1 /* +++ deflate.c */ 2 /* deflate.c -- compress data using the deflation algorithm 3 * Copyright (C) 1995-1996 Jean-loup Gailly. 4 * For conditions of distribution and use, see copyright notice in zlib.h 5 */ 6 7 /* 8 * ALGORITHM 9 * 10 * The "deflation" process depends on being able to identify portions 11 * of the input text which are identical to earlier input (within a 12 * sliding window trailing behind the input currently being processed). 13 * 14 * The most straightforward technique turns out to be the fastest for 15 * most input files: try all possible matches and select the longest. 16 * The key feature of this algorithm is that insertions into the string 17 * dictionary are very simple and thus fast, and deletions are avoided 18 * completely. Insertions are performed at each input character, whereas 19 * string matches are performed only when the previous match ends. So it 20 * is preferable to spend more time in matches to allow very fast string 21 * insertions and avoid deletions. The matching algorithm for small 22 * strings is inspired from that of Rabin & Karp. A brute force approach 23 * is used to find longer strings when a small match has been found. 24 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze 25 * (by Leonid Broukhis). 26 * A previous version of this file used a more sophisticated algorithm 27 * (by Fiala and Greene) which is guaranteed to run in linear amortized 28 * time, but has a larger average cost, uses more memory and is patented. 29 * However the F&G algorithm may be faster for some highly redundant 30 * files if the parameter max_chain_length (described below) is too large. 31 * 32 * ACKNOWLEDGEMENTS 33 * 34 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and 35 * I found it in 'freeze' written by Leonid Broukhis. 36 * Thanks to many people for bug reports and testing. 37 * 38 * REFERENCES 39 * 40 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". 41 * Available in ftp://ds.internic.net/rfc/rfc1951.txt 42 * 43 * A description of the Rabin and Karp algorithm is given in the book 44 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. 45 * 46 * Fiala,E.R., and Greene,D.H. 47 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 48 * 49 */ 50 51 #include <linux/module.h> 52 #include <linux/zutil.h> 53 #include "defutil.h" 54 55 /* architecture-specific bits */ 56 #ifdef CONFIG_ZLIB_DFLTCC 57 # include "../zlib_dfltcc/dfltcc.h" 58 #else 59 #define DEFLATE_RESET_HOOK(strm) do {} while (0) 60 #define DEFLATE_HOOK(strm, flush, bstate) 0 61 #define DEFLATE_NEED_CHECKSUM(strm) 1 62 #define DEFLATE_DFLTCC_ENABLED() 0 63 #endif 64 65 /* =========================================================================== 66 * Function prototypes. 67 */ 68 69 typedef block_state (*compress_func) (deflate_state *s, int flush); 70 /* Compression function. Returns the block state after the call. */ 71 72 static void fill_window (deflate_state *s); 73 static block_state deflate_stored (deflate_state *s, int flush); 74 static block_state deflate_fast (deflate_state *s, int flush); 75 static block_state deflate_slow (deflate_state *s, int flush); 76 static void lm_init (deflate_state *s); 77 static void putShortMSB (deflate_state *s, uInt b); 78 static int read_buf (z_streamp strm, Byte *buf, unsigned size); 79 static uInt longest_match (deflate_state *s, IPos cur_match); 80 81 #ifdef DEBUG_ZLIB 82 static void check_match (deflate_state *s, IPos start, IPos match, 83 int length); 84 #endif 85 86 /* =========================================================================== 87 * Local data 88 */ 89 90 #define NIL 0 91 /* Tail of hash chains */ 92 93 #ifndef TOO_FAR 94 # define TOO_FAR 4096 95 #endif 96 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ 97 98 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) 99 /* Minimum amount of lookahead, except at the end of the input file. 100 * See deflate.c for comments about the MIN_MATCH+1. 101 */ 102 103 /* Workspace to be allocated for deflate processing */ 104 typedef struct deflate_workspace { 105 /* State memory for the deflator */ 106 deflate_state deflate_memory; 107 #ifdef CONFIG_ZLIB_DFLTCC 108 /* State memory for s390 hardware deflate */ 109 struct dfltcc_state dfltcc_memory; 110 #endif 111 Byte *window_memory; 112 Pos *prev_memory; 113 Pos *head_memory; 114 char *overlay_memory; 115 } deflate_workspace; 116 117 #ifdef CONFIG_ZLIB_DFLTCC 118 /* dfltcc_state must be doubleword aligned for DFLTCC call */ 119 static_assert(offsetof(struct deflate_workspace, dfltcc_memory) % 8 == 0); 120 #endif 121 122 /* Values for max_lazy_match, good_match and max_chain_length, depending on 123 * the desired pack level (0..9). The values given below have been tuned to 124 * exclude worst case performance for pathological files. Better values may be 125 * found for specific files. 126 */ 127 typedef struct config_s { 128 ush good_length; /* reduce lazy search above this match length */ 129 ush max_lazy; /* do not perform lazy search above this match length */ 130 ush nice_length; /* quit search above this match length */ 131 ush max_chain; 132 compress_func func; 133 } config; 134 135 static const config configuration_table[10] = { 136 /* good lazy nice chain */ 137 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ 138 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* maximum speed, no lazy matches */ 139 /* 2 */ {4, 5, 16, 8, deflate_fast}, 140 /* 3 */ {4, 6, 32, 32, deflate_fast}, 141 142 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ 143 /* 5 */ {8, 16, 32, 32, deflate_slow}, 144 /* 6 */ {8, 16, 128, 128, deflate_slow}, 145 /* 7 */ {8, 32, 128, 256, deflate_slow}, 146 /* 8 */ {32, 128, 258, 1024, deflate_slow}, 147 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */ 148 149 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 150 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different 151 * meaning. 152 */ 153 154 #define EQUAL 0 155 /* result of memcmp for equal strings */ 156 157 /* =========================================================================== 158 * Update a hash value with the given input byte 159 * IN assertion: all calls to UPDATE_HASH are made with consecutive 160 * input characters, so that a running hash key can be computed from the 161 * previous key instead of complete recalculation each time. 162 */ 163 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask) 164 165 166 /* =========================================================================== 167 * Insert string str in the dictionary and set match_head to the previous head 168 * of the hash chain (the most recent string with same hash key). Return 169 * the previous length of the hash chain. 170 * IN assertion: all calls to INSERT_STRING are made with consecutive 171 * input characters and the first MIN_MATCH bytes of str are valid 172 * (except for the last MIN_MATCH-1 bytes of the input file). 173 */ 174 #define INSERT_STRING(s, str, match_head) \ 175 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ 176 s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \ 177 s->head[s->ins_h] = (Pos)(str)) 178 179 /* =========================================================================== 180 * Initialize the hash table (avoiding 64K overflow for 16 bit systems). 181 * prev[] will be initialized on the fly. 182 */ 183 #define CLEAR_HASH(s) \ 184 s->head[s->hash_size-1] = NIL; \ 185 memset((char *)s->head, 0, (unsigned)(s->hash_size-1)*sizeof(*s->head)); 186 187 /* ========================================================================= */ 188 int zlib_deflateInit2( 189 z_streamp strm, 190 int level, 191 int method, 192 int windowBits, 193 int memLevel, 194 int strategy 195 ) 196 { 197 deflate_state *s; 198 int noheader = 0; 199 deflate_workspace *mem; 200 char *next; 201 202 ush *overlay; 203 /* We overlay pending_buf and d_buf+l_buf. This works since the average 204 * output size for (length,distance) codes is <= 24 bits. 205 */ 206 207 if (strm == NULL) return Z_STREAM_ERROR; 208 209 strm->msg = NULL; 210 211 if (level == Z_DEFAULT_COMPRESSION) level = 6; 212 213 mem = (deflate_workspace *) strm->workspace; 214 215 if (windowBits < 0) { /* undocumented feature: suppress zlib header */ 216 noheader = 1; 217 windowBits = -windowBits; 218 } 219 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || 220 windowBits < 9 || windowBits > 15 || level < 0 || level > 9 || 221 strategy < 0 || strategy > Z_HUFFMAN_ONLY) { 222 return Z_STREAM_ERROR; 223 } 224 225 /* 226 * Direct the workspace's pointers to the chunks that were allocated 227 * along with the deflate_workspace struct. 228 */ 229 next = (char *) mem; 230 next += sizeof(*mem); 231 #ifdef CONFIG_ZLIB_DFLTCC 232 /* 233 * DFLTCC requires the window to be page aligned. 234 * Thus, we overallocate and take the aligned portion of the buffer. 235 */ 236 mem->window_memory = (Byte *) PTR_ALIGN(next, PAGE_SIZE); 237 #else 238 mem->window_memory = (Byte *) next; 239 #endif 240 next += zlib_deflate_window_memsize(windowBits); 241 mem->prev_memory = (Pos *) next; 242 next += zlib_deflate_prev_memsize(windowBits); 243 mem->head_memory = (Pos *) next; 244 next += zlib_deflate_head_memsize(memLevel); 245 mem->overlay_memory = next; 246 247 s = (deflate_state *) &(mem->deflate_memory); 248 strm->state = (struct internal_state *)s; 249 s->strm = strm; 250 251 s->noheader = noheader; 252 s->w_bits = windowBits; 253 s->w_size = 1 << s->w_bits; 254 s->w_mask = s->w_size - 1; 255 256 s->hash_bits = memLevel + 7; 257 s->hash_size = 1 << s->hash_bits; 258 s->hash_mask = s->hash_size - 1; 259 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); 260 261 s->window = (Byte *) mem->window_memory; 262 s->prev = (Pos *) mem->prev_memory; 263 s->head = (Pos *) mem->head_memory; 264 265 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ 266 267 overlay = (ush *) mem->overlay_memory; 268 s->pending_buf = (uch *) overlay; 269 s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); 270 271 s->d_buf = overlay + s->lit_bufsize/sizeof(ush); 272 s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; 273 274 s->level = level; 275 s->strategy = strategy; 276 s->method = (Byte)method; 277 278 return zlib_deflateReset(strm); 279 } 280 281 /* ========================================================================= */ 282 int zlib_deflateReset( 283 z_streamp strm 284 ) 285 { 286 deflate_state *s; 287 288 if (strm == NULL || strm->state == NULL) 289 return Z_STREAM_ERROR; 290 291 strm->total_in = strm->total_out = 0; 292 strm->msg = NULL; 293 strm->data_type = Z_UNKNOWN; 294 295 s = (deflate_state *)strm->state; 296 s->pending = 0; 297 s->pending_out = s->pending_buf; 298 299 if (s->noheader < 0) { 300 s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */ 301 } 302 s->status = s->noheader ? BUSY_STATE : INIT_STATE; 303 strm->adler = 1; 304 s->last_flush = Z_NO_FLUSH; 305 306 zlib_tr_init(s); 307 lm_init(s); 308 309 DEFLATE_RESET_HOOK(strm); 310 311 return Z_OK; 312 } 313 314 /* ========================================================================= 315 * Put a short in the pending buffer. The 16-bit value is put in MSB order. 316 * IN assertion: the stream state is correct and there is enough room in 317 * pending_buf. 318 */ 319 static void putShortMSB( 320 deflate_state *s, 321 uInt b 322 ) 323 { 324 put_byte(s, (Byte)(b >> 8)); 325 put_byte(s, (Byte)(b & 0xff)); 326 } 327 328 /* ========================================================================= */ 329 int zlib_deflate( 330 z_streamp strm, 331 int flush 332 ) 333 { 334 int old_flush; /* value of flush param for previous deflate call */ 335 deflate_state *s; 336 337 if (strm == NULL || strm->state == NULL || 338 flush > Z_FINISH || flush < 0) { 339 return Z_STREAM_ERROR; 340 } 341 s = (deflate_state *) strm->state; 342 343 if ((strm->next_in == NULL && strm->avail_in != 0) || 344 (s->status == FINISH_STATE && flush != Z_FINISH)) { 345 return Z_STREAM_ERROR; 346 } 347 if (strm->avail_out == 0) return Z_BUF_ERROR; 348 349 s->strm = strm; /* just in case */ 350 old_flush = s->last_flush; 351 s->last_flush = flush; 352 353 /* Write the zlib header */ 354 if (s->status == INIT_STATE) { 355 356 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; 357 uInt level_flags = (s->level-1) >> 1; 358 359 if (level_flags > 3) level_flags = 3; 360 header |= (level_flags << 6); 361 if (s->strstart != 0) header |= PRESET_DICT; 362 header += 31 - (header % 31); 363 364 s->status = BUSY_STATE; 365 putShortMSB(s, header); 366 367 /* Save the adler32 of the preset dictionary: */ 368 if (s->strstart != 0) { 369 putShortMSB(s, (uInt)(strm->adler >> 16)); 370 putShortMSB(s, (uInt)(strm->adler & 0xffff)); 371 } 372 strm->adler = 1L; 373 } 374 375 /* Flush as much pending output as possible */ 376 if (s->pending != 0) { 377 flush_pending(strm); 378 if (strm->avail_out == 0) { 379 /* Since avail_out is 0, deflate will be called again with 380 * more output space, but possibly with both pending and 381 * avail_in equal to zero. There won't be anything to do, 382 * but this is not an error situation so make sure we 383 * return OK instead of BUF_ERROR at next call of deflate: 384 */ 385 s->last_flush = -1; 386 return Z_OK; 387 } 388 389 /* Make sure there is something to do and avoid duplicate consecutive 390 * flushes. For repeated and useless calls with Z_FINISH, we keep 391 * returning Z_STREAM_END instead of Z_BUFF_ERROR. 392 */ 393 } else if (strm->avail_in == 0 && flush <= old_flush && 394 flush != Z_FINISH) { 395 return Z_BUF_ERROR; 396 } 397 398 /* User must not provide more input after the first FINISH: */ 399 if (s->status == FINISH_STATE && strm->avail_in != 0) { 400 return Z_BUF_ERROR; 401 } 402 403 /* Start a new block or continue the current one. 404 */ 405 if (strm->avail_in != 0 || s->lookahead != 0 || 406 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { 407 block_state bstate; 408 409 bstate = DEFLATE_HOOK(strm, flush, &bstate) ? bstate : 410 (*(configuration_table[s->level].func))(s, flush); 411 412 if (bstate == finish_started || bstate == finish_done) { 413 s->status = FINISH_STATE; 414 } 415 if (bstate == need_more || bstate == finish_started) { 416 if (strm->avail_out == 0) { 417 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ 418 } 419 return Z_OK; 420 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call 421 * of deflate should use the same flush parameter to make sure 422 * that the flush is complete. So we don't have to output an 423 * empty block here, this will be done at next call. This also 424 * ensures that for a very small output buffer, we emit at most 425 * one empty block. 426 */ 427 } 428 if (bstate == block_done) { 429 if (flush == Z_PARTIAL_FLUSH) { 430 zlib_tr_align(s); 431 } else if (flush == Z_PACKET_FLUSH) { 432 /* Output just the 3-bit `stored' block type value, 433 but not a zero length. */ 434 zlib_tr_stored_type_only(s); 435 } else { /* FULL_FLUSH or SYNC_FLUSH */ 436 zlib_tr_stored_block(s, (char*)0, 0L, 0); 437 /* For a full flush, this empty block will be recognized 438 * as a special marker by inflate_sync(). 439 */ 440 if (flush == Z_FULL_FLUSH) { 441 CLEAR_HASH(s); /* forget history */ 442 } 443 } 444 flush_pending(strm); 445 if (strm->avail_out == 0) { 446 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ 447 return Z_OK; 448 } 449 } 450 } 451 Assert(strm->avail_out > 0, "bug2"); 452 453 if (flush != Z_FINISH) return Z_OK; 454 if (s->noheader) return Z_STREAM_END; 455 456 /* Write the zlib trailer (adler32) */ 457 putShortMSB(s, (uInt)(strm->adler >> 16)); 458 putShortMSB(s, (uInt)(strm->adler & 0xffff)); 459 flush_pending(strm); 460 /* If avail_out is zero, the application will call deflate again 461 * to flush the rest. 462 */ 463 s->noheader = -1; /* write the trailer only once! */ 464 return s->pending != 0 ? Z_OK : Z_STREAM_END; 465 } 466 467 /* ========================================================================= */ 468 int zlib_deflateEnd( 469 z_streamp strm 470 ) 471 { 472 int status; 473 deflate_state *s; 474 475 if (strm == NULL || strm->state == NULL) return Z_STREAM_ERROR; 476 s = (deflate_state *) strm->state; 477 478 status = s->status; 479 if (status != INIT_STATE && status != BUSY_STATE && 480 status != FINISH_STATE) { 481 return Z_STREAM_ERROR; 482 } 483 484 strm->state = NULL; 485 486 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; 487 } 488 489 /* =========================================================================== 490 * Read a new buffer from the current input stream, update the adler32 491 * and total number of bytes read. All deflate() input goes through 492 * this function so some applications may wish to modify it to avoid 493 * allocating a large strm->next_in buffer and copying from it. 494 * (See also flush_pending()). 495 */ 496 static int read_buf( 497 z_streamp strm, 498 Byte *buf, 499 unsigned size 500 ) 501 { 502 unsigned len = strm->avail_in; 503 504 if (len > size) len = size; 505 if (len == 0) return 0; 506 507 strm->avail_in -= len; 508 509 if (!DEFLATE_NEED_CHECKSUM(strm)) {} 510 else if (!((deflate_state *)(strm->state))->noheader) { 511 strm->adler = zlib_adler32(strm->adler, strm->next_in, len); 512 } 513 memcpy(buf, strm->next_in, len); 514 strm->next_in += len; 515 strm->total_in += len; 516 517 return (int)len; 518 } 519 520 /* =========================================================================== 521 * Initialize the "longest match" routines for a new zlib stream 522 */ 523 static void lm_init( 524 deflate_state *s 525 ) 526 { 527 s->window_size = (ulg)2L*s->w_size; 528 529 CLEAR_HASH(s); 530 531 /* Set the default configuration parameters: 532 */ 533 s->max_lazy_match = configuration_table[s->level].max_lazy; 534 s->good_match = configuration_table[s->level].good_length; 535 s->nice_match = configuration_table[s->level].nice_length; 536 s->max_chain_length = configuration_table[s->level].max_chain; 537 538 s->strstart = 0; 539 s->block_start = 0L; 540 s->lookahead = 0; 541 s->match_length = s->prev_length = MIN_MATCH-1; 542 s->match_available = 0; 543 s->ins_h = 0; 544 } 545 546 /* =========================================================================== 547 * Set match_start to the longest match starting at the given string and 548 * return its length. Matches shorter or equal to prev_length are discarded, 549 * in which case the result is equal to prev_length and match_start is 550 * garbage. 551 * IN assertions: cur_match is the head of the hash chain for the current 552 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 553 * OUT assertion: the match length is not greater than s->lookahead. 554 */ 555 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or 556 * match.S. The code will be functionally equivalent. 557 */ 558 static uInt longest_match( 559 deflate_state *s, 560 IPos cur_match /* current match */ 561 ) 562 { 563 unsigned chain_length = s->max_chain_length;/* max hash chain length */ 564 register Byte *scan = s->window + s->strstart; /* current string */ 565 register Byte *match; /* matched string */ 566 register int len; /* length of current match */ 567 int best_len = s->prev_length; /* best match length so far */ 568 int nice_match = s->nice_match; /* stop if match long enough */ 569 IPos limit = s->strstart > (IPos)MAX_DIST(s) ? 570 s->strstart - (IPos)MAX_DIST(s) : NIL; 571 /* Stop when cur_match becomes <= limit. To simplify the code, 572 * we prevent matches with the string of window index 0. 573 */ 574 Pos *prev = s->prev; 575 uInt wmask = s->w_mask; 576 577 #ifdef UNALIGNED_OK 578 /* Compare two bytes at a time. Note: this is not always beneficial. 579 * Try with and without -DUNALIGNED_OK to check. 580 */ 581 register Byte *strend = s->window + s->strstart + MAX_MATCH - 1; 582 register ush scan_start = *(ush*)scan; 583 register ush scan_end = *(ush*)(scan+best_len-1); 584 #else 585 register Byte *strend = s->window + s->strstart + MAX_MATCH; 586 register Byte scan_end1 = scan[best_len-1]; 587 register Byte scan_end = scan[best_len]; 588 #endif 589 590 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. 591 * It is easy to get rid of this optimization if necessary. 592 */ 593 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); 594 595 /* Do not waste too much time if we already have a good match: */ 596 if (s->prev_length >= s->good_match) { 597 chain_length >>= 2; 598 } 599 /* Do not look for matches beyond the end of the input. This is necessary 600 * to make deflate deterministic. 601 */ 602 if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; 603 604 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); 605 606 do { 607 Assert(cur_match < s->strstart, "no future"); 608 match = s->window + cur_match; 609 610 /* Skip to next match if the match length cannot increase 611 * or if the match length is less than 2: 612 */ 613 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) 614 /* This code assumes sizeof(unsigned short) == 2. Do not use 615 * UNALIGNED_OK if your compiler uses a different size. 616 */ 617 if (*(ush*)(match+best_len-1) != scan_end || 618 *(ush*)match != scan_start) continue; 619 620 /* It is not necessary to compare scan[2] and match[2] since they are 621 * always equal when the other bytes match, given that the hash keys 622 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at 623 * strstart+3, +5, ... up to strstart+257. We check for insufficient 624 * lookahead only every 4th comparison; the 128th check will be made 625 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is 626 * necessary to put more guard bytes at the end of the window, or 627 * to check more often for insufficient lookahead. 628 */ 629 Assert(scan[2] == match[2], "scan[2]?"); 630 scan++, match++; 631 do { 632 } while (*(ush*)(scan+=2) == *(ush*)(match+=2) && 633 *(ush*)(scan+=2) == *(ush*)(match+=2) && 634 *(ush*)(scan+=2) == *(ush*)(match+=2) && 635 *(ush*)(scan+=2) == *(ush*)(match+=2) && 636 scan < strend); 637 /* The funny "do {}" generates better code on most compilers */ 638 639 /* Here, scan <= window+strstart+257 */ 640 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); 641 if (*scan == *match) scan++; 642 643 len = (MAX_MATCH - 1) - (int)(strend-scan); 644 scan = strend - (MAX_MATCH-1); 645 646 #else /* UNALIGNED_OK */ 647 648 if (match[best_len] != scan_end || 649 match[best_len-1] != scan_end1 || 650 *match != *scan || 651 *++match != scan[1]) continue; 652 653 /* The check at best_len-1 can be removed because it will be made 654 * again later. (This heuristic is not always a win.) 655 * It is not necessary to compare scan[2] and match[2] since they 656 * are always equal when the other bytes match, given that 657 * the hash keys are equal and that HASH_BITS >= 8. 658 */ 659 scan += 2, match++; 660 Assert(*scan == *match, "match[2]?"); 661 662 /* We check for insufficient lookahead only every 8th comparison; 663 * the 256th check will be made at strstart+258. 664 */ 665 do { 666 } while (*++scan == *++match && *++scan == *++match && 667 *++scan == *++match && *++scan == *++match && 668 *++scan == *++match && *++scan == *++match && 669 *++scan == *++match && *++scan == *++match && 670 scan < strend); 671 672 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); 673 674 len = MAX_MATCH - (int)(strend - scan); 675 scan = strend - MAX_MATCH; 676 677 #endif /* UNALIGNED_OK */ 678 679 if (len > best_len) { 680 s->match_start = cur_match; 681 best_len = len; 682 if (len >= nice_match) break; 683 #ifdef UNALIGNED_OK 684 scan_end = *(ush*)(scan+best_len-1); 685 #else 686 scan_end1 = scan[best_len-1]; 687 scan_end = scan[best_len]; 688 #endif 689 } 690 } while ((cur_match = prev[cur_match & wmask]) > limit 691 && --chain_length != 0); 692 693 if ((uInt)best_len <= s->lookahead) return best_len; 694 return s->lookahead; 695 } 696 697 #ifdef DEBUG_ZLIB 698 /* =========================================================================== 699 * Check that the match at match_start is indeed a match. 700 */ 701 static void check_match( 702 deflate_state *s, 703 IPos start, 704 IPos match, 705 int length 706 ) 707 { 708 /* check that the match is indeed a match */ 709 if (memcmp((char *)s->window + match, 710 (char *)s->window + start, length) != EQUAL) { 711 fprintf(stderr, " start %u, match %u, length %d\n", 712 start, match, length); 713 do { 714 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); 715 } while (--length != 0); 716 z_error("invalid match"); 717 } 718 if (z_verbose > 1) { 719 fprintf(stderr,"\\[%d,%d]", start-match, length); 720 do { putc(s->window[start++], stderr); } while (--length != 0); 721 } 722 } 723 #else 724 # define check_match(s, start, match, length) 725 #endif 726 727 /* =========================================================================== 728 * Fill the window when the lookahead becomes insufficient. 729 * Updates strstart and lookahead. 730 * 731 * IN assertion: lookahead < MIN_LOOKAHEAD 732 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD 733 * At least one byte has been read, or avail_in == 0; reads are 734 * performed for at least two bytes (required for the zip translate_eol 735 * option -- not supported here). 736 */ 737 static void fill_window( 738 deflate_state *s 739 ) 740 { 741 register unsigned n, m; 742 register Pos *p; 743 unsigned more; /* Amount of free space at the end of the window. */ 744 uInt wsize = s->w_size; 745 746 do { 747 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); 748 749 /* Deal with !@#$% 64K limit: */ 750 if (more == 0 && s->strstart == 0 && s->lookahead == 0) { 751 more = wsize; 752 753 } else if (more == (unsigned)(-1)) { 754 /* Very unlikely, but possible on 16 bit machine if strstart == 0 755 * and lookahead == 1 (input done one byte at time) 756 */ 757 more--; 758 759 /* If the window is almost full and there is insufficient lookahead, 760 * move the upper half to the lower one to make room in the upper half. 761 */ 762 } else if (s->strstart >= wsize+MAX_DIST(s)) { 763 764 memcpy((char *)s->window, (char *)s->window+wsize, 765 (unsigned)wsize); 766 s->match_start -= wsize; 767 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ 768 s->block_start -= (long) wsize; 769 770 /* Slide the hash table (could be avoided with 32 bit values 771 at the expense of memory usage). We slide even when level == 0 772 to keep the hash table consistent if we switch back to level > 0 773 later. (Using level 0 permanently is not an optimal usage of 774 zlib, so we don't care about this pathological case.) 775 */ 776 n = s->hash_size; 777 p = &s->head[n]; 778 do { 779 m = *--p; 780 *p = (Pos)(m >= wsize ? m-wsize : NIL); 781 } while (--n); 782 783 n = wsize; 784 p = &s->prev[n]; 785 do { 786 m = *--p; 787 *p = (Pos)(m >= wsize ? m-wsize : NIL); 788 /* If n is not on any hash chain, prev[n] is garbage but 789 * its value will never be used. 790 */ 791 } while (--n); 792 more += wsize; 793 } 794 if (s->strm->avail_in == 0) return; 795 796 /* If there was no sliding: 797 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && 798 * more == window_size - lookahead - strstart 799 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) 800 * => more >= window_size - 2*WSIZE + 2 801 * In the BIG_MEM or MMAP case (not yet supported), 802 * window_size == input_size + MIN_LOOKAHEAD && 803 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. 804 * Otherwise, window_size == 2*WSIZE so more >= 2. 805 * If there was sliding, more >= WSIZE. So in all cases, more >= 2. 806 */ 807 Assert(more >= 2, "more < 2"); 808 809 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); 810 s->lookahead += n; 811 812 /* Initialize the hash value now that we have some input: */ 813 if (s->lookahead >= MIN_MATCH) { 814 s->ins_h = s->window[s->strstart]; 815 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); 816 #if MIN_MATCH != 3 817 Call UPDATE_HASH() MIN_MATCH-3 more times 818 #endif 819 } 820 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, 821 * but this is not important since only literal bytes will be emitted. 822 */ 823 824 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); 825 } 826 827 /* =========================================================================== 828 * Flush the current block, with given end-of-file flag. 829 * IN assertion: strstart is set to the end of the current match. 830 */ 831 #define FLUSH_BLOCK_ONLY(s, eof) { \ 832 zlib_tr_flush_block(s, (s->block_start >= 0L ? \ 833 (char *)&s->window[(unsigned)s->block_start] : \ 834 NULL), \ 835 (ulg)((long)s->strstart - s->block_start), \ 836 (eof)); \ 837 s->block_start = s->strstart; \ 838 flush_pending(s->strm); \ 839 Tracev((stderr,"[FLUSH]")); \ 840 } 841 842 /* Same but force premature exit if necessary. */ 843 #define FLUSH_BLOCK(s, eof) { \ 844 FLUSH_BLOCK_ONLY(s, eof); \ 845 if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \ 846 } 847 848 /* =========================================================================== 849 * Copy without compression as much as possible from the input stream, return 850 * the current block state. 851 * This function does not insert new strings in the dictionary since 852 * uncompressible data is probably not useful. This function is used 853 * only for the level=0 compression option. 854 * NOTE: this function should be optimized to avoid extra copying from 855 * window to pending_buf. 856 */ 857 static block_state deflate_stored( 858 deflate_state *s, 859 int flush 860 ) 861 { 862 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited 863 * to pending_buf_size, and each stored block has a 5 byte header: 864 */ 865 ulg max_block_size = 0xffff; 866 ulg max_start; 867 868 if (max_block_size > s->pending_buf_size - 5) { 869 max_block_size = s->pending_buf_size - 5; 870 } 871 872 /* Copy as much as possible from input to output: */ 873 for (;;) { 874 /* Fill the window as much as possible: */ 875 if (s->lookahead <= 1) { 876 877 Assert(s->strstart < s->w_size+MAX_DIST(s) || 878 s->block_start >= (long)s->w_size, "slide too late"); 879 880 fill_window(s); 881 if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; 882 883 if (s->lookahead == 0) break; /* flush the current block */ 884 } 885 Assert(s->block_start >= 0L, "block gone"); 886 887 s->strstart += s->lookahead; 888 s->lookahead = 0; 889 890 /* Emit a stored block if pending_buf will be full: */ 891 max_start = s->block_start + max_block_size; 892 if (s->strstart == 0 || (ulg)s->strstart >= max_start) { 893 /* strstart == 0 is possible when wraparound on 16-bit machine */ 894 s->lookahead = (uInt)(s->strstart - max_start); 895 s->strstart = (uInt)max_start; 896 FLUSH_BLOCK(s, 0); 897 } 898 /* Flush if we may have to slide, otherwise block_start may become 899 * negative and the data will be gone: 900 */ 901 if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { 902 FLUSH_BLOCK(s, 0); 903 } 904 } 905 FLUSH_BLOCK(s, flush == Z_FINISH); 906 return flush == Z_FINISH ? finish_done : block_done; 907 } 908 909 /* =========================================================================== 910 * Compress as much as possible from the input stream, return the current 911 * block state. 912 * This function does not perform lazy evaluation of matches and inserts 913 * new strings in the dictionary only for unmatched strings or for short 914 * matches. It is used only for the fast compression options. 915 */ 916 static block_state deflate_fast( 917 deflate_state *s, 918 int flush 919 ) 920 { 921 IPos hash_head = NIL; /* head of the hash chain */ 922 int bflush; /* set if current block must be flushed */ 923 924 for (;;) { 925 /* Make sure that we always have enough lookahead, except 926 * at the end of the input file. We need MAX_MATCH bytes 927 * for the next match, plus MIN_MATCH bytes to insert the 928 * string following the next match. 929 */ 930 if (s->lookahead < MIN_LOOKAHEAD) { 931 fill_window(s); 932 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { 933 return need_more; 934 } 935 if (s->lookahead == 0) break; /* flush the current block */ 936 } 937 938 /* Insert the string window[strstart .. strstart+2] in the 939 * dictionary, and set hash_head to the head of the hash chain: 940 */ 941 if (s->lookahead >= MIN_MATCH) { 942 INSERT_STRING(s, s->strstart, hash_head); 943 } 944 945 /* Find the longest match, discarding those <= prev_length. 946 * At this point we have always match_length < MIN_MATCH 947 */ 948 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { 949 /* To simplify the code, we prevent matches with the string 950 * of window index 0 (in particular we have to avoid a match 951 * of the string with itself at the start of the input file). 952 */ 953 if (s->strategy != Z_HUFFMAN_ONLY) { 954 s->match_length = longest_match (s, hash_head); 955 } 956 /* longest_match() sets match_start */ 957 } 958 if (s->match_length >= MIN_MATCH) { 959 check_match(s, s->strstart, s->match_start, s->match_length); 960 961 bflush = zlib_tr_tally(s, s->strstart - s->match_start, 962 s->match_length - MIN_MATCH); 963 964 s->lookahead -= s->match_length; 965 966 /* Insert new strings in the hash table only if the match length 967 * is not too large. This saves time but degrades compression. 968 */ 969 if (s->match_length <= s->max_insert_length && 970 s->lookahead >= MIN_MATCH) { 971 s->match_length--; /* string at strstart already in hash table */ 972 do { 973 s->strstart++; 974 INSERT_STRING(s, s->strstart, hash_head); 975 /* strstart never exceeds WSIZE-MAX_MATCH, so there are 976 * always MIN_MATCH bytes ahead. 977 */ 978 } while (--s->match_length != 0); 979 s->strstart++; 980 } else { 981 s->strstart += s->match_length; 982 s->match_length = 0; 983 s->ins_h = s->window[s->strstart]; 984 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); 985 #if MIN_MATCH != 3 986 Call UPDATE_HASH() MIN_MATCH-3 more times 987 #endif 988 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not 989 * matter since it will be recomputed at next deflate call. 990 */ 991 } 992 } else { 993 /* No match, output a literal byte */ 994 Tracevv((stderr,"%c", s->window[s->strstart])); 995 bflush = zlib_tr_tally (s, 0, s->window[s->strstart]); 996 s->lookahead--; 997 s->strstart++; 998 } 999 if (bflush) FLUSH_BLOCK(s, 0); 1000 } 1001 FLUSH_BLOCK(s, flush == Z_FINISH); 1002 return flush == Z_FINISH ? finish_done : block_done; 1003 } 1004 1005 /* =========================================================================== 1006 * Same as above, but achieves better compression. We use a lazy 1007 * evaluation for matches: a match is finally adopted only if there is 1008 * no better match at the next window position. 1009 */ 1010 static block_state deflate_slow( 1011 deflate_state *s, 1012 int flush 1013 ) 1014 { 1015 IPos hash_head = NIL; /* head of hash chain */ 1016 int bflush; /* set if current block must be flushed */ 1017 1018 /* Process the input block. */ 1019 for (;;) { 1020 /* Make sure that we always have enough lookahead, except 1021 * at the end of the input file. We need MAX_MATCH bytes 1022 * for the next match, plus MIN_MATCH bytes to insert the 1023 * string following the next match. 1024 */ 1025 if (s->lookahead < MIN_LOOKAHEAD) { 1026 fill_window(s); 1027 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { 1028 return need_more; 1029 } 1030 if (s->lookahead == 0) break; /* flush the current block */ 1031 } 1032 1033 /* Insert the string window[strstart .. strstart+2] in the 1034 * dictionary, and set hash_head to the head of the hash chain: 1035 */ 1036 if (s->lookahead >= MIN_MATCH) { 1037 INSERT_STRING(s, s->strstart, hash_head); 1038 } 1039 1040 /* Find the longest match, discarding those <= prev_length. 1041 */ 1042 s->prev_length = s->match_length, s->prev_match = s->match_start; 1043 s->match_length = MIN_MATCH-1; 1044 1045 if (hash_head != NIL && s->prev_length < s->max_lazy_match && 1046 s->strstart - hash_head <= MAX_DIST(s)) { 1047 /* To simplify the code, we prevent matches with the string 1048 * of window index 0 (in particular we have to avoid a match 1049 * of the string with itself at the start of the input file). 1050 */ 1051 if (s->strategy != Z_HUFFMAN_ONLY) { 1052 s->match_length = longest_match (s, hash_head); 1053 } 1054 /* longest_match() sets match_start */ 1055 1056 if (s->match_length <= 5 && (s->strategy == Z_FILTERED || 1057 (s->match_length == MIN_MATCH && 1058 s->strstart - s->match_start > TOO_FAR))) { 1059 1060 /* If prev_match is also MIN_MATCH, match_start is garbage 1061 * but we will ignore the current match anyway. 1062 */ 1063 s->match_length = MIN_MATCH-1; 1064 } 1065 } 1066 /* If there was a match at the previous step and the current 1067 * match is not better, output the previous match: 1068 */ 1069 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { 1070 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; 1071 /* Do not insert strings in hash table beyond this. */ 1072 1073 check_match(s, s->strstart-1, s->prev_match, s->prev_length); 1074 1075 bflush = zlib_tr_tally(s, s->strstart -1 - s->prev_match, 1076 s->prev_length - MIN_MATCH); 1077 1078 /* Insert in hash table all strings up to the end of the match. 1079 * strstart-1 and strstart are already inserted. If there is not 1080 * enough lookahead, the last two strings are not inserted in 1081 * the hash table. 1082 */ 1083 s->lookahead -= s->prev_length-1; 1084 s->prev_length -= 2; 1085 do { 1086 if (++s->strstart <= max_insert) { 1087 INSERT_STRING(s, s->strstart, hash_head); 1088 } 1089 } while (--s->prev_length != 0); 1090 s->match_available = 0; 1091 s->match_length = MIN_MATCH-1; 1092 s->strstart++; 1093 1094 if (bflush) FLUSH_BLOCK(s, 0); 1095 1096 } else if (s->match_available) { 1097 /* If there was no match at the previous position, output a 1098 * single literal. If there was a match but the current match 1099 * is longer, truncate the previous match to a single literal. 1100 */ 1101 Tracevv((stderr,"%c", s->window[s->strstart-1])); 1102 if (zlib_tr_tally (s, 0, s->window[s->strstart-1])) { 1103 FLUSH_BLOCK_ONLY(s, 0); 1104 } 1105 s->strstart++; 1106 s->lookahead--; 1107 if (s->strm->avail_out == 0) return need_more; 1108 } else { 1109 /* There is no previous match to compare with, wait for 1110 * the next step to decide. 1111 */ 1112 s->match_available = 1; 1113 s->strstart++; 1114 s->lookahead--; 1115 } 1116 } 1117 Assert (flush != Z_NO_FLUSH, "no flush?"); 1118 if (s->match_available) { 1119 Tracevv((stderr,"%c", s->window[s->strstart-1])); 1120 zlib_tr_tally (s, 0, s->window[s->strstart-1]); 1121 s->match_available = 0; 1122 } 1123 FLUSH_BLOCK(s, flush == Z_FINISH); 1124 return flush == Z_FINISH ? finish_done : block_done; 1125 } 1126 1127 int zlib_deflate_workspacesize(int windowBits, int memLevel) 1128 { 1129 if (windowBits < 0) /* undocumented feature: suppress zlib header */ 1130 windowBits = -windowBits; 1131 1132 /* Since the return value is typically passed to vmalloc() unchecked... */ 1133 BUG_ON(memLevel < 1 || memLevel > MAX_MEM_LEVEL || windowBits < 9 || 1134 windowBits > 15); 1135 1136 return sizeof(deflate_workspace) 1137 + zlib_deflate_window_memsize(windowBits) 1138 + zlib_deflate_prev_memsize(windowBits) 1139 + zlib_deflate_head_memsize(memLevel) 1140 + zlib_deflate_overlay_memsize(memLevel); 1141 } 1142 1143 int zlib_deflate_dfltcc_enabled(void) 1144 { 1145 return DEFLATE_DFLTCC_ENABLED(); 1146 } 1147