture_control, NULL);
2659 *capture = READ_ONCE(capc.page);
2660 /*
2661 * Technically, it is also possible that compaction is skipped but
2662 * the page is still captured out of luck(IRQ came and freed the page).
2663 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2664 * the COMPACT[STALL|FAIL] when compaction is skipped.
2665 */
2666 if (*capture)
2667 ret = COMPACT_SUCCESS;
2668
2669 return ret;
2670 }
2671
2672 /**
2673 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2674 * @gfp_mask: The GFP mask of the current allocation
2675 * @order: The order of the current allocation
2676 * @alloc_flags: The allocation flags of the current allocation
2677 * @ac: The context of current allocation
2678 * @prio: Determines how hard direct compaction should try to succeed
2679 * @capture: Pointer to free page created by compaction will be stored here
2680 *
2681 * This is the main entry point for direct page compaction.
2682 */
try_to_compact_pages(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,struct page ** capture)2683 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2684 unsigned int alloc_flags, const struct alloc_context *ac,
2685 enum compact_priority prio, struct page **capture)
2686 {
2687 struct zoneref *z;
2688 struct zone *zone;
2689 enum compact_result rc = COMPACT_SKIPPED;
2690
2691 if (!gfp_compaction_allowed(gfp_mask))
2692 return COMPACT_SKIPPED;
2693
2694 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2695
2696 /* Compact each zone in the list */
2697 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2698 ac->highest_zoneidx, ac->nodemask) {
2699 enum compact_result status;
2700
2701 if (prio > MIN_COMPACT_PRIORITY
2702 && compaction_deferred(zone, order)) {
2703 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2704 continue;
2705 }
2706
2707 status = compact_zone_order(zone, order, gfp_mask, prio,
2708 alloc_flags, ac->highest_zoneidx, capture);
2709 rc = max(status, rc);
2710
2711 /* The allocation should succeed, stop compacting */
2712 if (status == COMPACT_SUCCESS) {
2713 /*
2714 * We think the allocation will succeed in this zone,
2715 * but it is not certain, hence the false. The caller
2716 * will repeat this with true if allocation indeed
2717 * succeeds in this zone.
2718 */
2719 compaction_defer_reset(zone, order, false);
2720
2721 break;
2722 }
2723
2724 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2725 status == COMPACT_PARTIAL_SKIPPED))
2726 /*
2727 * We think that allocation won't succeed in this zone
2728 * so we defer compaction there. If it ends up
2729 * succeeding after all, it will be reset.
2730 */
2731 defer_compaction(zone, order);
2732
2733 /*
2734 * We might have stopped compacting due to need_resched() in
2735 * async compaction, or due to a fatal signal detected. In that
2736 * case do not try further zones
2737 */
2738 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2739 || fatal_signal_pending(current))
2740 break;
2741 }
2742
2743 return rc;
2744 }
2745
2746 /*
2747 * Compact all zones within a node till each zone's fragmentation score
2748 * reaches within proactive compaction thresholds (as determined by the
2749 * proactiveness tunable).
2750 *
2751 * It is possible that the function returns before reaching score targets
2752 * due to various back-off conditions, such as, contention on per-node or
2753 * per-zone locks.
2754 */
proactive_compact_node(pg_data_t * pgdat)2755 static void proactive_compact_node(pg_data_t *pgdat)
2756 {
2757 int zoneid;
2758 struct zone *zone;
2759 struct compact_control cc = {
2760 .order = -1,
2761 .mode = MIGRATE_SYNC_LIGHT,
2762 .ignore_skip_hint = true,
2763 .whole_zone = true,
2764 .gfp_mask = GFP_KERNEL,
2765 .proactive_compaction = true,
2766 };
2767
2768 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2769 zone = &pgdat->node_zones[zoneid];
2770 if (!populated_zone(zone))
2771 continue;
2772
2773 cc.zone = zone;
2774
2775 compact_zone(&cc, NULL);
2776
2777 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2778 cc.total_migrate_scanned);
2779 count_compact_events(KCOMPACTD_FREE_SCANNED,
2780 cc.total_free_scanned);
2781 }
2782 }
2783
2784 /* Compact all zones within a node */
compact_node(int nid)2785 static void compact_node(int nid)
2786 {
2787 pg_data_t *pgdat = NODE_DATA(nid);
2788 int zoneid;
2789 struct zone *zone;
2790 struct compact_control cc = {
2791 .order = -1,
2792 .mode = MIGRATE_SYNC,
2793 .ignore_skip_hint = true,
2794 .whole_zone = true,
2795 .gfp_mask = GFP_KERNEL,
2796 };
2797
2798
2799 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2800
2801 zone = &pgdat->node_zones[zoneid];
2802 if (!populated_zone(zone))
2803 continue;
2804
2805 cc.zone = zone;
2806
2807 compact_zone(&cc, NULL);
2808 }
2809 }
2810
2811 /* Compact all nodes in the system */
compact_nodes(void)2812 static void compact_nodes(void)
2813 {
2814 int nid;
2815
2816 /* Flush pending updates to the LRU lists */
2817 lru_add_drain_all();
2818
2819 for_each_online_node(nid)
2820 compact_node(nid);
2821 }
2822
compaction_proactiveness_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2823 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2824 void *buffer, size_t *length, loff_t *ppos)
2825 {
2826 int rc, nid;
2827
2828 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2829 if (rc)
2830 return rc;
2831
2832 if (write && sysctl_compaction_proactiveness) {
2833 for_each_online_node(nid) {
2834 pg_data_t *pgdat = NODE_DATA(nid);
2835
2836 if (pgdat->proactive_compact_trigger)
2837 continue;
2838
2839 pgdat->proactive_compact_trigger = true;
2840 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2841 pgdat->nr_zones - 1);
2842 wake_up_interruptible(&pgdat->kcompactd_wait);
2843 }
2844 }
2845
2846 return 0;
2847 }
2848
2849 /*
2850 * This is the entry point for compacting all nodes via
2851 * /proc/sys/vm/compact_memory
2852 */
sysctl_compaction_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2853 static int sysctl_compaction_handler(struct ctl_table *table, int write,
2854 void *buffer, size_t *length, loff_t *ppos)
2855 {
2856 int ret;
2857
2858 ret = proc_dointvec(table, write, buffer, length, ppos);
2859 if (ret)
2860 return ret;
2861
2862 if (sysctl_compact_memory != 1)
2863 return -EINVAL;
2864
2865 if (write)
2866 compact_nodes();
2867
2868 return 0;
2869 }
2870
2871 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
compact_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2872 static ssize_t compact_store(struct device *dev,
2873 struct device_attribute *attr,
2874 const char *buf, size_t count)
2875 {
2876 int nid = dev->id;
2877
2878 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2879 /* Flush pending updates to the LRU lists */
2880 lru_add_drain_all();
2881
2882 compact_node(nid);
2883 }
2884
2885 return count;
2886 }
2887 static DEVICE_ATTR_WO(compact);
2888
compaction_register_node(struct node * node)2889 int compaction_register_node(struct node *node)
2890 {
2891 return device_create_file(&node->dev, &dev_attr_compact);
2892 }
2893
compaction_unregister_node(struct node * node)2894 void compaction_unregister_node(struct node *node)
2895 {
2896 device_remove_file(&node->dev, &dev_attr_compact);
2897 }
2898 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2899
kcompactd_work_requested(pg_data_t * pgdat)2900 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2901 {
2902 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2903 pgdat->proactive_compact_trigger;
2904 }
2905
kcompactd_node_suitable(pg_data_t * pgdat)2906 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2907 {
2908 int zoneid;
2909 struct zone *zone;
2910 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2911
2912 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2913 zone = &pgdat->node_zones[zoneid];
2914
2915 if (!populated_zone(zone))
2916 continue;
2917
2918 /* Allocation can already succeed, check other zones */
2919 if (zone_watermark_ok(zone, pgdat->kcompactd_max_order,
2920 min_wmark_pages(zone),
2921 highest_zoneidx, 0))
2922 continue;
2923
2924 if (compaction_suitable(zone, pgdat->kcompactd_max_order,
2925 highest_zoneidx))
2926 return true;
2927 }
2928
2929 return false;
2930 }
2931
kcompactd_do_work(pg_data_t * pgdat)2932 static void kcompactd_do_work(pg_data_t *pgdat)
2933 {
2934 /*
2935 * With no special task, compact all zones so that a page of requested
2936 * order is allocatable.
2937 */
2938 int zoneid;
2939 struct zone *zone;
2940 struct compact_control cc = {
2941 .order = pgdat->kcompactd_max_order,
2942 .search_order = pgdat->kcompactd_max_order,
2943 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2944 .mode = MIGRATE_SYNC_LIGHT,
2945 .ignore_skip_hint = false,
2946 .gfp_mask = GFP_KERNEL,
2947 };
2948 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2949 cc.highest_zoneidx);
2950 count_compact_event(KCOMPACTD_WAKE);
2951
2952 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2953 int status;
2954
2955 zone = &pgdat->node_zones[zoneid];
2956 if (!populated_zone(zone))
2957 continue;
2958
2959 if (compaction_deferred(zone, cc.order))
2960 continue;
2961
2962 /* Allocation can already succeed, nothing to do */
2963 if (zone_watermark_ok(zone, cc.order,
2964 min_wmark_pages(zone), zoneid, 0))
2965 continue;
2966
2967 if (!compaction_suitable(zone, cc.order, zoneid))
2968 continue;
2969
2970 if (kthread_should_stop())
2971 return;
2972
2973 cc.zone = zone;
2974 status = compact_zone(&cc, NULL);
2975
2976 if (status == COMPACT_SUCCESS) {
2977 compaction_defer_reset(zone, cc.order, false);
2978 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2979 /*
2980 * Buddy pages may become stranded on pcps that could
2981 * otherwise coalesce on the zone's free area for
2982 * order >= cc.order. This is ratelimited by the
2983 * upcoming deferral.
2984 */
2985 drain_all_pages(zone);
2986
2987 /*
2988 * We use sync migration mode here, so we defer like
2989 * sync direct compaction does.
2990 */
2991 defer_compaction(zone, cc.order);
2992 }
2993
2994 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2995 cc.total_migrate_scanned);
2996 count_compact_events(KCOMPACTD_FREE_SCANNED,
2997 cc.total_free_scanned);
2998 }
2999
3000 /*
3001 * Regardless of success, we are done until woken up next. But remember
3002 * the requested order/highest_zoneidx in case it was higher/tighter
3003 * than our current ones
3004 */
3005 if (pgdat->kcompactd_max_order <= cc.order)
3006 pgdat->kcompactd_max_order = 0;
3007 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3008 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3009 }
3010
wakeup_kcompactd(pg_data_t * pgdat,int order,int highest_zoneidx)3011 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3012 {
3013 if (!order)
3014 return;
3015
3016 if (pgdat->kcompactd_max_order < order)
3017 pgdat->kcompactd_max_order = order;
3018
3019 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3020 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3021
3022 /*
3023 * Pairs with implicit barrier in wait_event_freezable()
3024 * such that wakeups are not missed.
3025 */
3026 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3027 return;
3028
3029 if (!kcompactd_node_suitable(pgdat))
3030 return;
3031
3032 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3033 highest_zoneidx);
3034 wake_up_interruptible(&pgdat->kcompactd_wait);
3035 }
3036
3037 /*
3038 * The background compaction daemon, started as a kernel thread
3039 * from the init process.
3040 */
kcompactd(void * p)3041 static int kcompactd(void *p)
3042 {
3043 pg_data_t *pgdat = (pg_data_t *)p;
3044 struct task_struct *tsk = current;
3045 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3046 long timeout = default_timeout;
3047
3048 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3049
3050 if (!cpumask_empty(cpumask))
3051 set_cpus_allowed_ptr(tsk, cpumask);
3052
3053 set_freezable();
3054
3055 pgdat->kcompactd_max_order = 0;
3056 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3057
3058 while (!kthread_should_stop()) {
3059 unsigned long pflags;
3060
3061 /*
3062 * Avoid the unnecessary wakeup for proactive compaction
3063 * when it is disabled.
3064 */
3065 if (!sysctl_compaction_proactiveness)
3066 timeout = MAX_SCHEDULE_TIMEOUT;
3067 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3068 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3069 kcompactd_work_requested(pgdat), timeout) &&
3070 !pgdat->proactive_compact_trigger) {
3071
3072 psi_memstall_enter(&pflags);
3073 kcompactd_do_work(pgdat);
3074 psi_memstall_leave(&pflags);
3075 /*
3076 * Reset the timeout value. The defer timeout from
3077 * proactive compaction is lost here but that is fine
3078 * as the condition of the zone changing substantionally
3079 * then carrying on with the previous defer interval is
3080 * not useful.
3081 */
3082 timeout = default_timeout;
3083 continue;
3084 }
3085
3086 /*
3087 * Start the proactive work with default timeout. Based
3088 * on the fragmentation score, this timeout is updated.
3089 */
3090 timeout = default_timeout;
3091 if (should_proactive_compact_node(pgdat)) {
3092 unsigned int prev_score, score;
3093
3094 prev_score = fragmentation_score_node(pgdat);
3095 proactive_compact_node(pgdat);
3096 score = fragmentation_score_node(pgdat);
3097 /*
3098 * Defer proactive compaction if the fragmentation
3099 * score did not go down i.e. no progress made.
3100 */
3101 if (unlikely(score >= prev_score))
3102 timeout =
3103 default_timeout << COMPACT_MAX_DEFER_SHIFT;
3104 }
3105 if (unlikely(pgdat->proactive_compact_trigger))
3106 pgdat->proactive_compact_trigger = false;
3107 }
3108
3109 return 0;
3110 }
3111
3112 /*
3113 * This kcompactd start function will be called by init and node-hot-add.
3114 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3115 */
kcompactd_run(int nid)3116 void __meminit kcompactd_run(int nid)
3117 {
3118 pg_data_t *pgdat = NODE_DATA(nid);
3119
3120 if (pgdat->kcompactd)
3121 return;
3122
3123 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3124 if (IS_ERR(pgdat->kcompactd)) {
3125 pr_err("Failed to start kcompactd on node %d\n", nid);
3126 pgdat->kcompactd = NULL;
3127 }
3128 }
3129
3130 /*
3131 * Called by memory hotplug when all memory in a node is offlined. Caller must
3132 * be holding mem_hotplug_begin/done().
3133 */
kcompactd_stop(int nid)3134 void __meminit kcompactd_stop(int nid)
3135 {
3136 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3137
3138 if (kcompactd) {
3139 kthread_stop(kcompactd);
3140 NODE_DATA(nid)->kcompactd = NULL;
3141 }
3142 }
3143
3144 /*
3145 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3146 * not required for correctness. So if the last cpu in a node goes
3147 * away, we get changed to run anywhere: as the first one comes back,
3148 * restore their cpu bindings.
3149 */
kcompactd_cpu_online(unsigned int cpu)3150 static int kcompactd_cpu_online(unsigned int cpu)
3151 {
3152 int nid;
3153
3154 for_each_node_state(nid, N_MEMORY) {
3155 pg_data_t *pgdat = NODE_DATA(nid);
3156 const struct cpumask *mask;
3157
3158 mask = cpumask_of_node(pgdat->node_id);
3159
3160 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3161 /* One of our CPUs online: restore mask */
3162 if (pgdat->kcompactd)
3163 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3164 }
3165 return 0;
3166 }
3167
proc_dointvec_minmax_warn_RT_change(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3168 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3169 int write, void *buffer, size_t *lenp, loff_t *ppos)
3170 {
3171 int ret, old;
3172
3173 if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3174 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3175
3176 old = *(int *)table->data;
3177 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3178 if (ret)
3179 return ret;
3180 if (old != *(int *)table->data)
3181 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3182 table->procname, current->comm,
3183 task_pid_nr(current));
3184 return ret;
3185 }
3186
3187 static struct ctl_table vm_compaction[] = {
3188 {
3189 .procname = "compact_memory",
3190 .data = &sysctl_compact_memory,
3191 .maxlen = sizeof(int),
3192 .mode = 0200,
3193 .proc_handler = sysctl_compaction_handler,
3194 },
3195 {
3196 .procname = "compaction_proactiveness",
3197 .data = &sysctl_compaction_proactiveness,
3198 .maxlen = sizeof(sysctl_compaction_proactiveness),
3199 .mode = 0644,
3200 .proc_handler = compaction_proactiveness_sysctl_handler,
3201 .extra1 = SYSCTL_ZERO,
3202 .extra2 = SYSCTL_ONE_HUNDRED,
3203 },
3204 {
3205 .procname = "extfrag_threshold",
3206 .data = &sysctl_extfrag_threshold,
3207 .maxlen = sizeof(int),
3208 .mode = 0644,
3209 .proc_handler = proc_dointvec_minmax,
3210 .extra1 = SYSCTL_ZERO,
3211 .extra2 = SYSCTL_ONE_THOUSAND,
3212 },
3213 {
3214 .procname = "compact_unevictable_allowed",
3215 .data = &sysctl_compact_unevictable_allowed,
3216 .maxlen = sizeof(int),
3217 .mode = 0644,
3218 .proc_handler = proc_dointvec_minmax_warn_RT_change,
3219 .extra1 = SYSCTL_ZERO,
3220 .extra2 = SYSCTL_ONE,
3221 },
3222 { }
3223 };
3224
kcompactd_init(void)3225 static int __init kcompactd_init(void)
3226 {
3227 int nid;
3228 int ret;
3229
3230 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3231 "mm/compaction:online",
3232 kcompactd_cpu_online, NULL);
3233 if (ret < 0) {
3234 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3235 return ret;
3236 }
3237
3238 for_each_node_state(nid, N_MEMORY)
3239 kcompactd_run(nid);
3240 register_sysctl_init("vm", vm_compaction);
3241 return 0;
3242 }
3243 subsys_initcall(kcompactd_init)
3244
3245 #endif /* CONFIG_COMPACTION */
3246