1 /* +++ trees.c */ 2 /* trees.c -- output deflated data using Huffman coding 3 * Copyright (C) 1995-1996 Jean-loup Gailly 4 * For conditions of distribution and use, see copyright notice in zlib.h 5 */ 6 7 /* 8 * ALGORITHM 9 * 10 * The "deflation" process uses several Huffman trees. The more 11 * common source values are represented by shorter bit sequences. 12 * 13 * Each code tree is stored in a compressed form which is itself 14 * a Huffman encoding of the lengths of all the code strings (in 15 * ascending order by source values). The actual code strings are 16 * reconstructed from the lengths in the inflate process, as described 17 * in the deflate specification. 18 * 19 * REFERENCES 20 * 21 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". 22 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc 23 * 24 * Storer, James A. 25 * Data Compression: Methods and Theory, pp. 49-50. 26 * Computer Science Press, 1988. ISBN 0-7167-8156-5. 27 * 28 * Sedgewick, R. 29 * Algorithms, p290. 30 * Addison-Wesley, 1983. ISBN 0-201-06672-6. 31 */ 32 33 /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */ 34 35 /* #include "deflate.h" */ 36 37 #include <linux/zutil.h> 38 #include <linux/bitrev.h> 39 #include "defutil.h" 40 41 #ifdef DEBUG_ZLIB 42 # include <ctype.h> 43 #endif 44 45 /* =========================================================================== 46 * Constants 47 */ 48 49 #define MAX_BL_BITS 7 50 /* Bit length codes must not exceed MAX_BL_BITS bits */ 51 52 #define END_BLOCK 256 53 /* end of block literal code */ 54 55 #define REP_3_6 16 56 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ 57 58 #define REPZ_3_10 17 59 /* repeat a zero length 3-10 times (3 bits of repeat count) */ 60 61 #define REPZ_11_138 18 62 /* repeat a zero length 11-138 times (7 bits of repeat count) */ 63 64 static const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ 65 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; 66 67 static const int extra_dbits[D_CODES] /* extra bits for each distance code */ 68 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; 69 70 static const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ 71 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; 72 73 static const uch bl_order[BL_CODES] 74 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; 75 /* The lengths of the bit length codes are sent in order of decreasing 76 * probability, to avoid transmitting the lengths for unused bit length codes. 77 */ 78 79 #define Buf_size (8 * 2*sizeof(char)) 80 /* Number of bits used within bi_buf. (bi_buf might be implemented on 81 * more than 16 bits on some systems.) 82 */ 83 84 /* =========================================================================== 85 * Local data. These are initialized only once. 86 */ 87 88 static ct_data static_ltree[L_CODES+2]; 89 /* The static literal tree. Since the bit lengths are imposed, there is no 90 * need for the L_CODES extra codes used during heap construction. However 91 * The codes 286 and 287 are needed to build a canonical tree (see zlib_tr_init 92 * below). 93 */ 94 95 static ct_data static_dtree[D_CODES]; 96 /* The static distance tree. (Actually a trivial tree since all codes use 97 * 5 bits.) 98 */ 99 100 static uch dist_code[512]; 101 /* distance codes. The first 256 values correspond to the distances 102 * 3 .. 258, the last 256 values correspond to the top 8 bits of 103 * the 15 bit distances. 104 */ 105 106 static uch length_code[MAX_MATCH-MIN_MATCH+1]; 107 /* length code for each normalized match length (0 == MIN_MATCH) */ 108 109 static int base_length[LENGTH_CODES]; 110 /* First normalized length for each code (0 = MIN_MATCH) */ 111 112 static int base_dist[D_CODES]; 113 /* First normalized distance for each code (0 = distance of 1) */ 114 115 struct static_tree_desc_s { 116 const ct_data *static_tree; /* static tree or NULL */ 117 const int *extra_bits; /* extra bits for each code or NULL */ 118 int extra_base; /* base index for extra_bits */ 119 int elems; /* max number of elements in the tree */ 120 int max_length; /* max bit length for the codes */ 121 }; 122 123 static static_tree_desc static_l_desc = 124 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; 125 126 static static_tree_desc static_d_desc = 127 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; 128 129 static static_tree_desc static_bl_desc = 130 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; 131 132 /* =========================================================================== 133 * Local (static) routines in this file. 134 */ 135 136 static void tr_static_init (void); 137 static void init_block (deflate_state *s); 138 static void pqdownheap (deflate_state *s, ct_data *tree, int k); 139 static void gen_bitlen (deflate_state *s, tree_desc *desc); 140 static void gen_codes (ct_data *tree, int max_code, ush *bl_count); 141 static void build_tree (deflate_state *s, tree_desc *desc); 142 static void scan_tree (deflate_state *s, ct_data *tree, int max_code); 143 static void send_tree (deflate_state *s, ct_data *tree, int max_code); 144 static int build_bl_tree (deflate_state *s); 145 static void send_all_trees (deflate_state *s, int lcodes, int dcodes, 146 int blcodes); 147 static void compress_block (deflate_state *s, ct_data *ltree, 148 ct_data *dtree); 149 static void set_data_type (deflate_state *s); 150 static void bi_windup (deflate_state *s); 151 static void bi_flush (deflate_state *s); 152 static void copy_block (deflate_state *s, char *buf, unsigned len, 153 int header); 154 155 #ifndef DEBUG_ZLIB 156 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) 157 /* Send a code of the given tree. c and tree must not have side effects */ 158 159 #else /* DEBUG_ZLIB */ 160 # define send_code(s, c, tree) \ 161 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ 162 send_bits(s, tree[c].Code, tree[c].Len); } 163 #endif 164 165 #define d_code(dist) \ 166 ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)]) 167 /* Mapping from a distance to a distance code. dist is the distance - 1 and 168 * must not have side effects. dist_code[256] and dist_code[257] are never 169 * used. 170 */ 171 172 /* =========================================================================== 173 * Send a value on a given number of bits. 174 * IN assertion: length <= 16 and value fits in length bits. 175 */ 176 #ifdef DEBUG_ZLIB 177 static void send_bits (deflate_state *s, int value, int length); 178 179 static void send_bits( 180 deflate_state *s, 181 int value, /* value to send */ 182 int length /* number of bits */ 183 ) 184 { 185 Tracevv((stderr," l %2d v %4x ", length, value)); 186 Assert(length > 0 && length <= 15, "invalid length"); 187 s->bits_sent += (ulg)length; 188 189 /* If not enough room in bi_buf, use (valid) bits from bi_buf and 190 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) 191 * unused bits in value. 192 */ 193 if (s->bi_valid > (int)Buf_size - length) { 194 s->bi_buf |= (value << s->bi_valid); 195 put_short(s, s->bi_buf); 196 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); 197 s->bi_valid += length - Buf_size; 198 } else { 199 s->bi_buf |= value << s->bi_valid; 200 s->bi_valid += length; 201 } 202 } 203 #else /* !DEBUG_ZLIB */ 204 205 #define send_bits(s, value, length) \ 206 { int len = length;\ 207 if (s->bi_valid > (int)Buf_size - len) {\ 208 int val = value;\ 209 s->bi_buf |= (val << s->bi_valid);\ 210 put_short(s, s->bi_buf);\ 211 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ 212 s->bi_valid += len - Buf_size;\ 213 } else {\ 214 s->bi_buf |= (value) << s->bi_valid;\ 215 s->bi_valid += len;\ 216 }\ 217 } 218 #endif /* DEBUG_ZLIB */ 219 220 /* =========================================================================== 221 * Initialize the various 'constant' tables. In a multi-threaded environment, 222 * this function may be called by two threads concurrently, but this is 223 * harmless since both invocations do exactly the same thing. 224 */ 225 static void tr_static_init(void) 226 { 227 static int static_init_done; 228 int n; /* iterates over tree elements */ 229 int bits; /* bit counter */ 230 int length; /* length value */ 231 int code; /* code value */ 232 int dist; /* distance index */ 233 ush bl_count[MAX_BITS+1]; 234 /* number of codes at each bit length for an optimal tree */ 235 236 if (static_init_done) return; 237 238 /* Initialize the mapping length (0..255) -> length code (0..28) */ 239 length = 0; 240 for (code = 0; code < LENGTH_CODES-1; code++) { 241 base_length[code] = length; 242 for (n = 0; n < (1<<extra_lbits[code]); n++) { 243 length_code[length++] = (uch)code; 244 } 245 } 246 Assert (length == 256, "tr_static_init: length != 256"); 247 /* Note that the length 255 (match length 258) can be represented 248 * in two different ways: code 284 + 5 bits or code 285, so we 249 * overwrite length_code[255] to use the best encoding: 250 */ 251 length_code[length-1] = (uch)code; 252 253 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ 254 dist = 0; 255 for (code = 0 ; code < 16; code++) { 256 base_dist[code] = dist; 257 for (n = 0; n < (1<<extra_dbits[code]); n++) { 258 dist_code[dist++] = (uch)code; 259 } 260 } 261 Assert (dist == 256, "tr_static_init: dist != 256"); 262 dist >>= 7; /* from now on, all distances are divided by 128 */ 263 for ( ; code < D_CODES; code++) { 264 base_dist[code] = dist << 7; 265 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { 266 dist_code[256 + dist++] = (uch)code; 267 } 268 } 269 Assert (dist == 256, "tr_static_init: 256+dist != 512"); 270 271 /* Construct the codes of the static literal tree */ 272 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; 273 n = 0; 274 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; 275 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; 276 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; 277 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; 278 /* Codes 286 and 287 do not exist, but we must include them in the 279 * tree construction to get a canonical Huffman tree (longest code 280 * all ones) 281 */ 282 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); 283 284 /* The static distance tree is trivial: */ 285 for (n = 0; n < D_CODES; n++) { 286 static_dtree[n].Len = 5; 287 static_dtree[n].Code = bitrev32((u32)n) >> (32 - 5); 288 } 289 static_init_done = 1; 290 } 291 292 /* =========================================================================== 293 * Initialize the tree data structures for a new zlib stream. 294 */ 295 void zlib_tr_init( 296 deflate_state *s 297 ) 298 { 299 tr_static_init(); 300 301 s->compressed_len = 0L; 302 303 s->l_desc.dyn_tree = s->dyn_ltree; 304 s->l_desc.stat_desc = &static_l_desc; 305 306 s->d_desc.dyn_tree = s->dyn_dtree; 307 s->d_desc.stat_desc = &static_d_desc; 308 309 s->bl_desc.dyn_tree = s->bl_tree; 310 s->bl_desc.stat_desc = &static_bl_desc; 311 312 s->bi_buf = 0; 313 s->bi_valid = 0; 314 s->last_eob_len = 8; /* enough lookahead for inflate */ 315 #ifdef DEBUG_ZLIB 316 s->bits_sent = 0L; 317 #endif 318 319 /* Initialize the first block of the first file: */ 320 init_block(s); 321 } 322 323 /* =========================================================================== 324 * Initialize a new block. 325 */ 326 static void init_block( 327 deflate_state *s 328 ) 329 { 330 int n; /* iterates over tree elements */ 331 332 /* Initialize the trees. */ 333 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; 334 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; 335 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; 336 337 s->dyn_ltree[END_BLOCK].Freq = 1; 338 s->opt_len = s->static_len = 0L; 339 s->last_lit = s->matches = 0; 340 } 341 342 #define SMALLEST 1 343 /* Index within the heap array of least frequent node in the Huffman tree */ 344 345 346 /* =========================================================================== 347 * Remove the smallest element from the heap and recreate the heap with 348 * one less element. Updates heap and heap_len. 349 */ 350 #define pqremove(s, tree, top) \ 351 {\ 352 top = s->heap[SMALLEST]; \ 353 s->heap[SMALLEST] = s->heap[s->heap_len--]; \ 354 pqdownheap(s, tree, SMALLEST); \ 355 } 356 357 /* =========================================================================== 358 * Compares to subtrees, using the tree depth as tie breaker when 359 * the subtrees have equal frequency. This minimizes the worst case length. 360 */ 361 #define smaller(tree, n, m, depth) \ 362 (tree[n].Freq < tree[m].Freq || \ 363 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) 364 365 /* =========================================================================== 366 * Restore the heap property by moving down the tree starting at node k, 367 * exchanging a node with the smallest of its two sons if necessary, stopping 368 * when the heap property is re-established (each father smaller than its 369 * two sons). 370 */ 371 static void pqdownheap( 372 deflate_state *s, 373 ct_data *tree, /* the tree to restore */ 374 int k /* node to move down */ 375 ) 376 { 377 int v = s->heap[k]; 378 int j = k << 1; /* left son of k */ 379 while (j <= s->heap_len) { 380 /* Set j to the smallest of the two sons: */ 381 if (j < s->heap_len && 382 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { 383 j++; 384 } 385 /* Exit if v is smaller than both sons */ 386 if (smaller(tree, v, s->heap[j], s->depth)) break; 387 388 /* Exchange v with the smallest son */ 389 s->heap[k] = s->heap[j]; k = j; 390 391 /* And continue down the tree, setting j to the left son of k */ 392 j <<= 1; 393 } 394 s->heap[k] = v; 395 } 396 397 /* =========================================================================== 398 * Compute the optimal bit lengths for a tree and update the total bit length 399 * for the current block. 400 * IN assertion: the fields freq and dad are set, heap[heap_max] and 401 * above are the tree nodes sorted by increasing frequency. 402 * OUT assertions: the field len is set to the optimal bit length, the 403 * array bl_count contains the frequencies for each bit length. 404 * The length opt_len is updated; static_len is also updated if stree is 405 * not null. 406 */ 407 static void gen_bitlen( 408 deflate_state *s, 409 tree_desc *desc /* the tree descriptor */ 410 ) 411 { 412 ct_data *tree = desc->dyn_tree; 413 int max_code = desc->max_code; 414 const ct_data *stree = desc->stat_desc->static_tree; 415 const int *extra = desc->stat_desc->extra_bits; 416 int base = desc->stat_desc->extra_base; 417 int max_length = desc->stat_desc->max_length; 418 int h; /* heap index */ 419 int n, m; /* iterate over the tree elements */ 420 int bits; /* bit length */ 421 int xbits; /* extra bits */ 422 ush f; /* frequency */ 423 int overflow = 0; /* number of elements with bit length too large */ 424 425 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; 426 427 /* In a first pass, compute the optimal bit lengths (which may 428 * overflow in the case of the bit length tree). 429 */ 430 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ 431 432 for (h = s->heap_max+1; h < HEAP_SIZE; h++) { 433 n = s->heap[h]; 434 bits = tree[tree[n].Dad].Len + 1; 435 if (bits > max_length) bits = max_length, overflow++; 436 tree[n].Len = (ush)bits; 437 /* We overwrite tree[n].Dad which is no longer needed */ 438 439 if (n > max_code) continue; /* not a leaf node */ 440 441 s->bl_count[bits]++; 442 xbits = 0; 443 if (n >= base) xbits = extra[n-base]; 444 f = tree[n].Freq; 445 s->opt_len += (ulg)f * (bits + xbits); 446 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); 447 } 448 if (overflow == 0) return; 449 450 Trace((stderr,"\nbit length overflow\n")); 451 /* This happens for example on obj2 and pic of the Calgary corpus */ 452 453 /* Find the first bit length which could increase: */ 454 do { 455 bits = max_length-1; 456 while (s->bl_count[bits] == 0) bits--; 457 s->bl_count[bits]--; /* move one leaf down the tree */ 458 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ 459 s->bl_count[max_length]--; 460 /* The brother of the overflow item also moves one step up, 461 * but this does not affect bl_count[max_length] 462 */ 463 overflow -= 2; 464 } while (overflow > 0); 465 466 /* Now recompute all bit lengths, scanning in increasing frequency. 467 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all 468 * lengths instead of fixing only the wrong ones. This idea is taken 469 * from 'ar' written by Haruhiko Okumura.) 470 */ 471 for (bits = max_length; bits != 0; bits--) { 472 n = s->bl_count[bits]; 473 while (n != 0) { 474 m = s->heap[--h]; 475 if (m > max_code) continue; 476 if (tree[m].Len != (unsigned) bits) { 477 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); 478 s->opt_len += ((long)bits - (long)tree[m].Len) 479 *(long)tree[m].Freq; 480 tree[m].Len = (ush)bits; 481 } 482 n--; 483 } 484 } 485 } 486 487 /* =========================================================================== 488 * Generate the codes for a given tree and bit counts (which need not be 489 * optimal). 490 * IN assertion: the array bl_count contains the bit length statistics for 491 * the given tree and the field len is set for all tree elements. 492 * OUT assertion: the field code is set for all tree elements of non 493 * zero code length. 494 */ 495 static void gen_codes( 496 ct_data *tree, /* the tree to decorate */ 497 int max_code, /* largest code with non zero frequency */ 498 ush *bl_count /* number of codes at each bit length */ 499 ) 500 { 501 ush next_code[MAX_BITS+1]; /* next code value for each bit length */ 502 ush code = 0; /* running code value */ 503 int bits; /* bit index */ 504 int n; /* code index */ 505 506 /* The distribution counts are first used to generate the code values 507 * without bit reversal. 508 */ 509 for (bits = 1; bits <= MAX_BITS; bits++) { 510 next_code[bits] = code = (code + bl_count[bits-1]) << 1; 511 } 512 /* Check that the bit counts in bl_count are consistent. The last code 513 * must be all ones. 514 */ 515 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, 516 "inconsistent bit counts"); 517 Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); 518 519 for (n = 0; n <= max_code; n++) { 520 int len = tree[n].Len; 521 if (len == 0) continue; 522 /* Now reverse the bits */ 523 tree[n].Code = bitrev32((u32)(next_code[len]++)) >> (32 - len); 524 525 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", 526 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); 527 } 528 } 529 530 /* =========================================================================== 531 * Construct one Huffman tree and assigns the code bit strings and lengths. 532 * Update the total bit length for the current block. 533 * IN assertion: the field freq is set for all tree elements. 534 * OUT assertions: the fields len and code are set to the optimal bit length 535 * and corresponding code. The length opt_len is updated; static_len is 536 * also updated if stree is not null. The field max_code is set. 537 */ 538 static void build_tree( 539 deflate_state *s, 540 tree_desc *desc /* the tree descriptor */ 541 ) 542 { 543 ct_data *tree = desc->dyn_tree; 544 const ct_data *stree = desc->stat_desc->static_tree; 545 int elems = desc->stat_desc->elems; 546 int n, m; /* iterate over heap elements */ 547 int max_code = -1; /* largest code with non zero frequency */ 548 int node; /* new node being created */ 549 550 /* Construct the initial heap, with least frequent element in 551 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. 552 * heap[0] is not used. 553 */ 554 s->heap_len = 0, s->heap_max = HEAP_SIZE; 555 556 for (n = 0; n < elems; n++) { 557 if (tree[n].Freq != 0) { 558 s->heap[++(s->heap_len)] = max_code = n; 559 s->depth[n] = 0; 560 } else { 561 tree[n].Len = 0; 562 } 563 } 564 565 /* The pkzip format requires that at least one distance code exists, 566 * and that at least one bit should be sent even if there is only one 567 * possible code. So to avoid special checks later on we force at least 568 * two codes of non zero frequency. 569 */ 570 while (s->heap_len < 2) { 571 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); 572 tree[node].Freq = 1; 573 s->depth[node] = 0; 574 s->opt_len--; if (stree) s->static_len -= stree[node].Len; 575 /* node is 0 or 1 so it does not have extra bits */ 576 } 577 desc->max_code = max_code; 578 579 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, 580 * establish sub-heaps of increasing lengths: 581 */ 582 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); 583 584 /* Construct the Huffman tree by repeatedly combining the least two 585 * frequent nodes. 586 */ 587 node = elems; /* next internal node of the tree */ 588 do { 589 pqremove(s, tree, n); /* n = node of least frequency */ 590 m = s->heap[SMALLEST]; /* m = node of next least frequency */ 591 592 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ 593 s->heap[--(s->heap_max)] = m; 594 595 /* Create a new node father of n and m */ 596 tree[node].Freq = tree[n].Freq + tree[m].Freq; 597 s->depth[node] = (uch) (max(s->depth[n], s->depth[m]) + 1); 598 tree[n].Dad = tree[m].Dad = (ush)node; 599 #ifdef DUMP_BL_TREE 600 if (tree == s->bl_tree) { 601 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", 602 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); 603 } 604 #endif 605 /* and insert the new node in the heap */ 606 s->heap[SMALLEST] = node++; 607 pqdownheap(s, tree, SMALLEST); 608 609 } while (s->heap_len >= 2); 610 611 s->heap[--(s->heap_max)] = s->heap[SMALLEST]; 612 613 /* At this point, the fields freq and dad are set. We can now 614 * generate the bit lengths. 615 */ 616 gen_bitlen(s, (tree_desc *)desc); 617 618 /* The field len is now set, we can generate the bit codes */ 619 gen_codes ((ct_data *)tree, max_code, s->bl_count); 620 } 621 622 /* =========================================================================== 623 * Scan a literal or distance tree to determine the frequencies of the codes 624 * in the bit length tree. 625 */ 626 static void scan_tree( 627 deflate_state *s, 628 ct_data *tree, /* the tree to be scanned */ 629 int max_code /* and its largest code of non zero frequency */ 630 ) 631 { 632 int n; /* iterates over all tree elements */ 633 int prevlen = -1; /* last emitted length */ 634 int curlen; /* length of current code */ 635 int nextlen = tree[0].Len; /* length of next code */ 636 int count = 0; /* repeat count of the current code */ 637 int max_count = 7; /* max repeat count */ 638 int min_count = 4; /* min repeat count */ 639 640 if (nextlen == 0) max_count = 138, min_count = 3; 641 tree[max_code+1].Len = (ush)0xffff; /* guard */ 642 643 for (n = 0; n <= max_code; n++) { 644 curlen = nextlen; nextlen = tree[n+1].Len; 645 if (++count < max_count && curlen == nextlen) { 646 continue; 647 } else if (count < min_count) { 648 s->bl_tree[curlen].Freq += count; 649 } else if (curlen != 0) { 650 if (curlen != prevlen) s->bl_tree[curlen].Freq++; 651 s->bl_tree[REP_3_6].Freq++; 652 } else if (count <= 10) { 653 s->bl_tree[REPZ_3_10].Freq++; 654 } else { 655 s->bl_tree[REPZ_11_138].Freq++; 656 } 657 count = 0; prevlen = curlen; 658 if (nextlen == 0) { 659 max_count = 138, min_count = 3; 660 } else if (curlen == nextlen) { 661 max_count = 6, min_count = 3; 662 } else { 663 max_count = 7, min_count = 4; 664 } 665 } 666 } 667 668 /* =========================================================================== 669 * Send a literal or distance tree in compressed form, using the codes in 670 * bl_tree. 671 */ 672 static void send_tree( 673 deflate_state *s, 674 ct_data *tree, /* the tree to be scanned */ 675 int max_code /* and its largest code of non zero frequency */ 676 ) 677 { 678 int n; /* iterates over all tree elements */ 679 int prevlen = -1; /* last emitted length */ 680 int curlen; /* length of current code */ 681 int nextlen = tree[0].Len; /* length of next code */ 682 int count = 0; /* repeat count of the current code */ 683 int max_count = 7; /* max repeat count */ 684 int min_count = 4; /* min repeat count */ 685 686 /* tree[max_code+1].Len = -1; */ /* guard already set */ 687 if (nextlen == 0) max_count = 138, min_count = 3; 688 689 for (n = 0; n <= max_code; n++) { 690 curlen = nextlen; nextlen = tree[n+1].Len; 691 if (++count < max_count && curlen == nextlen) { 692 continue; 693 } else if (count < min_count) { 694 do { send_code(s, curlen, s->bl_tree); } while (--count != 0); 695 696 } else if (curlen != 0) { 697 if (curlen != prevlen) { 698 send_code(s, curlen, s->bl_tree); count--; 699 } 700 Assert(count >= 3 && count <= 6, " 3_6?"); 701 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); 702 703 } else if (count <= 10) { 704 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); 705 706 } else { 707 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); 708 } 709 count = 0; prevlen = curlen; 710 if (nextlen == 0) { 711 max_count = 138, min_count = 3; 712 } else if (curlen == nextlen) { 713 max_count = 6, min_count = 3; 714 } else { 715 max_count = 7, min_count = 4; 716 } 717 } 718 } 719 720 /* =========================================================================== 721 * Construct the Huffman tree for the bit lengths and return the index in 722 * bl_order of the last bit length code to send. 723 */ 724 static int build_bl_tree( 725 deflate_state *s 726 ) 727 { 728 int max_blindex; /* index of last bit length code of non zero freq */ 729 730 /* Determine the bit length frequencies for literal and distance trees */ 731 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); 732 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); 733 734 /* Build the bit length tree: */ 735 build_tree(s, (tree_desc *)(&(s->bl_desc))); 736 /* opt_len now includes the length of the tree representations, except 737 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. 738 */ 739 740 /* Determine the number of bit length codes to send. The pkzip format 741 * requires that at least 4 bit length codes be sent. (appnote.txt says 742 * 3 but the actual value used is 4.) 743 */ 744 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { 745 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; 746 } 747 /* Update opt_len to include the bit length tree and counts */ 748 s->opt_len += 3*(max_blindex+1) + 5+5+4; 749 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", 750 s->opt_len, s->static_len)); 751 752 return max_blindex; 753 } 754 755 /* =========================================================================== 756 * Send the header for a block using dynamic Huffman trees: the counts, the 757 * lengths of the bit length codes, the literal tree and the distance tree. 758 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. 759 */ 760 static void send_all_trees( 761 deflate_state *s, 762 int lcodes, /* number of codes for each tree */ 763 int dcodes, /* number of codes for each tree */ 764 int blcodes /* number of codes for each tree */ 765 ) 766 { 767 int rank; /* index in bl_order */ 768 769 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); 770 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, 771 "too many codes"); 772 Tracev((stderr, "\nbl counts: ")); 773 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ 774 send_bits(s, dcodes-1, 5); 775 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ 776 for (rank = 0; rank < blcodes; rank++) { 777 Tracev((stderr, "\nbl code %2d ", bl_order[rank])); 778 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); 779 } 780 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); 781 782 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ 783 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); 784 785 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ 786 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); 787 } 788 789 /* =========================================================================== 790 * Send a stored block 791 */ 792 void zlib_tr_stored_block( 793 deflate_state *s, 794 char *buf, /* input block */ 795 ulg stored_len, /* length of input block */ 796 int eof /* true if this is the last block for a file */ 797 ) 798 { 799 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */ 800 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; 801 s->compressed_len += (stored_len + 4) << 3; 802 803 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ 804 } 805 806 /* Send just the `stored block' type code without any length bytes or data. 807 */ 808 void zlib_tr_stored_type_only( 809 deflate_state *s 810 ) 811 { 812 send_bits(s, (STORED_BLOCK << 1), 3); 813 bi_windup(s); 814 s->compressed_len = (s->compressed_len + 3) & ~7L; 815 } 816 817 818 /* =========================================================================== 819 * Send one empty static block to give enough lookahead for inflate. 820 * This takes 10 bits, of which 7 may remain in the bit buffer. 821 * The current inflate code requires 9 bits of lookahead. If the 822 * last two codes for the previous block (real code plus EOB) were coded 823 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode 824 * the last real code. In this case we send two empty static blocks instead 825 * of one. (There are no problems if the previous block is stored or fixed.) 826 * To simplify the code, we assume the worst case of last real code encoded 827 * on one bit only. 828 */ 829 void zlib_tr_align( 830 deflate_state *s 831 ) 832 { 833 send_bits(s, STATIC_TREES<<1, 3); 834 send_code(s, END_BLOCK, static_ltree); 835 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ 836 bi_flush(s); 837 /* Of the 10 bits for the empty block, we have already sent 838 * (10 - bi_valid) bits. The lookahead for the last real code (before 839 * the EOB of the previous block) was thus at least one plus the length 840 * of the EOB plus what we have just sent of the empty static block. 841 */ 842 if (1 + s->last_eob_len + 10 - s->bi_valid < 9) { 843 send_bits(s, STATIC_TREES<<1, 3); 844 send_code(s, END_BLOCK, static_ltree); 845 s->compressed_len += 10L; 846 bi_flush(s); 847 } 848 s->last_eob_len = 7; 849 } 850 851 /* =========================================================================== 852 * Determine the best encoding for the current block: dynamic trees, static 853 * trees or store, and output the encoded block to the zip file. This function 854 * returns the total compressed length for the file so far. 855 */ 856 ulg zlib_tr_flush_block( 857 deflate_state *s, 858 char *buf, /* input block, or NULL if too old */ 859 ulg stored_len, /* length of input block */ 860 int eof /* true if this is the last block for a file */ 861 ) 862 { 863 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ 864 int max_blindex = 0; /* index of last bit length code of non zero freq */ 865 866 /* Build the Huffman trees unless a stored block is forced */ 867 if (s->level > 0) { 868 869 /* Check if the file is ascii or binary */ 870 if (s->data_type == Z_UNKNOWN) set_data_type(s); 871 872 /* Construct the literal and distance trees */ 873 build_tree(s, (tree_desc *)(&(s->l_desc))); 874 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, 875 s->static_len)); 876 877 build_tree(s, (tree_desc *)(&(s->d_desc))); 878 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, 879 s->static_len)); 880 /* At this point, opt_len and static_len are the total bit lengths of 881 * the compressed block data, excluding the tree representations. 882 */ 883 884 /* Build the bit length tree for the above two trees, and get the index 885 * in bl_order of the last bit length code to send. 886 */ 887 max_blindex = build_bl_tree(s); 888 889 /* Determine the best encoding. Compute first the block length in bytes*/ 890 opt_lenb = (s->opt_len+3+7)>>3; 891 static_lenb = (s->static_len+3+7)>>3; 892 893 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", 894 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, 895 s->last_lit)); 896 897 if (static_lenb <= opt_lenb) opt_lenb = static_lenb; 898 899 } else { 900 Assert(buf != (char*)0, "lost buf"); 901 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ 902 } 903 904 /* If compression failed and this is the first and last block, 905 * and if the .zip file can be seeked (to rewrite the local header), 906 * the whole file is transformed into a stored file: 907 */ 908 #ifdef STORED_FILE_OK 909 # ifdef FORCE_STORED_FILE 910 if (eof && s->compressed_len == 0L) { /* force stored file */ 911 # else 912 if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) { 913 # endif 914 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */ 915 if (buf == (char*)0) error ("block vanished"); 916 917 copy_block(s, buf, (unsigned)stored_len, 0); /* without header */ 918 s->compressed_len = stored_len << 3; 919 s->method = STORED; 920 } else 921 #endif /* STORED_FILE_OK */ 922 923 #ifdef FORCE_STORED 924 if (buf != (char*)0) { /* force stored block */ 925 #else 926 if (stored_len+4 <= opt_lenb && buf != (char*)0) { 927 /* 4: two words for the lengths */ 928 #endif 929 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. 930 * Otherwise we can't have processed more than WSIZE input bytes since 931 * the last block flush, because compression would have been 932 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to 933 * transform a block into a stored block. 934 */ 935 zlib_tr_stored_block(s, buf, stored_len, eof); 936 937 #ifdef FORCE_STATIC 938 } else if (static_lenb >= 0) { /* force static trees */ 939 #else 940 } else if (static_lenb == opt_lenb) { 941 #endif 942 send_bits(s, (STATIC_TREES<<1)+eof, 3); 943 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree); 944 s->compressed_len += 3 + s->static_len; 945 } else { 946 send_bits(s, (DYN_TREES<<1)+eof, 3); 947 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, 948 max_blindex+1); 949 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree); 950 s->compressed_len += 3 + s->opt_len; 951 } 952 Assert (s->compressed_len == s->bits_sent, "bad compressed size"); 953 init_block(s); 954 955 if (eof) { 956 bi_windup(s); 957 s->compressed_len += 7; /* align on byte boundary */ 958 } 959 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, 960 s->compressed_len-7*eof)); 961 962 return s->compressed_len >> 3; 963 } 964 965 /* =========================================================================== 966 * Save the match info and tally the frequency counts. Return true if 967 * the current block must be flushed. 968 */ 969 int zlib_tr_tally( 970 deflate_state *s, 971 unsigned dist, /* distance of matched string */ 972 unsigned lc /* match length-MIN_MATCH or unmatched char (if dist==0) */ 973 ) 974 { 975 s->d_buf[s->last_lit] = (ush)dist; 976 s->l_buf[s->last_lit++] = (uch)lc; 977 if (dist == 0) { 978 /* lc is the unmatched char */ 979 s->dyn_ltree[lc].Freq++; 980 } else { 981 s->matches++; 982 /* Here, lc is the match length - MIN_MATCH */ 983 dist--; /* dist = match distance - 1 */ 984 Assert((ush)dist < (ush)MAX_DIST(s) && 985 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && 986 (ush)d_code(dist) < (ush)D_CODES, "zlib_tr_tally: bad match"); 987 988 s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++; 989 s->dyn_dtree[d_code(dist)].Freq++; 990 } 991 992 /* Try to guess if it is profitable to stop the current block here */ 993 if ((s->last_lit & 0xfff) == 0 && s->level > 2) { 994 /* Compute an upper bound for the compressed length */ 995 ulg out_length = (ulg)s->last_lit*8L; 996 ulg in_length = (ulg)((long)s->strstart - s->block_start); 997 int dcode; 998 for (dcode = 0; dcode < D_CODES; dcode++) { 999 out_length += (ulg)s->dyn_dtree[dcode].Freq * 1000 (5L+extra_dbits[dcode]); 1001 } 1002 out_length >>= 3; 1003 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", 1004 s->last_lit, in_length, out_length, 1005 100L - out_length*100L/in_length)); 1006 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; 1007 } 1008 return (s->last_lit == s->lit_bufsize-1); 1009 /* We avoid equality with lit_bufsize because of wraparound at 64K 1010 * on 16 bit machines and because stored blocks are restricted to 1011 * 64K-1 bytes. 1012 */ 1013 } 1014 1015 /* =========================================================================== 1016 * Send the block data compressed using the given Huffman trees 1017 */ 1018 static void compress_block( 1019 deflate_state *s, 1020 ct_data *ltree, /* literal tree */ 1021 ct_data *dtree /* distance tree */ 1022 ) 1023 { 1024 unsigned dist; /* distance of matched string */ 1025 int lc; /* match length or unmatched char (if dist == 0) */ 1026 unsigned lx = 0; /* running index in l_buf */ 1027 unsigned code; /* the code to send */ 1028 int extra; /* number of extra bits to send */ 1029 1030 if (s->last_lit != 0) do { 1031 dist = s->d_buf[lx]; 1032 lc = s->l_buf[lx++]; 1033 if (dist == 0) { 1034 send_code(s, lc, ltree); /* send a literal byte */ 1035 Tracecv(isgraph(lc), (stderr," '%c' ", lc)); 1036 } else { 1037 /* Here, lc is the match length - MIN_MATCH */ 1038 code = length_code[lc]; 1039 send_code(s, code+LITERALS+1, ltree); /* send the length code */ 1040 extra = extra_lbits[code]; 1041 if (extra != 0) { 1042 lc -= base_length[code]; 1043 send_bits(s, lc, extra); /* send the extra length bits */ 1044 } 1045 dist--; /* dist is now the match distance - 1 */ 1046 code = d_code(dist); 1047 Assert (code < D_CODES, "bad d_code"); 1048 1049 send_code(s, code, dtree); /* send the distance code */ 1050 extra = extra_dbits[code]; 1051 if (extra != 0) { 1052 dist -= base_dist[code]; 1053 send_bits(s, dist, extra); /* send the extra distance bits */ 1054 } 1055 } /* literal or match pair ? */ 1056 1057 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ 1058 Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow"); 1059 1060 } while (lx < s->last_lit); 1061 1062 send_code(s, END_BLOCK, ltree); 1063 s->last_eob_len = ltree[END_BLOCK].Len; 1064 } 1065 1066 /* =========================================================================== 1067 * Set the data type to ASCII or BINARY, using a crude approximation: 1068 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. 1069 * IN assertion: the fields freq of dyn_ltree are set and the total of all 1070 * frequencies does not exceed 64K (to fit in an int on 16 bit machines). 1071 */ 1072 static void set_data_type( 1073 deflate_state *s 1074 ) 1075 { 1076 int n = 0; 1077 unsigned ascii_freq = 0; 1078 unsigned bin_freq = 0; 1079 while (n < 7) bin_freq += s->dyn_ltree[n++].Freq; 1080 while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq; 1081 while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq; 1082 s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII); 1083 } 1084 1085 /* =========================================================================== 1086 * Copy a stored block, storing first the length and its 1087 * one's complement if requested. 1088 */ 1089 static void copy_block( 1090 deflate_state *s, 1091 char *buf, /* the input data */ 1092 unsigned len, /* its length */ 1093 int header /* true if block header must be written */ 1094 ) 1095 { 1096 bi_windup(s); /* align on byte boundary */ 1097 s->last_eob_len = 8; /* enough lookahead for inflate */ 1098 1099 if (header) { 1100 put_short(s, (ush)len); 1101 put_short(s, (ush)~len); 1102 #ifdef DEBUG_ZLIB 1103 s->bits_sent += 2*16; 1104 #endif 1105 } 1106 #ifdef DEBUG_ZLIB 1107 s->bits_sent += (ulg)len<<3; 1108 #endif 1109 /* bundle up the put_byte(s, *buf++) calls */ 1110 memcpy(&s->pending_buf[s->pending], buf, len); 1111 s->pending += len; 1112 } 1113 1114