1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * XArray implementation 4 * Copyright (c) 2017-2018 Microsoft Corporation 5 * Copyright (c) 2018-2020 Oracle 6 * Author: Matthew Wilcox <willy@infradead.org> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/export.h> 11 #include <linux/list.h> 12 #include <linux/slab.h> 13 #include <linux/xarray.h> 14 15 /* 16 * Coding conventions in this file: 17 * 18 * @xa is used to refer to the entire xarray. 19 * @xas is the 'xarray operation state'. It may be either a pointer to 20 * an xa_state, or an xa_state stored on the stack. This is an unfortunate 21 * ambiguity. 22 * @index is the index of the entry being operated on 23 * @mark is an xa_mark_t; a small number indicating one of the mark bits. 24 * @node refers to an xa_node; usually the primary one being operated on by 25 * this function. 26 * @offset is the index into the slots array inside an xa_node. 27 * @parent refers to the @xa_node closer to the head than @node. 28 * @entry refers to something stored in a slot in the xarray 29 */ 30 31 static inline unsigned int xa_lock_type(const struct xarray *xa) 32 { 33 return (__force unsigned int)xa->xa_flags & 3; 34 } 35 36 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type) 37 { 38 if (lock_type == XA_LOCK_IRQ) 39 xas_lock_irq(xas); 40 else if (lock_type == XA_LOCK_BH) 41 xas_lock_bh(xas); 42 else 43 xas_lock(xas); 44 } 45 46 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type) 47 { 48 if (lock_type == XA_LOCK_IRQ) 49 xas_unlock_irq(xas); 50 else if (lock_type == XA_LOCK_BH) 51 xas_unlock_bh(xas); 52 else 53 xas_unlock(xas); 54 } 55 56 static inline bool xa_track_free(const struct xarray *xa) 57 { 58 return xa->xa_flags & XA_FLAGS_TRACK_FREE; 59 } 60 61 static inline bool xa_zero_busy(const struct xarray *xa) 62 { 63 return xa->xa_flags & XA_FLAGS_ZERO_BUSY; 64 } 65 66 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark) 67 { 68 if (!(xa->xa_flags & XA_FLAGS_MARK(mark))) 69 xa->xa_flags |= XA_FLAGS_MARK(mark); 70 } 71 72 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark) 73 { 74 if (xa->xa_flags & XA_FLAGS_MARK(mark)) 75 xa->xa_flags &= ~(XA_FLAGS_MARK(mark)); 76 } 77 78 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark) 79 { 80 return node->marks[(__force unsigned)mark]; 81 } 82 83 static inline bool node_get_mark(struct xa_node *node, 84 unsigned int offset, xa_mark_t mark) 85 { 86 return test_bit(offset, node_marks(node, mark)); 87 } 88 89 /* returns true if the bit was set */ 90 static inline bool node_set_mark(struct xa_node *node, unsigned int offset, 91 xa_mark_t mark) 92 { 93 return __test_and_set_bit(offset, node_marks(node, mark)); 94 } 95 96 /* returns true if the bit was set */ 97 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset, 98 xa_mark_t mark) 99 { 100 return __test_and_clear_bit(offset, node_marks(node, mark)); 101 } 102 103 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark) 104 { 105 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE); 106 } 107 108 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark) 109 { 110 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE); 111 } 112 113 #define mark_inc(mark) do { \ 114 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \ 115 } while (0) 116 117 /* 118 * xas_squash_marks() - Merge all marks to the first entry 119 * @xas: Array operation state. 120 * 121 * Set a mark on the first entry if any entry has it set. Clear marks on 122 * all sibling entries. 123 */ 124 static void xas_squash_marks(const struct xa_state *xas) 125 { 126 unsigned int mark = 0; 127 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1; 128 129 if (!xas->xa_sibs) 130 return; 131 132 do { 133 unsigned long *marks = xas->xa_node->marks[mark]; 134 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit) 135 continue; 136 __set_bit(xas->xa_offset, marks); 137 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs); 138 } while (mark++ != (__force unsigned)XA_MARK_MAX); 139 } 140 141 /* extracts the offset within this node from the index */ 142 static unsigned int get_offset(unsigned long index, struct xa_node *node) 143 { 144 return (index >> node->shift) & XA_CHUNK_MASK; 145 } 146 147 static void xas_set_offset(struct xa_state *xas) 148 { 149 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node); 150 } 151 152 /* move the index either forwards (find) or backwards (sibling slot) */ 153 static void xas_move_index(struct xa_state *xas, unsigned long offset) 154 { 155 unsigned int shift = xas->xa_node->shift; 156 xas->xa_index &= ~XA_CHUNK_MASK << shift; 157 xas->xa_index += offset << shift; 158 } 159 160 static void xas_next_offset(struct xa_state *xas) 161 { 162 xas->xa_offset++; 163 xas_move_index(xas, xas->xa_offset); 164 } 165 166 static void *set_bounds(struct xa_state *xas) 167 { 168 xas->xa_node = XAS_BOUNDS; 169 return NULL; 170 } 171 172 /* 173 * Starts a walk. If the @xas is already valid, we assume that it's on 174 * the right path and just return where we've got to. If we're in an 175 * error state, return NULL. If the index is outside the current scope 176 * of the xarray, return NULL without changing @xas->xa_node. Otherwise 177 * set @xas->xa_node to NULL and return the current head of the array. 178 */ 179 static void *xas_start(struct xa_state *xas) 180 { 181 void *entry; 182 183 if (xas_valid(xas)) 184 return xas_reload(xas); 185 if (xas_error(xas)) 186 return NULL; 187 188 entry = xa_head(xas->xa); 189 if (!xa_is_node(entry)) { 190 if (xas->xa_index) 191 return set_bounds(xas); 192 } else { 193 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK) 194 return set_bounds(xas); 195 } 196 197 xas->xa_node = NULL; 198 return entry; 199 } 200 201 static void *xas_descend(struct xa_state *xas, struct xa_node *node) 202 { 203 unsigned int offset = get_offset(xas->xa_index, node); 204 void *entry = xa_entry(xas->xa, node, offset); 205 206 xas->xa_node = node; 207 if (xa_is_sibling(entry)) { 208 offset = xa_to_sibling(entry); 209 entry = xa_entry(xas->xa, node, offset); 210 if (node->shift && xa_is_node(entry)) 211 entry = XA_RETRY_ENTRY; 212 } 213 214 xas->xa_offset = offset; 215 return entry; 216 } 217 218 /** 219 * xas_load() - Load an entry from the XArray (advanced). 220 * @xas: XArray operation state. 221 * 222 * Usually walks the @xas to the appropriate state to load the entry 223 * stored at xa_index. However, it will do nothing and return %NULL if 224 * @xas is in an error state. xas_load() will never expand the tree. 225 * 226 * If the xa_state is set up to operate on a multi-index entry, xas_load() 227 * may return %NULL or an internal entry, even if there are entries 228 * present within the range specified by @xas. 229 * 230 * Context: Any context. The caller should hold the xa_lock or the RCU lock. 231 * Return: Usually an entry in the XArray, but see description for exceptions. 232 */ 233 void *xas_load(struct xa_state *xas) 234 { 235 void *entry = xas_start(xas); 236 237 while (xa_is_node(entry)) { 238 struct xa_node *node = xa_to_node(entry); 239 240 if (xas->xa_shift > node->shift) 241 break; 242 entry = xas_descend(xas, node); 243 if (node->shift == 0) 244 break; 245 } 246 return entry; 247 } 248 EXPORT_SYMBOL_GPL(xas_load); 249 250 /* Move the radix tree node cache here */ 251 extern struct kmem_cache *radix_tree_node_cachep; 252 extern void radix_tree_node_rcu_free(struct rcu_head *head); 253 254 #define XA_RCU_FREE ((struct xarray *)1) 255 256 static void xa_node_free(struct xa_node *node) 257 { 258 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 259 node->array = XA_RCU_FREE; 260 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 261 } 262 263 /* 264 * xas_destroy() - Free any resources allocated during the XArray operation. 265 * @xas: XArray operation state. 266 * 267 * Most users will not need to call this function; it is called for you 268 * by xas_nomem(). 269 */ 270 void xas_destroy(struct xa_state *xas) 271 { 272 struct xa_node *next, *node = xas->xa_alloc; 273 274 while (node) { 275 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 276 next = rcu_dereference_raw(node->parent); 277 radix_tree_node_rcu_free(&node->rcu_head); 278 xas->xa_alloc = node = next; 279 } 280 } 281 282 /** 283 * xas_nomem() - Allocate memory if needed. 284 * @xas: XArray operation state. 285 * @gfp: Memory allocation flags. 286 * 287 * If we need to add new nodes to the XArray, we try to allocate memory 288 * with GFP_NOWAIT while holding the lock, which will usually succeed. 289 * If it fails, @xas is flagged as needing memory to continue. The caller 290 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds, 291 * the caller should retry the operation. 292 * 293 * Forward progress is guaranteed as one node is allocated here and 294 * stored in the xa_state where it will be found by xas_alloc(). More 295 * nodes will likely be found in the slab allocator, but we do not tie 296 * them up here. 297 * 298 * Return: true if memory was needed, and was successfully allocated. 299 */ 300 bool xas_nomem(struct xa_state *xas, gfp_t gfp) 301 { 302 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 303 xas_destroy(xas); 304 return false; 305 } 306 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 307 gfp |= __GFP_ACCOUNT; 308 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 309 if (!xas->xa_alloc) 310 return false; 311 xas->xa_alloc->parent = NULL; 312 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 313 xas->xa_node = XAS_RESTART; 314 return true; 315 } 316 EXPORT_SYMBOL_GPL(xas_nomem); 317 318 /* 319 * __xas_nomem() - Drop locks and allocate memory if needed. 320 * @xas: XArray operation state. 321 * @gfp: Memory allocation flags. 322 * 323 * Internal variant of xas_nomem(). 324 * 325 * Return: true if memory was needed, and was successfully allocated. 326 */ 327 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp) 328 __must_hold(xas->xa->xa_lock) 329 { 330 unsigned int lock_type = xa_lock_type(xas->xa); 331 332 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 333 xas_destroy(xas); 334 return false; 335 } 336 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 337 gfp |= __GFP_ACCOUNT; 338 if (gfpflags_allow_blocking(gfp)) { 339 xas_unlock_type(xas, lock_type); 340 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 341 xas_lock_type(xas, lock_type); 342 } else { 343 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 344 } 345 if (!xas->xa_alloc) 346 return false; 347 xas->xa_alloc->parent = NULL; 348 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 349 xas->xa_node = XAS_RESTART; 350 return true; 351 } 352 353 static void xas_update(struct xa_state *xas, struct xa_node *node) 354 { 355 if (xas->xa_update) 356 xas->xa_update(node); 357 else 358 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 359 } 360 361 static void *xas_alloc(struct xa_state *xas, unsigned int shift) 362 { 363 struct xa_node *parent = xas->xa_node; 364 struct xa_node *node = xas->xa_alloc; 365 366 if (xas_invalid(xas)) 367 return NULL; 368 369 if (node) { 370 xas->xa_alloc = NULL; 371 } else { 372 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN; 373 374 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 375 gfp |= __GFP_ACCOUNT; 376 377 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 378 if (!node) { 379 xas_set_err(xas, -ENOMEM); 380 return NULL; 381 } 382 } 383 384 if (parent) { 385 node->offset = xas->xa_offset; 386 parent->count++; 387 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE); 388 xas_update(xas, parent); 389 } 390 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 391 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 392 node->shift = shift; 393 node->count = 0; 394 node->nr_values = 0; 395 RCU_INIT_POINTER(node->parent, xas->xa_node); 396 node->array = xas->xa; 397 398 return node; 399 } 400 401 #ifdef CONFIG_XARRAY_MULTI 402 /* Returns the number of indices covered by a given xa_state */ 403 static unsigned long xas_size(const struct xa_state *xas) 404 { 405 return (xas->xa_sibs + 1UL) << xas->xa_shift; 406 } 407 #endif 408 409 /* 410 * Use this to calculate the maximum index that will need to be created 411 * in order to add the entry described by @xas. Because we cannot store a 412 * multi-index entry at index 0, the calculation is a little more complex 413 * than you might expect. 414 */ 415 static unsigned long xas_max(struct xa_state *xas) 416 { 417 unsigned long max = xas->xa_index; 418 419 #ifdef CONFIG_XARRAY_MULTI 420 if (xas->xa_shift || xas->xa_sibs) { 421 unsigned long mask = xas_size(xas) - 1; 422 max |= mask; 423 if (mask == max) 424 max++; 425 } 426 #endif 427 428 return max; 429 } 430 431 /* The maximum index that can be contained in the array without expanding it */ 432 static unsigned long max_index(void *entry) 433 { 434 if (!xa_is_node(entry)) 435 return 0; 436 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1; 437 } 438 439 static void xas_shrink(struct xa_state *xas) 440 { 441 struct xarray *xa = xas->xa; 442 struct xa_node *node = xas->xa_node; 443 444 for (;;) { 445 void *entry; 446 447 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 448 if (node->count != 1) 449 break; 450 entry = xa_entry_locked(xa, node, 0); 451 if (!entry) 452 break; 453 if (!xa_is_node(entry) && node->shift) 454 break; 455 if (xa_is_zero(entry) && xa_zero_busy(xa)) 456 entry = NULL; 457 xas->xa_node = XAS_BOUNDS; 458 459 RCU_INIT_POINTER(xa->xa_head, entry); 460 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK)) 461 xa_mark_clear(xa, XA_FREE_MARK); 462 463 node->count = 0; 464 node->nr_values = 0; 465 if (!xa_is_node(entry)) 466 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY); 467 xas_update(xas, node); 468 xa_node_free(node); 469 if (!xa_is_node(entry)) 470 break; 471 node = xa_to_node(entry); 472 node->parent = NULL; 473 } 474 } 475 476 /* 477 * xas_delete_node() - Attempt to delete an xa_node 478 * @xas: Array operation state. 479 * 480 * Attempts to delete the @xas->xa_node. This will fail if xa->node has 481 * a non-zero reference count. 482 */ 483 static void xas_delete_node(struct xa_state *xas) 484 { 485 struct xa_node *node = xas->xa_node; 486 487 for (;;) { 488 struct xa_node *parent; 489 490 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 491 if (node->count) 492 break; 493 494 parent = xa_parent_locked(xas->xa, node); 495 xas->xa_node = parent; 496 xas->xa_offset = node->offset; 497 xa_node_free(node); 498 499 if (!parent) { 500 xas->xa->xa_head = NULL; 501 xas->xa_node = XAS_BOUNDS; 502 return; 503 } 504 505 parent->slots[xas->xa_offset] = NULL; 506 parent->count--; 507 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE); 508 node = parent; 509 xas_update(xas, node); 510 } 511 512 if (!node->parent) 513 xas_shrink(xas); 514 } 515 516 /** 517 * xas_free_nodes() - Free this node and all nodes that it references 518 * @xas: Array operation state. 519 * @top: Node to free 520 * 521 * This node has been removed from the tree. We must now free it and all 522 * of its subnodes. There may be RCU walkers with references into the tree, 523 * so we must replace all entries with retry markers. 524 */ 525 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top) 526 { 527 unsigned int offset = 0; 528 struct xa_node *node = top; 529 530 for (;;) { 531 void *entry = xa_entry_locked(xas->xa, node, offset); 532 533 if (node->shift && xa_is_node(entry)) { 534 node = xa_to_node(entry); 535 offset = 0; 536 continue; 537 } 538 if (entry) 539 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY); 540 offset++; 541 while (offset == XA_CHUNK_SIZE) { 542 struct xa_node *parent; 543 544 parent = xa_parent_locked(xas->xa, node); 545 offset = node->offset + 1; 546 node->count = 0; 547 node->nr_values = 0; 548 xas_update(xas, node); 549 xa_node_free(node); 550 if (node == top) 551 return; 552 node = parent; 553 } 554 } 555 } 556 557 /* 558 * xas_expand adds nodes to the head of the tree until it has reached 559 * sufficient height to be able to contain @xas->xa_index 560 */ 561 static int xas_expand(struct xa_state *xas, void *head) 562 { 563 struct xarray *xa = xas->xa; 564 struct xa_node *node = NULL; 565 unsigned int shift = 0; 566 unsigned long max = xas_max(xas); 567 568 if (!head) { 569 if (max == 0) 570 return 0; 571 while ((max >> shift) >= XA_CHUNK_SIZE) 572 shift += XA_CHUNK_SHIFT; 573 return shift + XA_CHUNK_SHIFT; 574 } else if (xa_is_node(head)) { 575 node = xa_to_node(head); 576 shift = node->shift + XA_CHUNK_SHIFT; 577 } 578 xas->xa_node = NULL; 579 580 while (max > max_index(head)) { 581 xa_mark_t mark = 0; 582 583 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 584 node = xas_alloc(xas, shift); 585 if (!node) 586 return -ENOMEM; 587 588 node->count = 1; 589 if (xa_is_value(head)) 590 node->nr_values = 1; 591 RCU_INIT_POINTER(node->slots[0], head); 592 593 /* Propagate the aggregated mark info to the new child */ 594 for (;;) { 595 if (xa_track_free(xa) && mark == XA_FREE_MARK) { 596 node_mark_all(node, XA_FREE_MARK); 597 if (!xa_marked(xa, XA_FREE_MARK)) { 598 node_clear_mark(node, 0, XA_FREE_MARK); 599 xa_mark_set(xa, XA_FREE_MARK); 600 } 601 } else if (xa_marked(xa, mark)) { 602 node_set_mark(node, 0, mark); 603 } 604 if (mark == XA_MARK_MAX) 605 break; 606 mark_inc(mark); 607 } 608 609 /* 610 * Now that the new node is fully initialised, we can add 611 * it to the tree 612 */ 613 if (xa_is_node(head)) { 614 xa_to_node(head)->offset = 0; 615 rcu_assign_pointer(xa_to_node(head)->parent, node); 616 } 617 head = xa_mk_node(node); 618 rcu_assign_pointer(xa->xa_head, head); 619 xas_update(xas, node); 620 621 shift += XA_CHUNK_SHIFT; 622 } 623 624 xas->xa_node = node; 625 return shift; 626 } 627 628 /* 629 * xas_create() - Create a slot to store an entry in. 630 * @xas: XArray operation state. 631 * @allow_root: %true if we can store the entry in the root directly 632 * 633 * Most users will not need to call this function directly, as it is called 634 * by xas_store(). It is useful for doing conditional store operations 635 * (see the xa_cmpxchg() implementation for an example). 636 * 637 * Return: If the slot already existed, returns the contents of this slot. 638 * If the slot was newly created, returns %NULL. If it failed to create the 639 * slot, returns %NULL and indicates the error in @xas. 640 */ 641 static void *xas_create(struct xa_state *xas, bool allow_root) 642 { 643 struct xarray *xa = xas->xa; 644 void *entry; 645 void __rcu **slot; 646 struct xa_node *node = xas->xa_node; 647 int shift; 648 unsigned int order = xas->xa_shift; 649 650 if (xas_top(node)) { 651 entry = xa_head_locked(xa); 652 xas->xa_node = NULL; 653 if (!entry && xa_zero_busy(xa)) 654 entry = XA_ZERO_ENTRY; 655 shift = xas_expand(xas, entry); 656 if (shift < 0) 657 return NULL; 658 if (!shift && !allow_root) 659 shift = XA_CHUNK_SHIFT; 660 entry = xa_head_locked(xa); 661 slot = &xa->xa_head; 662 } else if (xas_error(xas)) { 663 return NULL; 664 } else if (node) { 665 unsigned int offset = xas->xa_offset; 666 667 shift = node->shift; 668 entry = xa_entry_locked(xa, node, offset); 669 slot = &node->slots[offset]; 670 } else { 671 shift = 0; 672 entry = xa_head_locked(xa); 673 slot = &xa->xa_head; 674 } 675 676 while (shift > order) { 677 shift -= XA_CHUNK_SHIFT; 678 if (!entry) { 679 node = xas_alloc(xas, shift); 680 if (!node) 681 break; 682 if (xa_track_free(xa)) 683 node_mark_all(node, XA_FREE_MARK); 684 rcu_assign_pointer(*slot, xa_mk_node(node)); 685 } else if (xa_is_node(entry)) { 686 node = xa_to_node(entry); 687 } else { 688 break; 689 } 690 entry = xas_descend(xas, node); 691 slot = &node->slots[xas->xa_offset]; 692 } 693 694 return entry; 695 } 696 697 /** 698 * xas_create_range() - Ensure that stores to this range will succeed 699 * @xas: XArray operation state. 700 * 701 * Creates all of the slots in the range covered by @xas. Sets @xas to 702 * create single-index entries and positions it at the beginning of the 703 * range. This is for the benefit of users which have not yet been 704 * converted to use multi-index entries. 705 */ 706 void xas_create_range(struct xa_state *xas) 707 { 708 unsigned long index = xas->xa_index; 709 unsigned char shift = xas->xa_shift; 710 unsigned char sibs = xas->xa_sibs; 711 712 xas->xa_index |= ((sibs + 1UL) << shift) - 1; 713 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift) 714 xas->xa_offset |= sibs; 715 xas->xa_shift = 0; 716 xas->xa_sibs = 0; 717 718 for (;;) { 719 xas_create(xas, true); 720 if (xas_error(xas)) 721 goto restore; 722 if (xas->xa_index <= (index | XA_CHUNK_MASK)) 723 goto success; 724 xas->xa_index -= XA_CHUNK_SIZE; 725 726 for (;;) { 727 struct xa_node *node = xas->xa_node; 728 if (node->shift >= shift) 729 break; 730 xas->xa_node = xa_parent_locked(xas->xa, node); 731 xas->xa_offset = node->offset - 1; 732 if (node->offset != 0) 733 break; 734 } 735 } 736 737 restore: 738 xas->xa_shift = shift; 739 xas->xa_sibs = sibs; 740 xas->xa_index = index; 741 return; 742 success: 743 xas->xa_index = index; 744 if (xas->xa_node) 745 xas_set_offset(xas); 746 } 747 EXPORT_SYMBOL_GPL(xas_create_range); 748 749 static void update_node(struct xa_state *xas, struct xa_node *node, 750 int count, int values) 751 { 752 if (!node || (!count && !values)) 753 return; 754 755 node->count += count; 756 node->nr_values += values; 757 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 758 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE); 759 xas_update(xas, node); 760 if (count < 0) 761 xas_delete_node(xas); 762 } 763 764 /** 765 * xas_store() - Store this entry in the XArray. 766 * @xas: XArray operation state. 767 * @entry: New entry. 768 * 769 * If @xas is operating on a multi-index entry, the entry returned by this 770 * function is essentially meaningless (it may be an internal entry or it 771 * may be %NULL, even if there are non-NULL entries at some of the indices 772 * covered by the range). This is not a problem for any current users, 773 * and can be changed if needed. 774 * 775 * Return: The old entry at this index. 776 */ 777 void *xas_store(struct xa_state *xas, void *entry) 778 { 779 struct xa_node *node; 780 void __rcu **slot = &xas->xa->xa_head; 781 unsigned int offset, max; 782 int count = 0; 783 int values = 0; 784 void *first, *next; 785 bool value = xa_is_value(entry); 786 787 if (entry) { 788 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry); 789 first = xas_create(xas, allow_root); 790 } else { 791 first = xas_load(xas); 792 } 793 794 if (xas_invalid(xas)) 795 return first; 796 node = xas->xa_node; 797 if (node && (xas->xa_shift < node->shift)) 798 xas->xa_sibs = 0; 799 if ((first == entry) && !xas->xa_sibs) 800 return first; 801 802 next = first; 803 offset = xas->xa_offset; 804 max = xas->xa_offset + xas->xa_sibs; 805 if (node) { 806 slot = &node->slots[offset]; 807 if (xas->xa_sibs) 808 xas_squash_marks(xas); 809 } 810 if (!entry) 811 xas_init_marks(xas); 812 813 for (;;) { 814 /* 815 * Must clear the marks before setting the entry to NULL, 816 * otherwise xas_for_each_marked may find a NULL entry and 817 * stop early. rcu_assign_pointer contains a release barrier 818 * so the mark clearing will appear to happen before the 819 * entry is set to NULL. 820 */ 821 rcu_assign_pointer(*slot, entry); 822 if (xa_is_node(next) && (!node || node->shift)) 823 xas_free_nodes(xas, xa_to_node(next)); 824 if (!node) 825 break; 826 count += !next - !entry; 827 values += !xa_is_value(first) - !value; 828 if (entry) { 829 if (offset == max) 830 break; 831 if (!xa_is_sibling(entry)) 832 entry = xa_mk_sibling(xas->xa_offset); 833 } else { 834 if (offset == XA_CHUNK_MASK) 835 break; 836 } 837 next = xa_entry_locked(xas->xa, node, ++offset); 838 if (!xa_is_sibling(next)) { 839 if (!entry && (offset > max)) 840 break; 841 first = next; 842 } 843 slot++; 844 } 845 846 update_node(xas, node, count, values); 847 return first; 848 } 849 EXPORT_SYMBOL_GPL(xas_store); 850 851 /** 852 * xas_get_mark() - Returns the state of this mark. 853 * @xas: XArray operation state. 854 * @mark: Mark number. 855 * 856 * Return: true if the mark is set, false if the mark is clear or @xas 857 * is in an error state. 858 */ 859 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark) 860 { 861 if (xas_invalid(xas)) 862 return false; 863 if (!xas->xa_node) 864 return xa_marked(xas->xa, mark); 865 return node_get_mark(xas->xa_node, xas->xa_offset, mark); 866 } 867 EXPORT_SYMBOL_GPL(xas_get_mark); 868 869 /** 870 * xas_set_mark() - Sets the mark on this entry and its parents. 871 * @xas: XArray operation state. 872 * @mark: Mark number. 873 * 874 * Sets the specified mark on this entry, and walks up the tree setting it 875 * on all the ancestor entries. Does nothing if @xas has not been walked to 876 * an entry, or is in an error state. 877 */ 878 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark) 879 { 880 struct xa_node *node = xas->xa_node; 881 unsigned int offset = xas->xa_offset; 882 883 if (xas_invalid(xas)) 884 return; 885 886 while (node) { 887 if (node_set_mark(node, offset, mark)) 888 return; 889 offset = node->offset; 890 node = xa_parent_locked(xas->xa, node); 891 } 892 893 if (!xa_marked(xas->xa, mark)) 894 xa_mark_set(xas->xa, mark); 895 } 896 EXPORT_SYMBOL_GPL(xas_set_mark); 897 898 /** 899 * xas_clear_mark() - Clears the mark on this entry and its parents. 900 * @xas: XArray operation state. 901 * @mark: Mark number. 902 * 903 * Clears the specified mark on this entry, and walks back to the head 904 * attempting to clear it on all the ancestor entries. Does nothing if 905 * @xas has not been walked to an entry, or is in an error state. 906 */ 907 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark) 908 { 909 struct xa_node *node = xas->xa_node; 910 unsigned int offset = xas->xa_offset; 911 912 if (xas_invalid(xas)) 913 return; 914 915 while (node) { 916 if (!node_clear_mark(node, offset, mark)) 917 return; 918 if (node_any_mark(node, mark)) 919 return; 920 921 offset = node->offset; 922 node = xa_parent_locked(xas->xa, node); 923 } 924 925 if (xa_marked(xas->xa, mark)) 926 xa_mark_clear(xas->xa, mark); 927 } 928 EXPORT_SYMBOL_GPL(xas_clear_mark); 929 930 /** 931 * xas_init_marks() - Initialise all marks for the entry 932 * @xas: Array operations state. 933 * 934 * Initialise all marks for the entry specified by @xas. If we're tracking 935 * free entries with a mark, we need to set it on all entries. All other 936 * marks are cleared. 937 * 938 * This implementation is not as efficient as it could be; we may walk 939 * up the tree multiple times. 940 */ 941 void xas_init_marks(const struct xa_state *xas) 942 { 943 xa_mark_t mark = 0; 944 945 for (;;) { 946 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK) 947 xas_set_mark(xas, mark); 948 else 949 xas_clear_mark(xas, mark); 950 if (mark == XA_MARK_MAX) 951 break; 952 mark_inc(mark); 953 } 954 } 955 EXPORT_SYMBOL_GPL(xas_init_marks); 956 957 #ifdef CONFIG_XARRAY_MULTI 958 static unsigned int node_get_marks(struct xa_node *node, unsigned int offset) 959 { 960 unsigned int marks = 0; 961 xa_mark_t mark = XA_MARK_0; 962 963 for (;;) { 964 if (node_get_mark(node, offset, mark)) 965 marks |= 1 << (__force unsigned int)mark; 966 if (mark == XA_MARK_MAX) 967 break; 968 mark_inc(mark); 969 } 970 971 return marks; 972 } 973 974 static void node_set_marks(struct xa_node *node, unsigned int offset, 975 struct xa_node *child, unsigned int marks) 976 { 977 xa_mark_t mark = XA_MARK_0; 978 979 for (;;) { 980 if (marks & (1 << (__force unsigned int)mark)) { 981 node_set_mark(node, offset, mark); 982 if (child) 983 node_mark_all(child, mark); 984 } 985 if (mark == XA_MARK_MAX) 986 break; 987 mark_inc(mark); 988 } 989 } 990 991 /** 992 * xas_split_alloc() - Allocate memory for splitting an entry. 993 * @xas: XArray operation state. 994 * @entry: New entry which will be stored in the array. 995 * @order: Current entry order. 996 * @gfp: Memory allocation flags. 997 * 998 * This function should be called before calling xas_split(). 999 * If necessary, it will allocate new nodes (and fill them with @entry) 1000 * to prepare for the upcoming split of an entry of @order size into 1001 * entries of the order stored in the @xas. 1002 * 1003 * Context: May sleep if @gfp flags permit. 1004 */ 1005 void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order, 1006 gfp_t gfp) 1007 { 1008 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1009 unsigned int mask = xas->xa_sibs; 1010 1011 /* XXX: no support for splitting really large entries yet */ 1012 if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order)) 1013 goto nomem; 1014 if (xas->xa_shift + XA_CHUNK_SHIFT > order) 1015 return; 1016 1017 do { 1018 unsigned int i; 1019 void *sibling = NULL; 1020 struct xa_node *node; 1021 1022 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 1023 if (!node) 1024 goto nomem; 1025 node->array = xas->xa; 1026 for (i = 0; i < XA_CHUNK_SIZE; i++) { 1027 if ((i & mask) == 0) { 1028 RCU_INIT_POINTER(node->slots[i], entry); 1029 sibling = xa_mk_sibling(i); 1030 } else { 1031 RCU_INIT_POINTER(node->slots[i], sibling); 1032 } 1033 } 1034 RCU_INIT_POINTER(node->parent, xas->xa_alloc); 1035 xas->xa_alloc = node; 1036 } while (sibs-- > 0); 1037 1038 return; 1039 nomem: 1040 xas_destroy(xas); 1041 xas_set_err(xas, -ENOMEM); 1042 } 1043 EXPORT_SYMBOL_GPL(xas_split_alloc); 1044 1045 /** 1046 * xas_split() - Split a multi-index entry into smaller entries. 1047 * @xas: XArray operation state. 1048 * @entry: New entry to store in the array. 1049 * @order: Current entry order. 1050 * 1051 * The size of the new entries is set in @xas. The value in @entry is 1052 * copied to all the replacement entries. 1053 * 1054 * Context: Any context. The caller should hold the xa_lock. 1055 */ 1056 void xas_split(struct xa_state *xas, void *entry, unsigned int order) 1057 { 1058 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1059 unsigned int offset, marks; 1060 struct xa_node *node; 1061 void *curr = xas_load(xas); 1062 int values = 0; 1063 1064 node = xas->xa_node; 1065 if (xas_top(node)) 1066 return; 1067 1068 marks = node_get_marks(node, xas->xa_offset); 1069 1070 offset = xas->xa_offset + sibs; 1071 do { 1072 if (xas->xa_shift < node->shift) { 1073 struct xa_node *child = xas->xa_alloc; 1074 1075 xas->xa_alloc = rcu_dereference_raw(child->parent); 1076 child->shift = node->shift - XA_CHUNK_SHIFT; 1077 child->offset = offset; 1078 child->count = XA_CHUNK_SIZE; 1079 child->nr_values = xa_is_value(entry) ? 1080 XA_CHUNK_SIZE : 0; 1081 RCU_INIT_POINTER(child->parent, node); 1082 node_set_marks(node, offset, child, marks); 1083 rcu_assign_pointer(node->slots[offset], 1084 xa_mk_node(child)); 1085 if (xa_is_value(curr)) 1086 values--; 1087 xas_update(xas, child); 1088 } else { 1089 unsigned int canon = offset - xas->xa_sibs; 1090 1091 node_set_marks(node, canon, NULL, marks); 1092 rcu_assign_pointer(node->slots[canon], entry); 1093 while (offset > canon) 1094 rcu_assign_pointer(node->slots[offset--], 1095 xa_mk_sibling(canon)); 1096 values += (xa_is_value(entry) - xa_is_value(curr)) * 1097 (xas->xa_sibs + 1); 1098 } 1099 } while (offset-- > xas->xa_offset); 1100 1101 node->nr_values += values; 1102 xas_update(xas, node); 1103 } 1104 EXPORT_SYMBOL_GPL(xas_split); 1105 #endif 1106 1107 /** 1108 * xas_pause() - Pause a walk to drop a lock. 1109 * @xas: XArray operation state. 1110 * 1111 * Some users need to pause a walk and drop the lock they're holding in 1112 * order to yield to a higher priority thread or carry out an operation 1113 * on an entry. Those users should call this function before they drop 1114 * the lock. It resets the @xas to be suitable for the next iteration 1115 * of the loop after the user has reacquired the lock. If most entries 1116 * found during a walk require you to call xas_pause(), the xa_for_each() 1117 * iterator may be more appropriate. 1118 * 1119 * Note that xas_pause() only works for forward iteration. If a user needs 1120 * to pause a reverse iteration, we will need a xas_pause_rev(). 1121 */ 1122 void xas_pause(struct xa_state *xas) 1123 { 1124 struct xa_node *node = xas->xa_node; 1125 1126 if (xas_invalid(xas)) 1127 return; 1128 1129 xas->xa_node = XAS_RESTART; 1130 if (node) { 1131 unsigned long offset = xas->xa_offset; 1132 while (++offset < XA_CHUNK_SIZE) { 1133 if (!xa_is_sibling(xa_entry(xas->xa, node, offset))) 1134 break; 1135 } 1136 xas->xa_index += (offset - xas->xa_offset) << node->shift; 1137 if (xas->xa_index == 0) 1138 xas->xa_node = XAS_BOUNDS; 1139 } else { 1140 xas->xa_index++; 1141 } 1142 } 1143 EXPORT_SYMBOL_GPL(xas_pause); 1144 1145 /* 1146 * __xas_prev() - Find the previous entry in the XArray. 1147 * @xas: XArray operation state. 1148 * 1149 * Helper function for xas_prev() which handles all the complex cases 1150 * out of line. 1151 */ 1152 void *__xas_prev(struct xa_state *xas) 1153 { 1154 void *entry; 1155 1156 if (!xas_frozen(xas->xa_node)) 1157 xas->xa_index--; 1158 if (!xas->xa_node) 1159 return set_bounds(xas); 1160 if (xas_not_node(xas->xa_node)) 1161 return xas_load(xas); 1162 1163 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1164 xas->xa_offset--; 1165 1166 while (xas->xa_offset == 255) { 1167 xas->xa_offset = xas->xa_node->offset - 1; 1168 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1169 if (!xas->xa_node) 1170 return set_bounds(xas); 1171 } 1172 1173 for (;;) { 1174 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1175 if (!xa_is_node(entry)) 1176 return entry; 1177 1178 xas->xa_node = xa_to_node(entry); 1179 xas_set_offset(xas); 1180 } 1181 } 1182 EXPORT_SYMBOL_GPL(__xas_prev); 1183 1184 /* 1185 * __xas_next() - Find the next entry in the XArray. 1186 * @xas: XArray operation state. 1187 * 1188 * Helper function for xas_next() which handles all the complex cases 1189 * out of line. 1190 */ 1191 void *__xas_next(struct xa_state *xas) 1192 { 1193 void *entry; 1194 1195 if (!xas_frozen(xas->xa_node)) 1196 xas->xa_index++; 1197 if (!xas->xa_node) 1198 return set_bounds(xas); 1199 if (xas_not_node(xas->xa_node)) 1200 return xas_load(xas); 1201 1202 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1203 xas->xa_offset++; 1204 1205 while (xas->xa_offset == XA_CHUNK_SIZE) { 1206 xas->xa_offset = xas->xa_node->offset + 1; 1207 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1208 if (!xas->xa_node) 1209 return set_bounds(xas); 1210 } 1211 1212 for (;;) { 1213 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1214 if (!xa_is_node(entry)) 1215 return entry; 1216 1217 xas->xa_node = xa_to_node(entry); 1218 xas_set_offset(xas); 1219 } 1220 } 1221 EXPORT_SYMBOL_GPL(__xas_next); 1222 1223 /** 1224 * xas_find() - Find the next present entry in the XArray. 1225 * @xas: XArray operation state. 1226 * @max: Highest index to return. 1227 * 1228 * If the @xas has not yet been walked to an entry, return the entry 1229 * which has an index >= xas.xa_index. If it has been walked, the entry 1230 * currently being pointed at has been processed, and so we move to the 1231 * next entry. 1232 * 1233 * If no entry is found and the array is smaller than @max, the iterator 1234 * is set to the smallest index not yet in the array. This allows @xas 1235 * to be immediately passed to xas_store(). 1236 * 1237 * Return: The entry, if found, otherwise %NULL. 1238 */ 1239 void *xas_find(struct xa_state *xas, unsigned long max) 1240 { 1241 void *entry; 1242 1243 if (xas_error(xas) || xas->xa_node == XAS_BOUNDS) 1244 return NULL; 1245 if (xas->xa_index > max) 1246 return set_bounds(xas); 1247 1248 if (!xas->xa_node) { 1249 xas->xa_index = 1; 1250 return set_bounds(xas); 1251 } else if (xas->xa_node == XAS_RESTART) { 1252 entry = xas_load(xas); 1253 if (entry || xas_not_node(xas->xa_node)) 1254 return entry; 1255 } else if (!xas->xa_node->shift && 1256 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) { 1257 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1; 1258 } 1259 1260 xas_next_offset(xas); 1261 1262 while (xas->xa_node && (xas->xa_index <= max)) { 1263 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1264 xas->xa_offset = xas->xa_node->offset + 1; 1265 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1266 continue; 1267 } 1268 1269 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1270 if (xa_is_node(entry)) { 1271 xas->xa_node = xa_to_node(entry); 1272 xas->xa_offset = 0; 1273 continue; 1274 } 1275 if (entry && !xa_is_sibling(entry)) 1276 return entry; 1277 1278 xas_next_offset(xas); 1279 } 1280 1281 if (!xas->xa_node) 1282 xas->xa_node = XAS_BOUNDS; 1283 return NULL; 1284 } 1285 EXPORT_SYMBOL_GPL(xas_find); 1286 1287 /** 1288 * xas_find_marked() - Find the next marked entry in the XArray. 1289 * @xas: XArray operation state. 1290 * @max: Highest index to return. 1291 * @mark: Mark number to search for. 1292 * 1293 * If the @xas has not yet been walked to an entry, return the marked entry 1294 * which has an index >= xas.xa_index. If it has been walked, the entry 1295 * currently being pointed at has been processed, and so we return the 1296 * first marked entry with an index > xas.xa_index. 1297 * 1298 * If no marked entry is found and the array is smaller than @max, @xas is 1299 * set to the bounds state and xas->xa_index is set to the smallest index 1300 * not yet in the array. This allows @xas to be immediately passed to 1301 * xas_store(). 1302 * 1303 * If no entry is found before @max is reached, @xas is set to the restart 1304 * state. 1305 * 1306 * Return: The entry, if found, otherwise %NULL. 1307 */ 1308 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark) 1309 { 1310 bool advance = true; 1311 unsigned int offset; 1312 void *entry; 1313 1314 if (xas_error(xas)) 1315 return NULL; 1316 if (xas->xa_index > max) 1317 goto max; 1318 1319 if (!xas->xa_node) { 1320 xas->xa_index = 1; 1321 goto out; 1322 } else if (xas_top(xas->xa_node)) { 1323 advance = false; 1324 entry = xa_head(xas->xa); 1325 xas->xa_node = NULL; 1326 if (xas->xa_index > max_index(entry)) 1327 goto out; 1328 if (!xa_is_node(entry)) { 1329 if (xa_marked(xas->xa, mark)) 1330 return entry; 1331 xas->xa_index = 1; 1332 goto out; 1333 } 1334 xas->xa_node = xa_to_node(entry); 1335 xas->xa_offset = xas->xa_index >> xas->xa_node->shift; 1336 } 1337 1338 while (xas->xa_index <= max) { 1339 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1340 xas->xa_offset = xas->xa_node->offset + 1; 1341 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1342 if (!xas->xa_node) 1343 break; 1344 advance = false; 1345 continue; 1346 } 1347 1348 if (!advance) { 1349 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1350 if (xa_is_sibling(entry)) { 1351 xas->xa_offset = xa_to_sibling(entry); 1352 xas_move_index(xas, xas->xa_offset); 1353 } 1354 } 1355 1356 offset = xas_find_chunk(xas, advance, mark); 1357 if (offset > xas->xa_offset) { 1358 advance = false; 1359 xas_move_index(xas, offset); 1360 /* Mind the wrap */ 1361 if ((xas->xa_index - 1) >= max) 1362 goto max; 1363 xas->xa_offset = offset; 1364 if (offset == XA_CHUNK_SIZE) 1365 continue; 1366 } 1367 1368 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1369 if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK)) 1370 continue; 1371 if (!xa_is_node(entry)) 1372 return entry; 1373 xas->xa_node = xa_to_node(entry); 1374 xas_set_offset(xas); 1375 } 1376 1377 out: 1378 if (xas->xa_index > max) 1379 goto max; 1380 return set_bounds(xas); 1381 max: 1382 xas->xa_node = XAS_RESTART; 1383 return NULL; 1384 } 1385 EXPORT_SYMBOL_GPL(xas_find_marked); 1386 1387 /** 1388 * xas_find_conflict() - Find the next present entry in a range. 1389 * @xas: XArray operation state. 1390 * 1391 * The @xas describes both a range and a position within that range. 1392 * 1393 * Context: Any context. Expects xa_lock to be held. 1394 * Return: The next entry in the range covered by @xas or %NULL. 1395 */ 1396 void *xas_find_conflict(struct xa_state *xas) 1397 { 1398 void *curr; 1399 1400 if (xas_error(xas)) 1401 return NULL; 1402 1403 if (!xas->xa_node) 1404 return NULL; 1405 1406 if (xas_top(xas->xa_node)) { 1407 curr = xas_start(xas); 1408 if (!curr) 1409 return NULL; 1410 while (xa_is_node(curr)) { 1411 struct xa_node *node = xa_to_node(curr); 1412 curr = xas_descend(xas, node); 1413 } 1414 if (curr) 1415 return curr; 1416 } 1417 1418 if (xas->xa_node->shift > xas->xa_shift) 1419 return NULL; 1420 1421 for (;;) { 1422 if (xas->xa_node->shift == xas->xa_shift) { 1423 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs) 1424 break; 1425 } else if (xas->xa_offset == XA_CHUNK_MASK) { 1426 xas->xa_offset = xas->xa_node->offset; 1427 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node); 1428 if (!xas->xa_node) 1429 break; 1430 continue; 1431 } 1432 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset); 1433 if (xa_is_sibling(curr)) 1434 continue; 1435 while (xa_is_node(curr)) { 1436 xas->xa_node = xa_to_node(curr); 1437 xas->xa_offset = 0; 1438 curr = xa_entry_locked(xas->xa, xas->xa_node, 0); 1439 } 1440 if (curr) 1441 return curr; 1442 } 1443 xas->xa_offset -= xas->xa_sibs; 1444 return NULL; 1445 } 1446 EXPORT_SYMBOL_GPL(xas_find_conflict); 1447 1448 /** 1449 * xa_load() - Load an entry from an XArray. 1450 * @xa: XArray. 1451 * @index: index into array. 1452 * 1453 * Context: Any context. Takes and releases the RCU lock. 1454 * Return: The entry at @index in @xa. 1455 */ 1456 void *xa_load(struct xarray *xa, unsigned long index) 1457 { 1458 XA_STATE(xas, xa, index); 1459 void *entry; 1460 1461 rcu_read_lock(); 1462 do { 1463 entry = xas_load(&xas); 1464 if (xa_is_zero(entry)) 1465 entry = NULL; 1466 } while (xas_retry(&xas, entry)); 1467 rcu_read_unlock(); 1468 1469 return entry; 1470 } 1471 EXPORT_SYMBOL(xa_load); 1472 1473 static void *xas_result(struct xa_state *xas, void *curr) 1474 { 1475 if (xa_is_zero(curr)) 1476 return NULL; 1477 if (xas_error(xas)) 1478 curr = xas->xa_node; 1479 return curr; 1480 } 1481 1482 /** 1483 * __xa_erase() - Erase this entry from the XArray while locked. 1484 * @xa: XArray. 1485 * @index: Index into array. 1486 * 1487 * After this function returns, loading from @index will return %NULL. 1488 * If the index is part of a multi-index entry, all indices will be erased 1489 * and none of the entries will be part of a multi-index entry. 1490 * 1491 * Context: Any context. Expects xa_lock to be held on entry. 1492 * Return: The entry which used to be at this index. 1493 */ 1494 void *__xa_erase(struct xarray *xa, unsigned long index) 1495 { 1496 XA_STATE(xas, xa, index); 1497 return xas_result(&xas, xas_store(&xas, NULL)); 1498 } 1499 EXPORT_SYMBOL(__xa_erase); 1500 1501 /** 1502 * xa_erase() - Erase this entry from the XArray. 1503 * @xa: XArray. 1504 * @index: Index of entry. 1505 * 1506 * After this function returns, loading from @index will return %NULL. 1507 * If the index is part of a multi-index entry, all indices will be erased 1508 * and none of the entries will be part of a multi-index entry. 1509 * 1510 * Context: Any context. Takes and releases the xa_lock. 1511 * Return: The entry which used to be at this index. 1512 */ 1513 void *xa_erase(struct xarray *xa, unsigned long index) 1514 { 1515 void *entry; 1516 1517 xa_lock(xa); 1518 entry = __xa_erase(xa, index); 1519 xa_unlock(xa); 1520 1521 return entry; 1522 } 1523 EXPORT_SYMBOL(xa_erase); 1524 1525 /** 1526 * __xa_store() - Store this entry in the XArray. 1527 * @xa: XArray. 1528 * @index: Index into array. 1529 * @entry: New entry. 1530 * @gfp: Memory allocation flags. 1531 * 1532 * You must already be holding the xa_lock when calling this function. 1533 * It will drop the lock if needed to allocate memory, and then reacquire 1534 * it afterwards. 1535 * 1536 * Context: Any context. Expects xa_lock to be held on entry. May 1537 * release and reacquire xa_lock if @gfp flags permit. 1538 * Return: The old entry at this index or xa_err() if an error happened. 1539 */ 1540 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1541 { 1542 XA_STATE(xas, xa, index); 1543 void *curr; 1544 1545 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1546 return XA_ERROR(-EINVAL); 1547 if (xa_track_free(xa) && !entry) 1548 entry = XA_ZERO_ENTRY; 1549 1550 do { 1551 curr = xas_store(&xas, entry); 1552 if (xa_track_free(xa)) 1553 xas_clear_mark(&xas, XA_FREE_MARK); 1554 } while (__xas_nomem(&xas, gfp)); 1555 1556 return xas_result(&xas, curr); 1557 } 1558 EXPORT_SYMBOL(__xa_store); 1559 1560 /** 1561 * xa_store() - Store this entry in the XArray. 1562 * @xa: XArray. 1563 * @index: Index into array. 1564 * @entry: New entry. 1565 * @gfp: Memory allocation flags. 1566 * 1567 * After this function returns, loads from this index will return @entry. 1568 * Storing into an existing multi-index entry updates the entry of every index. 1569 * The marks associated with @index are unaffected unless @entry is %NULL. 1570 * 1571 * Context: Any context. Takes and releases the xa_lock. 1572 * May sleep if the @gfp flags permit. 1573 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry 1574 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation 1575 * failed. 1576 */ 1577 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1578 { 1579 void *curr; 1580 1581 xa_lock(xa); 1582 curr = __xa_store(xa, index, entry, gfp); 1583 xa_unlock(xa); 1584 1585 return curr; 1586 } 1587 EXPORT_SYMBOL(xa_store); 1588 1589 /** 1590 * __xa_cmpxchg() - Store this entry in the XArray. 1591 * @xa: XArray. 1592 * @index: Index into array. 1593 * @old: Old value to test against. 1594 * @entry: New entry. 1595 * @gfp: Memory allocation flags. 1596 * 1597 * You must already be holding the xa_lock when calling this function. 1598 * It will drop the lock if needed to allocate memory, and then reacquire 1599 * it afterwards. 1600 * 1601 * Context: Any context. Expects xa_lock to be held on entry. May 1602 * release and reacquire xa_lock if @gfp flags permit. 1603 * Return: The old entry at this index or xa_err() if an error happened. 1604 */ 1605 void *__xa_cmpxchg(struct xarray *xa, unsigned long index, 1606 void *old, void *entry, gfp_t gfp) 1607 { 1608 XA_STATE(xas, xa, index); 1609 void *curr; 1610 1611 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1612 return XA_ERROR(-EINVAL); 1613 1614 do { 1615 curr = xas_load(&xas); 1616 if (curr == old) { 1617 xas_store(&xas, entry); 1618 if (xa_track_free(xa) && entry && !curr) 1619 xas_clear_mark(&xas, XA_FREE_MARK); 1620 } 1621 } while (__xas_nomem(&xas, gfp)); 1622 1623 return xas_result(&xas, curr); 1624 } 1625 EXPORT_SYMBOL(__xa_cmpxchg); 1626 1627 /** 1628 * __xa_insert() - Store this entry in the XArray if no entry is present. 1629 * @xa: XArray. 1630 * @index: Index into array. 1631 * @entry: New entry. 1632 * @gfp: Memory allocation flags. 1633 * 1634 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 1635 * if no entry is present. Inserting will fail if a reserved entry is 1636 * present, even though loading from this index will return NULL. 1637 * 1638 * Context: Any context. Expects xa_lock to be held on entry. May 1639 * release and reacquire xa_lock if @gfp flags permit. 1640 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 1641 * -ENOMEM if memory could not be allocated. 1642 */ 1643 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1644 { 1645 XA_STATE(xas, xa, index); 1646 void *curr; 1647 1648 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1649 return -EINVAL; 1650 if (!entry) 1651 entry = XA_ZERO_ENTRY; 1652 1653 do { 1654 curr = xas_load(&xas); 1655 if (!curr) { 1656 xas_store(&xas, entry); 1657 if (xa_track_free(xa)) 1658 xas_clear_mark(&xas, XA_FREE_MARK); 1659 } else { 1660 xas_set_err(&xas, -EBUSY); 1661 } 1662 } while (__xas_nomem(&xas, gfp)); 1663 1664 return xas_error(&xas); 1665 } 1666 EXPORT_SYMBOL(__xa_insert); 1667 1668 #ifdef CONFIG_XARRAY_MULTI 1669 static void xas_set_range(struct xa_state *xas, unsigned long first, 1670 unsigned long last) 1671 { 1672 unsigned int shift = 0; 1673 unsigned long sibs = last - first; 1674 unsigned int offset = XA_CHUNK_MASK; 1675 1676 xas_set(xas, first); 1677 1678 while ((first & XA_CHUNK_MASK) == 0) { 1679 if (sibs < XA_CHUNK_MASK) 1680 break; 1681 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK)) 1682 break; 1683 shift += XA_CHUNK_SHIFT; 1684 if (offset == XA_CHUNK_MASK) 1685 offset = sibs & XA_CHUNK_MASK; 1686 sibs >>= XA_CHUNK_SHIFT; 1687 first >>= XA_CHUNK_SHIFT; 1688 } 1689 1690 offset = first & XA_CHUNK_MASK; 1691 if (offset + sibs > XA_CHUNK_MASK) 1692 sibs = XA_CHUNK_MASK - offset; 1693 if ((((first + sibs + 1) << shift) - 1) > last) 1694 sibs -= 1; 1695 1696 xas->xa_shift = shift; 1697 xas->xa_sibs = sibs; 1698 } 1699 1700 /** 1701 * xa_store_range() - Store this entry at a range of indices in the XArray. 1702 * @xa: XArray. 1703 * @first: First index to affect. 1704 * @last: Last index to affect. 1705 * @entry: New entry. 1706 * @gfp: Memory allocation flags. 1707 * 1708 * After this function returns, loads from any index between @first and @last, 1709 * inclusive will return @entry. 1710 * Storing into an existing multi-index entry updates the entry of every index. 1711 * The marks associated with @index are unaffected unless @entry is %NULL. 1712 * 1713 * Context: Process context. Takes and releases the xa_lock. May sleep 1714 * if the @gfp flags permit. 1715 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in 1716 * an XArray, or xa_err(-ENOMEM) if memory allocation failed. 1717 */ 1718 void *xa_store_range(struct xarray *xa, unsigned long first, 1719 unsigned long last, void *entry, gfp_t gfp) 1720 { 1721 XA_STATE(xas, xa, 0); 1722 1723 if (WARN_ON_ONCE(xa_is_internal(entry))) 1724 return XA_ERROR(-EINVAL); 1725 if (last < first) 1726 return XA_ERROR(-EINVAL); 1727 1728 do { 1729 xas_lock(&xas); 1730 if (entry) { 1731 unsigned int order = BITS_PER_LONG; 1732 if (last + 1) 1733 order = __ffs(last + 1); 1734 xas_set_order(&xas, last, order); 1735 xas_create(&xas, true); 1736 if (xas_error(&xas)) 1737 goto unlock; 1738 } 1739 do { 1740 xas_set_range(&xas, first, last); 1741 xas_store(&xas, entry); 1742 if (xas_error(&xas)) 1743 goto unlock; 1744 first += xas_size(&xas); 1745 } while (first <= last); 1746 unlock: 1747 xas_unlock(&xas); 1748 } while (xas_nomem(&xas, gfp)); 1749 1750 return xas_result(&xas, NULL); 1751 } 1752 EXPORT_SYMBOL(xa_store_range); 1753 1754 /** 1755 * xa_get_order() - Get the order of an entry. 1756 * @xa: XArray. 1757 * @index: Index of the entry. 1758 * 1759 * Return: A number between 0 and 63 indicating the order of the entry. 1760 */ 1761 int xa_get_order(struct xarray *xa, unsigned long index) 1762 { 1763 XA_STATE(xas, xa, index); 1764 void *entry; 1765 int order = 0; 1766 1767 rcu_read_lock(); 1768 entry = xas_load(&xas); 1769 1770 if (!entry) 1771 goto unlock; 1772 1773 if (!xas.xa_node) 1774 goto unlock; 1775 1776 for (;;) { 1777 unsigned int slot = xas.xa_offset + (1 << order); 1778 1779 if (slot >= XA_CHUNK_SIZE) 1780 break; 1781 if (!xa_is_sibling(xas.xa_node->slots[slot])) 1782 break; 1783 order++; 1784 } 1785 1786 order += xas.xa_node->shift; 1787 unlock: 1788 rcu_read_unlock(); 1789 1790 return order; 1791 } 1792 EXPORT_SYMBOL(xa_get_order); 1793 #endif /* CONFIG_XARRAY_MULTI */ 1794 1795 /** 1796 * __xa_alloc() - Find somewhere to store this entry in the XArray. 1797 * @xa: XArray. 1798 * @id: Pointer to ID. 1799 * @limit: Range for allocated ID. 1800 * @entry: New entry. 1801 * @gfp: Memory allocation flags. 1802 * 1803 * Finds an empty entry in @xa between @limit.min and @limit.max, 1804 * stores the index into the @id pointer, then stores the entry at 1805 * that index. A concurrent lookup will not see an uninitialised @id. 1806 * 1807 * Context: Any context. Expects xa_lock to be held on entry. May 1808 * release and reacquire xa_lock if @gfp flags permit. 1809 * Return: 0 on success, -ENOMEM if memory could not be allocated or 1810 * -EBUSY if there are no free entries in @limit. 1811 */ 1812 int __xa_alloc(struct xarray *xa, u32 *id, void *entry, 1813 struct xa_limit limit, gfp_t gfp) 1814 { 1815 XA_STATE(xas, xa, 0); 1816 1817 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1818 return -EINVAL; 1819 if (WARN_ON_ONCE(!xa_track_free(xa))) 1820 return -EINVAL; 1821 1822 if (!entry) 1823 entry = XA_ZERO_ENTRY; 1824 1825 do { 1826 xas.xa_index = limit.min; 1827 xas_find_marked(&xas, limit.max, XA_FREE_MARK); 1828 if (xas.xa_node == XAS_RESTART) 1829 xas_set_err(&xas, -EBUSY); 1830 else 1831 *id = xas.xa_index; 1832 xas_store(&xas, entry); 1833 xas_clear_mark(&xas, XA_FREE_MARK); 1834 } while (__xas_nomem(&xas, gfp)); 1835 1836 return xas_error(&xas); 1837 } 1838 EXPORT_SYMBOL(__xa_alloc); 1839 1840 /** 1841 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. 1842 * @xa: XArray. 1843 * @id: Pointer to ID. 1844 * @entry: New entry. 1845 * @limit: Range of allocated ID. 1846 * @next: Pointer to next ID to allocate. 1847 * @gfp: Memory allocation flags. 1848 * 1849 * Finds an empty entry in @xa between @limit.min and @limit.max, 1850 * stores the index into the @id pointer, then stores the entry at 1851 * that index. A concurrent lookup will not see an uninitialised @id. 1852 * The search for an empty entry will start at @next and will wrap 1853 * around if necessary. 1854 * 1855 * Context: Any context. Expects xa_lock to be held on entry. May 1856 * release and reacquire xa_lock if @gfp flags permit. 1857 * Return: 0 if the allocation succeeded without wrapping. 1 if the 1858 * allocation succeeded after wrapping, -ENOMEM if memory could not be 1859 * allocated or -EBUSY if there are no free entries in @limit. 1860 */ 1861 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, 1862 struct xa_limit limit, u32 *next, gfp_t gfp) 1863 { 1864 u32 min = limit.min; 1865 int ret; 1866 1867 limit.min = max(min, *next); 1868 ret = __xa_alloc(xa, id, entry, limit, gfp); 1869 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) { 1870 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED; 1871 ret = 1; 1872 } 1873 1874 if (ret < 0 && limit.min > min) { 1875 limit.min = min; 1876 ret = __xa_alloc(xa, id, entry, limit, gfp); 1877 if (ret == 0) 1878 ret = 1; 1879 } 1880 1881 if (ret >= 0) { 1882 *next = *id + 1; 1883 if (*next == 0) 1884 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED; 1885 } 1886 return ret; 1887 } 1888 EXPORT_SYMBOL(__xa_alloc_cyclic); 1889 1890 /** 1891 * __xa_set_mark() - Set this mark on this entry while locked. 1892 * @xa: XArray. 1893 * @index: Index of entry. 1894 * @mark: Mark number. 1895 * 1896 * Attempting to set a mark on a %NULL entry does not succeed. 1897 * 1898 * Context: Any context. Expects xa_lock to be held on entry. 1899 */ 1900 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1901 { 1902 XA_STATE(xas, xa, index); 1903 void *entry = xas_load(&xas); 1904 1905 if (entry) 1906 xas_set_mark(&xas, mark); 1907 } 1908 EXPORT_SYMBOL(__xa_set_mark); 1909 1910 /** 1911 * __xa_clear_mark() - Clear this mark on this entry while locked. 1912 * @xa: XArray. 1913 * @index: Index of entry. 1914 * @mark: Mark number. 1915 * 1916 * Context: Any context. Expects xa_lock to be held on entry. 1917 */ 1918 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1919 { 1920 XA_STATE(xas, xa, index); 1921 void *entry = xas_load(&xas); 1922 1923 if (entry) 1924 xas_clear_mark(&xas, mark); 1925 } 1926 EXPORT_SYMBOL(__xa_clear_mark); 1927 1928 /** 1929 * xa_get_mark() - Inquire whether this mark is set on this entry. 1930 * @xa: XArray. 1931 * @index: Index of entry. 1932 * @mark: Mark number. 1933 * 1934 * This function uses the RCU read lock, so the result may be out of date 1935 * by the time it returns. If you need the result to be stable, use a lock. 1936 * 1937 * Context: Any context. Takes and releases the RCU lock. 1938 * Return: True if the entry at @index has this mark set, false if it doesn't. 1939 */ 1940 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1941 { 1942 XA_STATE(xas, xa, index); 1943 void *entry; 1944 1945 rcu_read_lock(); 1946 entry = xas_start(&xas); 1947 while (xas_get_mark(&xas, mark)) { 1948 if (!xa_is_node(entry)) 1949 goto found; 1950 entry = xas_descend(&xas, xa_to_node(entry)); 1951 } 1952 rcu_read_unlock(); 1953 return false; 1954 found: 1955 rcu_read_unlock(); 1956 return true; 1957 } 1958 EXPORT_SYMBOL(xa_get_mark); 1959 1960 /** 1961 * xa_set_mark() - Set this mark on this entry. 1962 * @xa: XArray. 1963 * @index: Index of entry. 1964 * @mark: Mark number. 1965 * 1966 * Attempting to set a mark on a %NULL entry does not succeed. 1967 * 1968 * Context: Process context. Takes and releases the xa_lock. 1969 */ 1970 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1971 { 1972 xa_lock(xa); 1973 __xa_set_mark(xa, index, mark); 1974 xa_unlock(xa); 1975 } 1976 EXPORT_SYMBOL(xa_set_mark); 1977 1978 /** 1979 * xa_clear_mark() - Clear this mark on this entry. 1980 * @xa: XArray. 1981 * @index: Index of entry. 1982 * @mark: Mark number. 1983 * 1984 * Clearing a mark always succeeds. 1985 * 1986 * Context: Process context. Takes and releases the xa_lock. 1987 */ 1988 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1989 { 1990 xa_lock(xa); 1991 __xa_clear_mark(xa, index, mark); 1992 xa_unlock(xa); 1993 } 1994 EXPORT_SYMBOL(xa_clear_mark); 1995 1996 /** 1997 * xa_find() - Search the XArray for an entry. 1998 * @xa: XArray. 1999 * @indexp: Pointer to an index. 2000 * @max: Maximum index to search to. 2001 * @filter: Selection criterion. 2002 * 2003 * Finds the entry in @xa which matches the @filter, and has the lowest 2004 * index that is at least @indexp and no more than @max. 2005 * If an entry is found, @indexp is updated to be the index of the entry. 2006 * This function is protected by the RCU read lock, so it may not find 2007 * entries which are being simultaneously added. It will not return an 2008 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 2009 * 2010 * Context: Any context. Takes and releases the RCU lock. 2011 * Return: The entry, if found, otherwise %NULL. 2012 */ 2013 void *xa_find(struct xarray *xa, unsigned long *indexp, 2014 unsigned long max, xa_mark_t filter) 2015 { 2016 XA_STATE(xas, xa, *indexp); 2017 void *entry; 2018 2019 rcu_read_lock(); 2020 do { 2021 if ((__force unsigned int)filter < XA_MAX_MARKS) 2022 entry = xas_find_marked(&xas, max, filter); 2023 else 2024 entry = xas_find(&xas, max); 2025 } while (xas_retry(&xas, entry)); 2026 rcu_read_unlock(); 2027 2028 if (entry) 2029 *indexp = xas.xa_index; 2030 return entry; 2031 } 2032 EXPORT_SYMBOL(xa_find); 2033 2034 static bool xas_sibling(struct xa_state *xas) 2035 { 2036 struct xa_node *node = xas->xa_node; 2037 unsigned long mask; 2038 2039 if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node) 2040 return false; 2041 mask = (XA_CHUNK_SIZE << node->shift) - 1; 2042 return (xas->xa_index & mask) > 2043 ((unsigned long)xas->xa_offset << node->shift); 2044 } 2045 2046 /** 2047 * xa_find_after() - Search the XArray for a present entry. 2048 * @xa: XArray. 2049 * @indexp: Pointer to an index. 2050 * @max: Maximum index to search to. 2051 * @filter: Selection criterion. 2052 * 2053 * Finds the entry in @xa which matches the @filter and has the lowest 2054 * index that is above @indexp and no more than @max. 2055 * If an entry is found, @indexp is updated to be the index of the entry. 2056 * This function is protected by the RCU read lock, so it may miss entries 2057 * which are being simultaneously added. It will not return an 2058 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 2059 * 2060 * Context: Any context. Takes and releases the RCU lock. 2061 * Return: The pointer, if found, otherwise %NULL. 2062 */ 2063 void *xa_find_after(struct xarray *xa, unsigned long *indexp, 2064 unsigned long max, xa_mark_t filter) 2065 { 2066 XA_STATE(xas, xa, *indexp + 1); 2067 void *entry; 2068 2069 if (xas.xa_index == 0) 2070 return NULL; 2071 2072 rcu_read_lock(); 2073 for (;;) { 2074 if ((__force unsigned int)filter < XA_MAX_MARKS) 2075 entry = xas_find_marked(&xas, max, filter); 2076 else 2077 entry = xas_find(&xas, max); 2078 2079 if (xas_invalid(&xas)) 2080 break; 2081 if (xas_sibling(&xas)) 2082 continue; 2083 if (!xas_retry(&xas, entry)) 2084 break; 2085 } 2086 rcu_read_unlock(); 2087 2088 if (entry) 2089 *indexp = xas.xa_index; 2090 return entry; 2091 } 2092 EXPORT_SYMBOL(xa_find_after); 2093 2094 static unsigned int xas_extract_present(struct xa_state *xas, void **dst, 2095 unsigned long max, unsigned int n) 2096 { 2097 void *entry; 2098 unsigned int i = 0; 2099 2100 rcu_read_lock(); 2101 xas_for_each(xas, entry, max) { 2102 if (xas_retry(xas, entry)) 2103 continue; 2104 dst[i++] = entry; 2105 if (i == n) 2106 break; 2107 } 2108 rcu_read_unlock(); 2109 2110 return i; 2111 } 2112 2113 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst, 2114 unsigned long max, unsigned int n, xa_mark_t mark) 2115 { 2116 void *entry; 2117 unsigned int i = 0; 2118 2119 rcu_read_lock(); 2120 xas_for_each_marked(xas, entry, max, mark) { 2121 if (xas_retry(xas, entry)) 2122 continue; 2123 dst[i++] = entry; 2124 if (i == n) 2125 break; 2126 } 2127 rcu_read_unlock(); 2128 2129 return i; 2130 } 2131 2132 /** 2133 * xa_extract() - Copy selected entries from the XArray into a normal array. 2134 * @xa: The source XArray to copy from. 2135 * @dst: The buffer to copy entries into. 2136 * @start: The first index in the XArray eligible to be selected. 2137 * @max: The last index in the XArray eligible to be selected. 2138 * @n: The maximum number of entries to copy. 2139 * @filter: Selection criterion. 2140 * 2141 * Copies up to @n entries that match @filter from the XArray. The 2142 * copied entries will have indices between @start and @max, inclusive. 2143 * 2144 * The @filter may be an XArray mark value, in which case entries which are 2145 * marked with that mark will be copied. It may also be %XA_PRESENT, in 2146 * which case all entries which are not %NULL will be copied. 2147 * 2148 * The entries returned may not represent a snapshot of the XArray at a 2149 * moment in time. For example, if another thread stores to index 5, then 2150 * index 10, calling xa_extract() may return the old contents of index 5 2151 * and the new contents of index 10. Indices not modified while this 2152 * function is running will not be skipped. 2153 * 2154 * If you need stronger guarantees, holding the xa_lock across calls to this 2155 * function will prevent concurrent modification. 2156 * 2157 * Context: Any context. Takes and releases the RCU lock. 2158 * Return: The number of entries copied. 2159 */ 2160 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start, 2161 unsigned long max, unsigned int n, xa_mark_t filter) 2162 { 2163 XA_STATE(xas, xa, start); 2164 2165 if (!n) 2166 return 0; 2167 2168 if ((__force unsigned int)filter < XA_MAX_MARKS) 2169 return xas_extract_marked(&xas, dst, max, n, filter); 2170 return xas_extract_present(&xas, dst, max, n); 2171 } 2172 EXPORT_SYMBOL(xa_extract); 2173 2174 /** 2175 * xa_delete_node() - Private interface for workingset code. 2176 * @node: Node to be removed from the tree. 2177 * @update: Function to call to update ancestor nodes. 2178 * 2179 * Context: xa_lock must be held on entry and will not be released. 2180 */ 2181 void xa_delete_node(struct xa_node *node, xa_update_node_t update) 2182 { 2183 struct xa_state xas = { 2184 .xa = node->array, 2185 .xa_index = (unsigned long)node->offset << 2186 (node->shift + XA_CHUNK_SHIFT), 2187 .xa_shift = node->shift + XA_CHUNK_SHIFT, 2188 .xa_offset = node->offset, 2189 .xa_node = xa_parent_locked(node->array, node), 2190 .xa_update = update, 2191 }; 2192 2193 xas_store(&xas, NULL); 2194 } 2195 EXPORT_SYMBOL_GPL(xa_delete_node); /* For the benefit of the test suite */ 2196 2197 /** 2198 * xa_destroy() - Free all internal data structures. 2199 * @xa: XArray. 2200 * 2201 * After calling this function, the XArray is empty and has freed all memory 2202 * allocated for its internal data structures. You are responsible for 2203 * freeing the objects referenced by the XArray. 2204 * 2205 * Context: Any context. Takes and releases the xa_lock, interrupt-safe. 2206 */ 2207 void xa_destroy(struct xarray *xa) 2208 { 2209 XA_STATE(xas, xa, 0); 2210 unsigned long flags; 2211 void *entry; 2212 2213 xas.xa_node = NULL; 2214 xas_lock_irqsave(&xas, flags); 2215 entry = xa_head_locked(xa); 2216 RCU_INIT_POINTER(xa->xa_head, NULL); 2217 xas_init_marks(&xas); 2218 if (xa_zero_busy(xa)) 2219 xa_mark_clear(xa, XA_FREE_MARK); 2220 /* lockdep checks we're still holding the lock in xas_free_nodes() */ 2221 if (xa_is_node(entry)) 2222 xas_free_nodes(&xas, xa_to_node(entry)); 2223 xas_unlock_irqrestore(&xas, flags); 2224 } 2225 EXPORT_SYMBOL(xa_destroy); 2226 2227 #ifdef XA_DEBUG 2228 void xa_dump_node(const struct xa_node *node) 2229 { 2230 unsigned i, j; 2231 2232 if (!node) 2233 return; 2234 if ((unsigned long)node & 3) { 2235 pr_cont("node %px\n", node); 2236 return; 2237 } 2238 2239 pr_cont("node %px %s %d parent %px shift %d count %d values %d " 2240 "array %px list %px %px marks", 2241 node, node->parent ? "offset" : "max", node->offset, 2242 node->parent, node->shift, node->count, node->nr_values, 2243 node->array, node->private_list.prev, node->private_list.next); 2244 for (i = 0; i < XA_MAX_MARKS; i++) 2245 for (j = 0; j < XA_MARK_LONGS; j++) 2246 pr_cont(" %lx", node->marks[i][j]); 2247 pr_cont("\n"); 2248 } 2249 2250 void xa_dump_index(unsigned long index, unsigned int shift) 2251 { 2252 if (!shift) 2253 pr_info("%lu: ", index); 2254 else if (shift >= BITS_PER_LONG) 2255 pr_info("0-%lu: ", ~0UL); 2256 else 2257 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1)); 2258 } 2259 2260 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift) 2261 { 2262 if (!entry) 2263 return; 2264 2265 xa_dump_index(index, shift); 2266 2267 if (xa_is_node(entry)) { 2268 if (shift == 0) { 2269 pr_cont("%px\n", entry); 2270 } else { 2271 unsigned long i; 2272 struct xa_node *node = xa_to_node(entry); 2273 xa_dump_node(node); 2274 for (i = 0; i < XA_CHUNK_SIZE; i++) 2275 xa_dump_entry(node->slots[i], 2276 index + (i << node->shift), node->shift); 2277 } 2278 } else if (xa_is_value(entry)) 2279 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry), 2280 xa_to_value(entry), entry); 2281 else if (!xa_is_internal(entry)) 2282 pr_cont("%px\n", entry); 2283 else if (xa_is_retry(entry)) 2284 pr_cont("retry (%ld)\n", xa_to_internal(entry)); 2285 else if (xa_is_sibling(entry)) 2286 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry)); 2287 else if (xa_is_zero(entry)) 2288 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 2289 else 2290 pr_cont("UNKNOWN ENTRY (%px)\n", entry); 2291 } 2292 2293 void xa_dump(const struct xarray *xa) 2294 { 2295 void *entry = xa->xa_head; 2296 unsigned int shift = 0; 2297 2298 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry, 2299 xa->xa_flags, xa_marked(xa, XA_MARK_0), 2300 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2)); 2301 if (xa_is_node(entry)) 2302 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT; 2303 xa_dump_entry(entry, 0, shift); 2304 } 2305 #endif 2306