1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * XArray implementation 4 * Copyright (c) 2017-2018 Microsoft Corporation 5 * Copyright (c) 2018-2020 Oracle 6 * Author: Matthew Wilcox <willy@infradead.org> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/export.h> 11 #include <linux/list.h> 12 #include <linux/slab.h> 13 #include <linux/xarray.h> 14 15 /* 16 * Coding conventions in this file: 17 * 18 * @xa is used to refer to the entire xarray. 19 * @xas is the 'xarray operation state'. It may be either a pointer to 20 * an xa_state, or an xa_state stored on the stack. This is an unfortunate 21 * ambiguity. 22 * @index is the index of the entry being operated on 23 * @mark is an xa_mark_t; a small number indicating one of the mark bits. 24 * @node refers to an xa_node; usually the primary one being operated on by 25 * this function. 26 * @offset is the index into the slots array inside an xa_node. 27 * @parent refers to the @xa_node closer to the head than @node. 28 * @entry refers to something stored in a slot in the xarray 29 */ 30 31 static inline unsigned int xa_lock_type(const struct xarray *xa) 32 { 33 return (__force unsigned int)xa->xa_flags & 3; 34 } 35 36 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type) 37 { 38 if (lock_type == XA_LOCK_IRQ) 39 xas_lock_irq(xas); 40 else if (lock_type == XA_LOCK_BH) 41 xas_lock_bh(xas); 42 else 43 xas_lock(xas); 44 } 45 46 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type) 47 { 48 if (lock_type == XA_LOCK_IRQ) 49 xas_unlock_irq(xas); 50 else if (lock_type == XA_LOCK_BH) 51 xas_unlock_bh(xas); 52 else 53 xas_unlock(xas); 54 } 55 56 static inline bool xa_track_free(const struct xarray *xa) 57 { 58 return xa->xa_flags & XA_FLAGS_TRACK_FREE; 59 } 60 61 static inline bool xa_zero_busy(const struct xarray *xa) 62 { 63 return xa->xa_flags & XA_FLAGS_ZERO_BUSY; 64 } 65 66 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark) 67 { 68 if (!(xa->xa_flags & XA_FLAGS_MARK(mark))) 69 xa->xa_flags |= XA_FLAGS_MARK(mark); 70 } 71 72 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark) 73 { 74 if (xa->xa_flags & XA_FLAGS_MARK(mark)) 75 xa->xa_flags &= ~(XA_FLAGS_MARK(mark)); 76 } 77 78 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark) 79 { 80 return node->marks[(__force unsigned)mark]; 81 } 82 83 static inline bool node_get_mark(struct xa_node *node, 84 unsigned int offset, xa_mark_t mark) 85 { 86 return test_bit(offset, node_marks(node, mark)); 87 } 88 89 /* returns true if the bit was set */ 90 static inline bool node_set_mark(struct xa_node *node, unsigned int offset, 91 xa_mark_t mark) 92 { 93 return __test_and_set_bit(offset, node_marks(node, mark)); 94 } 95 96 /* returns true if the bit was set */ 97 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset, 98 xa_mark_t mark) 99 { 100 return __test_and_clear_bit(offset, node_marks(node, mark)); 101 } 102 103 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark) 104 { 105 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE); 106 } 107 108 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark) 109 { 110 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE); 111 } 112 113 #define mark_inc(mark) do { \ 114 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \ 115 } while (0) 116 117 /* 118 * xas_squash_marks() - Merge all marks to the first entry 119 * @xas: Array operation state. 120 * 121 * Set a mark on the first entry if any entry has it set. Clear marks on 122 * all sibling entries. 123 */ 124 static void xas_squash_marks(const struct xa_state *xas) 125 { 126 unsigned int mark = 0; 127 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1; 128 129 if (!xas->xa_sibs) 130 return; 131 132 do { 133 unsigned long *marks = xas->xa_node->marks[mark]; 134 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit) 135 continue; 136 __set_bit(xas->xa_offset, marks); 137 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs); 138 } while (mark++ != (__force unsigned)XA_MARK_MAX); 139 } 140 141 /* extracts the offset within this node from the index */ 142 static unsigned int get_offset(unsigned long index, struct xa_node *node) 143 { 144 return (index >> node->shift) & XA_CHUNK_MASK; 145 } 146 147 static void xas_set_offset(struct xa_state *xas) 148 { 149 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node); 150 } 151 152 /* move the index either forwards (find) or backwards (sibling slot) */ 153 static void xas_move_index(struct xa_state *xas, unsigned long offset) 154 { 155 unsigned int shift = xas->xa_node->shift; 156 xas->xa_index &= ~XA_CHUNK_MASK << shift; 157 xas->xa_index += offset << shift; 158 } 159 160 static void xas_advance(struct xa_state *xas) 161 { 162 xas->xa_offset++; 163 xas_move_index(xas, xas->xa_offset); 164 } 165 166 static void *set_bounds(struct xa_state *xas) 167 { 168 xas->xa_node = XAS_BOUNDS; 169 return NULL; 170 } 171 172 /* 173 * Starts a walk. If the @xas is already valid, we assume that it's on 174 * the right path and just return where we've got to. If we're in an 175 * error state, return NULL. If the index is outside the current scope 176 * of the xarray, return NULL without changing @xas->xa_node. Otherwise 177 * set @xas->xa_node to NULL and return the current head of the array. 178 */ 179 static void *xas_start(struct xa_state *xas) 180 { 181 void *entry; 182 183 if (xas_valid(xas)) 184 return xas_reload(xas); 185 if (xas_error(xas)) 186 return NULL; 187 188 entry = xa_head(xas->xa); 189 if (!xa_is_node(entry)) { 190 if (xas->xa_index) 191 return set_bounds(xas); 192 } else { 193 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK) 194 return set_bounds(xas); 195 } 196 197 xas->xa_node = NULL; 198 return entry; 199 } 200 201 static void *xas_descend(struct xa_state *xas, struct xa_node *node) 202 { 203 unsigned int offset = get_offset(xas->xa_index, node); 204 void *entry = xa_entry(xas->xa, node, offset); 205 206 xas->xa_node = node; 207 if (xa_is_sibling(entry)) { 208 offset = xa_to_sibling(entry); 209 entry = xa_entry(xas->xa, node, offset); 210 } 211 212 xas->xa_offset = offset; 213 return entry; 214 } 215 216 /** 217 * xas_load() - Load an entry from the XArray (advanced). 218 * @xas: XArray operation state. 219 * 220 * Usually walks the @xas to the appropriate state to load the entry 221 * stored at xa_index. However, it will do nothing and return %NULL if 222 * @xas is in an error state. xas_load() will never expand the tree. 223 * 224 * If the xa_state is set up to operate on a multi-index entry, xas_load() 225 * may return %NULL or an internal entry, even if there are entries 226 * present within the range specified by @xas. 227 * 228 * Context: Any context. The caller should hold the xa_lock or the RCU lock. 229 * Return: Usually an entry in the XArray, but see description for exceptions. 230 */ 231 void *xas_load(struct xa_state *xas) 232 { 233 void *entry = xas_start(xas); 234 235 while (xa_is_node(entry)) { 236 struct xa_node *node = xa_to_node(entry); 237 238 if (xas->xa_shift > node->shift) 239 break; 240 entry = xas_descend(xas, node); 241 if (node->shift == 0) 242 break; 243 } 244 return entry; 245 } 246 EXPORT_SYMBOL_GPL(xas_load); 247 248 /* Move the radix tree node cache here */ 249 extern struct kmem_cache *radix_tree_node_cachep; 250 extern void radix_tree_node_rcu_free(struct rcu_head *head); 251 252 #define XA_RCU_FREE ((struct xarray *)1) 253 254 static void xa_node_free(struct xa_node *node) 255 { 256 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 257 node->array = XA_RCU_FREE; 258 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 259 } 260 261 /* 262 * xas_destroy() - Free any resources allocated during the XArray operation. 263 * @xas: XArray operation state. 264 * 265 * This function is now internal-only. 266 */ 267 static void xas_destroy(struct xa_state *xas) 268 { 269 struct xa_node *node = xas->xa_alloc; 270 271 if (!node) 272 return; 273 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 274 kmem_cache_free(radix_tree_node_cachep, node); 275 xas->xa_alloc = NULL; 276 } 277 278 /** 279 * xas_nomem() - Allocate memory if needed. 280 * @xas: XArray operation state. 281 * @gfp: Memory allocation flags. 282 * 283 * If we need to add new nodes to the XArray, we try to allocate memory 284 * with GFP_NOWAIT while holding the lock, which will usually succeed. 285 * If it fails, @xas is flagged as needing memory to continue. The caller 286 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds, 287 * the caller should retry the operation. 288 * 289 * Forward progress is guaranteed as one node is allocated here and 290 * stored in the xa_state where it will be found by xas_alloc(). More 291 * nodes will likely be found in the slab allocator, but we do not tie 292 * them up here. 293 * 294 * Return: true if memory was needed, and was successfully allocated. 295 */ 296 bool xas_nomem(struct xa_state *xas, gfp_t gfp) 297 { 298 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 299 xas_destroy(xas); 300 return false; 301 } 302 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 303 gfp |= __GFP_ACCOUNT; 304 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); 305 if (!xas->xa_alloc) 306 return false; 307 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 308 xas->xa_node = XAS_RESTART; 309 return true; 310 } 311 EXPORT_SYMBOL_GPL(xas_nomem); 312 313 /* 314 * __xas_nomem() - Drop locks and allocate memory if needed. 315 * @xas: XArray operation state. 316 * @gfp: Memory allocation flags. 317 * 318 * Internal variant of xas_nomem(). 319 * 320 * Return: true if memory was needed, and was successfully allocated. 321 */ 322 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp) 323 __must_hold(xas->xa->xa_lock) 324 { 325 unsigned int lock_type = xa_lock_type(xas->xa); 326 327 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 328 xas_destroy(xas); 329 return false; 330 } 331 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 332 gfp |= __GFP_ACCOUNT; 333 if (gfpflags_allow_blocking(gfp)) { 334 xas_unlock_type(xas, lock_type); 335 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); 336 xas_lock_type(xas, lock_type); 337 } else { 338 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); 339 } 340 if (!xas->xa_alloc) 341 return false; 342 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 343 xas->xa_node = XAS_RESTART; 344 return true; 345 } 346 347 static void xas_update(struct xa_state *xas, struct xa_node *node) 348 { 349 if (xas->xa_update) 350 xas->xa_update(node); 351 else 352 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 353 } 354 355 static void *xas_alloc(struct xa_state *xas, unsigned int shift) 356 { 357 struct xa_node *parent = xas->xa_node; 358 struct xa_node *node = xas->xa_alloc; 359 360 if (xas_invalid(xas)) 361 return NULL; 362 363 if (node) { 364 xas->xa_alloc = NULL; 365 } else { 366 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN; 367 368 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 369 gfp |= __GFP_ACCOUNT; 370 371 node = kmem_cache_alloc(radix_tree_node_cachep, gfp); 372 if (!node) { 373 xas_set_err(xas, -ENOMEM); 374 return NULL; 375 } 376 } 377 378 if (parent) { 379 node->offset = xas->xa_offset; 380 parent->count++; 381 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE); 382 xas_update(xas, parent); 383 } 384 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 385 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 386 node->shift = shift; 387 node->count = 0; 388 node->nr_values = 0; 389 RCU_INIT_POINTER(node->parent, xas->xa_node); 390 node->array = xas->xa; 391 392 return node; 393 } 394 395 #ifdef CONFIG_XARRAY_MULTI 396 /* Returns the number of indices covered by a given xa_state */ 397 static unsigned long xas_size(const struct xa_state *xas) 398 { 399 return (xas->xa_sibs + 1UL) << xas->xa_shift; 400 } 401 #endif 402 403 /* 404 * Use this to calculate the maximum index that will need to be created 405 * in order to add the entry described by @xas. Because we cannot store a 406 * multiple-index entry at index 0, the calculation is a little more complex 407 * than you might expect. 408 */ 409 static unsigned long xas_max(struct xa_state *xas) 410 { 411 unsigned long max = xas->xa_index; 412 413 #ifdef CONFIG_XARRAY_MULTI 414 if (xas->xa_shift || xas->xa_sibs) { 415 unsigned long mask = xas_size(xas) - 1; 416 max |= mask; 417 if (mask == max) 418 max++; 419 } 420 #endif 421 422 return max; 423 } 424 425 /* The maximum index that can be contained in the array without expanding it */ 426 static unsigned long max_index(void *entry) 427 { 428 if (!xa_is_node(entry)) 429 return 0; 430 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1; 431 } 432 433 static void xas_shrink(struct xa_state *xas) 434 { 435 struct xarray *xa = xas->xa; 436 struct xa_node *node = xas->xa_node; 437 438 for (;;) { 439 void *entry; 440 441 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 442 if (node->count != 1) 443 break; 444 entry = xa_entry_locked(xa, node, 0); 445 if (!entry) 446 break; 447 if (!xa_is_node(entry) && node->shift) 448 break; 449 if (xa_is_zero(entry) && xa_zero_busy(xa)) 450 entry = NULL; 451 xas->xa_node = XAS_BOUNDS; 452 453 RCU_INIT_POINTER(xa->xa_head, entry); 454 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK)) 455 xa_mark_clear(xa, XA_FREE_MARK); 456 457 node->count = 0; 458 node->nr_values = 0; 459 if (!xa_is_node(entry)) 460 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY); 461 xas_update(xas, node); 462 xa_node_free(node); 463 if (!xa_is_node(entry)) 464 break; 465 node = xa_to_node(entry); 466 node->parent = NULL; 467 } 468 } 469 470 /* 471 * xas_delete_node() - Attempt to delete an xa_node 472 * @xas: Array operation state. 473 * 474 * Attempts to delete the @xas->xa_node. This will fail if xa->node has 475 * a non-zero reference count. 476 */ 477 static void xas_delete_node(struct xa_state *xas) 478 { 479 struct xa_node *node = xas->xa_node; 480 481 for (;;) { 482 struct xa_node *parent; 483 484 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 485 if (node->count) 486 break; 487 488 parent = xa_parent_locked(xas->xa, node); 489 xas->xa_node = parent; 490 xas->xa_offset = node->offset; 491 xa_node_free(node); 492 493 if (!parent) { 494 xas->xa->xa_head = NULL; 495 xas->xa_node = XAS_BOUNDS; 496 return; 497 } 498 499 parent->slots[xas->xa_offset] = NULL; 500 parent->count--; 501 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE); 502 node = parent; 503 xas_update(xas, node); 504 } 505 506 if (!node->parent) 507 xas_shrink(xas); 508 } 509 510 /** 511 * xas_free_nodes() - Free this node and all nodes that it references 512 * @xas: Array operation state. 513 * @top: Node to free 514 * 515 * This node has been removed from the tree. We must now free it and all 516 * of its subnodes. There may be RCU walkers with references into the tree, 517 * so we must replace all entries with retry markers. 518 */ 519 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top) 520 { 521 unsigned int offset = 0; 522 struct xa_node *node = top; 523 524 for (;;) { 525 void *entry = xa_entry_locked(xas->xa, node, offset); 526 527 if (node->shift && xa_is_node(entry)) { 528 node = xa_to_node(entry); 529 offset = 0; 530 continue; 531 } 532 if (entry) 533 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY); 534 offset++; 535 while (offset == XA_CHUNK_SIZE) { 536 struct xa_node *parent; 537 538 parent = xa_parent_locked(xas->xa, node); 539 offset = node->offset + 1; 540 node->count = 0; 541 node->nr_values = 0; 542 xas_update(xas, node); 543 xa_node_free(node); 544 if (node == top) 545 return; 546 node = parent; 547 } 548 } 549 } 550 551 /* 552 * xas_expand adds nodes to the head of the tree until it has reached 553 * sufficient height to be able to contain @xas->xa_index 554 */ 555 static int xas_expand(struct xa_state *xas, void *head) 556 { 557 struct xarray *xa = xas->xa; 558 struct xa_node *node = NULL; 559 unsigned int shift = 0; 560 unsigned long max = xas_max(xas); 561 562 if (!head) { 563 if (max == 0) 564 return 0; 565 while ((max >> shift) >= XA_CHUNK_SIZE) 566 shift += XA_CHUNK_SHIFT; 567 return shift + XA_CHUNK_SHIFT; 568 } else if (xa_is_node(head)) { 569 node = xa_to_node(head); 570 shift = node->shift + XA_CHUNK_SHIFT; 571 } 572 xas->xa_node = NULL; 573 574 while (max > max_index(head)) { 575 xa_mark_t mark = 0; 576 577 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 578 node = xas_alloc(xas, shift); 579 if (!node) 580 return -ENOMEM; 581 582 node->count = 1; 583 if (xa_is_value(head)) 584 node->nr_values = 1; 585 RCU_INIT_POINTER(node->slots[0], head); 586 587 /* Propagate the aggregated mark info to the new child */ 588 for (;;) { 589 if (xa_track_free(xa) && mark == XA_FREE_MARK) { 590 node_mark_all(node, XA_FREE_MARK); 591 if (!xa_marked(xa, XA_FREE_MARK)) { 592 node_clear_mark(node, 0, XA_FREE_MARK); 593 xa_mark_set(xa, XA_FREE_MARK); 594 } 595 } else if (xa_marked(xa, mark)) { 596 node_set_mark(node, 0, mark); 597 } 598 if (mark == XA_MARK_MAX) 599 break; 600 mark_inc(mark); 601 } 602 603 /* 604 * Now that the new node is fully initialised, we can add 605 * it to the tree 606 */ 607 if (xa_is_node(head)) { 608 xa_to_node(head)->offset = 0; 609 rcu_assign_pointer(xa_to_node(head)->parent, node); 610 } 611 head = xa_mk_node(node); 612 rcu_assign_pointer(xa->xa_head, head); 613 xas_update(xas, node); 614 615 shift += XA_CHUNK_SHIFT; 616 } 617 618 xas->xa_node = node; 619 return shift; 620 } 621 622 /* 623 * xas_create() - Create a slot to store an entry in. 624 * @xas: XArray operation state. 625 * @allow_root: %true if we can store the entry in the root directly 626 * 627 * Most users will not need to call this function directly, as it is called 628 * by xas_store(). It is useful for doing conditional store operations 629 * (see the xa_cmpxchg() implementation for an example). 630 * 631 * Return: If the slot already existed, returns the contents of this slot. 632 * If the slot was newly created, returns %NULL. If it failed to create the 633 * slot, returns %NULL and indicates the error in @xas. 634 */ 635 static void *xas_create(struct xa_state *xas, bool allow_root) 636 { 637 struct xarray *xa = xas->xa; 638 void *entry; 639 void __rcu **slot; 640 struct xa_node *node = xas->xa_node; 641 int shift; 642 unsigned int order = xas->xa_shift; 643 644 if (xas_top(node)) { 645 entry = xa_head_locked(xa); 646 xas->xa_node = NULL; 647 if (!entry && xa_zero_busy(xa)) 648 entry = XA_ZERO_ENTRY; 649 shift = xas_expand(xas, entry); 650 if (shift < 0) 651 return NULL; 652 if (!shift && !allow_root) 653 shift = XA_CHUNK_SHIFT; 654 entry = xa_head_locked(xa); 655 slot = &xa->xa_head; 656 } else if (xas_error(xas)) { 657 return NULL; 658 } else if (node) { 659 unsigned int offset = xas->xa_offset; 660 661 shift = node->shift; 662 entry = xa_entry_locked(xa, node, offset); 663 slot = &node->slots[offset]; 664 } else { 665 shift = 0; 666 entry = xa_head_locked(xa); 667 slot = &xa->xa_head; 668 } 669 670 while (shift > order) { 671 shift -= XA_CHUNK_SHIFT; 672 if (!entry) { 673 node = xas_alloc(xas, shift); 674 if (!node) 675 break; 676 if (xa_track_free(xa)) 677 node_mark_all(node, XA_FREE_MARK); 678 rcu_assign_pointer(*slot, xa_mk_node(node)); 679 } else if (xa_is_node(entry)) { 680 node = xa_to_node(entry); 681 } else { 682 break; 683 } 684 entry = xas_descend(xas, node); 685 slot = &node->slots[xas->xa_offset]; 686 } 687 688 return entry; 689 } 690 691 /** 692 * xas_create_range() - Ensure that stores to this range will succeed 693 * @xas: XArray operation state. 694 * 695 * Creates all of the slots in the range covered by @xas. Sets @xas to 696 * create single-index entries and positions it at the beginning of the 697 * range. This is for the benefit of users which have not yet been 698 * converted to use multi-index entries. 699 */ 700 void xas_create_range(struct xa_state *xas) 701 { 702 unsigned long index = xas->xa_index; 703 unsigned char shift = xas->xa_shift; 704 unsigned char sibs = xas->xa_sibs; 705 706 xas->xa_index |= ((sibs + 1) << shift) - 1; 707 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift) 708 xas->xa_offset |= sibs; 709 xas->xa_shift = 0; 710 xas->xa_sibs = 0; 711 712 for (;;) { 713 xas_create(xas, true); 714 if (xas_error(xas)) 715 goto restore; 716 if (xas->xa_index <= (index | XA_CHUNK_MASK)) 717 goto success; 718 xas->xa_index -= XA_CHUNK_SIZE; 719 720 for (;;) { 721 struct xa_node *node = xas->xa_node; 722 xas->xa_node = xa_parent_locked(xas->xa, node); 723 xas->xa_offset = node->offset - 1; 724 if (node->offset != 0) 725 break; 726 } 727 } 728 729 restore: 730 xas->xa_shift = shift; 731 xas->xa_sibs = sibs; 732 xas->xa_index = index; 733 return; 734 success: 735 xas->xa_index = index; 736 if (xas->xa_node) 737 xas_set_offset(xas); 738 } 739 EXPORT_SYMBOL_GPL(xas_create_range); 740 741 static void update_node(struct xa_state *xas, struct xa_node *node, 742 int count, int values) 743 { 744 if (!node || (!count && !values)) 745 return; 746 747 node->count += count; 748 node->nr_values += values; 749 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 750 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE); 751 xas_update(xas, node); 752 if (count < 0) 753 xas_delete_node(xas); 754 } 755 756 /** 757 * xas_store() - Store this entry in the XArray. 758 * @xas: XArray operation state. 759 * @entry: New entry. 760 * 761 * If @xas is operating on a multi-index entry, the entry returned by this 762 * function is essentially meaningless (it may be an internal entry or it 763 * may be %NULL, even if there are non-NULL entries at some of the indices 764 * covered by the range). This is not a problem for any current users, 765 * and can be changed if needed. 766 * 767 * Return: The old entry at this index. 768 */ 769 void *xas_store(struct xa_state *xas, void *entry) 770 { 771 struct xa_node *node; 772 void __rcu **slot = &xas->xa->xa_head; 773 unsigned int offset, max; 774 int count = 0; 775 int values = 0; 776 void *first, *next; 777 bool value = xa_is_value(entry); 778 779 if (entry) { 780 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry); 781 first = xas_create(xas, allow_root); 782 } else { 783 first = xas_load(xas); 784 } 785 786 if (xas_invalid(xas)) 787 return first; 788 node = xas->xa_node; 789 if (node && (xas->xa_shift < node->shift)) 790 xas->xa_sibs = 0; 791 if ((first == entry) && !xas->xa_sibs) 792 return first; 793 794 next = first; 795 offset = xas->xa_offset; 796 max = xas->xa_offset + xas->xa_sibs; 797 if (node) { 798 slot = &node->slots[offset]; 799 if (xas->xa_sibs) 800 xas_squash_marks(xas); 801 } 802 if (!entry) 803 xas_init_marks(xas); 804 805 for (;;) { 806 /* 807 * Must clear the marks before setting the entry to NULL, 808 * otherwise xas_for_each_marked may find a NULL entry and 809 * stop early. rcu_assign_pointer contains a release barrier 810 * so the mark clearing will appear to happen before the 811 * entry is set to NULL. 812 */ 813 rcu_assign_pointer(*slot, entry); 814 if (xa_is_node(next) && (!node || node->shift)) 815 xas_free_nodes(xas, xa_to_node(next)); 816 if (!node) 817 break; 818 count += !next - !entry; 819 values += !xa_is_value(first) - !value; 820 if (entry) { 821 if (offset == max) 822 break; 823 if (!xa_is_sibling(entry)) 824 entry = xa_mk_sibling(xas->xa_offset); 825 } else { 826 if (offset == XA_CHUNK_MASK) 827 break; 828 } 829 next = xa_entry_locked(xas->xa, node, ++offset); 830 if (!xa_is_sibling(next)) { 831 if (!entry && (offset > max)) 832 break; 833 first = next; 834 } 835 slot++; 836 } 837 838 update_node(xas, node, count, values); 839 return first; 840 } 841 EXPORT_SYMBOL_GPL(xas_store); 842 843 /** 844 * xas_get_mark() - Returns the state of this mark. 845 * @xas: XArray operation state. 846 * @mark: Mark number. 847 * 848 * Return: true if the mark is set, false if the mark is clear or @xas 849 * is in an error state. 850 */ 851 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark) 852 { 853 if (xas_invalid(xas)) 854 return false; 855 if (!xas->xa_node) 856 return xa_marked(xas->xa, mark); 857 return node_get_mark(xas->xa_node, xas->xa_offset, mark); 858 } 859 EXPORT_SYMBOL_GPL(xas_get_mark); 860 861 /** 862 * xas_set_mark() - Sets the mark on this entry and its parents. 863 * @xas: XArray operation state. 864 * @mark: Mark number. 865 * 866 * Sets the specified mark on this entry, and walks up the tree setting it 867 * on all the ancestor entries. Does nothing if @xas has not been walked to 868 * an entry, or is in an error state. 869 */ 870 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark) 871 { 872 struct xa_node *node = xas->xa_node; 873 unsigned int offset = xas->xa_offset; 874 875 if (xas_invalid(xas)) 876 return; 877 878 while (node) { 879 if (node_set_mark(node, offset, mark)) 880 return; 881 offset = node->offset; 882 node = xa_parent_locked(xas->xa, node); 883 } 884 885 if (!xa_marked(xas->xa, mark)) 886 xa_mark_set(xas->xa, mark); 887 } 888 EXPORT_SYMBOL_GPL(xas_set_mark); 889 890 /** 891 * xas_clear_mark() - Clears the mark on this entry and its parents. 892 * @xas: XArray operation state. 893 * @mark: Mark number. 894 * 895 * Clears the specified mark on this entry, and walks back to the head 896 * attempting to clear it on all the ancestor entries. Does nothing if 897 * @xas has not been walked to an entry, or is in an error state. 898 */ 899 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark) 900 { 901 struct xa_node *node = xas->xa_node; 902 unsigned int offset = xas->xa_offset; 903 904 if (xas_invalid(xas)) 905 return; 906 907 while (node) { 908 if (!node_clear_mark(node, offset, mark)) 909 return; 910 if (node_any_mark(node, mark)) 911 return; 912 913 offset = node->offset; 914 node = xa_parent_locked(xas->xa, node); 915 } 916 917 if (xa_marked(xas->xa, mark)) 918 xa_mark_clear(xas->xa, mark); 919 } 920 EXPORT_SYMBOL_GPL(xas_clear_mark); 921 922 /** 923 * xas_init_marks() - Initialise all marks for the entry 924 * @xas: Array operations state. 925 * 926 * Initialise all marks for the entry specified by @xas. If we're tracking 927 * free entries with a mark, we need to set it on all entries. All other 928 * marks are cleared. 929 * 930 * This implementation is not as efficient as it could be; we may walk 931 * up the tree multiple times. 932 */ 933 void xas_init_marks(const struct xa_state *xas) 934 { 935 xa_mark_t mark = 0; 936 937 for (;;) { 938 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK) 939 xas_set_mark(xas, mark); 940 else 941 xas_clear_mark(xas, mark); 942 if (mark == XA_MARK_MAX) 943 break; 944 mark_inc(mark); 945 } 946 } 947 EXPORT_SYMBOL_GPL(xas_init_marks); 948 949 /** 950 * xas_pause() - Pause a walk to drop a lock. 951 * @xas: XArray operation state. 952 * 953 * Some users need to pause a walk and drop the lock they're holding in 954 * order to yield to a higher priority thread or carry out an operation 955 * on an entry. Those users should call this function before they drop 956 * the lock. It resets the @xas to be suitable for the next iteration 957 * of the loop after the user has reacquired the lock. If most entries 958 * found during a walk require you to call xas_pause(), the xa_for_each() 959 * iterator may be more appropriate. 960 * 961 * Note that xas_pause() only works for forward iteration. If a user needs 962 * to pause a reverse iteration, we will need a xas_pause_rev(). 963 */ 964 void xas_pause(struct xa_state *xas) 965 { 966 struct xa_node *node = xas->xa_node; 967 968 if (xas_invalid(xas)) 969 return; 970 971 xas->xa_node = XAS_RESTART; 972 if (node) { 973 unsigned int offset = xas->xa_offset; 974 while (++offset < XA_CHUNK_SIZE) { 975 if (!xa_is_sibling(xa_entry(xas->xa, node, offset))) 976 break; 977 } 978 xas->xa_index += (offset - xas->xa_offset) << node->shift; 979 if (xas->xa_index == 0) 980 xas->xa_node = XAS_BOUNDS; 981 } else { 982 xas->xa_index++; 983 } 984 } 985 EXPORT_SYMBOL_GPL(xas_pause); 986 987 /* 988 * __xas_prev() - Find the previous entry in the XArray. 989 * @xas: XArray operation state. 990 * 991 * Helper function for xas_prev() which handles all the complex cases 992 * out of line. 993 */ 994 void *__xas_prev(struct xa_state *xas) 995 { 996 void *entry; 997 998 if (!xas_frozen(xas->xa_node)) 999 xas->xa_index--; 1000 if (!xas->xa_node) 1001 return set_bounds(xas); 1002 if (xas_not_node(xas->xa_node)) 1003 return xas_load(xas); 1004 1005 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1006 xas->xa_offset--; 1007 1008 while (xas->xa_offset == 255) { 1009 xas->xa_offset = xas->xa_node->offset - 1; 1010 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1011 if (!xas->xa_node) 1012 return set_bounds(xas); 1013 } 1014 1015 for (;;) { 1016 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1017 if (!xa_is_node(entry)) 1018 return entry; 1019 1020 xas->xa_node = xa_to_node(entry); 1021 xas_set_offset(xas); 1022 } 1023 } 1024 EXPORT_SYMBOL_GPL(__xas_prev); 1025 1026 /* 1027 * __xas_next() - Find the next entry in the XArray. 1028 * @xas: XArray operation state. 1029 * 1030 * Helper function for xas_next() which handles all the complex cases 1031 * out of line. 1032 */ 1033 void *__xas_next(struct xa_state *xas) 1034 { 1035 void *entry; 1036 1037 if (!xas_frozen(xas->xa_node)) 1038 xas->xa_index++; 1039 if (!xas->xa_node) 1040 return set_bounds(xas); 1041 if (xas_not_node(xas->xa_node)) 1042 return xas_load(xas); 1043 1044 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1045 xas->xa_offset++; 1046 1047 while (xas->xa_offset == XA_CHUNK_SIZE) { 1048 xas->xa_offset = xas->xa_node->offset + 1; 1049 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1050 if (!xas->xa_node) 1051 return set_bounds(xas); 1052 } 1053 1054 for (;;) { 1055 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1056 if (!xa_is_node(entry)) 1057 return entry; 1058 1059 xas->xa_node = xa_to_node(entry); 1060 xas_set_offset(xas); 1061 } 1062 } 1063 EXPORT_SYMBOL_GPL(__xas_next); 1064 1065 /** 1066 * xas_find() - Find the next present entry in the XArray. 1067 * @xas: XArray operation state. 1068 * @max: Highest index to return. 1069 * 1070 * If the @xas has not yet been walked to an entry, return the entry 1071 * which has an index >= xas.xa_index. If it has been walked, the entry 1072 * currently being pointed at has been processed, and so we move to the 1073 * next entry. 1074 * 1075 * If no entry is found and the array is smaller than @max, the iterator 1076 * is set to the smallest index not yet in the array. This allows @xas 1077 * to be immediately passed to xas_store(). 1078 * 1079 * Return: The entry, if found, otherwise %NULL. 1080 */ 1081 void *xas_find(struct xa_state *xas, unsigned long max) 1082 { 1083 void *entry; 1084 1085 if (xas_error(xas) || xas->xa_node == XAS_BOUNDS) 1086 return NULL; 1087 if (xas->xa_index > max) 1088 return set_bounds(xas); 1089 1090 if (!xas->xa_node) { 1091 xas->xa_index = 1; 1092 return set_bounds(xas); 1093 } else if (xas->xa_node == XAS_RESTART) { 1094 entry = xas_load(xas); 1095 if (entry || xas_not_node(xas->xa_node)) 1096 return entry; 1097 } else if (!xas->xa_node->shift && 1098 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) { 1099 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1; 1100 } 1101 1102 xas_advance(xas); 1103 1104 while (xas->xa_node && (xas->xa_index <= max)) { 1105 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1106 xas->xa_offset = xas->xa_node->offset + 1; 1107 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1108 continue; 1109 } 1110 1111 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1112 if (xa_is_node(entry)) { 1113 xas->xa_node = xa_to_node(entry); 1114 xas->xa_offset = 0; 1115 continue; 1116 } 1117 if (entry && !xa_is_sibling(entry)) 1118 return entry; 1119 1120 xas_advance(xas); 1121 } 1122 1123 if (!xas->xa_node) 1124 xas->xa_node = XAS_BOUNDS; 1125 return NULL; 1126 } 1127 EXPORT_SYMBOL_GPL(xas_find); 1128 1129 /** 1130 * xas_find_marked() - Find the next marked entry in the XArray. 1131 * @xas: XArray operation state. 1132 * @max: Highest index to return. 1133 * @mark: Mark number to search for. 1134 * 1135 * If the @xas has not yet been walked to an entry, return the marked entry 1136 * which has an index >= xas.xa_index. If it has been walked, the entry 1137 * currently being pointed at has been processed, and so we return the 1138 * first marked entry with an index > xas.xa_index. 1139 * 1140 * If no marked entry is found and the array is smaller than @max, @xas is 1141 * set to the bounds state and xas->xa_index is set to the smallest index 1142 * not yet in the array. This allows @xas to be immediately passed to 1143 * xas_store(). 1144 * 1145 * If no entry is found before @max is reached, @xas is set to the restart 1146 * state. 1147 * 1148 * Return: The entry, if found, otherwise %NULL. 1149 */ 1150 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark) 1151 { 1152 bool advance = true; 1153 unsigned int offset; 1154 void *entry; 1155 1156 if (xas_error(xas)) 1157 return NULL; 1158 if (xas->xa_index > max) 1159 goto max; 1160 1161 if (!xas->xa_node) { 1162 xas->xa_index = 1; 1163 goto out; 1164 } else if (xas_top(xas->xa_node)) { 1165 advance = false; 1166 entry = xa_head(xas->xa); 1167 xas->xa_node = NULL; 1168 if (xas->xa_index > max_index(entry)) 1169 goto out; 1170 if (!xa_is_node(entry)) { 1171 if (xa_marked(xas->xa, mark)) 1172 return entry; 1173 xas->xa_index = 1; 1174 goto out; 1175 } 1176 xas->xa_node = xa_to_node(entry); 1177 xas->xa_offset = xas->xa_index >> xas->xa_node->shift; 1178 } 1179 1180 while (xas->xa_index <= max) { 1181 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1182 xas->xa_offset = xas->xa_node->offset + 1; 1183 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1184 if (!xas->xa_node) 1185 break; 1186 advance = false; 1187 continue; 1188 } 1189 1190 if (!advance) { 1191 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1192 if (xa_is_sibling(entry)) { 1193 xas->xa_offset = xa_to_sibling(entry); 1194 xas_move_index(xas, xas->xa_offset); 1195 } 1196 } 1197 1198 offset = xas_find_chunk(xas, advance, mark); 1199 if (offset > xas->xa_offset) { 1200 advance = false; 1201 xas_move_index(xas, offset); 1202 /* Mind the wrap */ 1203 if ((xas->xa_index - 1) >= max) 1204 goto max; 1205 xas->xa_offset = offset; 1206 if (offset == XA_CHUNK_SIZE) 1207 continue; 1208 } 1209 1210 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1211 if (!xa_is_node(entry)) 1212 return entry; 1213 xas->xa_node = xa_to_node(entry); 1214 xas_set_offset(xas); 1215 } 1216 1217 out: 1218 if (xas->xa_index > max) 1219 goto max; 1220 return set_bounds(xas); 1221 max: 1222 xas->xa_node = XAS_RESTART; 1223 return NULL; 1224 } 1225 EXPORT_SYMBOL_GPL(xas_find_marked); 1226 1227 /** 1228 * xas_find_conflict() - Find the next present entry in a range. 1229 * @xas: XArray operation state. 1230 * 1231 * The @xas describes both a range and a position within that range. 1232 * 1233 * Context: Any context. Expects xa_lock to be held. 1234 * Return: The next entry in the range covered by @xas or %NULL. 1235 */ 1236 void *xas_find_conflict(struct xa_state *xas) 1237 { 1238 void *curr; 1239 1240 if (xas_error(xas)) 1241 return NULL; 1242 1243 if (!xas->xa_node) 1244 return NULL; 1245 1246 if (xas_top(xas->xa_node)) { 1247 curr = xas_start(xas); 1248 if (!curr) 1249 return NULL; 1250 while (xa_is_node(curr)) { 1251 struct xa_node *node = xa_to_node(curr); 1252 curr = xas_descend(xas, node); 1253 } 1254 if (curr) 1255 return curr; 1256 } 1257 1258 if (xas->xa_node->shift > xas->xa_shift) 1259 return NULL; 1260 1261 for (;;) { 1262 if (xas->xa_node->shift == xas->xa_shift) { 1263 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs) 1264 break; 1265 } else if (xas->xa_offset == XA_CHUNK_MASK) { 1266 xas->xa_offset = xas->xa_node->offset; 1267 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node); 1268 if (!xas->xa_node) 1269 break; 1270 continue; 1271 } 1272 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset); 1273 if (xa_is_sibling(curr)) 1274 continue; 1275 while (xa_is_node(curr)) { 1276 xas->xa_node = xa_to_node(curr); 1277 xas->xa_offset = 0; 1278 curr = xa_entry_locked(xas->xa, xas->xa_node, 0); 1279 } 1280 if (curr) 1281 return curr; 1282 } 1283 xas->xa_offset -= xas->xa_sibs; 1284 return NULL; 1285 } 1286 EXPORT_SYMBOL_GPL(xas_find_conflict); 1287 1288 /** 1289 * xa_load() - Load an entry from an XArray. 1290 * @xa: XArray. 1291 * @index: index into array. 1292 * 1293 * Context: Any context. Takes and releases the RCU lock. 1294 * Return: The entry at @index in @xa. 1295 */ 1296 void *xa_load(struct xarray *xa, unsigned long index) 1297 { 1298 XA_STATE(xas, xa, index); 1299 void *entry; 1300 1301 rcu_read_lock(); 1302 do { 1303 entry = xas_load(&xas); 1304 if (xa_is_zero(entry)) 1305 entry = NULL; 1306 } while (xas_retry(&xas, entry)); 1307 rcu_read_unlock(); 1308 1309 return entry; 1310 } 1311 EXPORT_SYMBOL(xa_load); 1312 1313 static void *xas_result(struct xa_state *xas, void *curr) 1314 { 1315 if (xa_is_zero(curr)) 1316 return NULL; 1317 if (xas_error(xas)) 1318 curr = xas->xa_node; 1319 return curr; 1320 } 1321 1322 /** 1323 * __xa_erase() - Erase this entry from the XArray while locked. 1324 * @xa: XArray. 1325 * @index: Index into array. 1326 * 1327 * After this function returns, loading from @index will return %NULL. 1328 * If the index is part of a multi-index entry, all indices will be erased 1329 * and none of the entries will be part of a multi-index entry. 1330 * 1331 * Context: Any context. Expects xa_lock to be held on entry. 1332 * Return: The entry which used to be at this index. 1333 */ 1334 void *__xa_erase(struct xarray *xa, unsigned long index) 1335 { 1336 XA_STATE(xas, xa, index); 1337 return xas_result(&xas, xas_store(&xas, NULL)); 1338 } 1339 EXPORT_SYMBOL(__xa_erase); 1340 1341 /** 1342 * xa_erase() - Erase this entry from the XArray. 1343 * @xa: XArray. 1344 * @index: Index of entry. 1345 * 1346 * After this function returns, loading from @index will return %NULL. 1347 * If the index is part of a multi-index entry, all indices will be erased 1348 * and none of the entries will be part of a multi-index entry. 1349 * 1350 * Context: Any context. Takes and releases the xa_lock. 1351 * Return: The entry which used to be at this index. 1352 */ 1353 void *xa_erase(struct xarray *xa, unsigned long index) 1354 { 1355 void *entry; 1356 1357 xa_lock(xa); 1358 entry = __xa_erase(xa, index); 1359 xa_unlock(xa); 1360 1361 return entry; 1362 } 1363 EXPORT_SYMBOL(xa_erase); 1364 1365 /** 1366 * __xa_store() - Store this entry in the XArray. 1367 * @xa: XArray. 1368 * @index: Index into array. 1369 * @entry: New entry. 1370 * @gfp: Memory allocation flags. 1371 * 1372 * You must already be holding the xa_lock when calling this function. 1373 * It will drop the lock if needed to allocate memory, and then reacquire 1374 * it afterwards. 1375 * 1376 * Context: Any context. Expects xa_lock to be held on entry. May 1377 * release and reacquire xa_lock if @gfp flags permit. 1378 * Return: The old entry at this index or xa_err() if an error happened. 1379 */ 1380 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1381 { 1382 XA_STATE(xas, xa, index); 1383 void *curr; 1384 1385 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1386 return XA_ERROR(-EINVAL); 1387 if (xa_track_free(xa) && !entry) 1388 entry = XA_ZERO_ENTRY; 1389 1390 do { 1391 curr = xas_store(&xas, entry); 1392 if (xa_track_free(xa)) 1393 xas_clear_mark(&xas, XA_FREE_MARK); 1394 } while (__xas_nomem(&xas, gfp)); 1395 1396 return xas_result(&xas, curr); 1397 } 1398 EXPORT_SYMBOL(__xa_store); 1399 1400 /** 1401 * xa_store() - Store this entry in the XArray. 1402 * @xa: XArray. 1403 * @index: Index into array. 1404 * @entry: New entry. 1405 * @gfp: Memory allocation flags. 1406 * 1407 * After this function returns, loads from this index will return @entry. 1408 * Storing into an existing multislot entry updates the entry of every index. 1409 * The marks associated with @index are unaffected unless @entry is %NULL. 1410 * 1411 * Context: Any context. Takes and releases the xa_lock. 1412 * May sleep if the @gfp flags permit. 1413 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry 1414 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation 1415 * failed. 1416 */ 1417 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1418 { 1419 void *curr; 1420 1421 xa_lock(xa); 1422 curr = __xa_store(xa, index, entry, gfp); 1423 xa_unlock(xa); 1424 1425 return curr; 1426 } 1427 EXPORT_SYMBOL(xa_store); 1428 1429 /** 1430 * __xa_cmpxchg() - Store this entry in the XArray. 1431 * @xa: XArray. 1432 * @index: Index into array. 1433 * @old: Old value to test against. 1434 * @entry: New entry. 1435 * @gfp: Memory allocation flags. 1436 * 1437 * You must already be holding the xa_lock when calling this function. 1438 * It will drop the lock if needed to allocate memory, and then reacquire 1439 * it afterwards. 1440 * 1441 * Context: Any context. Expects xa_lock to be held on entry. May 1442 * release and reacquire xa_lock if @gfp flags permit. 1443 * Return: The old entry at this index or xa_err() if an error happened. 1444 */ 1445 void *__xa_cmpxchg(struct xarray *xa, unsigned long index, 1446 void *old, void *entry, gfp_t gfp) 1447 { 1448 XA_STATE(xas, xa, index); 1449 void *curr; 1450 1451 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1452 return XA_ERROR(-EINVAL); 1453 1454 do { 1455 curr = xas_load(&xas); 1456 if (curr == old) { 1457 xas_store(&xas, entry); 1458 if (xa_track_free(xa) && entry && !curr) 1459 xas_clear_mark(&xas, XA_FREE_MARK); 1460 } 1461 } while (__xas_nomem(&xas, gfp)); 1462 1463 return xas_result(&xas, curr); 1464 } 1465 EXPORT_SYMBOL(__xa_cmpxchg); 1466 1467 /** 1468 * __xa_insert() - Store this entry in the XArray if no entry is present. 1469 * @xa: XArray. 1470 * @index: Index into array. 1471 * @entry: New entry. 1472 * @gfp: Memory allocation flags. 1473 * 1474 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 1475 * if no entry is present. Inserting will fail if a reserved entry is 1476 * present, even though loading from this index will return NULL. 1477 * 1478 * Context: Any context. Expects xa_lock to be held on entry. May 1479 * release and reacquire xa_lock if @gfp flags permit. 1480 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 1481 * -ENOMEM if memory could not be allocated. 1482 */ 1483 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1484 { 1485 XA_STATE(xas, xa, index); 1486 void *curr; 1487 1488 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1489 return -EINVAL; 1490 if (!entry) 1491 entry = XA_ZERO_ENTRY; 1492 1493 do { 1494 curr = xas_load(&xas); 1495 if (!curr) { 1496 xas_store(&xas, entry); 1497 if (xa_track_free(xa)) 1498 xas_clear_mark(&xas, XA_FREE_MARK); 1499 } else { 1500 xas_set_err(&xas, -EBUSY); 1501 } 1502 } while (__xas_nomem(&xas, gfp)); 1503 1504 return xas_error(&xas); 1505 } 1506 EXPORT_SYMBOL(__xa_insert); 1507 1508 #ifdef CONFIG_XARRAY_MULTI 1509 static void xas_set_range(struct xa_state *xas, unsigned long first, 1510 unsigned long last) 1511 { 1512 unsigned int shift = 0; 1513 unsigned long sibs = last - first; 1514 unsigned int offset = XA_CHUNK_MASK; 1515 1516 xas_set(xas, first); 1517 1518 while ((first & XA_CHUNK_MASK) == 0) { 1519 if (sibs < XA_CHUNK_MASK) 1520 break; 1521 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK)) 1522 break; 1523 shift += XA_CHUNK_SHIFT; 1524 if (offset == XA_CHUNK_MASK) 1525 offset = sibs & XA_CHUNK_MASK; 1526 sibs >>= XA_CHUNK_SHIFT; 1527 first >>= XA_CHUNK_SHIFT; 1528 } 1529 1530 offset = first & XA_CHUNK_MASK; 1531 if (offset + sibs > XA_CHUNK_MASK) 1532 sibs = XA_CHUNK_MASK - offset; 1533 if ((((first + sibs + 1) << shift) - 1) > last) 1534 sibs -= 1; 1535 1536 xas->xa_shift = shift; 1537 xas->xa_sibs = sibs; 1538 } 1539 1540 /** 1541 * xa_store_range() - Store this entry at a range of indices in the XArray. 1542 * @xa: XArray. 1543 * @first: First index to affect. 1544 * @last: Last index to affect. 1545 * @entry: New entry. 1546 * @gfp: Memory allocation flags. 1547 * 1548 * After this function returns, loads from any index between @first and @last, 1549 * inclusive will return @entry. 1550 * Storing into an existing multislot entry updates the entry of every index. 1551 * The marks associated with @index are unaffected unless @entry is %NULL. 1552 * 1553 * Context: Process context. Takes and releases the xa_lock. May sleep 1554 * if the @gfp flags permit. 1555 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in 1556 * an XArray, or xa_err(-ENOMEM) if memory allocation failed. 1557 */ 1558 void *xa_store_range(struct xarray *xa, unsigned long first, 1559 unsigned long last, void *entry, gfp_t gfp) 1560 { 1561 XA_STATE(xas, xa, 0); 1562 1563 if (WARN_ON_ONCE(xa_is_internal(entry))) 1564 return XA_ERROR(-EINVAL); 1565 if (last < first) 1566 return XA_ERROR(-EINVAL); 1567 1568 do { 1569 xas_lock(&xas); 1570 if (entry) { 1571 unsigned int order = BITS_PER_LONG; 1572 if (last + 1) 1573 order = __ffs(last + 1); 1574 xas_set_order(&xas, last, order); 1575 xas_create(&xas, true); 1576 if (xas_error(&xas)) 1577 goto unlock; 1578 } 1579 do { 1580 xas_set_range(&xas, first, last); 1581 xas_store(&xas, entry); 1582 if (xas_error(&xas)) 1583 goto unlock; 1584 first += xas_size(&xas); 1585 } while (first <= last); 1586 unlock: 1587 xas_unlock(&xas); 1588 } while (xas_nomem(&xas, gfp)); 1589 1590 return xas_result(&xas, NULL); 1591 } 1592 EXPORT_SYMBOL(xa_store_range); 1593 #endif /* CONFIG_XARRAY_MULTI */ 1594 1595 /** 1596 * __xa_alloc() - Find somewhere to store this entry in the XArray. 1597 * @xa: XArray. 1598 * @id: Pointer to ID. 1599 * @limit: Range for allocated ID. 1600 * @entry: New entry. 1601 * @gfp: Memory allocation flags. 1602 * 1603 * Finds an empty entry in @xa between @limit.min and @limit.max, 1604 * stores the index into the @id pointer, then stores the entry at 1605 * that index. A concurrent lookup will not see an uninitialised @id. 1606 * 1607 * Context: Any context. Expects xa_lock to be held on entry. May 1608 * release and reacquire xa_lock if @gfp flags permit. 1609 * Return: 0 on success, -ENOMEM if memory could not be allocated or 1610 * -EBUSY if there are no free entries in @limit. 1611 */ 1612 int __xa_alloc(struct xarray *xa, u32 *id, void *entry, 1613 struct xa_limit limit, gfp_t gfp) 1614 { 1615 XA_STATE(xas, xa, 0); 1616 1617 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1618 return -EINVAL; 1619 if (WARN_ON_ONCE(!xa_track_free(xa))) 1620 return -EINVAL; 1621 1622 if (!entry) 1623 entry = XA_ZERO_ENTRY; 1624 1625 do { 1626 xas.xa_index = limit.min; 1627 xas_find_marked(&xas, limit.max, XA_FREE_MARK); 1628 if (xas.xa_node == XAS_RESTART) 1629 xas_set_err(&xas, -EBUSY); 1630 else 1631 *id = xas.xa_index; 1632 xas_store(&xas, entry); 1633 xas_clear_mark(&xas, XA_FREE_MARK); 1634 } while (__xas_nomem(&xas, gfp)); 1635 1636 return xas_error(&xas); 1637 } 1638 EXPORT_SYMBOL(__xa_alloc); 1639 1640 /** 1641 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. 1642 * @xa: XArray. 1643 * @id: Pointer to ID. 1644 * @entry: New entry. 1645 * @limit: Range of allocated ID. 1646 * @next: Pointer to next ID to allocate. 1647 * @gfp: Memory allocation flags. 1648 * 1649 * Finds an empty entry in @xa between @limit.min and @limit.max, 1650 * stores the index into the @id pointer, then stores the entry at 1651 * that index. A concurrent lookup will not see an uninitialised @id. 1652 * The search for an empty entry will start at @next and will wrap 1653 * around if necessary. 1654 * 1655 * Context: Any context. Expects xa_lock to be held on entry. May 1656 * release and reacquire xa_lock if @gfp flags permit. 1657 * Return: 0 if the allocation succeeded without wrapping. 1 if the 1658 * allocation succeeded after wrapping, -ENOMEM if memory could not be 1659 * allocated or -EBUSY if there are no free entries in @limit. 1660 */ 1661 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, 1662 struct xa_limit limit, u32 *next, gfp_t gfp) 1663 { 1664 u32 min = limit.min; 1665 int ret; 1666 1667 limit.min = max(min, *next); 1668 ret = __xa_alloc(xa, id, entry, limit, gfp); 1669 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) { 1670 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED; 1671 ret = 1; 1672 } 1673 1674 if (ret < 0 && limit.min > min) { 1675 limit.min = min; 1676 ret = __xa_alloc(xa, id, entry, limit, gfp); 1677 if (ret == 0) 1678 ret = 1; 1679 } 1680 1681 if (ret >= 0) { 1682 *next = *id + 1; 1683 if (*next == 0) 1684 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED; 1685 } 1686 return ret; 1687 } 1688 EXPORT_SYMBOL(__xa_alloc_cyclic); 1689 1690 /** 1691 * __xa_set_mark() - Set this mark on this entry while locked. 1692 * @xa: XArray. 1693 * @index: Index of entry. 1694 * @mark: Mark number. 1695 * 1696 * Attempting to set a mark on a %NULL entry does not succeed. 1697 * 1698 * Context: Any context. Expects xa_lock to be held on entry. 1699 */ 1700 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1701 { 1702 XA_STATE(xas, xa, index); 1703 void *entry = xas_load(&xas); 1704 1705 if (entry) 1706 xas_set_mark(&xas, mark); 1707 } 1708 EXPORT_SYMBOL(__xa_set_mark); 1709 1710 /** 1711 * __xa_clear_mark() - Clear this mark on this entry while locked. 1712 * @xa: XArray. 1713 * @index: Index of entry. 1714 * @mark: Mark number. 1715 * 1716 * Context: Any context. Expects xa_lock to be held on entry. 1717 */ 1718 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1719 { 1720 XA_STATE(xas, xa, index); 1721 void *entry = xas_load(&xas); 1722 1723 if (entry) 1724 xas_clear_mark(&xas, mark); 1725 } 1726 EXPORT_SYMBOL(__xa_clear_mark); 1727 1728 /** 1729 * xa_get_mark() - Inquire whether this mark is set on this entry. 1730 * @xa: XArray. 1731 * @index: Index of entry. 1732 * @mark: Mark number. 1733 * 1734 * This function uses the RCU read lock, so the result may be out of date 1735 * by the time it returns. If you need the result to be stable, use a lock. 1736 * 1737 * Context: Any context. Takes and releases the RCU lock. 1738 * Return: True if the entry at @index has this mark set, false if it doesn't. 1739 */ 1740 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1741 { 1742 XA_STATE(xas, xa, index); 1743 void *entry; 1744 1745 rcu_read_lock(); 1746 entry = xas_start(&xas); 1747 while (xas_get_mark(&xas, mark)) { 1748 if (!xa_is_node(entry)) 1749 goto found; 1750 entry = xas_descend(&xas, xa_to_node(entry)); 1751 } 1752 rcu_read_unlock(); 1753 return false; 1754 found: 1755 rcu_read_unlock(); 1756 return true; 1757 } 1758 EXPORT_SYMBOL(xa_get_mark); 1759 1760 /** 1761 * xa_set_mark() - Set this mark on this entry. 1762 * @xa: XArray. 1763 * @index: Index of entry. 1764 * @mark: Mark number. 1765 * 1766 * Attempting to set a mark on a %NULL entry does not succeed. 1767 * 1768 * Context: Process context. Takes and releases the xa_lock. 1769 */ 1770 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1771 { 1772 xa_lock(xa); 1773 __xa_set_mark(xa, index, mark); 1774 xa_unlock(xa); 1775 } 1776 EXPORT_SYMBOL(xa_set_mark); 1777 1778 /** 1779 * xa_clear_mark() - Clear this mark on this entry. 1780 * @xa: XArray. 1781 * @index: Index of entry. 1782 * @mark: Mark number. 1783 * 1784 * Clearing a mark always succeeds. 1785 * 1786 * Context: Process context. Takes and releases the xa_lock. 1787 */ 1788 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1789 { 1790 xa_lock(xa); 1791 __xa_clear_mark(xa, index, mark); 1792 xa_unlock(xa); 1793 } 1794 EXPORT_SYMBOL(xa_clear_mark); 1795 1796 /** 1797 * xa_find() - Search the XArray for an entry. 1798 * @xa: XArray. 1799 * @indexp: Pointer to an index. 1800 * @max: Maximum index to search to. 1801 * @filter: Selection criterion. 1802 * 1803 * Finds the entry in @xa which matches the @filter, and has the lowest 1804 * index that is at least @indexp and no more than @max. 1805 * If an entry is found, @indexp is updated to be the index of the entry. 1806 * This function is protected by the RCU read lock, so it may not find 1807 * entries which are being simultaneously added. It will not return an 1808 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 1809 * 1810 * Context: Any context. Takes and releases the RCU lock. 1811 * Return: The entry, if found, otherwise %NULL. 1812 */ 1813 void *xa_find(struct xarray *xa, unsigned long *indexp, 1814 unsigned long max, xa_mark_t filter) 1815 { 1816 XA_STATE(xas, xa, *indexp); 1817 void *entry; 1818 1819 rcu_read_lock(); 1820 do { 1821 if ((__force unsigned int)filter < XA_MAX_MARKS) 1822 entry = xas_find_marked(&xas, max, filter); 1823 else 1824 entry = xas_find(&xas, max); 1825 } while (xas_retry(&xas, entry)); 1826 rcu_read_unlock(); 1827 1828 if (entry) 1829 *indexp = xas.xa_index; 1830 return entry; 1831 } 1832 EXPORT_SYMBOL(xa_find); 1833 1834 static bool xas_sibling(struct xa_state *xas) 1835 { 1836 struct xa_node *node = xas->xa_node; 1837 unsigned long mask; 1838 1839 if (!node) 1840 return false; 1841 mask = (XA_CHUNK_SIZE << node->shift) - 1; 1842 return (xas->xa_index & mask) > (xas->xa_offset << node->shift); 1843 } 1844 1845 /** 1846 * xa_find_after() - Search the XArray for a present entry. 1847 * @xa: XArray. 1848 * @indexp: Pointer to an index. 1849 * @max: Maximum index to search to. 1850 * @filter: Selection criterion. 1851 * 1852 * Finds the entry in @xa which matches the @filter and has the lowest 1853 * index that is above @indexp and no more than @max. 1854 * If an entry is found, @indexp is updated to be the index of the entry. 1855 * This function is protected by the RCU read lock, so it may miss entries 1856 * which are being simultaneously added. It will not return an 1857 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 1858 * 1859 * Context: Any context. Takes and releases the RCU lock. 1860 * Return: The pointer, if found, otherwise %NULL. 1861 */ 1862 void *xa_find_after(struct xarray *xa, unsigned long *indexp, 1863 unsigned long max, xa_mark_t filter) 1864 { 1865 XA_STATE(xas, xa, *indexp + 1); 1866 void *entry; 1867 1868 if (xas.xa_index == 0) 1869 return NULL; 1870 1871 rcu_read_lock(); 1872 for (;;) { 1873 if ((__force unsigned int)filter < XA_MAX_MARKS) 1874 entry = xas_find_marked(&xas, max, filter); 1875 else 1876 entry = xas_find(&xas, max); 1877 1878 if (xas_invalid(&xas)) 1879 break; 1880 if (xas_sibling(&xas)) 1881 continue; 1882 if (!xas_retry(&xas, entry)) 1883 break; 1884 } 1885 rcu_read_unlock(); 1886 1887 if (entry) 1888 *indexp = xas.xa_index; 1889 return entry; 1890 } 1891 EXPORT_SYMBOL(xa_find_after); 1892 1893 static unsigned int xas_extract_present(struct xa_state *xas, void **dst, 1894 unsigned long max, unsigned int n) 1895 { 1896 void *entry; 1897 unsigned int i = 0; 1898 1899 rcu_read_lock(); 1900 xas_for_each(xas, entry, max) { 1901 if (xas_retry(xas, entry)) 1902 continue; 1903 dst[i++] = entry; 1904 if (i == n) 1905 break; 1906 } 1907 rcu_read_unlock(); 1908 1909 return i; 1910 } 1911 1912 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst, 1913 unsigned long max, unsigned int n, xa_mark_t mark) 1914 { 1915 void *entry; 1916 unsigned int i = 0; 1917 1918 rcu_read_lock(); 1919 xas_for_each_marked(xas, entry, max, mark) { 1920 if (xas_retry(xas, entry)) 1921 continue; 1922 dst[i++] = entry; 1923 if (i == n) 1924 break; 1925 } 1926 rcu_read_unlock(); 1927 1928 return i; 1929 } 1930 1931 /** 1932 * xa_extract() - Copy selected entries from the XArray into a normal array. 1933 * @xa: The source XArray to copy from. 1934 * @dst: The buffer to copy entries into. 1935 * @start: The first index in the XArray eligible to be selected. 1936 * @max: The last index in the XArray eligible to be selected. 1937 * @n: The maximum number of entries to copy. 1938 * @filter: Selection criterion. 1939 * 1940 * Copies up to @n entries that match @filter from the XArray. The 1941 * copied entries will have indices between @start and @max, inclusive. 1942 * 1943 * The @filter may be an XArray mark value, in which case entries which are 1944 * marked with that mark will be copied. It may also be %XA_PRESENT, in 1945 * which case all entries which are not %NULL will be copied. 1946 * 1947 * The entries returned may not represent a snapshot of the XArray at a 1948 * moment in time. For example, if another thread stores to index 5, then 1949 * index 10, calling xa_extract() may return the old contents of index 5 1950 * and the new contents of index 10. Indices not modified while this 1951 * function is running will not be skipped. 1952 * 1953 * If you need stronger guarantees, holding the xa_lock across calls to this 1954 * function will prevent concurrent modification. 1955 * 1956 * Context: Any context. Takes and releases the RCU lock. 1957 * Return: The number of entries copied. 1958 */ 1959 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start, 1960 unsigned long max, unsigned int n, xa_mark_t filter) 1961 { 1962 XA_STATE(xas, xa, start); 1963 1964 if (!n) 1965 return 0; 1966 1967 if ((__force unsigned int)filter < XA_MAX_MARKS) 1968 return xas_extract_marked(&xas, dst, max, n, filter); 1969 return xas_extract_present(&xas, dst, max, n); 1970 } 1971 EXPORT_SYMBOL(xa_extract); 1972 1973 /** 1974 * xa_destroy() - Free all internal data structures. 1975 * @xa: XArray. 1976 * 1977 * After calling this function, the XArray is empty and has freed all memory 1978 * allocated for its internal data structures. You are responsible for 1979 * freeing the objects referenced by the XArray. 1980 * 1981 * Context: Any context. Takes and releases the xa_lock, interrupt-safe. 1982 */ 1983 void xa_destroy(struct xarray *xa) 1984 { 1985 XA_STATE(xas, xa, 0); 1986 unsigned long flags; 1987 void *entry; 1988 1989 xas.xa_node = NULL; 1990 xas_lock_irqsave(&xas, flags); 1991 entry = xa_head_locked(xa); 1992 RCU_INIT_POINTER(xa->xa_head, NULL); 1993 xas_init_marks(&xas); 1994 if (xa_zero_busy(xa)) 1995 xa_mark_clear(xa, XA_FREE_MARK); 1996 /* lockdep checks we're still holding the lock in xas_free_nodes() */ 1997 if (xa_is_node(entry)) 1998 xas_free_nodes(&xas, xa_to_node(entry)); 1999 xas_unlock_irqrestore(&xas, flags); 2000 } 2001 EXPORT_SYMBOL(xa_destroy); 2002 2003 #ifdef XA_DEBUG 2004 void xa_dump_node(const struct xa_node *node) 2005 { 2006 unsigned i, j; 2007 2008 if (!node) 2009 return; 2010 if ((unsigned long)node & 3) { 2011 pr_cont("node %px\n", node); 2012 return; 2013 } 2014 2015 pr_cont("node %px %s %d parent %px shift %d count %d values %d " 2016 "array %px list %px %px marks", 2017 node, node->parent ? "offset" : "max", node->offset, 2018 node->parent, node->shift, node->count, node->nr_values, 2019 node->array, node->private_list.prev, node->private_list.next); 2020 for (i = 0; i < XA_MAX_MARKS; i++) 2021 for (j = 0; j < XA_MARK_LONGS; j++) 2022 pr_cont(" %lx", node->marks[i][j]); 2023 pr_cont("\n"); 2024 } 2025 2026 void xa_dump_index(unsigned long index, unsigned int shift) 2027 { 2028 if (!shift) 2029 pr_info("%lu: ", index); 2030 else if (shift >= BITS_PER_LONG) 2031 pr_info("0-%lu: ", ~0UL); 2032 else 2033 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1)); 2034 } 2035 2036 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift) 2037 { 2038 if (!entry) 2039 return; 2040 2041 xa_dump_index(index, shift); 2042 2043 if (xa_is_node(entry)) { 2044 if (shift == 0) { 2045 pr_cont("%px\n", entry); 2046 } else { 2047 unsigned long i; 2048 struct xa_node *node = xa_to_node(entry); 2049 xa_dump_node(node); 2050 for (i = 0; i < XA_CHUNK_SIZE; i++) 2051 xa_dump_entry(node->slots[i], 2052 index + (i << node->shift), node->shift); 2053 } 2054 } else if (xa_is_value(entry)) 2055 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry), 2056 xa_to_value(entry), entry); 2057 else if (!xa_is_internal(entry)) 2058 pr_cont("%px\n", entry); 2059 else if (xa_is_retry(entry)) 2060 pr_cont("retry (%ld)\n", xa_to_internal(entry)); 2061 else if (xa_is_sibling(entry)) 2062 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry)); 2063 else if (xa_is_zero(entry)) 2064 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 2065 else 2066 pr_cont("UNKNOWN ENTRY (%px)\n", entry); 2067 } 2068 2069 void xa_dump(const struct xarray *xa) 2070 { 2071 void *entry = xa->xa_head; 2072 unsigned int shift = 0; 2073 2074 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry, 2075 xa->xa_flags, xa_marked(xa, XA_MARK_0), 2076 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2)); 2077 if (xa_is_node(entry)) 2078 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT; 2079 xa_dump_entry(entry, 0, shift); 2080 } 2081 #endif 2082