xref: /openbmc/linux/lib/zlib_deflate/deftree.c (revision ae213c44)
1 /* +++ trees.c */
2 /* trees.c -- output deflated data using Huffman coding
3  * Copyright (C) 1995-1996 Jean-loup Gailly
4  * For conditions of distribution and use, see copyright notice in zlib.h
5  */
6 
7 /*
8  *  ALGORITHM
9  *
10  *      The "deflation" process uses several Huffman trees. The more
11  *      common source values are represented by shorter bit sequences.
12  *
13  *      Each code tree is stored in a compressed form which is itself
14  * a Huffman encoding of the lengths of all the code strings (in
15  * ascending order by source values).  The actual code strings are
16  * reconstructed from the lengths in the inflate process, as described
17  * in the deflate specification.
18  *
19  *  REFERENCES
20  *
21  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23  *
24  *      Storer, James A.
25  *          Data Compression:  Methods and Theory, pp. 49-50.
26  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
27  *
28  *      Sedgewick, R.
29  *          Algorithms, p290.
30  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
31  */
32 
33 /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
34 
35 /* #include "deflate.h" */
36 
37 #include <linux/zutil.h>
38 #include <linux/bitrev.h>
39 #include "defutil.h"
40 
41 #ifdef DEBUG_ZLIB
42 #  include <ctype.h>
43 #endif
44 
45 /* ===========================================================================
46  * Constants
47  */
48 
49 #define MAX_BL_BITS 7
50 /* Bit length codes must not exceed MAX_BL_BITS bits */
51 
52 #define END_BLOCK 256
53 /* end of block literal code */
54 
55 #define REP_3_6      16
56 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
57 
58 #define REPZ_3_10    17
59 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
60 
61 #define REPZ_11_138  18
62 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
63 
64 static const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
65    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
66 
67 static const int extra_dbits[D_CODES] /* extra bits for each distance code */
68    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
69 
70 static const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
71    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
72 
73 static const uch bl_order[BL_CODES]
74    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
75 /* The lengths of the bit length codes are sent in order of decreasing
76  * probability, to avoid transmitting the lengths for unused bit length codes.
77  */
78 
79 #define Buf_size (8 * 2*sizeof(char))
80 /* Number of bits used within bi_buf. (bi_buf might be implemented on
81  * more than 16 bits on some systems.)
82  */
83 
84 /* ===========================================================================
85  * Local data. These are initialized only once.
86  */
87 
88 static ct_data static_ltree[L_CODES+2];
89 /* The static literal tree. Since the bit lengths are imposed, there is no
90  * need for the L_CODES extra codes used during heap construction. However
91  * The codes 286 and 287 are needed to build a canonical tree (see zlib_tr_init
92  * below).
93  */
94 
95 static ct_data static_dtree[D_CODES];
96 /* The static distance tree. (Actually a trivial tree since all codes use
97  * 5 bits.)
98  */
99 
100 static uch dist_code[512];
101 /* distance codes. The first 256 values correspond to the distances
102  * 3 .. 258, the last 256 values correspond to the top 8 bits of
103  * the 15 bit distances.
104  */
105 
106 static uch length_code[MAX_MATCH-MIN_MATCH+1];
107 /* length code for each normalized match length (0 == MIN_MATCH) */
108 
109 static int base_length[LENGTH_CODES];
110 /* First normalized length for each code (0 = MIN_MATCH) */
111 
112 static int base_dist[D_CODES];
113 /* First normalized distance for each code (0 = distance of 1) */
114 
115 struct static_tree_desc_s {
116     const ct_data *static_tree;  /* static tree or NULL */
117     const int *extra_bits;       /* extra bits for each code or NULL */
118     int     extra_base;          /* base index for extra_bits */
119     int     elems;               /* max number of elements in the tree */
120     int     max_length;          /* max bit length for the codes */
121 };
122 
123 static static_tree_desc  static_l_desc =
124 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
125 
126 static static_tree_desc  static_d_desc =
127 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
128 
129 static static_tree_desc  static_bl_desc =
130 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
131 
132 /* ===========================================================================
133  * Local (static) routines in this file.
134  */
135 
136 static void tr_static_init (void);
137 static void init_block     (deflate_state *s);
138 static void pqdownheap     (deflate_state *s, ct_data *tree, int k);
139 static void gen_bitlen     (deflate_state *s, tree_desc *desc);
140 static void gen_codes      (ct_data *tree, int max_code, ush *bl_count);
141 static void build_tree     (deflate_state *s, tree_desc *desc);
142 static void scan_tree      (deflate_state *s, ct_data *tree, int max_code);
143 static void send_tree      (deflate_state *s, ct_data *tree, int max_code);
144 static int  build_bl_tree  (deflate_state *s);
145 static void send_all_trees (deflate_state *s, int lcodes, int dcodes,
146                            int blcodes);
147 static void compress_block (deflate_state *s, ct_data *ltree,
148                            ct_data *dtree);
149 static void set_data_type  (deflate_state *s);
150 static void bi_windup      (deflate_state *s);
151 static void bi_flush       (deflate_state *s);
152 static void copy_block     (deflate_state *s, char *buf, unsigned len,
153                            int header);
154 
155 #ifndef DEBUG_ZLIB
156 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
157    /* Send a code of the given tree. c and tree must not have side effects */
158 
159 #else /* DEBUG_ZLIB */
160 #  define send_code(s, c, tree) \
161      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
162        send_bits(s, tree[c].Code, tree[c].Len); }
163 #endif
164 
165 #define d_code(dist) \
166    ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
167 /* Mapping from a distance to a distance code. dist is the distance - 1 and
168  * must not have side effects. dist_code[256] and dist_code[257] are never
169  * used.
170  */
171 
172 /* ===========================================================================
173  * Send a value on a given number of bits.
174  * IN assertion: length <= 16 and value fits in length bits.
175  */
176 #ifdef DEBUG_ZLIB
177 static void send_bits      (deflate_state *s, int value, int length);
178 
179 static void send_bits(
180 	deflate_state *s,
181 	int value,  /* value to send */
182 	int length  /* number of bits */
183 )
184 {
185     Tracevv((stderr," l %2d v %4x ", length, value));
186     Assert(length > 0 && length <= 15, "invalid length");
187     s->bits_sent += (ulg)length;
188 
189     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
190      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
191      * unused bits in value.
192      */
193     if (s->bi_valid > (int)Buf_size - length) {
194         s->bi_buf |= (value << s->bi_valid);
195         put_short(s, s->bi_buf);
196         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
197         s->bi_valid += length - Buf_size;
198     } else {
199         s->bi_buf |= value << s->bi_valid;
200         s->bi_valid += length;
201     }
202 }
203 #else /* !DEBUG_ZLIB */
204 
205 #define send_bits(s, value, length) \
206 { int len = length;\
207   if (s->bi_valid > (int)Buf_size - len) {\
208     int val = value;\
209     s->bi_buf |= (val << s->bi_valid);\
210     put_short(s, s->bi_buf);\
211     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
212     s->bi_valid += len - Buf_size;\
213   } else {\
214     s->bi_buf |= (value) << s->bi_valid;\
215     s->bi_valid += len;\
216   }\
217 }
218 #endif /* DEBUG_ZLIB */
219 
220 /* ===========================================================================
221  * Initialize the various 'constant' tables. In a multi-threaded environment,
222  * this function may be called by two threads concurrently, but this is
223  * harmless since both invocations do exactly the same thing.
224  */
225 static void tr_static_init(void)
226 {
227     static int static_init_done;
228     int n;        /* iterates over tree elements */
229     int bits;     /* bit counter */
230     int length;   /* length value */
231     int code;     /* code value */
232     int dist;     /* distance index */
233     ush bl_count[MAX_BITS+1];
234     /* number of codes at each bit length for an optimal tree */
235 
236     if (static_init_done) return;
237 
238     /* Initialize the mapping length (0..255) -> length code (0..28) */
239     length = 0;
240     for (code = 0; code < LENGTH_CODES-1; code++) {
241         base_length[code] = length;
242         for (n = 0; n < (1<<extra_lbits[code]); n++) {
243             length_code[length++] = (uch)code;
244         }
245     }
246     Assert (length == 256, "tr_static_init: length != 256");
247     /* Note that the length 255 (match length 258) can be represented
248      * in two different ways: code 284 + 5 bits or code 285, so we
249      * overwrite length_code[255] to use the best encoding:
250      */
251     length_code[length-1] = (uch)code;
252 
253     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
254     dist = 0;
255     for (code = 0 ; code < 16; code++) {
256         base_dist[code] = dist;
257         for (n = 0; n < (1<<extra_dbits[code]); n++) {
258             dist_code[dist++] = (uch)code;
259         }
260     }
261     Assert (dist == 256, "tr_static_init: dist != 256");
262     dist >>= 7; /* from now on, all distances are divided by 128 */
263     for ( ; code < D_CODES; code++) {
264         base_dist[code] = dist << 7;
265         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
266             dist_code[256 + dist++] = (uch)code;
267         }
268     }
269     Assert (dist == 256, "tr_static_init: 256+dist != 512");
270 
271     /* Construct the codes of the static literal tree */
272     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
273     n = 0;
274     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
275     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
276     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
277     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
278     /* Codes 286 and 287 do not exist, but we must include them in the
279      * tree construction to get a canonical Huffman tree (longest code
280      * all ones)
281      */
282     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
283 
284     /* The static distance tree is trivial: */
285     for (n = 0; n < D_CODES; n++) {
286         static_dtree[n].Len = 5;
287         static_dtree[n].Code = bitrev32((u32)n) >> (32 - 5);
288     }
289     static_init_done = 1;
290 }
291 
292 /* ===========================================================================
293  * Initialize the tree data structures for a new zlib stream.
294  */
295 void zlib_tr_init(
296 	deflate_state *s
297 )
298 {
299     tr_static_init();
300 
301     s->compressed_len = 0L;
302 
303     s->l_desc.dyn_tree = s->dyn_ltree;
304     s->l_desc.stat_desc = &static_l_desc;
305 
306     s->d_desc.dyn_tree = s->dyn_dtree;
307     s->d_desc.stat_desc = &static_d_desc;
308 
309     s->bl_desc.dyn_tree = s->bl_tree;
310     s->bl_desc.stat_desc = &static_bl_desc;
311 
312     s->bi_buf = 0;
313     s->bi_valid = 0;
314     s->last_eob_len = 8; /* enough lookahead for inflate */
315 #ifdef DEBUG_ZLIB
316     s->bits_sent = 0L;
317 #endif
318 
319     /* Initialize the first block of the first file: */
320     init_block(s);
321 }
322 
323 /* ===========================================================================
324  * Initialize a new block.
325  */
326 static void init_block(
327 	deflate_state *s
328 )
329 {
330     int n; /* iterates over tree elements */
331 
332     /* Initialize the trees. */
333     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
334     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
335     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
336 
337     s->dyn_ltree[END_BLOCK].Freq = 1;
338     s->opt_len = s->static_len = 0L;
339     s->last_lit = s->matches = 0;
340 }
341 
342 #define SMALLEST 1
343 /* Index within the heap array of least frequent node in the Huffman tree */
344 
345 
346 /* ===========================================================================
347  * Remove the smallest element from the heap and recreate the heap with
348  * one less element. Updates heap and heap_len.
349  */
350 #define pqremove(s, tree, top) \
351 {\
352     top = s->heap[SMALLEST]; \
353     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
354     pqdownheap(s, tree, SMALLEST); \
355 }
356 
357 /* ===========================================================================
358  * Compares to subtrees, using the tree depth as tie breaker when
359  * the subtrees have equal frequency. This minimizes the worst case length.
360  */
361 #define smaller(tree, n, m, depth) \
362    (tree[n].Freq < tree[m].Freq || \
363    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
364 
365 /* ===========================================================================
366  * Restore the heap property by moving down the tree starting at node k,
367  * exchanging a node with the smallest of its two sons if necessary, stopping
368  * when the heap property is re-established (each father smaller than its
369  * two sons).
370  */
371 static void pqdownheap(
372 	deflate_state *s,
373 	ct_data *tree,  /* the tree to restore */
374 	int k		/* node to move down */
375 )
376 {
377     int v = s->heap[k];
378     int j = k << 1;  /* left son of k */
379     while (j <= s->heap_len) {
380         /* Set j to the smallest of the two sons: */
381         if (j < s->heap_len &&
382             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
383             j++;
384         }
385         /* Exit if v is smaller than both sons */
386         if (smaller(tree, v, s->heap[j], s->depth)) break;
387 
388         /* Exchange v with the smallest son */
389         s->heap[k] = s->heap[j];  k = j;
390 
391         /* And continue down the tree, setting j to the left son of k */
392         j <<= 1;
393     }
394     s->heap[k] = v;
395 }
396 
397 /* ===========================================================================
398  * Compute the optimal bit lengths for a tree and update the total bit length
399  * for the current block.
400  * IN assertion: the fields freq and dad are set, heap[heap_max] and
401  *    above are the tree nodes sorted by increasing frequency.
402  * OUT assertions: the field len is set to the optimal bit length, the
403  *     array bl_count contains the frequencies for each bit length.
404  *     The length opt_len is updated; static_len is also updated if stree is
405  *     not null.
406  */
407 static void gen_bitlen(
408 	deflate_state *s,
409 	tree_desc *desc    /* the tree descriptor */
410 )
411 {
412     ct_data *tree        = desc->dyn_tree;
413     int max_code         = desc->max_code;
414     const ct_data *stree = desc->stat_desc->static_tree;
415     const int *extra     = desc->stat_desc->extra_bits;
416     int base             = desc->stat_desc->extra_base;
417     int max_length       = desc->stat_desc->max_length;
418     int h;              /* heap index */
419     int n, m;           /* iterate over the tree elements */
420     int bits;           /* bit length */
421     int xbits;          /* extra bits */
422     ush f;              /* frequency */
423     int overflow = 0;   /* number of elements with bit length too large */
424 
425     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
426 
427     /* In a first pass, compute the optimal bit lengths (which may
428      * overflow in the case of the bit length tree).
429      */
430     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
431 
432     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
433         n = s->heap[h];
434         bits = tree[tree[n].Dad].Len + 1;
435         if (bits > max_length) bits = max_length, overflow++;
436         tree[n].Len = (ush)bits;
437         /* We overwrite tree[n].Dad which is no longer needed */
438 
439         if (n > max_code) continue; /* not a leaf node */
440 
441         s->bl_count[bits]++;
442         xbits = 0;
443         if (n >= base) xbits = extra[n-base];
444         f = tree[n].Freq;
445         s->opt_len += (ulg)f * (bits + xbits);
446         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
447     }
448     if (overflow == 0) return;
449 
450     Trace((stderr,"\nbit length overflow\n"));
451     /* This happens for example on obj2 and pic of the Calgary corpus */
452 
453     /* Find the first bit length which could increase: */
454     do {
455         bits = max_length-1;
456         while (s->bl_count[bits] == 0) bits--;
457         s->bl_count[bits]--;      /* move one leaf down the tree */
458         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
459         s->bl_count[max_length]--;
460         /* The brother of the overflow item also moves one step up,
461          * but this does not affect bl_count[max_length]
462          */
463         overflow -= 2;
464     } while (overflow > 0);
465 
466     /* Now recompute all bit lengths, scanning in increasing frequency.
467      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
468      * lengths instead of fixing only the wrong ones. This idea is taken
469      * from 'ar' written by Haruhiko Okumura.)
470      */
471     for (bits = max_length; bits != 0; bits--) {
472         n = s->bl_count[bits];
473         while (n != 0) {
474             m = s->heap[--h];
475             if (m > max_code) continue;
476             if (tree[m].Len != (unsigned) bits) {
477                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
478                 s->opt_len += ((long)bits - (long)tree[m].Len)
479                               *(long)tree[m].Freq;
480                 tree[m].Len = (ush)bits;
481             }
482             n--;
483         }
484     }
485 }
486 
487 /* ===========================================================================
488  * Generate the codes for a given tree and bit counts (which need not be
489  * optimal).
490  * IN assertion: the array bl_count contains the bit length statistics for
491  * the given tree and the field len is set for all tree elements.
492  * OUT assertion: the field code is set for all tree elements of non
493  *     zero code length.
494  */
495 static void gen_codes(
496 	ct_data *tree,             /* the tree to decorate */
497 	int max_code,              /* largest code with non zero frequency */
498 	ush *bl_count             /* number of codes at each bit length */
499 )
500 {
501     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
502     ush code = 0;              /* running code value */
503     int bits;                  /* bit index */
504     int n;                     /* code index */
505 
506     /* The distribution counts are first used to generate the code values
507      * without bit reversal.
508      */
509     for (bits = 1; bits <= MAX_BITS; bits++) {
510         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
511     }
512     /* Check that the bit counts in bl_count are consistent. The last code
513      * must be all ones.
514      */
515     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
516             "inconsistent bit counts");
517     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
518 
519     for (n = 0;  n <= max_code; n++) {
520         int len = tree[n].Len;
521         if (len == 0) continue;
522         /* Now reverse the bits */
523         tree[n].Code = bitrev32((u32)(next_code[len]++)) >> (32 - len);
524 
525         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
526              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
527     }
528 }
529 
530 /* ===========================================================================
531  * Construct one Huffman tree and assigns the code bit strings and lengths.
532  * Update the total bit length for the current block.
533  * IN assertion: the field freq is set for all tree elements.
534  * OUT assertions: the fields len and code are set to the optimal bit length
535  *     and corresponding code. The length opt_len is updated; static_len is
536  *     also updated if stree is not null. The field max_code is set.
537  */
538 static void build_tree(
539 	deflate_state *s,
540 	tree_desc *desc	 /* the tree descriptor */
541 )
542 {
543     ct_data *tree         = desc->dyn_tree;
544     const ct_data *stree  = desc->stat_desc->static_tree;
545     int elems             = desc->stat_desc->elems;
546     int n, m;          /* iterate over heap elements */
547     int max_code = -1; /* largest code with non zero frequency */
548     int node;          /* new node being created */
549 
550     /* Construct the initial heap, with least frequent element in
551      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
552      * heap[0] is not used.
553      */
554     s->heap_len = 0, s->heap_max = HEAP_SIZE;
555 
556     for (n = 0; n < elems; n++) {
557         if (tree[n].Freq != 0) {
558             s->heap[++(s->heap_len)] = max_code = n;
559             s->depth[n] = 0;
560         } else {
561             tree[n].Len = 0;
562         }
563     }
564 
565     /* The pkzip format requires that at least one distance code exists,
566      * and that at least one bit should be sent even if there is only one
567      * possible code. So to avoid special checks later on we force at least
568      * two codes of non zero frequency.
569      */
570     while (s->heap_len < 2) {
571         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
572         tree[node].Freq = 1;
573         s->depth[node] = 0;
574         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
575         /* node is 0 or 1 so it does not have extra bits */
576     }
577     desc->max_code = max_code;
578 
579     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
580      * establish sub-heaps of increasing lengths:
581      */
582     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
583 
584     /* Construct the Huffman tree by repeatedly combining the least two
585      * frequent nodes.
586      */
587     node = elems;              /* next internal node of the tree */
588     do {
589         pqremove(s, tree, n);  /* n = node of least frequency */
590         m = s->heap[SMALLEST]; /* m = node of next least frequency */
591 
592         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
593         s->heap[--(s->heap_max)] = m;
594 
595         /* Create a new node father of n and m */
596         tree[node].Freq = tree[n].Freq + tree[m].Freq;
597         s->depth[node] = (uch) (max(s->depth[n], s->depth[m]) + 1);
598         tree[n].Dad = tree[m].Dad = (ush)node;
599 #ifdef DUMP_BL_TREE
600         if (tree == s->bl_tree) {
601             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
602                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
603         }
604 #endif
605         /* and insert the new node in the heap */
606         s->heap[SMALLEST] = node++;
607         pqdownheap(s, tree, SMALLEST);
608 
609     } while (s->heap_len >= 2);
610 
611     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
612 
613     /* At this point, the fields freq and dad are set. We can now
614      * generate the bit lengths.
615      */
616     gen_bitlen(s, (tree_desc *)desc);
617 
618     /* The field len is now set, we can generate the bit codes */
619     gen_codes ((ct_data *)tree, max_code, s->bl_count);
620 }
621 
622 /* ===========================================================================
623  * Scan a literal or distance tree to determine the frequencies of the codes
624  * in the bit length tree.
625  */
626 static void scan_tree(
627 	deflate_state *s,
628 	ct_data *tree,   /* the tree to be scanned */
629 	int max_code     /* and its largest code of non zero frequency */
630 )
631 {
632     int n;                     /* iterates over all tree elements */
633     int prevlen = -1;          /* last emitted length */
634     int curlen;                /* length of current code */
635     int nextlen = tree[0].Len; /* length of next code */
636     int count = 0;             /* repeat count of the current code */
637     int max_count = 7;         /* max repeat count */
638     int min_count = 4;         /* min repeat count */
639 
640     if (nextlen == 0) max_count = 138, min_count = 3;
641     tree[max_code+1].Len = (ush)0xffff; /* guard */
642 
643     for (n = 0; n <= max_code; n++) {
644         curlen = nextlen; nextlen = tree[n+1].Len;
645         if (++count < max_count && curlen == nextlen) {
646             continue;
647         } else if (count < min_count) {
648             s->bl_tree[curlen].Freq += count;
649         } else if (curlen != 0) {
650             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
651             s->bl_tree[REP_3_6].Freq++;
652         } else if (count <= 10) {
653             s->bl_tree[REPZ_3_10].Freq++;
654         } else {
655             s->bl_tree[REPZ_11_138].Freq++;
656         }
657         count = 0; prevlen = curlen;
658         if (nextlen == 0) {
659             max_count = 138, min_count = 3;
660         } else if (curlen == nextlen) {
661             max_count = 6, min_count = 3;
662         } else {
663             max_count = 7, min_count = 4;
664         }
665     }
666 }
667 
668 /* ===========================================================================
669  * Send a literal or distance tree in compressed form, using the codes in
670  * bl_tree.
671  */
672 static void send_tree(
673 	deflate_state *s,
674 	ct_data *tree, /* the tree to be scanned */
675 	int max_code   /* and its largest code of non zero frequency */
676 )
677 {
678     int n;                     /* iterates over all tree elements */
679     int prevlen = -1;          /* last emitted length */
680     int curlen;                /* length of current code */
681     int nextlen = tree[0].Len; /* length of next code */
682     int count = 0;             /* repeat count of the current code */
683     int max_count = 7;         /* max repeat count */
684     int min_count = 4;         /* min repeat count */
685 
686     /* tree[max_code+1].Len = -1; */  /* guard already set */
687     if (nextlen == 0) max_count = 138, min_count = 3;
688 
689     for (n = 0; n <= max_code; n++) {
690         curlen = nextlen; nextlen = tree[n+1].Len;
691         if (++count < max_count && curlen == nextlen) {
692             continue;
693         } else if (count < min_count) {
694             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
695 
696         } else if (curlen != 0) {
697             if (curlen != prevlen) {
698                 send_code(s, curlen, s->bl_tree); count--;
699             }
700             Assert(count >= 3 && count <= 6, " 3_6?");
701             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
702 
703         } else if (count <= 10) {
704             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
705 
706         } else {
707             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
708         }
709         count = 0; prevlen = curlen;
710         if (nextlen == 0) {
711             max_count = 138, min_count = 3;
712         } else if (curlen == nextlen) {
713             max_count = 6, min_count = 3;
714         } else {
715             max_count = 7, min_count = 4;
716         }
717     }
718 }
719 
720 /* ===========================================================================
721  * Construct the Huffman tree for the bit lengths and return the index in
722  * bl_order of the last bit length code to send.
723  */
724 static int build_bl_tree(
725 	deflate_state *s
726 )
727 {
728     int max_blindex;  /* index of last bit length code of non zero freq */
729 
730     /* Determine the bit length frequencies for literal and distance trees */
731     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
732     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
733 
734     /* Build the bit length tree: */
735     build_tree(s, (tree_desc *)(&(s->bl_desc)));
736     /* opt_len now includes the length of the tree representations, except
737      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
738      */
739 
740     /* Determine the number of bit length codes to send. The pkzip format
741      * requires that at least 4 bit length codes be sent. (appnote.txt says
742      * 3 but the actual value used is 4.)
743      */
744     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
745         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
746     }
747     /* Update opt_len to include the bit length tree and counts */
748     s->opt_len += 3*(max_blindex+1) + 5+5+4;
749     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
750             s->opt_len, s->static_len));
751 
752     return max_blindex;
753 }
754 
755 /* ===========================================================================
756  * Send the header for a block using dynamic Huffman trees: the counts, the
757  * lengths of the bit length codes, the literal tree and the distance tree.
758  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
759  */
760 static void send_all_trees(
761 	deflate_state *s,
762 	int lcodes,  /* number of codes for each tree */
763 	int dcodes,  /* number of codes for each tree */
764 	int blcodes  /* number of codes for each tree */
765 )
766 {
767     int rank;                    /* index in bl_order */
768 
769     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
770     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
771             "too many codes");
772     Tracev((stderr, "\nbl counts: "));
773     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
774     send_bits(s, dcodes-1,   5);
775     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
776     for (rank = 0; rank < blcodes; rank++) {
777         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
778         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
779     }
780     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
781 
782     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
783     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
784 
785     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
786     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
787 }
788 
789 /* ===========================================================================
790  * Send a stored block
791  */
792 void zlib_tr_stored_block(
793 	deflate_state *s,
794 	char *buf,        /* input block */
795 	ulg stored_len,   /* length of input block */
796 	int eof           /* true if this is the last block for a file */
797 )
798 {
799     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
800     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
801     s->compressed_len += (stored_len + 4) << 3;
802 
803     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
804 }
805 
806 /* Send just the `stored block' type code without any length bytes or data.
807  */
808 void zlib_tr_stored_type_only(
809 	deflate_state *s
810 )
811 {
812     send_bits(s, (STORED_BLOCK << 1), 3);
813     bi_windup(s);
814     s->compressed_len = (s->compressed_len + 3) & ~7L;
815 }
816 
817 
818 /* ===========================================================================
819  * Send one empty static block to give enough lookahead for inflate.
820  * This takes 10 bits, of which 7 may remain in the bit buffer.
821  * The current inflate code requires 9 bits of lookahead. If the
822  * last two codes for the previous block (real code plus EOB) were coded
823  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
824  * the last real code. In this case we send two empty static blocks instead
825  * of one. (There are no problems if the previous block is stored or fixed.)
826  * To simplify the code, we assume the worst case of last real code encoded
827  * on one bit only.
828  */
829 void zlib_tr_align(
830 	deflate_state *s
831 )
832 {
833     send_bits(s, STATIC_TREES<<1, 3);
834     send_code(s, END_BLOCK, static_ltree);
835     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
836     bi_flush(s);
837     /* Of the 10 bits for the empty block, we have already sent
838      * (10 - bi_valid) bits. The lookahead for the last real code (before
839      * the EOB of the previous block) was thus at least one plus the length
840      * of the EOB plus what we have just sent of the empty static block.
841      */
842     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
843         send_bits(s, STATIC_TREES<<1, 3);
844         send_code(s, END_BLOCK, static_ltree);
845         s->compressed_len += 10L;
846         bi_flush(s);
847     }
848     s->last_eob_len = 7;
849 }
850 
851 /* ===========================================================================
852  * Determine the best encoding for the current block: dynamic trees, static
853  * trees or store, and output the encoded block to the zip file. This function
854  * returns the total compressed length for the file so far.
855  */
856 ulg zlib_tr_flush_block(
857 	deflate_state *s,
858 	char *buf,        /* input block, or NULL if too old */
859 	ulg stored_len,   /* length of input block */
860 	int eof           /* true if this is the last block for a file */
861 )
862 {
863     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
864     int max_blindex = 0;  /* index of last bit length code of non zero freq */
865 
866     /* Build the Huffman trees unless a stored block is forced */
867     if (s->level > 0) {
868 
869 	 /* Check if the file is ascii or binary */
870 	if (s->data_type == Z_UNKNOWN) set_data_type(s);
871 
872 	/* Construct the literal and distance trees */
873 	build_tree(s, (tree_desc *)(&(s->l_desc)));
874 	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
875 		s->static_len));
876 
877 	build_tree(s, (tree_desc *)(&(s->d_desc)));
878 	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
879 		s->static_len));
880 	/* At this point, opt_len and static_len are the total bit lengths of
881 	 * the compressed block data, excluding the tree representations.
882 	 */
883 
884 	/* Build the bit length tree for the above two trees, and get the index
885 	 * in bl_order of the last bit length code to send.
886 	 */
887 	max_blindex = build_bl_tree(s);
888 
889 	/* Determine the best encoding. Compute first the block length in bytes*/
890 	opt_lenb = (s->opt_len+3+7)>>3;
891 	static_lenb = (s->static_len+3+7)>>3;
892 
893 	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
894 		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
895 		s->last_lit));
896 
897 	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
898 
899     } else {
900         Assert(buf != (char*)0, "lost buf");
901 	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
902     }
903 
904     /* If compression failed and this is the first and last block,
905      * and if the .zip file can be seeked (to rewrite the local header),
906      * the whole file is transformed into a stored file:
907      */
908 #ifdef STORED_FILE_OK
909 #  ifdef FORCE_STORED_FILE
910     if (eof && s->compressed_len == 0L) { /* force stored file */
911 #  else
912     if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
913 #  endif
914         /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
915         if (buf == (char*)0) error ("block vanished");
916 
917         copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
918         s->compressed_len = stored_len << 3;
919         s->method = STORED;
920     } else
921 #endif /* STORED_FILE_OK */
922 
923 #ifdef FORCE_STORED
924     if (buf != (char*)0) { /* force stored block */
925 #else
926     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
927                        /* 4: two words for the lengths */
928 #endif
929         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
930          * Otherwise we can't have processed more than WSIZE input bytes since
931          * the last block flush, because compression would have been
932          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
933          * transform a block into a stored block.
934          */
935         zlib_tr_stored_block(s, buf, stored_len, eof);
936 
937 #ifdef FORCE_STATIC
938     } else if (static_lenb >= 0) { /* force static trees */
939 #else
940     } else if (static_lenb == opt_lenb) {
941 #endif
942         send_bits(s, (STATIC_TREES<<1)+eof, 3);
943         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
944         s->compressed_len += 3 + s->static_len;
945     } else {
946         send_bits(s, (DYN_TREES<<1)+eof, 3);
947         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
948                        max_blindex+1);
949         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
950         s->compressed_len += 3 + s->opt_len;
951     }
952     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
953     init_block(s);
954 
955     if (eof) {
956         bi_windup(s);
957         s->compressed_len += 7;  /* align on byte boundary */
958     }
959     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
960            s->compressed_len-7*eof));
961 
962     return s->compressed_len >> 3;
963 }
964 
965 /* ===========================================================================
966  * Save the match info and tally the frequency counts. Return true if
967  * the current block must be flushed.
968  */
969 int zlib_tr_tally(
970 	deflate_state *s,
971 	unsigned dist,  /* distance of matched string */
972 	unsigned lc     /* match length-MIN_MATCH or unmatched char (if dist==0) */
973 )
974 {
975     s->d_buf[s->last_lit] = (ush)dist;
976     s->l_buf[s->last_lit++] = (uch)lc;
977     if (dist == 0) {
978         /* lc is the unmatched char */
979         s->dyn_ltree[lc].Freq++;
980     } else {
981         s->matches++;
982         /* Here, lc is the match length - MIN_MATCH */
983         dist--;             /* dist = match distance - 1 */
984         Assert((ush)dist < (ush)MAX_DIST(s) &&
985                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
986                (ush)d_code(dist) < (ush)D_CODES,  "zlib_tr_tally: bad match");
987 
988         s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
989         s->dyn_dtree[d_code(dist)].Freq++;
990     }
991 
992     /* Try to guess if it is profitable to stop the current block here */
993     if ((s->last_lit & 0xfff) == 0 && s->level > 2) {
994         /* Compute an upper bound for the compressed length */
995         ulg out_length = (ulg)s->last_lit*8L;
996         ulg in_length = (ulg)((long)s->strstart - s->block_start);
997         int dcode;
998         for (dcode = 0; dcode < D_CODES; dcode++) {
999             out_length += (ulg)s->dyn_dtree[dcode].Freq *
1000                 (5L+extra_dbits[dcode]);
1001         }
1002         out_length >>= 3;
1003         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1004                s->last_lit, in_length, out_length,
1005                100L - out_length*100L/in_length));
1006         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1007     }
1008     return (s->last_lit == s->lit_bufsize-1);
1009     /* We avoid equality with lit_bufsize because of wraparound at 64K
1010      * on 16 bit machines and because stored blocks are restricted to
1011      * 64K-1 bytes.
1012      */
1013 }
1014 
1015 /* ===========================================================================
1016  * Send the block data compressed using the given Huffman trees
1017  */
1018 static void compress_block(
1019 	deflate_state *s,
1020 	ct_data *ltree, /* literal tree */
1021 	ct_data *dtree  /* distance tree */
1022 )
1023 {
1024     unsigned dist;      /* distance of matched string */
1025     int lc;             /* match length or unmatched char (if dist == 0) */
1026     unsigned lx = 0;    /* running index in l_buf */
1027     unsigned code;      /* the code to send */
1028     int extra;          /* number of extra bits to send */
1029 
1030     if (s->last_lit != 0) do {
1031         dist = s->d_buf[lx];
1032         lc = s->l_buf[lx++];
1033         if (dist == 0) {
1034             send_code(s, lc, ltree); /* send a literal byte */
1035             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1036         } else {
1037             /* Here, lc is the match length - MIN_MATCH */
1038             code = length_code[lc];
1039             send_code(s, code+LITERALS+1, ltree); /* send the length code */
1040             extra = extra_lbits[code];
1041             if (extra != 0) {
1042                 lc -= base_length[code];
1043                 send_bits(s, lc, extra);       /* send the extra length bits */
1044             }
1045             dist--; /* dist is now the match distance - 1 */
1046             code = d_code(dist);
1047             Assert (code < D_CODES, "bad d_code");
1048 
1049             send_code(s, code, dtree);       /* send the distance code */
1050             extra = extra_dbits[code];
1051             if (extra != 0) {
1052                 dist -= base_dist[code];
1053                 send_bits(s, dist, extra);   /* send the extra distance bits */
1054             }
1055         } /* literal or match pair ? */
1056 
1057         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1058         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
1059 
1060     } while (lx < s->last_lit);
1061 
1062     send_code(s, END_BLOCK, ltree);
1063     s->last_eob_len = ltree[END_BLOCK].Len;
1064 }
1065 
1066 /* ===========================================================================
1067  * Set the data type to ASCII or BINARY, using a crude approximation:
1068  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1069  * IN assertion: the fields freq of dyn_ltree are set and the total of all
1070  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1071  */
1072 static void set_data_type(
1073 	deflate_state *s
1074 )
1075 {
1076     int n = 0;
1077     unsigned ascii_freq = 0;
1078     unsigned bin_freq = 0;
1079     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
1080     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
1081     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
1082     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
1083 }
1084 
1085 /* ===========================================================================
1086  * Copy a stored block, storing first the length and its
1087  * one's complement if requested.
1088  */
1089 static void copy_block(
1090 	deflate_state *s,
1091 	char    *buf,     /* the input data */
1092 	unsigned len,     /* its length */
1093 	int      header   /* true if block header must be written */
1094 )
1095 {
1096     bi_windup(s);        /* align on byte boundary */
1097     s->last_eob_len = 8; /* enough lookahead for inflate */
1098 
1099     if (header) {
1100         put_short(s, (ush)len);
1101         put_short(s, (ush)~len);
1102 #ifdef DEBUG_ZLIB
1103         s->bits_sent += 2*16;
1104 #endif
1105     }
1106 #ifdef DEBUG_ZLIB
1107     s->bits_sent += (ulg)len<<3;
1108 #endif
1109     /* bundle up the put_byte(s, *buf++) calls */
1110     memcpy(&s->pending_buf[s->pending], buf, len);
1111     s->pending += len;
1112 }
1113 
1114