1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * XArray implementation 4 * Copyright (c) 2017 Microsoft Corporation 5 * Author: Matthew Wilcox <willy@infradead.org> 6 */ 7 8 #include <linux/bitmap.h> 9 #include <linux/export.h> 10 #include <linux/list.h> 11 #include <linux/slab.h> 12 #include <linux/xarray.h> 13 14 /* 15 * Coding conventions in this file: 16 * 17 * @xa is used to refer to the entire xarray. 18 * @xas is the 'xarray operation state'. It may be either a pointer to 19 * an xa_state, or an xa_state stored on the stack. This is an unfortunate 20 * ambiguity. 21 * @index is the index of the entry being operated on 22 * @mark is an xa_mark_t; a small number indicating one of the mark bits. 23 * @node refers to an xa_node; usually the primary one being operated on by 24 * this function. 25 * @offset is the index into the slots array inside an xa_node. 26 * @parent refers to the @xa_node closer to the head than @node. 27 * @entry refers to something stored in a slot in the xarray 28 */ 29 30 static inline unsigned int xa_lock_type(const struct xarray *xa) 31 { 32 return (__force unsigned int)xa->xa_flags & 3; 33 } 34 35 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type) 36 { 37 if (lock_type == XA_LOCK_IRQ) 38 xas_lock_irq(xas); 39 else if (lock_type == XA_LOCK_BH) 40 xas_lock_bh(xas); 41 else 42 xas_lock(xas); 43 } 44 45 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type) 46 { 47 if (lock_type == XA_LOCK_IRQ) 48 xas_unlock_irq(xas); 49 else if (lock_type == XA_LOCK_BH) 50 xas_unlock_bh(xas); 51 else 52 xas_unlock(xas); 53 } 54 55 static inline bool xa_track_free(const struct xarray *xa) 56 { 57 return xa->xa_flags & XA_FLAGS_TRACK_FREE; 58 } 59 60 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark) 61 { 62 if (!(xa->xa_flags & XA_FLAGS_MARK(mark))) 63 xa->xa_flags |= XA_FLAGS_MARK(mark); 64 } 65 66 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark) 67 { 68 if (xa->xa_flags & XA_FLAGS_MARK(mark)) 69 xa->xa_flags &= ~(XA_FLAGS_MARK(mark)); 70 } 71 72 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark) 73 { 74 return node->marks[(__force unsigned)mark]; 75 } 76 77 static inline bool node_get_mark(struct xa_node *node, 78 unsigned int offset, xa_mark_t mark) 79 { 80 return test_bit(offset, node_marks(node, mark)); 81 } 82 83 /* returns true if the bit was set */ 84 static inline bool node_set_mark(struct xa_node *node, unsigned int offset, 85 xa_mark_t mark) 86 { 87 return __test_and_set_bit(offset, node_marks(node, mark)); 88 } 89 90 /* returns true if the bit was set */ 91 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset, 92 xa_mark_t mark) 93 { 94 return __test_and_clear_bit(offset, node_marks(node, mark)); 95 } 96 97 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark) 98 { 99 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE); 100 } 101 102 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark) 103 { 104 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE); 105 } 106 107 #define mark_inc(mark) do { \ 108 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \ 109 } while (0) 110 111 /* 112 * xas_squash_marks() - Merge all marks to the first entry 113 * @xas: Array operation state. 114 * 115 * Set a mark on the first entry if any entry has it set. Clear marks on 116 * all sibling entries. 117 */ 118 static void xas_squash_marks(const struct xa_state *xas) 119 { 120 unsigned int mark = 0; 121 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1; 122 123 if (!xas->xa_sibs) 124 return; 125 126 do { 127 unsigned long *marks = xas->xa_node->marks[mark]; 128 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit) 129 continue; 130 __set_bit(xas->xa_offset, marks); 131 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs); 132 } while (mark++ != (__force unsigned)XA_MARK_MAX); 133 } 134 135 /* extracts the offset within this node from the index */ 136 static unsigned int get_offset(unsigned long index, struct xa_node *node) 137 { 138 return (index >> node->shift) & XA_CHUNK_MASK; 139 } 140 141 static void xas_set_offset(struct xa_state *xas) 142 { 143 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node); 144 } 145 146 /* move the index either forwards (find) or backwards (sibling slot) */ 147 static void xas_move_index(struct xa_state *xas, unsigned long offset) 148 { 149 unsigned int shift = xas->xa_node->shift; 150 xas->xa_index &= ~XA_CHUNK_MASK << shift; 151 xas->xa_index += offset << shift; 152 } 153 154 static void xas_advance(struct xa_state *xas) 155 { 156 xas->xa_offset++; 157 xas_move_index(xas, xas->xa_offset); 158 } 159 160 static void *set_bounds(struct xa_state *xas) 161 { 162 xas->xa_node = XAS_BOUNDS; 163 return NULL; 164 } 165 166 /* 167 * Starts a walk. If the @xas is already valid, we assume that it's on 168 * the right path and just return where we've got to. If we're in an 169 * error state, return NULL. If the index is outside the current scope 170 * of the xarray, return NULL without changing @xas->xa_node. Otherwise 171 * set @xas->xa_node to NULL and return the current head of the array. 172 */ 173 static void *xas_start(struct xa_state *xas) 174 { 175 void *entry; 176 177 if (xas_valid(xas)) 178 return xas_reload(xas); 179 if (xas_error(xas)) 180 return NULL; 181 182 entry = xa_head(xas->xa); 183 if (!xa_is_node(entry)) { 184 if (xas->xa_index) 185 return set_bounds(xas); 186 } else { 187 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK) 188 return set_bounds(xas); 189 } 190 191 xas->xa_node = NULL; 192 return entry; 193 } 194 195 static void *xas_descend(struct xa_state *xas, struct xa_node *node) 196 { 197 unsigned int offset = get_offset(xas->xa_index, node); 198 void *entry = xa_entry(xas->xa, node, offset); 199 200 xas->xa_node = node; 201 if (xa_is_sibling(entry)) { 202 offset = xa_to_sibling(entry); 203 entry = xa_entry(xas->xa, node, offset); 204 } 205 206 xas->xa_offset = offset; 207 return entry; 208 } 209 210 /** 211 * xas_load() - Load an entry from the XArray (advanced). 212 * @xas: XArray operation state. 213 * 214 * Usually walks the @xas to the appropriate state to load the entry 215 * stored at xa_index. However, it will do nothing and return %NULL if 216 * @xas is in an error state. xas_load() will never expand the tree. 217 * 218 * If the xa_state is set up to operate on a multi-index entry, xas_load() 219 * may return %NULL or an internal entry, even if there are entries 220 * present within the range specified by @xas. 221 * 222 * Context: Any context. The caller should hold the xa_lock or the RCU lock. 223 * Return: Usually an entry in the XArray, but see description for exceptions. 224 */ 225 void *xas_load(struct xa_state *xas) 226 { 227 void *entry = xas_start(xas); 228 229 while (xa_is_node(entry)) { 230 struct xa_node *node = xa_to_node(entry); 231 232 if (xas->xa_shift > node->shift) 233 break; 234 entry = xas_descend(xas, node); 235 } 236 return entry; 237 } 238 EXPORT_SYMBOL_GPL(xas_load); 239 240 /* Move the radix tree node cache here */ 241 extern struct kmem_cache *radix_tree_node_cachep; 242 extern void radix_tree_node_rcu_free(struct rcu_head *head); 243 244 #define XA_RCU_FREE ((struct xarray *)1) 245 246 static void xa_node_free(struct xa_node *node) 247 { 248 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 249 node->array = XA_RCU_FREE; 250 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 251 } 252 253 /* 254 * xas_destroy() - Free any resources allocated during the XArray operation. 255 * @xas: XArray operation state. 256 * 257 * This function is now internal-only. 258 */ 259 static void xas_destroy(struct xa_state *xas) 260 { 261 struct xa_node *node = xas->xa_alloc; 262 263 if (!node) 264 return; 265 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 266 kmem_cache_free(radix_tree_node_cachep, node); 267 xas->xa_alloc = NULL; 268 } 269 270 /** 271 * xas_nomem() - Allocate memory if needed. 272 * @xas: XArray operation state. 273 * @gfp: Memory allocation flags. 274 * 275 * If we need to add new nodes to the XArray, we try to allocate memory 276 * with GFP_NOWAIT while holding the lock, which will usually succeed. 277 * If it fails, @xas is flagged as needing memory to continue. The caller 278 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds, 279 * the caller should retry the operation. 280 * 281 * Forward progress is guaranteed as one node is allocated here and 282 * stored in the xa_state where it will be found by xas_alloc(). More 283 * nodes will likely be found in the slab allocator, but we do not tie 284 * them up here. 285 * 286 * Return: true if memory was needed, and was successfully allocated. 287 */ 288 bool xas_nomem(struct xa_state *xas, gfp_t gfp) 289 { 290 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 291 xas_destroy(xas); 292 return false; 293 } 294 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); 295 if (!xas->xa_alloc) 296 return false; 297 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 298 xas->xa_node = XAS_RESTART; 299 return true; 300 } 301 EXPORT_SYMBOL_GPL(xas_nomem); 302 303 /* 304 * __xas_nomem() - Drop locks and allocate memory if needed. 305 * @xas: XArray operation state. 306 * @gfp: Memory allocation flags. 307 * 308 * Internal variant of xas_nomem(). 309 * 310 * Return: true if memory was needed, and was successfully allocated. 311 */ 312 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp) 313 __must_hold(xas->xa->xa_lock) 314 { 315 unsigned int lock_type = xa_lock_type(xas->xa); 316 317 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 318 xas_destroy(xas); 319 return false; 320 } 321 if (gfpflags_allow_blocking(gfp)) { 322 xas_unlock_type(xas, lock_type); 323 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); 324 xas_lock_type(xas, lock_type); 325 } else { 326 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); 327 } 328 if (!xas->xa_alloc) 329 return false; 330 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 331 xas->xa_node = XAS_RESTART; 332 return true; 333 } 334 335 static void xas_update(struct xa_state *xas, struct xa_node *node) 336 { 337 if (xas->xa_update) 338 xas->xa_update(node); 339 else 340 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 341 } 342 343 static void *xas_alloc(struct xa_state *xas, unsigned int shift) 344 { 345 struct xa_node *parent = xas->xa_node; 346 struct xa_node *node = xas->xa_alloc; 347 348 if (xas_invalid(xas)) 349 return NULL; 350 351 if (node) { 352 xas->xa_alloc = NULL; 353 } else { 354 node = kmem_cache_alloc(radix_tree_node_cachep, 355 GFP_NOWAIT | __GFP_NOWARN); 356 if (!node) { 357 xas_set_err(xas, -ENOMEM); 358 return NULL; 359 } 360 } 361 362 if (parent) { 363 node->offset = xas->xa_offset; 364 parent->count++; 365 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE); 366 xas_update(xas, parent); 367 } 368 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 369 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 370 node->shift = shift; 371 node->count = 0; 372 node->nr_values = 0; 373 RCU_INIT_POINTER(node->parent, xas->xa_node); 374 node->array = xas->xa; 375 376 return node; 377 } 378 379 #ifdef CONFIG_XARRAY_MULTI 380 /* Returns the number of indices covered by a given xa_state */ 381 static unsigned long xas_size(const struct xa_state *xas) 382 { 383 return (xas->xa_sibs + 1UL) << xas->xa_shift; 384 } 385 #endif 386 387 /* 388 * Use this to calculate the maximum index that will need to be created 389 * in order to add the entry described by @xas. Because we cannot store a 390 * multiple-index entry at index 0, the calculation is a little more complex 391 * than you might expect. 392 */ 393 static unsigned long xas_max(struct xa_state *xas) 394 { 395 unsigned long max = xas->xa_index; 396 397 #ifdef CONFIG_XARRAY_MULTI 398 if (xas->xa_shift || xas->xa_sibs) { 399 unsigned long mask = xas_size(xas) - 1; 400 max |= mask; 401 if (mask == max) 402 max++; 403 } 404 #endif 405 406 return max; 407 } 408 409 /* The maximum index that can be contained in the array without expanding it */ 410 static unsigned long max_index(void *entry) 411 { 412 if (!xa_is_node(entry)) 413 return 0; 414 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1; 415 } 416 417 static void xas_shrink(struct xa_state *xas) 418 { 419 struct xarray *xa = xas->xa; 420 struct xa_node *node = xas->xa_node; 421 422 for (;;) { 423 void *entry; 424 425 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 426 if (node->count != 1) 427 break; 428 entry = xa_entry_locked(xa, node, 0); 429 if (!entry) 430 break; 431 if (!xa_is_node(entry) && node->shift) 432 break; 433 xas->xa_node = XAS_BOUNDS; 434 435 RCU_INIT_POINTER(xa->xa_head, entry); 436 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK)) 437 xa_mark_clear(xa, XA_FREE_MARK); 438 439 node->count = 0; 440 node->nr_values = 0; 441 if (!xa_is_node(entry)) 442 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY); 443 xas_update(xas, node); 444 xa_node_free(node); 445 if (!xa_is_node(entry)) 446 break; 447 node = xa_to_node(entry); 448 node->parent = NULL; 449 } 450 } 451 452 /* 453 * xas_delete_node() - Attempt to delete an xa_node 454 * @xas: Array operation state. 455 * 456 * Attempts to delete the @xas->xa_node. This will fail if xa->node has 457 * a non-zero reference count. 458 */ 459 static void xas_delete_node(struct xa_state *xas) 460 { 461 struct xa_node *node = xas->xa_node; 462 463 for (;;) { 464 struct xa_node *parent; 465 466 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 467 if (node->count) 468 break; 469 470 parent = xa_parent_locked(xas->xa, node); 471 xas->xa_node = parent; 472 xas->xa_offset = node->offset; 473 xa_node_free(node); 474 475 if (!parent) { 476 xas->xa->xa_head = NULL; 477 xas->xa_node = XAS_BOUNDS; 478 return; 479 } 480 481 parent->slots[xas->xa_offset] = NULL; 482 parent->count--; 483 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE); 484 node = parent; 485 xas_update(xas, node); 486 } 487 488 if (!node->parent) 489 xas_shrink(xas); 490 } 491 492 /** 493 * xas_free_nodes() - Free this node and all nodes that it references 494 * @xas: Array operation state. 495 * @top: Node to free 496 * 497 * This node has been removed from the tree. We must now free it and all 498 * of its subnodes. There may be RCU walkers with references into the tree, 499 * so we must replace all entries with retry markers. 500 */ 501 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top) 502 { 503 unsigned int offset = 0; 504 struct xa_node *node = top; 505 506 for (;;) { 507 void *entry = xa_entry_locked(xas->xa, node, offset); 508 509 if (xa_is_node(entry)) { 510 node = xa_to_node(entry); 511 offset = 0; 512 continue; 513 } 514 if (entry) 515 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY); 516 offset++; 517 while (offset == XA_CHUNK_SIZE) { 518 struct xa_node *parent; 519 520 parent = xa_parent_locked(xas->xa, node); 521 offset = node->offset + 1; 522 node->count = 0; 523 node->nr_values = 0; 524 xas_update(xas, node); 525 xa_node_free(node); 526 if (node == top) 527 return; 528 node = parent; 529 } 530 } 531 } 532 533 /* 534 * xas_expand adds nodes to the head of the tree until it has reached 535 * sufficient height to be able to contain @xas->xa_index 536 */ 537 static int xas_expand(struct xa_state *xas, void *head) 538 { 539 struct xarray *xa = xas->xa; 540 struct xa_node *node = NULL; 541 unsigned int shift = 0; 542 unsigned long max = xas_max(xas); 543 544 if (!head) { 545 if (max == 0) 546 return 0; 547 while ((max >> shift) >= XA_CHUNK_SIZE) 548 shift += XA_CHUNK_SHIFT; 549 return shift + XA_CHUNK_SHIFT; 550 } else if (xa_is_node(head)) { 551 node = xa_to_node(head); 552 shift = node->shift + XA_CHUNK_SHIFT; 553 } 554 xas->xa_node = NULL; 555 556 while (max > max_index(head)) { 557 xa_mark_t mark = 0; 558 559 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 560 node = xas_alloc(xas, shift); 561 if (!node) 562 return -ENOMEM; 563 564 node->count = 1; 565 if (xa_is_value(head)) 566 node->nr_values = 1; 567 RCU_INIT_POINTER(node->slots[0], head); 568 569 /* Propagate the aggregated mark info to the new child */ 570 for (;;) { 571 if (xa_track_free(xa) && mark == XA_FREE_MARK) { 572 node_mark_all(node, XA_FREE_MARK); 573 if (!xa_marked(xa, XA_FREE_MARK)) { 574 node_clear_mark(node, 0, XA_FREE_MARK); 575 xa_mark_set(xa, XA_FREE_MARK); 576 } 577 } else if (xa_marked(xa, mark)) { 578 node_set_mark(node, 0, mark); 579 } 580 if (mark == XA_MARK_MAX) 581 break; 582 mark_inc(mark); 583 } 584 585 /* 586 * Now that the new node is fully initialised, we can add 587 * it to the tree 588 */ 589 if (xa_is_node(head)) { 590 xa_to_node(head)->offset = 0; 591 rcu_assign_pointer(xa_to_node(head)->parent, node); 592 } 593 head = xa_mk_node(node); 594 rcu_assign_pointer(xa->xa_head, head); 595 xas_update(xas, node); 596 597 shift += XA_CHUNK_SHIFT; 598 } 599 600 xas->xa_node = node; 601 return shift; 602 } 603 604 /* 605 * xas_create() - Create a slot to store an entry in. 606 * @xas: XArray operation state. 607 * 608 * Most users will not need to call this function directly, as it is called 609 * by xas_store(). It is useful for doing conditional store operations 610 * (see the xa_cmpxchg() implementation for an example). 611 * 612 * Return: If the slot already existed, returns the contents of this slot. 613 * If the slot was newly created, returns %NULL. If it failed to create the 614 * slot, returns %NULL and indicates the error in @xas. 615 */ 616 static void *xas_create(struct xa_state *xas) 617 { 618 struct xarray *xa = xas->xa; 619 void *entry; 620 void __rcu **slot; 621 struct xa_node *node = xas->xa_node; 622 int shift; 623 unsigned int order = xas->xa_shift; 624 625 if (xas_top(node)) { 626 entry = xa_head_locked(xa); 627 xas->xa_node = NULL; 628 shift = xas_expand(xas, entry); 629 if (shift < 0) 630 return NULL; 631 entry = xa_head_locked(xa); 632 slot = &xa->xa_head; 633 } else if (xas_error(xas)) { 634 return NULL; 635 } else if (node) { 636 unsigned int offset = xas->xa_offset; 637 638 shift = node->shift; 639 entry = xa_entry_locked(xa, node, offset); 640 slot = &node->slots[offset]; 641 } else { 642 shift = 0; 643 entry = xa_head_locked(xa); 644 slot = &xa->xa_head; 645 } 646 647 while (shift > order) { 648 shift -= XA_CHUNK_SHIFT; 649 if (!entry) { 650 node = xas_alloc(xas, shift); 651 if (!node) 652 break; 653 if (xa_track_free(xa)) 654 node_mark_all(node, XA_FREE_MARK); 655 rcu_assign_pointer(*slot, xa_mk_node(node)); 656 } else if (xa_is_node(entry)) { 657 node = xa_to_node(entry); 658 } else { 659 break; 660 } 661 entry = xas_descend(xas, node); 662 slot = &node->slots[xas->xa_offset]; 663 } 664 665 return entry; 666 } 667 668 /** 669 * xas_create_range() - Ensure that stores to this range will succeed 670 * @xas: XArray operation state. 671 * 672 * Creates all of the slots in the range covered by @xas. Sets @xas to 673 * create single-index entries and positions it at the beginning of the 674 * range. This is for the benefit of users which have not yet been 675 * converted to use multi-index entries. 676 */ 677 void xas_create_range(struct xa_state *xas) 678 { 679 unsigned long index = xas->xa_index; 680 unsigned char shift = xas->xa_shift; 681 unsigned char sibs = xas->xa_sibs; 682 683 xas->xa_index |= ((sibs + 1) << shift) - 1; 684 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift) 685 xas->xa_offset |= sibs; 686 xas->xa_shift = 0; 687 xas->xa_sibs = 0; 688 689 for (;;) { 690 xas_create(xas); 691 if (xas_error(xas)) 692 goto restore; 693 if (xas->xa_index <= (index | XA_CHUNK_MASK)) 694 goto success; 695 xas->xa_index -= XA_CHUNK_SIZE; 696 697 for (;;) { 698 struct xa_node *node = xas->xa_node; 699 xas->xa_node = xa_parent_locked(xas->xa, node); 700 xas->xa_offset = node->offset - 1; 701 if (node->offset != 0) 702 break; 703 } 704 } 705 706 restore: 707 xas->xa_shift = shift; 708 xas->xa_sibs = sibs; 709 xas->xa_index = index; 710 return; 711 success: 712 xas->xa_index = index; 713 if (xas->xa_node) 714 xas_set_offset(xas); 715 } 716 EXPORT_SYMBOL_GPL(xas_create_range); 717 718 static void update_node(struct xa_state *xas, struct xa_node *node, 719 int count, int values) 720 { 721 if (!node || (!count && !values)) 722 return; 723 724 node->count += count; 725 node->nr_values += values; 726 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 727 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE); 728 xas_update(xas, node); 729 if (count < 0) 730 xas_delete_node(xas); 731 } 732 733 /** 734 * xas_store() - Store this entry in the XArray. 735 * @xas: XArray operation state. 736 * @entry: New entry. 737 * 738 * If @xas is operating on a multi-index entry, the entry returned by this 739 * function is essentially meaningless (it may be an internal entry or it 740 * may be %NULL, even if there are non-NULL entries at some of the indices 741 * covered by the range). This is not a problem for any current users, 742 * and can be changed if needed. 743 * 744 * Return: The old entry at this index. 745 */ 746 void *xas_store(struct xa_state *xas, void *entry) 747 { 748 struct xa_node *node; 749 void __rcu **slot = &xas->xa->xa_head; 750 unsigned int offset, max; 751 int count = 0; 752 int values = 0; 753 void *first, *next; 754 bool value = xa_is_value(entry); 755 756 if (entry) 757 first = xas_create(xas); 758 else 759 first = xas_load(xas); 760 761 if (xas_invalid(xas)) 762 return first; 763 node = xas->xa_node; 764 if (node && (xas->xa_shift < node->shift)) 765 xas->xa_sibs = 0; 766 if ((first == entry) && !xas->xa_sibs) 767 return first; 768 769 next = first; 770 offset = xas->xa_offset; 771 max = xas->xa_offset + xas->xa_sibs; 772 if (node) { 773 slot = &node->slots[offset]; 774 if (xas->xa_sibs) 775 xas_squash_marks(xas); 776 } 777 if (!entry) 778 xas_init_marks(xas); 779 780 for (;;) { 781 /* 782 * Must clear the marks before setting the entry to NULL, 783 * otherwise xas_for_each_marked may find a NULL entry and 784 * stop early. rcu_assign_pointer contains a release barrier 785 * so the mark clearing will appear to happen before the 786 * entry is set to NULL. 787 */ 788 rcu_assign_pointer(*slot, entry); 789 if (xa_is_node(next)) 790 xas_free_nodes(xas, xa_to_node(next)); 791 if (!node) 792 break; 793 count += !next - !entry; 794 values += !xa_is_value(first) - !value; 795 if (entry) { 796 if (offset == max) 797 break; 798 if (!xa_is_sibling(entry)) 799 entry = xa_mk_sibling(xas->xa_offset); 800 } else { 801 if (offset == XA_CHUNK_MASK) 802 break; 803 } 804 next = xa_entry_locked(xas->xa, node, ++offset); 805 if (!xa_is_sibling(next)) { 806 if (!entry && (offset > max)) 807 break; 808 first = next; 809 } 810 slot++; 811 } 812 813 update_node(xas, node, count, values); 814 return first; 815 } 816 EXPORT_SYMBOL_GPL(xas_store); 817 818 /** 819 * xas_get_mark() - Returns the state of this mark. 820 * @xas: XArray operation state. 821 * @mark: Mark number. 822 * 823 * Return: true if the mark is set, false if the mark is clear or @xas 824 * is in an error state. 825 */ 826 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark) 827 { 828 if (xas_invalid(xas)) 829 return false; 830 if (!xas->xa_node) 831 return xa_marked(xas->xa, mark); 832 return node_get_mark(xas->xa_node, xas->xa_offset, mark); 833 } 834 EXPORT_SYMBOL_GPL(xas_get_mark); 835 836 /** 837 * xas_set_mark() - Sets the mark on this entry and its parents. 838 * @xas: XArray operation state. 839 * @mark: Mark number. 840 * 841 * Sets the specified mark on this entry, and walks up the tree setting it 842 * on all the ancestor entries. Does nothing if @xas has not been walked to 843 * an entry, or is in an error state. 844 */ 845 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark) 846 { 847 struct xa_node *node = xas->xa_node; 848 unsigned int offset = xas->xa_offset; 849 850 if (xas_invalid(xas)) 851 return; 852 853 while (node) { 854 if (node_set_mark(node, offset, mark)) 855 return; 856 offset = node->offset; 857 node = xa_parent_locked(xas->xa, node); 858 } 859 860 if (!xa_marked(xas->xa, mark)) 861 xa_mark_set(xas->xa, mark); 862 } 863 EXPORT_SYMBOL_GPL(xas_set_mark); 864 865 /** 866 * xas_clear_mark() - Clears the mark on this entry and its parents. 867 * @xas: XArray operation state. 868 * @mark: Mark number. 869 * 870 * Clears the specified mark on this entry, and walks back to the head 871 * attempting to clear it on all the ancestor entries. Does nothing if 872 * @xas has not been walked to an entry, or is in an error state. 873 */ 874 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark) 875 { 876 struct xa_node *node = xas->xa_node; 877 unsigned int offset = xas->xa_offset; 878 879 if (xas_invalid(xas)) 880 return; 881 882 while (node) { 883 if (!node_clear_mark(node, offset, mark)) 884 return; 885 if (node_any_mark(node, mark)) 886 return; 887 888 offset = node->offset; 889 node = xa_parent_locked(xas->xa, node); 890 } 891 892 if (xa_marked(xas->xa, mark)) 893 xa_mark_clear(xas->xa, mark); 894 } 895 EXPORT_SYMBOL_GPL(xas_clear_mark); 896 897 /** 898 * xas_init_marks() - Initialise all marks for the entry 899 * @xas: Array operations state. 900 * 901 * Initialise all marks for the entry specified by @xas. If we're tracking 902 * free entries with a mark, we need to set it on all entries. All other 903 * marks are cleared. 904 * 905 * This implementation is not as efficient as it could be; we may walk 906 * up the tree multiple times. 907 */ 908 void xas_init_marks(const struct xa_state *xas) 909 { 910 xa_mark_t mark = 0; 911 912 for (;;) { 913 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK) 914 xas_set_mark(xas, mark); 915 else 916 xas_clear_mark(xas, mark); 917 if (mark == XA_MARK_MAX) 918 break; 919 mark_inc(mark); 920 } 921 } 922 EXPORT_SYMBOL_GPL(xas_init_marks); 923 924 /** 925 * xas_pause() - Pause a walk to drop a lock. 926 * @xas: XArray operation state. 927 * 928 * Some users need to pause a walk and drop the lock they're holding in 929 * order to yield to a higher priority thread or carry out an operation 930 * on an entry. Those users should call this function before they drop 931 * the lock. It resets the @xas to be suitable for the next iteration 932 * of the loop after the user has reacquired the lock. If most entries 933 * found during a walk require you to call xas_pause(), the xa_for_each() 934 * iterator may be more appropriate. 935 * 936 * Note that xas_pause() only works for forward iteration. If a user needs 937 * to pause a reverse iteration, we will need a xas_pause_rev(). 938 */ 939 void xas_pause(struct xa_state *xas) 940 { 941 struct xa_node *node = xas->xa_node; 942 943 if (xas_invalid(xas)) 944 return; 945 946 if (node) { 947 unsigned int offset = xas->xa_offset; 948 while (++offset < XA_CHUNK_SIZE) { 949 if (!xa_is_sibling(xa_entry(xas->xa, node, offset))) 950 break; 951 } 952 xas->xa_index += (offset - xas->xa_offset) << node->shift; 953 } else { 954 xas->xa_index++; 955 } 956 xas->xa_node = XAS_RESTART; 957 } 958 EXPORT_SYMBOL_GPL(xas_pause); 959 960 /* 961 * __xas_prev() - Find the previous entry in the XArray. 962 * @xas: XArray operation state. 963 * 964 * Helper function for xas_prev() which handles all the complex cases 965 * out of line. 966 */ 967 void *__xas_prev(struct xa_state *xas) 968 { 969 void *entry; 970 971 if (!xas_frozen(xas->xa_node)) 972 xas->xa_index--; 973 if (xas_not_node(xas->xa_node)) 974 return xas_load(xas); 975 976 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 977 xas->xa_offset--; 978 979 while (xas->xa_offset == 255) { 980 xas->xa_offset = xas->xa_node->offset - 1; 981 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 982 if (!xas->xa_node) 983 return set_bounds(xas); 984 } 985 986 for (;;) { 987 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 988 if (!xa_is_node(entry)) 989 return entry; 990 991 xas->xa_node = xa_to_node(entry); 992 xas_set_offset(xas); 993 } 994 } 995 EXPORT_SYMBOL_GPL(__xas_prev); 996 997 /* 998 * __xas_next() - Find the next entry in the XArray. 999 * @xas: XArray operation state. 1000 * 1001 * Helper function for xas_next() which handles all the complex cases 1002 * out of line. 1003 */ 1004 void *__xas_next(struct xa_state *xas) 1005 { 1006 void *entry; 1007 1008 if (!xas_frozen(xas->xa_node)) 1009 xas->xa_index++; 1010 if (xas_not_node(xas->xa_node)) 1011 return xas_load(xas); 1012 1013 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1014 xas->xa_offset++; 1015 1016 while (xas->xa_offset == XA_CHUNK_SIZE) { 1017 xas->xa_offset = xas->xa_node->offset + 1; 1018 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1019 if (!xas->xa_node) 1020 return set_bounds(xas); 1021 } 1022 1023 for (;;) { 1024 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1025 if (!xa_is_node(entry)) 1026 return entry; 1027 1028 xas->xa_node = xa_to_node(entry); 1029 xas_set_offset(xas); 1030 } 1031 } 1032 EXPORT_SYMBOL_GPL(__xas_next); 1033 1034 /** 1035 * xas_find() - Find the next present entry in the XArray. 1036 * @xas: XArray operation state. 1037 * @max: Highest index to return. 1038 * 1039 * If the @xas has not yet been walked to an entry, return the entry 1040 * which has an index >= xas.xa_index. If it has been walked, the entry 1041 * currently being pointed at has been processed, and so we move to the 1042 * next entry. 1043 * 1044 * If no entry is found and the array is smaller than @max, the iterator 1045 * is set to the smallest index not yet in the array. This allows @xas 1046 * to be immediately passed to xas_store(). 1047 * 1048 * Return: The entry, if found, otherwise %NULL. 1049 */ 1050 void *xas_find(struct xa_state *xas, unsigned long max) 1051 { 1052 void *entry; 1053 1054 if (xas_error(xas)) 1055 return NULL; 1056 1057 if (!xas->xa_node) { 1058 xas->xa_index = 1; 1059 return set_bounds(xas); 1060 } else if (xas_top(xas->xa_node)) { 1061 entry = xas_load(xas); 1062 if (entry || xas_not_node(xas->xa_node)) 1063 return entry; 1064 } else if (!xas->xa_node->shift && 1065 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) { 1066 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1; 1067 } 1068 1069 xas_advance(xas); 1070 1071 while (xas->xa_node && (xas->xa_index <= max)) { 1072 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1073 xas->xa_offset = xas->xa_node->offset + 1; 1074 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1075 continue; 1076 } 1077 1078 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1079 if (xa_is_node(entry)) { 1080 xas->xa_node = xa_to_node(entry); 1081 xas->xa_offset = 0; 1082 continue; 1083 } 1084 if (entry && !xa_is_sibling(entry)) 1085 return entry; 1086 1087 xas_advance(xas); 1088 } 1089 1090 if (!xas->xa_node) 1091 xas->xa_node = XAS_BOUNDS; 1092 return NULL; 1093 } 1094 EXPORT_SYMBOL_GPL(xas_find); 1095 1096 /** 1097 * xas_find_marked() - Find the next marked entry in the XArray. 1098 * @xas: XArray operation state. 1099 * @max: Highest index to return. 1100 * @mark: Mark number to search for. 1101 * 1102 * If the @xas has not yet been walked to an entry, return the marked entry 1103 * which has an index >= xas.xa_index. If it has been walked, the entry 1104 * currently being pointed at has been processed, and so we return the 1105 * first marked entry with an index > xas.xa_index. 1106 * 1107 * If no marked entry is found and the array is smaller than @max, @xas is 1108 * set to the bounds state and xas->xa_index is set to the smallest index 1109 * not yet in the array. This allows @xas to be immediately passed to 1110 * xas_store(). 1111 * 1112 * If no entry is found before @max is reached, @xas is set to the restart 1113 * state. 1114 * 1115 * Return: The entry, if found, otherwise %NULL. 1116 */ 1117 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark) 1118 { 1119 bool advance = true; 1120 unsigned int offset; 1121 void *entry; 1122 1123 if (xas_error(xas)) 1124 return NULL; 1125 1126 if (!xas->xa_node) { 1127 xas->xa_index = 1; 1128 goto out; 1129 } else if (xas_top(xas->xa_node)) { 1130 advance = false; 1131 entry = xa_head(xas->xa); 1132 xas->xa_node = NULL; 1133 if (xas->xa_index > max_index(entry)) 1134 goto out; 1135 if (!xa_is_node(entry)) { 1136 if (xa_marked(xas->xa, mark)) 1137 return entry; 1138 xas->xa_index = 1; 1139 goto out; 1140 } 1141 xas->xa_node = xa_to_node(entry); 1142 xas->xa_offset = xas->xa_index >> xas->xa_node->shift; 1143 } 1144 1145 while (xas->xa_index <= max) { 1146 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1147 xas->xa_offset = xas->xa_node->offset + 1; 1148 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1149 if (!xas->xa_node) 1150 break; 1151 advance = false; 1152 continue; 1153 } 1154 1155 if (!advance) { 1156 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1157 if (xa_is_sibling(entry)) { 1158 xas->xa_offset = xa_to_sibling(entry); 1159 xas_move_index(xas, xas->xa_offset); 1160 } 1161 } 1162 1163 offset = xas_find_chunk(xas, advance, mark); 1164 if (offset > xas->xa_offset) { 1165 advance = false; 1166 xas_move_index(xas, offset); 1167 /* Mind the wrap */ 1168 if ((xas->xa_index - 1) >= max) 1169 goto max; 1170 xas->xa_offset = offset; 1171 if (offset == XA_CHUNK_SIZE) 1172 continue; 1173 } 1174 1175 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1176 if (!xa_is_node(entry)) 1177 return entry; 1178 xas->xa_node = xa_to_node(entry); 1179 xas_set_offset(xas); 1180 } 1181 1182 out: 1183 if (xas->xa_index > max) 1184 goto max; 1185 return set_bounds(xas); 1186 max: 1187 xas->xa_node = XAS_RESTART; 1188 return NULL; 1189 } 1190 EXPORT_SYMBOL_GPL(xas_find_marked); 1191 1192 /** 1193 * xas_find_conflict() - Find the next present entry in a range. 1194 * @xas: XArray operation state. 1195 * 1196 * The @xas describes both a range and a position within that range. 1197 * 1198 * Context: Any context. Expects xa_lock to be held. 1199 * Return: The next entry in the range covered by @xas or %NULL. 1200 */ 1201 void *xas_find_conflict(struct xa_state *xas) 1202 { 1203 void *curr; 1204 1205 if (xas_error(xas)) 1206 return NULL; 1207 1208 if (!xas->xa_node) 1209 return NULL; 1210 1211 if (xas_top(xas->xa_node)) { 1212 curr = xas_start(xas); 1213 if (!curr) 1214 return NULL; 1215 while (xa_is_node(curr)) { 1216 struct xa_node *node = xa_to_node(curr); 1217 curr = xas_descend(xas, node); 1218 } 1219 if (curr) 1220 return curr; 1221 } 1222 1223 if (xas->xa_node->shift > xas->xa_shift) 1224 return NULL; 1225 1226 for (;;) { 1227 if (xas->xa_node->shift == xas->xa_shift) { 1228 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs) 1229 break; 1230 } else if (xas->xa_offset == XA_CHUNK_MASK) { 1231 xas->xa_offset = xas->xa_node->offset; 1232 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node); 1233 if (!xas->xa_node) 1234 break; 1235 continue; 1236 } 1237 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset); 1238 if (xa_is_sibling(curr)) 1239 continue; 1240 while (xa_is_node(curr)) { 1241 xas->xa_node = xa_to_node(curr); 1242 xas->xa_offset = 0; 1243 curr = xa_entry_locked(xas->xa, xas->xa_node, 0); 1244 } 1245 if (curr) 1246 return curr; 1247 } 1248 xas->xa_offset -= xas->xa_sibs; 1249 return NULL; 1250 } 1251 EXPORT_SYMBOL_GPL(xas_find_conflict); 1252 1253 /** 1254 * xa_init_flags() - Initialise an empty XArray with flags. 1255 * @xa: XArray. 1256 * @flags: XA_FLAG values. 1257 * 1258 * If you need to initialise an XArray with special flags (eg you need 1259 * to take the lock from interrupt context), use this function instead 1260 * of xa_init(). 1261 * 1262 * Context: Any context. 1263 */ 1264 void xa_init_flags(struct xarray *xa, gfp_t flags) 1265 { 1266 unsigned int lock_type; 1267 static struct lock_class_key xa_lock_irq; 1268 static struct lock_class_key xa_lock_bh; 1269 1270 spin_lock_init(&xa->xa_lock); 1271 xa->xa_flags = flags; 1272 xa->xa_head = NULL; 1273 1274 lock_type = xa_lock_type(xa); 1275 if (lock_type == XA_LOCK_IRQ) 1276 lockdep_set_class(&xa->xa_lock, &xa_lock_irq); 1277 else if (lock_type == XA_LOCK_BH) 1278 lockdep_set_class(&xa->xa_lock, &xa_lock_bh); 1279 } 1280 EXPORT_SYMBOL(xa_init_flags); 1281 1282 /** 1283 * xa_load() - Load an entry from an XArray. 1284 * @xa: XArray. 1285 * @index: index into array. 1286 * 1287 * Context: Any context. Takes and releases the RCU lock. 1288 * Return: The entry at @index in @xa. 1289 */ 1290 void *xa_load(struct xarray *xa, unsigned long index) 1291 { 1292 XA_STATE(xas, xa, index); 1293 void *entry; 1294 1295 rcu_read_lock(); 1296 do { 1297 entry = xas_load(&xas); 1298 if (xa_is_zero(entry)) 1299 entry = NULL; 1300 } while (xas_retry(&xas, entry)); 1301 rcu_read_unlock(); 1302 1303 return entry; 1304 } 1305 EXPORT_SYMBOL(xa_load); 1306 1307 static void *xas_result(struct xa_state *xas, void *curr) 1308 { 1309 if (xa_is_zero(curr)) 1310 return NULL; 1311 XA_NODE_BUG_ON(xas->xa_node, xa_is_internal(curr)); 1312 if (xas_error(xas)) 1313 curr = xas->xa_node; 1314 return curr; 1315 } 1316 1317 /** 1318 * __xa_erase() - Erase this entry from the XArray while locked. 1319 * @xa: XArray. 1320 * @index: Index into array. 1321 * 1322 * If the entry at this index is a multi-index entry then all indices will 1323 * be erased, and the entry will no longer be a multi-index entry. 1324 * This function expects the xa_lock to be held on entry. 1325 * 1326 * Context: Any context. Expects xa_lock to be held on entry. May 1327 * release and reacquire xa_lock if @gfp flags permit. 1328 * Return: The old entry at this index. 1329 */ 1330 void *__xa_erase(struct xarray *xa, unsigned long index) 1331 { 1332 XA_STATE(xas, xa, index); 1333 return xas_result(&xas, xas_store(&xas, NULL)); 1334 } 1335 EXPORT_SYMBOL(__xa_erase); 1336 1337 /** 1338 * xa_erase() - Erase this entry from the XArray. 1339 * @xa: XArray. 1340 * @index: Index of entry. 1341 * 1342 * This function is the equivalent of calling xa_store() with %NULL as 1343 * the third argument. The XArray does not need to allocate memory, so 1344 * the user does not need to provide GFP flags. 1345 * 1346 * Context: Any context. Takes and releases the xa_lock. 1347 * Return: The entry which used to be at this index. 1348 */ 1349 void *xa_erase(struct xarray *xa, unsigned long index) 1350 { 1351 void *entry; 1352 1353 xa_lock(xa); 1354 entry = __xa_erase(xa, index); 1355 xa_unlock(xa); 1356 1357 return entry; 1358 } 1359 EXPORT_SYMBOL(xa_erase); 1360 1361 /** 1362 * __xa_store() - Store this entry in the XArray. 1363 * @xa: XArray. 1364 * @index: Index into array. 1365 * @entry: New entry. 1366 * @gfp: Memory allocation flags. 1367 * 1368 * You must already be holding the xa_lock when calling this function. 1369 * It will drop the lock if needed to allocate memory, and then reacquire 1370 * it afterwards. 1371 * 1372 * Context: Any context. Expects xa_lock to be held on entry. May 1373 * release and reacquire xa_lock if @gfp flags permit. 1374 * Return: The old entry at this index or xa_err() if an error happened. 1375 */ 1376 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1377 { 1378 XA_STATE(xas, xa, index); 1379 void *curr; 1380 1381 if (WARN_ON_ONCE(xa_is_internal(entry))) 1382 return XA_ERROR(-EINVAL); 1383 if (xa_track_free(xa) && !entry) 1384 entry = XA_ZERO_ENTRY; 1385 1386 do { 1387 curr = xas_store(&xas, entry); 1388 if (xa_track_free(xa)) 1389 xas_clear_mark(&xas, XA_FREE_MARK); 1390 } while (__xas_nomem(&xas, gfp)); 1391 1392 return xas_result(&xas, curr); 1393 } 1394 EXPORT_SYMBOL(__xa_store); 1395 1396 /** 1397 * xa_store() - Store this entry in the XArray. 1398 * @xa: XArray. 1399 * @index: Index into array. 1400 * @entry: New entry. 1401 * @gfp: Memory allocation flags. 1402 * 1403 * After this function returns, loads from this index will return @entry. 1404 * Storing into an existing multislot entry updates the entry of every index. 1405 * The marks associated with @index are unaffected unless @entry is %NULL. 1406 * 1407 * Context: Any context. Takes and releases the xa_lock. 1408 * May sleep if the @gfp flags permit. 1409 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry 1410 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation 1411 * failed. 1412 */ 1413 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1414 { 1415 void *curr; 1416 1417 xa_lock(xa); 1418 curr = __xa_store(xa, index, entry, gfp); 1419 xa_unlock(xa); 1420 1421 return curr; 1422 } 1423 EXPORT_SYMBOL(xa_store); 1424 1425 /** 1426 * __xa_cmpxchg() - Store this entry in the XArray. 1427 * @xa: XArray. 1428 * @index: Index into array. 1429 * @old: Old value to test against. 1430 * @entry: New entry. 1431 * @gfp: Memory allocation flags. 1432 * 1433 * You must already be holding the xa_lock when calling this function. 1434 * It will drop the lock if needed to allocate memory, and then reacquire 1435 * it afterwards. 1436 * 1437 * Context: Any context. Expects xa_lock to be held on entry. May 1438 * release and reacquire xa_lock if @gfp flags permit. 1439 * Return: The old entry at this index or xa_err() if an error happened. 1440 */ 1441 void *__xa_cmpxchg(struct xarray *xa, unsigned long index, 1442 void *old, void *entry, gfp_t gfp) 1443 { 1444 XA_STATE(xas, xa, index); 1445 void *curr; 1446 1447 if (WARN_ON_ONCE(xa_is_internal(entry))) 1448 return XA_ERROR(-EINVAL); 1449 if (xa_track_free(xa) && !entry) 1450 entry = XA_ZERO_ENTRY; 1451 1452 do { 1453 curr = xas_load(&xas); 1454 if (curr == XA_ZERO_ENTRY) 1455 curr = NULL; 1456 if (curr == old) { 1457 xas_store(&xas, entry); 1458 if (xa_track_free(xa)) 1459 xas_clear_mark(&xas, XA_FREE_MARK); 1460 } 1461 } while (__xas_nomem(&xas, gfp)); 1462 1463 return xas_result(&xas, curr); 1464 } 1465 EXPORT_SYMBOL(__xa_cmpxchg); 1466 1467 /** 1468 * __xa_reserve() - Reserve this index in the XArray. 1469 * @xa: XArray. 1470 * @index: Index into array. 1471 * @gfp: Memory allocation flags. 1472 * 1473 * Ensures there is somewhere to store an entry at @index in the array. 1474 * If there is already something stored at @index, this function does 1475 * nothing. If there was nothing there, the entry is marked as reserved. 1476 * Loading from a reserved entry returns a %NULL pointer. 1477 * 1478 * If you do not use the entry that you have reserved, call xa_release() 1479 * or xa_erase() to free any unnecessary memory. 1480 * 1481 * Context: Any context. Expects the xa_lock to be held on entry. May 1482 * release the lock, sleep and reacquire the lock if the @gfp flags permit. 1483 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 1484 */ 1485 int __xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp) 1486 { 1487 XA_STATE(xas, xa, index); 1488 void *curr; 1489 1490 do { 1491 curr = xas_load(&xas); 1492 if (!curr) { 1493 xas_store(&xas, XA_ZERO_ENTRY); 1494 if (xa_track_free(xa)) 1495 xas_clear_mark(&xas, XA_FREE_MARK); 1496 } 1497 } while (__xas_nomem(&xas, gfp)); 1498 1499 return xas_error(&xas); 1500 } 1501 EXPORT_SYMBOL(__xa_reserve); 1502 1503 #ifdef CONFIG_XARRAY_MULTI 1504 static void xas_set_range(struct xa_state *xas, unsigned long first, 1505 unsigned long last) 1506 { 1507 unsigned int shift = 0; 1508 unsigned long sibs = last - first; 1509 unsigned int offset = XA_CHUNK_MASK; 1510 1511 xas_set(xas, first); 1512 1513 while ((first & XA_CHUNK_MASK) == 0) { 1514 if (sibs < XA_CHUNK_MASK) 1515 break; 1516 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK)) 1517 break; 1518 shift += XA_CHUNK_SHIFT; 1519 if (offset == XA_CHUNK_MASK) 1520 offset = sibs & XA_CHUNK_MASK; 1521 sibs >>= XA_CHUNK_SHIFT; 1522 first >>= XA_CHUNK_SHIFT; 1523 } 1524 1525 offset = first & XA_CHUNK_MASK; 1526 if (offset + sibs > XA_CHUNK_MASK) 1527 sibs = XA_CHUNK_MASK - offset; 1528 if ((((first + sibs + 1) << shift) - 1) > last) 1529 sibs -= 1; 1530 1531 xas->xa_shift = shift; 1532 xas->xa_sibs = sibs; 1533 } 1534 1535 /** 1536 * xa_store_range() - Store this entry at a range of indices in the XArray. 1537 * @xa: XArray. 1538 * @first: First index to affect. 1539 * @last: Last index to affect. 1540 * @entry: New entry. 1541 * @gfp: Memory allocation flags. 1542 * 1543 * After this function returns, loads from any index between @first and @last, 1544 * inclusive will return @entry. 1545 * Storing into an existing multislot entry updates the entry of every index. 1546 * The marks associated with @index are unaffected unless @entry is %NULL. 1547 * 1548 * Context: Process context. Takes and releases the xa_lock. May sleep 1549 * if the @gfp flags permit. 1550 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in 1551 * an XArray, or xa_err(-ENOMEM) if memory allocation failed. 1552 */ 1553 void *xa_store_range(struct xarray *xa, unsigned long first, 1554 unsigned long last, void *entry, gfp_t gfp) 1555 { 1556 XA_STATE(xas, xa, 0); 1557 1558 if (WARN_ON_ONCE(xa_is_internal(entry))) 1559 return XA_ERROR(-EINVAL); 1560 if (last < first) 1561 return XA_ERROR(-EINVAL); 1562 1563 do { 1564 xas_lock(&xas); 1565 if (entry) { 1566 unsigned int order = BITS_PER_LONG; 1567 if (last + 1) 1568 order = __ffs(last + 1); 1569 xas_set_order(&xas, last, order); 1570 xas_create(&xas); 1571 if (xas_error(&xas)) 1572 goto unlock; 1573 } 1574 do { 1575 xas_set_range(&xas, first, last); 1576 xas_store(&xas, entry); 1577 if (xas_error(&xas)) 1578 goto unlock; 1579 first += xas_size(&xas); 1580 } while (first <= last); 1581 unlock: 1582 xas_unlock(&xas); 1583 } while (xas_nomem(&xas, gfp)); 1584 1585 return xas_result(&xas, NULL); 1586 } 1587 EXPORT_SYMBOL(xa_store_range); 1588 #endif /* CONFIG_XARRAY_MULTI */ 1589 1590 /** 1591 * __xa_alloc() - Find somewhere to store this entry in the XArray. 1592 * @xa: XArray. 1593 * @id: Pointer to ID. 1594 * @max: Maximum ID to allocate (inclusive). 1595 * @entry: New entry. 1596 * @gfp: Memory allocation flags. 1597 * 1598 * Allocates an unused ID in the range specified by @id and @max. 1599 * Updates the @id pointer with the index, then stores the entry at that 1600 * index. A concurrent lookup will not see an uninitialised @id. 1601 * 1602 * Context: Any context. Expects xa_lock to be held on entry. May 1603 * release and reacquire xa_lock if @gfp flags permit. 1604 * Return: 0 on success, -ENOMEM if memory allocation fails or -ENOSPC if 1605 * there is no more space in the XArray. 1606 */ 1607 int __xa_alloc(struct xarray *xa, u32 *id, u32 max, void *entry, gfp_t gfp) 1608 { 1609 XA_STATE(xas, xa, 0); 1610 int err; 1611 1612 if (WARN_ON_ONCE(xa_is_internal(entry))) 1613 return -EINVAL; 1614 if (WARN_ON_ONCE(!xa_track_free(xa))) 1615 return -EINVAL; 1616 1617 if (!entry) 1618 entry = XA_ZERO_ENTRY; 1619 1620 do { 1621 xas.xa_index = *id; 1622 xas_find_marked(&xas, max, XA_FREE_MARK); 1623 if (xas.xa_node == XAS_RESTART) 1624 xas_set_err(&xas, -ENOSPC); 1625 xas_store(&xas, entry); 1626 xas_clear_mark(&xas, XA_FREE_MARK); 1627 } while (__xas_nomem(&xas, gfp)); 1628 1629 err = xas_error(&xas); 1630 if (!err) 1631 *id = xas.xa_index; 1632 return err; 1633 } 1634 EXPORT_SYMBOL(__xa_alloc); 1635 1636 /** 1637 * __xa_set_mark() - Set this mark on this entry while locked. 1638 * @xa: XArray. 1639 * @index: Index of entry. 1640 * @mark: Mark number. 1641 * 1642 * Attempting to set a mark on a %NULL entry does not succeed. 1643 * 1644 * Context: Any context. Expects xa_lock to be held on entry. 1645 */ 1646 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1647 { 1648 XA_STATE(xas, xa, index); 1649 void *entry = xas_load(&xas); 1650 1651 if (entry) 1652 xas_set_mark(&xas, mark); 1653 } 1654 EXPORT_SYMBOL(__xa_set_mark); 1655 1656 /** 1657 * __xa_clear_mark() - Clear this mark on this entry while locked. 1658 * @xa: XArray. 1659 * @index: Index of entry. 1660 * @mark: Mark number. 1661 * 1662 * Context: Any context. Expects xa_lock to be held on entry. 1663 */ 1664 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1665 { 1666 XA_STATE(xas, xa, index); 1667 void *entry = xas_load(&xas); 1668 1669 if (entry) 1670 xas_clear_mark(&xas, mark); 1671 } 1672 EXPORT_SYMBOL(__xa_clear_mark); 1673 1674 /** 1675 * xa_get_mark() - Inquire whether this mark is set on this entry. 1676 * @xa: XArray. 1677 * @index: Index of entry. 1678 * @mark: Mark number. 1679 * 1680 * This function uses the RCU read lock, so the result may be out of date 1681 * by the time it returns. If you need the result to be stable, use a lock. 1682 * 1683 * Context: Any context. Takes and releases the RCU lock. 1684 * Return: True if the entry at @index has this mark set, false if it doesn't. 1685 */ 1686 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1687 { 1688 XA_STATE(xas, xa, index); 1689 void *entry; 1690 1691 rcu_read_lock(); 1692 entry = xas_start(&xas); 1693 while (xas_get_mark(&xas, mark)) { 1694 if (!xa_is_node(entry)) 1695 goto found; 1696 entry = xas_descend(&xas, xa_to_node(entry)); 1697 } 1698 rcu_read_unlock(); 1699 return false; 1700 found: 1701 rcu_read_unlock(); 1702 return true; 1703 } 1704 EXPORT_SYMBOL(xa_get_mark); 1705 1706 /** 1707 * xa_set_mark() - Set this mark on this entry. 1708 * @xa: XArray. 1709 * @index: Index of entry. 1710 * @mark: Mark number. 1711 * 1712 * Attempting to set a mark on a %NULL entry does not succeed. 1713 * 1714 * Context: Process context. Takes and releases the xa_lock. 1715 */ 1716 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1717 { 1718 xa_lock(xa); 1719 __xa_set_mark(xa, index, mark); 1720 xa_unlock(xa); 1721 } 1722 EXPORT_SYMBOL(xa_set_mark); 1723 1724 /** 1725 * xa_clear_mark() - Clear this mark on this entry. 1726 * @xa: XArray. 1727 * @index: Index of entry. 1728 * @mark: Mark number. 1729 * 1730 * Clearing a mark always succeeds. 1731 * 1732 * Context: Process context. Takes and releases the xa_lock. 1733 */ 1734 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1735 { 1736 xa_lock(xa); 1737 __xa_clear_mark(xa, index, mark); 1738 xa_unlock(xa); 1739 } 1740 EXPORT_SYMBOL(xa_clear_mark); 1741 1742 /** 1743 * xa_find() - Search the XArray for an entry. 1744 * @xa: XArray. 1745 * @indexp: Pointer to an index. 1746 * @max: Maximum index to search to. 1747 * @filter: Selection criterion. 1748 * 1749 * Finds the entry in @xa which matches the @filter, and has the lowest 1750 * index that is at least @indexp and no more than @max. 1751 * If an entry is found, @indexp is updated to be the index of the entry. 1752 * This function is protected by the RCU read lock, so it may not find 1753 * entries which are being simultaneously added. It will not return an 1754 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 1755 * 1756 * Context: Any context. Takes and releases the RCU lock. 1757 * Return: The entry, if found, otherwise %NULL. 1758 */ 1759 void *xa_find(struct xarray *xa, unsigned long *indexp, 1760 unsigned long max, xa_mark_t filter) 1761 { 1762 XA_STATE(xas, xa, *indexp); 1763 void *entry; 1764 1765 rcu_read_lock(); 1766 do { 1767 if ((__force unsigned int)filter < XA_MAX_MARKS) 1768 entry = xas_find_marked(&xas, max, filter); 1769 else 1770 entry = xas_find(&xas, max); 1771 } while (xas_retry(&xas, entry)); 1772 rcu_read_unlock(); 1773 1774 if (entry) 1775 *indexp = xas.xa_index; 1776 return entry; 1777 } 1778 EXPORT_SYMBOL(xa_find); 1779 1780 /** 1781 * xa_find_after() - Search the XArray for a present entry. 1782 * @xa: XArray. 1783 * @indexp: Pointer to an index. 1784 * @max: Maximum index to search to. 1785 * @filter: Selection criterion. 1786 * 1787 * Finds the entry in @xa which matches the @filter and has the lowest 1788 * index that is above @indexp and no more than @max. 1789 * If an entry is found, @indexp is updated to be the index of the entry. 1790 * This function is protected by the RCU read lock, so it may miss entries 1791 * which are being simultaneously added. It will not return an 1792 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 1793 * 1794 * Context: Any context. Takes and releases the RCU lock. 1795 * Return: The pointer, if found, otherwise %NULL. 1796 */ 1797 void *xa_find_after(struct xarray *xa, unsigned long *indexp, 1798 unsigned long max, xa_mark_t filter) 1799 { 1800 XA_STATE(xas, xa, *indexp + 1); 1801 void *entry; 1802 1803 rcu_read_lock(); 1804 for (;;) { 1805 if ((__force unsigned int)filter < XA_MAX_MARKS) 1806 entry = xas_find_marked(&xas, max, filter); 1807 else 1808 entry = xas_find(&xas, max); 1809 if (xas.xa_node == XAS_BOUNDS) 1810 break; 1811 if (xas.xa_shift) { 1812 if (xas.xa_index & ((1UL << xas.xa_shift) - 1)) 1813 continue; 1814 } else { 1815 if (xas.xa_offset < (xas.xa_index & XA_CHUNK_MASK)) 1816 continue; 1817 } 1818 if (!xas_retry(&xas, entry)) 1819 break; 1820 } 1821 rcu_read_unlock(); 1822 1823 if (entry) 1824 *indexp = xas.xa_index; 1825 return entry; 1826 } 1827 EXPORT_SYMBOL(xa_find_after); 1828 1829 static unsigned int xas_extract_present(struct xa_state *xas, void **dst, 1830 unsigned long max, unsigned int n) 1831 { 1832 void *entry; 1833 unsigned int i = 0; 1834 1835 rcu_read_lock(); 1836 xas_for_each(xas, entry, max) { 1837 if (xas_retry(xas, entry)) 1838 continue; 1839 dst[i++] = entry; 1840 if (i == n) 1841 break; 1842 } 1843 rcu_read_unlock(); 1844 1845 return i; 1846 } 1847 1848 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst, 1849 unsigned long max, unsigned int n, xa_mark_t mark) 1850 { 1851 void *entry; 1852 unsigned int i = 0; 1853 1854 rcu_read_lock(); 1855 xas_for_each_marked(xas, entry, max, mark) { 1856 if (xas_retry(xas, entry)) 1857 continue; 1858 dst[i++] = entry; 1859 if (i == n) 1860 break; 1861 } 1862 rcu_read_unlock(); 1863 1864 return i; 1865 } 1866 1867 /** 1868 * xa_extract() - Copy selected entries from the XArray into a normal array. 1869 * @xa: The source XArray to copy from. 1870 * @dst: The buffer to copy entries into. 1871 * @start: The first index in the XArray eligible to be selected. 1872 * @max: The last index in the XArray eligible to be selected. 1873 * @n: The maximum number of entries to copy. 1874 * @filter: Selection criterion. 1875 * 1876 * Copies up to @n entries that match @filter from the XArray. The 1877 * copied entries will have indices between @start and @max, inclusive. 1878 * 1879 * The @filter may be an XArray mark value, in which case entries which are 1880 * marked with that mark will be copied. It may also be %XA_PRESENT, in 1881 * which case all entries which are not %NULL will be copied. 1882 * 1883 * The entries returned may not represent a snapshot of the XArray at a 1884 * moment in time. For example, if another thread stores to index 5, then 1885 * index 10, calling xa_extract() may return the old contents of index 5 1886 * and the new contents of index 10. Indices not modified while this 1887 * function is running will not be skipped. 1888 * 1889 * If you need stronger guarantees, holding the xa_lock across calls to this 1890 * function will prevent concurrent modification. 1891 * 1892 * Context: Any context. Takes and releases the RCU lock. 1893 * Return: The number of entries copied. 1894 */ 1895 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start, 1896 unsigned long max, unsigned int n, xa_mark_t filter) 1897 { 1898 XA_STATE(xas, xa, start); 1899 1900 if (!n) 1901 return 0; 1902 1903 if ((__force unsigned int)filter < XA_MAX_MARKS) 1904 return xas_extract_marked(&xas, dst, max, n, filter); 1905 return xas_extract_present(&xas, dst, max, n); 1906 } 1907 EXPORT_SYMBOL(xa_extract); 1908 1909 /** 1910 * xa_destroy() - Free all internal data structures. 1911 * @xa: XArray. 1912 * 1913 * After calling this function, the XArray is empty and has freed all memory 1914 * allocated for its internal data structures. You are responsible for 1915 * freeing the objects referenced by the XArray. 1916 * 1917 * Context: Any context. Takes and releases the xa_lock, interrupt-safe. 1918 */ 1919 void xa_destroy(struct xarray *xa) 1920 { 1921 XA_STATE(xas, xa, 0); 1922 unsigned long flags; 1923 void *entry; 1924 1925 xas.xa_node = NULL; 1926 xas_lock_irqsave(&xas, flags); 1927 entry = xa_head_locked(xa); 1928 RCU_INIT_POINTER(xa->xa_head, NULL); 1929 xas_init_marks(&xas); 1930 /* lockdep checks we're still holding the lock in xas_free_nodes() */ 1931 if (xa_is_node(entry)) 1932 xas_free_nodes(&xas, xa_to_node(entry)); 1933 xas_unlock_irqrestore(&xas, flags); 1934 } 1935 EXPORT_SYMBOL(xa_destroy); 1936 1937 #ifdef XA_DEBUG 1938 void xa_dump_node(const struct xa_node *node) 1939 { 1940 unsigned i, j; 1941 1942 if (!node) 1943 return; 1944 if ((unsigned long)node & 3) { 1945 pr_cont("node %px\n", node); 1946 return; 1947 } 1948 1949 pr_cont("node %px %s %d parent %px shift %d count %d values %d " 1950 "array %px list %px %px marks", 1951 node, node->parent ? "offset" : "max", node->offset, 1952 node->parent, node->shift, node->count, node->nr_values, 1953 node->array, node->private_list.prev, node->private_list.next); 1954 for (i = 0; i < XA_MAX_MARKS; i++) 1955 for (j = 0; j < XA_MARK_LONGS; j++) 1956 pr_cont(" %lx", node->marks[i][j]); 1957 pr_cont("\n"); 1958 } 1959 1960 void xa_dump_index(unsigned long index, unsigned int shift) 1961 { 1962 if (!shift) 1963 pr_info("%lu: ", index); 1964 else if (shift >= BITS_PER_LONG) 1965 pr_info("0-%lu: ", ~0UL); 1966 else 1967 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1)); 1968 } 1969 1970 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift) 1971 { 1972 if (!entry) 1973 return; 1974 1975 xa_dump_index(index, shift); 1976 1977 if (xa_is_node(entry)) { 1978 if (shift == 0) { 1979 pr_cont("%px\n", entry); 1980 } else { 1981 unsigned long i; 1982 struct xa_node *node = xa_to_node(entry); 1983 xa_dump_node(node); 1984 for (i = 0; i < XA_CHUNK_SIZE; i++) 1985 xa_dump_entry(node->slots[i], 1986 index + (i << node->shift), node->shift); 1987 } 1988 } else if (xa_is_value(entry)) 1989 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry), 1990 xa_to_value(entry), entry); 1991 else if (!xa_is_internal(entry)) 1992 pr_cont("%px\n", entry); 1993 else if (xa_is_retry(entry)) 1994 pr_cont("retry (%ld)\n", xa_to_internal(entry)); 1995 else if (xa_is_sibling(entry)) 1996 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry)); 1997 else if (xa_is_zero(entry)) 1998 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 1999 else 2000 pr_cont("UNKNOWN ENTRY (%px)\n", entry); 2001 } 2002 2003 void xa_dump(const struct xarray *xa) 2004 { 2005 void *entry = xa->xa_head; 2006 unsigned int shift = 0; 2007 2008 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry, 2009 xa->xa_flags, xa_marked(xa, XA_MARK_0), 2010 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2)); 2011 if (xa_is_node(entry)) 2012 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT; 2013 xa_dump_entry(entry, 0, shift); 2014 } 2015 #endif 2016