1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * XArray implementation 4 * Copyright (c) 2017-2018 Microsoft Corporation 5 * Copyright (c) 2018-2020 Oracle 6 * Author: Matthew Wilcox <willy@infradead.org> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/export.h> 11 #include <linux/list.h> 12 #include <linux/slab.h> 13 #include <linux/xarray.h> 14 15 /* 16 * Coding conventions in this file: 17 * 18 * @xa is used to refer to the entire xarray. 19 * @xas is the 'xarray operation state'. It may be either a pointer to 20 * an xa_state, or an xa_state stored on the stack. This is an unfortunate 21 * ambiguity. 22 * @index is the index of the entry being operated on 23 * @mark is an xa_mark_t; a small number indicating one of the mark bits. 24 * @node refers to an xa_node; usually the primary one being operated on by 25 * this function. 26 * @offset is the index into the slots array inside an xa_node. 27 * @parent refers to the @xa_node closer to the head than @node. 28 * @entry refers to something stored in a slot in the xarray 29 */ 30 31 static inline unsigned int xa_lock_type(const struct xarray *xa) 32 { 33 return (__force unsigned int)xa->xa_flags & 3; 34 } 35 36 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type) 37 { 38 if (lock_type == XA_LOCK_IRQ) 39 xas_lock_irq(xas); 40 else if (lock_type == XA_LOCK_BH) 41 xas_lock_bh(xas); 42 else 43 xas_lock(xas); 44 } 45 46 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type) 47 { 48 if (lock_type == XA_LOCK_IRQ) 49 xas_unlock_irq(xas); 50 else if (lock_type == XA_LOCK_BH) 51 xas_unlock_bh(xas); 52 else 53 xas_unlock(xas); 54 } 55 56 static inline bool xa_track_free(const struct xarray *xa) 57 { 58 return xa->xa_flags & XA_FLAGS_TRACK_FREE; 59 } 60 61 static inline bool xa_zero_busy(const struct xarray *xa) 62 { 63 return xa->xa_flags & XA_FLAGS_ZERO_BUSY; 64 } 65 66 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark) 67 { 68 if (!(xa->xa_flags & XA_FLAGS_MARK(mark))) 69 xa->xa_flags |= XA_FLAGS_MARK(mark); 70 } 71 72 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark) 73 { 74 if (xa->xa_flags & XA_FLAGS_MARK(mark)) 75 xa->xa_flags &= ~(XA_FLAGS_MARK(mark)); 76 } 77 78 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark) 79 { 80 return node->marks[(__force unsigned)mark]; 81 } 82 83 static inline bool node_get_mark(struct xa_node *node, 84 unsigned int offset, xa_mark_t mark) 85 { 86 return test_bit(offset, node_marks(node, mark)); 87 } 88 89 /* returns true if the bit was set */ 90 static inline bool node_set_mark(struct xa_node *node, unsigned int offset, 91 xa_mark_t mark) 92 { 93 return __test_and_set_bit(offset, node_marks(node, mark)); 94 } 95 96 /* returns true if the bit was set */ 97 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset, 98 xa_mark_t mark) 99 { 100 return __test_and_clear_bit(offset, node_marks(node, mark)); 101 } 102 103 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark) 104 { 105 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE); 106 } 107 108 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark) 109 { 110 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE); 111 } 112 113 #define mark_inc(mark) do { \ 114 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \ 115 } while (0) 116 117 /* 118 * xas_squash_marks() - Merge all marks to the first entry 119 * @xas: Array operation state. 120 * 121 * Set a mark on the first entry if any entry has it set. Clear marks on 122 * all sibling entries. 123 */ 124 static void xas_squash_marks(const struct xa_state *xas) 125 { 126 unsigned int mark = 0; 127 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1; 128 129 if (!xas->xa_sibs) 130 return; 131 132 do { 133 unsigned long *marks = xas->xa_node->marks[mark]; 134 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit) 135 continue; 136 __set_bit(xas->xa_offset, marks); 137 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs); 138 } while (mark++ != (__force unsigned)XA_MARK_MAX); 139 } 140 141 /* extracts the offset within this node from the index */ 142 static unsigned int get_offset(unsigned long index, struct xa_node *node) 143 { 144 return (index >> node->shift) & XA_CHUNK_MASK; 145 } 146 147 static void xas_set_offset(struct xa_state *xas) 148 { 149 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node); 150 } 151 152 /* move the index either forwards (find) or backwards (sibling slot) */ 153 static void xas_move_index(struct xa_state *xas, unsigned long offset) 154 { 155 unsigned int shift = xas->xa_node->shift; 156 xas->xa_index &= ~XA_CHUNK_MASK << shift; 157 xas->xa_index += offset << shift; 158 } 159 160 static void xas_advance(struct xa_state *xas) 161 { 162 xas->xa_offset++; 163 xas_move_index(xas, xas->xa_offset); 164 } 165 166 static void *set_bounds(struct xa_state *xas) 167 { 168 xas->xa_node = XAS_BOUNDS; 169 return NULL; 170 } 171 172 /* 173 * Starts a walk. If the @xas is already valid, we assume that it's on 174 * the right path and just return where we've got to. If we're in an 175 * error state, return NULL. If the index is outside the current scope 176 * of the xarray, return NULL without changing @xas->xa_node. Otherwise 177 * set @xas->xa_node to NULL and return the current head of the array. 178 */ 179 static void *xas_start(struct xa_state *xas) 180 { 181 void *entry; 182 183 if (xas_valid(xas)) 184 return xas_reload(xas); 185 if (xas_error(xas)) 186 return NULL; 187 188 entry = xa_head(xas->xa); 189 if (!xa_is_node(entry)) { 190 if (xas->xa_index) 191 return set_bounds(xas); 192 } else { 193 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK) 194 return set_bounds(xas); 195 } 196 197 xas->xa_node = NULL; 198 return entry; 199 } 200 201 static void *xas_descend(struct xa_state *xas, struct xa_node *node) 202 { 203 unsigned int offset = get_offset(xas->xa_index, node); 204 void *entry = xa_entry(xas->xa, node, offset); 205 206 xas->xa_node = node; 207 if (xa_is_sibling(entry)) { 208 offset = xa_to_sibling(entry); 209 entry = xa_entry(xas->xa, node, offset); 210 } 211 212 xas->xa_offset = offset; 213 return entry; 214 } 215 216 /** 217 * xas_load() - Load an entry from the XArray (advanced). 218 * @xas: XArray operation state. 219 * 220 * Usually walks the @xas to the appropriate state to load the entry 221 * stored at xa_index. However, it will do nothing and return %NULL if 222 * @xas is in an error state. xas_load() will never expand the tree. 223 * 224 * If the xa_state is set up to operate on a multi-index entry, xas_load() 225 * may return %NULL or an internal entry, even if there are entries 226 * present within the range specified by @xas. 227 * 228 * Context: Any context. The caller should hold the xa_lock or the RCU lock. 229 * Return: Usually an entry in the XArray, but see description for exceptions. 230 */ 231 void *xas_load(struct xa_state *xas) 232 { 233 void *entry = xas_start(xas); 234 235 while (xa_is_node(entry)) { 236 struct xa_node *node = xa_to_node(entry); 237 238 if (xas->xa_shift > node->shift) 239 break; 240 entry = xas_descend(xas, node); 241 if (node->shift == 0) 242 break; 243 } 244 return entry; 245 } 246 EXPORT_SYMBOL_GPL(xas_load); 247 248 /* Move the radix tree node cache here */ 249 extern struct kmem_cache *radix_tree_node_cachep; 250 extern void radix_tree_node_rcu_free(struct rcu_head *head); 251 252 #define XA_RCU_FREE ((struct xarray *)1) 253 254 static void xa_node_free(struct xa_node *node) 255 { 256 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 257 node->array = XA_RCU_FREE; 258 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 259 } 260 261 /* 262 * xas_destroy() - Free any resources allocated during the XArray operation. 263 * @xas: XArray operation state. 264 * 265 * This function is now internal-only. 266 */ 267 static void xas_destroy(struct xa_state *xas) 268 { 269 struct xa_node *next, *node = xas->xa_alloc; 270 271 while (node) { 272 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 273 next = rcu_dereference_raw(node->parent); 274 radix_tree_node_rcu_free(&node->rcu_head); 275 xas->xa_alloc = node = next; 276 } 277 } 278 279 /** 280 * xas_nomem() - Allocate memory if needed. 281 * @xas: XArray operation state. 282 * @gfp: Memory allocation flags. 283 * 284 * If we need to add new nodes to the XArray, we try to allocate memory 285 * with GFP_NOWAIT while holding the lock, which will usually succeed. 286 * If it fails, @xas is flagged as needing memory to continue. The caller 287 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds, 288 * the caller should retry the operation. 289 * 290 * Forward progress is guaranteed as one node is allocated here and 291 * stored in the xa_state where it will be found by xas_alloc(). More 292 * nodes will likely be found in the slab allocator, but we do not tie 293 * them up here. 294 * 295 * Return: true if memory was needed, and was successfully allocated. 296 */ 297 bool xas_nomem(struct xa_state *xas, gfp_t gfp) 298 { 299 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 300 xas_destroy(xas); 301 return false; 302 } 303 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 304 gfp |= __GFP_ACCOUNT; 305 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); 306 if (!xas->xa_alloc) 307 return false; 308 xas->xa_alloc->parent = NULL; 309 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 310 xas->xa_node = XAS_RESTART; 311 return true; 312 } 313 EXPORT_SYMBOL_GPL(xas_nomem); 314 315 /* 316 * __xas_nomem() - Drop locks and allocate memory if needed. 317 * @xas: XArray operation state. 318 * @gfp: Memory allocation flags. 319 * 320 * Internal variant of xas_nomem(). 321 * 322 * Return: true if memory was needed, and was successfully allocated. 323 */ 324 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp) 325 __must_hold(xas->xa->xa_lock) 326 { 327 unsigned int lock_type = xa_lock_type(xas->xa); 328 329 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 330 xas_destroy(xas); 331 return false; 332 } 333 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 334 gfp |= __GFP_ACCOUNT; 335 if (gfpflags_allow_blocking(gfp)) { 336 xas_unlock_type(xas, lock_type); 337 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); 338 xas_lock_type(xas, lock_type); 339 } else { 340 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); 341 } 342 if (!xas->xa_alloc) 343 return false; 344 xas->xa_alloc->parent = NULL; 345 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 346 xas->xa_node = XAS_RESTART; 347 return true; 348 } 349 350 static void xas_update(struct xa_state *xas, struct xa_node *node) 351 { 352 if (xas->xa_update) 353 xas->xa_update(node); 354 else 355 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 356 } 357 358 static void *xas_alloc(struct xa_state *xas, unsigned int shift) 359 { 360 struct xa_node *parent = xas->xa_node; 361 struct xa_node *node = xas->xa_alloc; 362 363 if (xas_invalid(xas)) 364 return NULL; 365 366 if (node) { 367 xas->xa_alloc = NULL; 368 } else { 369 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN; 370 371 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 372 gfp |= __GFP_ACCOUNT; 373 374 node = kmem_cache_alloc(radix_tree_node_cachep, gfp); 375 if (!node) { 376 xas_set_err(xas, -ENOMEM); 377 return NULL; 378 } 379 } 380 381 if (parent) { 382 node->offset = xas->xa_offset; 383 parent->count++; 384 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE); 385 xas_update(xas, parent); 386 } 387 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 388 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 389 node->shift = shift; 390 node->count = 0; 391 node->nr_values = 0; 392 RCU_INIT_POINTER(node->parent, xas->xa_node); 393 node->array = xas->xa; 394 395 return node; 396 } 397 398 #ifdef CONFIG_XARRAY_MULTI 399 /* Returns the number of indices covered by a given xa_state */ 400 static unsigned long xas_size(const struct xa_state *xas) 401 { 402 return (xas->xa_sibs + 1UL) << xas->xa_shift; 403 } 404 #endif 405 406 /* 407 * Use this to calculate the maximum index that will need to be created 408 * in order to add the entry described by @xas. Because we cannot store a 409 * multi-index entry at index 0, the calculation is a little more complex 410 * than you might expect. 411 */ 412 static unsigned long xas_max(struct xa_state *xas) 413 { 414 unsigned long max = xas->xa_index; 415 416 #ifdef CONFIG_XARRAY_MULTI 417 if (xas->xa_shift || xas->xa_sibs) { 418 unsigned long mask = xas_size(xas) - 1; 419 max |= mask; 420 if (mask == max) 421 max++; 422 } 423 #endif 424 425 return max; 426 } 427 428 /* The maximum index that can be contained in the array without expanding it */ 429 static unsigned long max_index(void *entry) 430 { 431 if (!xa_is_node(entry)) 432 return 0; 433 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1; 434 } 435 436 static void xas_shrink(struct xa_state *xas) 437 { 438 struct xarray *xa = xas->xa; 439 struct xa_node *node = xas->xa_node; 440 441 for (;;) { 442 void *entry; 443 444 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 445 if (node->count != 1) 446 break; 447 entry = xa_entry_locked(xa, node, 0); 448 if (!entry) 449 break; 450 if (!xa_is_node(entry) && node->shift) 451 break; 452 if (xa_is_zero(entry) && xa_zero_busy(xa)) 453 entry = NULL; 454 xas->xa_node = XAS_BOUNDS; 455 456 RCU_INIT_POINTER(xa->xa_head, entry); 457 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK)) 458 xa_mark_clear(xa, XA_FREE_MARK); 459 460 node->count = 0; 461 node->nr_values = 0; 462 if (!xa_is_node(entry)) 463 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY); 464 xas_update(xas, node); 465 xa_node_free(node); 466 if (!xa_is_node(entry)) 467 break; 468 node = xa_to_node(entry); 469 node->parent = NULL; 470 } 471 } 472 473 /* 474 * xas_delete_node() - Attempt to delete an xa_node 475 * @xas: Array operation state. 476 * 477 * Attempts to delete the @xas->xa_node. This will fail if xa->node has 478 * a non-zero reference count. 479 */ 480 static void xas_delete_node(struct xa_state *xas) 481 { 482 struct xa_node *node = xas->xa_node; 483 484 for (;;) { 485 struct xa_node *parent; 486 487 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 488 if (node->count) 489 break; 490 491 parent = xa_parent_locked(xas->xa, node); 492 xas->xa_node = parent; 493 xas->xa_offset = node->offset; 494 xa_node_free(node); 495 496 if (!parent) { 497 xas->xa->xa_head = NULL; 498 xas->xa_node = XAS_BOUNDS; 499 return; 500 } 501 502 parent->slots[xas->xa_offset] = NULL; 503 parent->count--; 504 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE); 505 node = parent; 506 xas_update(xas, node); 507 } 508 509 if (!node->parent) 510 xas_shrink(xas); 511 } 512 513 /** 514 * xas_free_nodes() - Free this node and all nodes that it references 515 * @xas: Array operation state. 516 * @top: Node to free 517 * 518 * This node has been removed from the tree. We must now free it and all 519 * of its subnodes. There may be RCU walkers with references into the tree, 520 * so we must replace all entries with retry markers. 521 */ 522 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top) 523 { 524 unsigned int offset = 0; 525 struct xa_node *node = top; 526 527 for (;;) { 528 void *entry = xa_entry_locked(xas->xa, node, offset); 529 530 if (node->shift && xa_is_node(entry)) { 531 node = xa_to_node(entry); 532 offset = 0; 533 continue; 534 } 535 if (entry) 536 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY); 537 offset++; 538 while (offset == XA_CHUNK_SIZE) { 539 struct xa_node *parent; 540 541 parent = xa_parent_locked(xas->xa, node); 542 offset = node->offset + 1; 543 node->count = 0; 544 node->nr_values = 0; 545 xas_update(xas, node); 546 xa_node_free(node); 547 if (node == top) 548 return; 549 node = parent; 550 } 551 } 552 } 553 554 /* 555 * xas_expand adds nodes to the head of the tree until it has reached 556 * sufficient height to be able to contain @xas->xa_index 557 */ 558 static int xas_expand(struct xa_state *xas, void *head) 559 { 560 struct xarray *xa = xas->xa; 561 struct xa_node *node = NULL; 562 unsigned int shift = 0; 563 unsigned long max = xas_max(xas); 564 565 if (!head) { 566 if (max == 0) 567 return 0; 568 while ((max >> shift) >= XA_CHUNK_SIZE) 569 shift += XA_CHUNK_SHIFT; 570 return shift + XA_CHUNK_SHIFT; 571 } else if (xa_is_node(head)) { 572 node = xa_to_node(head); 573 shift = node->shift + XA_CHUNK_SHIFT; 574 } 575 xas->xa_node = NULL; 576 577 while (max > max_index(head)) { 578 xa_mark_t mark = 0; 579 580 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 581 node = xas_alloc(xas, shift); 582 if (!node) 583 return -ENOMEM; 584 585 node->count = 1; 586 if (xa_is_value(head)) 587 node->nr_values = 1; 588 RCU_INIT_POINTER(node->slots[0], head); 589 590 /* Propagate the aggregated mark info to the new child */ 591 for (;;) { 592 if (xa_track_free(xa) && mark == XA_FREE_MARK) { 593 node_mark_all(node, XA_FREE_MARK); 594 if (!xa_marked(xa, XA_FREE_MARK)) { 595 node_clear_mark(node, 0, XA_FREE_MARK); 596 xa_mark_set(xa, XA_FREE_MARK); 597 } 598 } else if (xa_marked(xa, mark)) { 599 node_set_mark(node, 0, mark); 600 } 601 if (mark == XA_MARK_MAX) 602 break; 603 mark_inc(mark); 604 } 605 606 /* 607 * Now that the new node is fully initialised, we can add 608 * it to the tree 609 */ 610 if (xa_is_node(head)) { 611 xa_to_node(head)->offset = 0; 612 rcu_assign_pointer(xa_to_node(head)->parent, node); 613 } 614 head = xa_mk_node(node); 615 rcu_assign_pointer(xa->xa_head, head); 616 xas_update(xas, node); 617 618 shift += XA_CHUNK_SHIFT; 619 } 620 621 xas->xa_node = node; 622 return shift; 623 } 624 625 /* 626 * xas_create() - Create a slot to store an entry in. 627 * @xas: XArray operation state. 628 * @allow_root: %true if we can store the entry in the root directly 629 * 630 * Most users will not need to call this function directly, as it is called 631 * by xas_store(). It is useful for doing conditional store operations 632 * (see the xa_cmpxchg() implementation for an example). 633 * 634 * Return: If the slot already existed, returns the contents of this slot. 635 * If the slot was newly created, returns %NULL. If it failed to create the 636 * slot, returns %NULL and indicates the error in @xas. 637 */ 638 static void *xas_create(struct xa_state *xas, bool allow_root) 639 { 640 struct xarray *xa = xas->xa; 641 void *entry; 642 void __rcu **slot; 643 struct xa_node *node = xas->xa_node; 644 int shift; 645 unsigned int order = xas->xa_shift; 646 647 if (xas_top(node)) { 648 entry = xa_head_locked(xa); 649 xas->xa_node = NULL; 650 if (!entry && xa_zero_busy(xa)) 651 entry = XA_ZERO_ENTRY; 652 shift = xas_expand(xas, entry); 653 if (shift < 0) 654 return NULL; 655 if (!shift && !allow_root) 656 shift = XA_CHUNK_SHIFT; 657 entry = xa_head_locked(xa); 658 slot = &xa->xa_head; 659 } else if (xas_error(xas)) { 660 return NULL; 661 } else if (node) { 662 unsigned int offset = xas->xa_offset; 663 664 shift = node->shift; 665 entry = xa_entry_locked(xa, node, offset); 666 slot = &node->slots[offset]; 667 } else { 668 shift = 0; 669 entry = xa_head_locked(xa); 670 slot = &xa->xa_head; 671 } 672 673 while (shift > order) { 674 shift -= XA_CHUNK_SHIFT; 675 if (!entry) { 676 node = xas_alloc(xas, shift); 677 if (!node) 678 break; 679 if (xa_track_free(xa)) 680 node_mark_all(node, XA_FREE_MARK); 681 rcu_assign_pointer(*slot, xa_mk_node(node)); 682 } else if (xa_is_node(entry)) { 683 node = xa_to_node(entry); 684 } else { 685 break; 686 } 687 entry = xas_descend(xas, node); 688 slot = &node->slots[xas->xa_offset]; 689 } 690 691 return entry; 692 } 693 694 /** 695 * xas_create_range() - Ensure that stores to this range will succeed 696 * @xas: XArray operation state. 697 * 698 * Creates all of the slots in the range covered by @xas. Sets @xas to 699 * create single-index entries and positions it at the beginning of the 700 * range. This is for the benefit of users which have not yet been 701 * converted to use multi-index entries. 702 */ 703 void xas_create_range(struct xa_state *xas) 704 { 705 unsigned long index = xas->xa_index; 706 unsigned char shift = xas->xa_shift; 707 unsigned char sibs = xas->xa_sibs; 708 709 xas->xa_index |= ((sibs + 1UL) << shift) - 1; 710 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift) 711 xas->xa_offset |= sibs; 712 xas->xa_shift = 0; 713 xas->xa_sibs = 0; 714 715 for (;;) { 716 xas_create(xas, true); 717 if (xas_error(xas)) 718 goto restore; 719 if (xas->xa_index <= (index | XA_CHUNK_MASK)) 720 goto success; 721 xas->xa_index -= XA_CHUNK_SIZE; 722 723 for (;;) { 724 struct xa_node *node = xas->xa_node; 725 xas->xa_node = xa_parent_locked(xas->xa, node); 726 xas->xa_offset = node->offset - 1; 727 if (node->offset != 0) 728 break; 729 } 730 } 731 732 restore: 733 xas->xa_shift = shift; 734 xas->xa_sibs = sibs; 735 xas->xa_index = index; 736 return; 737 success: 738 xas->xa_index = index; 739 if (xas->xa_node) 740 xas_set_offset(xas); 741 } 742 EXPORT_SYMBOL_GPL(xas_create_range); 743 744 static void update_node(struct xa_state *xas, struct xa_node *node, 745 int count, int values) 746 { 747 if (!node || (!count && !values)) 748 return; 749 750 node->count += count; 751 node->nr_values += values; 752 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 753 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE); 754 xas_update(xas, node); 755 if (count < 0) 756 xas_delete_node(xas); 757 } 758 759 /** 760 * xas_store() - Store this entry in the XArray. 761 * @xas: XArray operation state. 762 * @entry: New entry. 763 * 764 * If @xas is operating on a multi-index entry, the entry returned by this 765 * function is essentially meaningless (it may be an internal entry or it 766 * may be %NULL, even if there are non-NULL entries at some of the indices 767 * covered by the range). This is not a problem for any current users, 768 * and can be changed if needed. 769 * 770 * Return: The old entry at this index. 771 */ 772 void *xas_store(struct xa_state *xas, void *entry) 773 { 774 struct xa_node *node; 775 void __rcu **slot = &xas->xa->xa_head; 776 unsigned int offset, max; 777 int count = 0; 778 int values = 0; 779 void *first, *next; 780 bool value = xa_is_value(entry); 781 782 if (entry) { 783 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry); 784 first = xas_create(xas, allow_root); 785 } else { 786 first = xas_load(xas); 787 } 788 789 if (xas_invalid(xas)) 790 return first; 791 node = xas->xa_node; 792 if (node && (xas->xa_shift < node->shift)) 793 xas->xa_sibs = 0; 794 if ((first == entry) && !xas->xa_sibs) 795 return first; 796 797 next = first; 798 offset = xas->xa_offset; 799 max = xas->xa_offset + xas->xa_sibs; 800 if (node) { 801 slot = &node->slots[offset]; 802 if (xas->xa_sibs) 803 xas_squash_marks(xas); 804 } 805 if (!entry) 806 xas_init_marks(xas); 807 808 for (;;) { 809 /* 810 * Must clear the marks before setting the entry to NULL, 811 * otherwise xas_for_each_marked may find a NULL entry and 812 * stop early. rcu_assign_pointer contains a release barrier 813 * so the mark clearing will appear to happen before the 814 * entry is set to NULL. 815 */ 816 rcu_assign_pointer(*slot, entry); 817 if (xa_is_node(next) && (!node || node->shift)) 818 xas_free_nodes(xas, xa_to_node(next)); 819 if (!node) 820 break; 821 count += !next - !entry; 822 values += !xa_is_value(first) - !value; 823 if (entry) { 824 if (offset == max) 825 break; 826 if (!xa_is_sibling(entry)) 827 entry = xa_mk_sibling(xas->xa_offset); 828 } else { 829 if (offset == XA_CHUNK_MASK) 830 break; 831 } 832 next = xa_entry_locked(xas->xa, node, ++offset); 833 if (!xa_is_sibling(next)) { 834 if (!entry && (offset > max)) 835 break; 836 first = next; 837 } 838 slot++; 839 } 840 841 update_node(xas, node, count, values); 842 return first; 843 } 844 EXPORT_SYMBOL_GPL(xas_store); 845 846 /** 847 * xas_get_mark() - Returns the state of this mark. 848 * @xas: XArray operation state. 849 * @mark: Mark number. 850 * 851 * Return: true if the mark is set, false if the mark is clear or @xas 852 * is in an error state. 853 */ 854 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark) 855 { 856 if (xas_invalid(xas)) 857 return false; 858 if (!xas->xa_node) 859 return xa_marked(xas->xa, mark); 860 return node_get_mark(xas->xa_node, xas->xa_offset, mark); 861 } 862 EXPORT_SYMBOL_GPL(xas_get_mark); 863 864 /** 865 * xas_set_mark() - Sets the mark on this entry and its parents. 866 * @xas: XArray operation state. 867 * @mark: Mark number. 868 * 869 * Sets the specified mark on this entry, and walks up the tree setting it 870 * on all the ancestor entries. Does nothing if @xas has not been walked to 871 * an entry, or is in an error state. 872 */ 873 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark) 874 { 875 struct xa_node *node = xas->xa_node; 876 unsigned int offset = xas->xa_offset; 877 878 if (xas_invalid(xas)) 879 return; 880 881 while (node) { 882 if (node_set_mark(node, offset, mark)) 883 return; 884 offset = node->offset; 885 node = xa_parent_locked(xas->xa, node); 886 } 887 888 if (!xa_marked(xas->xa, mark)) 889 xa_mark_set(xas->xa, mark); 890 } 891 EXPORT_SYMBOL_GPL(xas_set_mark); 892 893 /** 894 * xas_clear_mark() - Clears the mark on this entry and its parents. 895 * @xas: XArray operation state. 896 * @mark: Mark number. 897 * 898 * Clears the specified mark on this entry, and walks back to the head 899 * attempting to clear it on all the ancestor entries. Does nothing if 900 * @xas has not been walked to an entry, or is in an error state. 901 */ 902 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark) 903 { 904 struct xa_node *node = xas->xa_node; 905 unsigned int offset = xas->xa_offset; 906 907 if (xas_invalid(xas)) 908 return; 909 910 while (node) { 911 if (!node_clear_mark(node, offset, mark)) 912 return; 913 if (node_any_mark(node, mark)) 914 return; 915 916 offset = node->offset; 917 node = xa_parent_locked(xas->xa, node); 918 } 919 920 if (xa_marked(xas->xa, mark)) 921 xa_mark_clear(xas->xa, mark); 922 } 923 EXPORT_SYMBOL_GPL(xas_clear_mark); 924 925 /** 926 * xas_init_marks() - Initialise all marks for the entry 927 * @xas: Array operations state. 928 * 929 * Initialise all marks for the entry specified by @xas. If we're tracking 930 * free entries with a mark, we need to set it on all entries. All other 931 * marks are cleared. 932 * 933 * This implementation is not as efficient as it could be; we may walk 934 * up the tree multiple times. 935 */ 936 void xas_init_marks(const struct xa_state *xas) 937 { 938 xa_mark_t mark = 0; 939 940 for (;;) { 941 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK) 942 xas_set_mark(xas, mark); 943 else 944 xas_clear_mark(xas, mark); 945 if (mark == XA_MARK_MAX) 946 break; 947 mark_inc(mark); 948 } 949 } 950 EXPORT_SYMBOL_GPL(xas_init_marks); 951 952 #ifdef CONFIG_XARRAY_MULTI 953 static unsigned int node_get_marks(struct xa_node *node, unsigned int offset) 954 { 955 unsigned int marks = 0; 956 xa_mark_t mark = XA_MARK_0; 957 958 for (;;) { 959 if (node_get_mark(node, offset, mark)) 960 marks |= 1 << (__force unsigned int)mark; 961 if (mark == XA_MARK_MAX) 962 break; 963 mark_inc(mark); 964 } 965 966 return marks; 967 } 968 969 static void node_set_marks(struct xa_node *node, unsigned int offset, 970 struct xa_node *child, unsigned int marks) 971 { 972 xa_mark_t mark = XA_MARK_0; 973 974 for (;;) { 975 if (marks & (1 << (__force unsigned int)mark)) { 976 node_set_mark(node, offset, mark); 977 if (child) 978 node_mark_all(child, mark); 979 } 980 if (mark == XA_MARK_MAX) 981 break; 982 mark_inc(mark); 983 } 984 } 985 986 /** 987 * xas_split_alloc() - Allocate memory for splitting an entry. 988 * @xas: XArray operation state. 989 * @entry: New entry which will be stored in the array. 990 * @order: New entry order. 991 * @gfp: Memory allocation flags. 992 * 993 * This function should be called before calling xas_split(). 994 * If necessary, it will allocate new nodes (and fill them with @entry) 995 * to prepare for the upcoming split of an entry of @order size into 996 * entries of the order stored in the @xas. 997 * 998 * Context: May sleep if @gfp flags permit. 999 */ 1000 void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order, 1001 gfp_t gfp) 1002 { 1003 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1004 unsigned int mask = xas->xa_sibs; 1005 1006 /* XXX: no support for splitting really large entries yet */ 1007 if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order)) 1008 goto nomem; 1009 if (xas->xa_shift + XA_CHUNK_SHIFT > order) 1010 return; 1011 1012 do { 1013 unsigned int i; 1014 void *sibling; 1015 struct xa_node *node; 1016 1017 node = kmem_cache_alloc(radix_tree_node_cachep, gfp); 1018 if (!node) 1019 goto nomem; 1020 node->array = xas->xa; 1021 for (i = 0; i < XA_CHUNK_SIZE; i++) { 1022 if ((i & mask) == 0) { 1023 RCU_INIT_POINTER(node->slots[i], entry); 1024 sibling = xa_mk_sibling(0); 1025 } else { 1026 RCU_INIT_POINTER(node->slots[i], sibling); 1027 } 1028 } 1029 RCU_INIT_POINTER(node->parent, xas->xa_alloc); 1030 xas->xa_alloc = node; 1031 } while (sibs-- > 0); 1032 1033 return; 1034 nomem: 1035 xas_destroy(xas); 1036 xas_set_err(xas, -ENOMEM); 1037 } 1038 EXPORT_SYMBOL_GPL(xas_split_alloc); 1039 1040 /** 1041 * xas_split() - Split a multi-index entry into smaller entries. 1042 * @xas: XArray operation state. 1043 * @entry: New entry to store in the array. 1044 * @order: New entry order. 1045 * 1046 * The value in the entry is copied to all the replacement entries. 1047 * 1048 * Context: Any context. The caller should hold the xa_lock. 1049 */ 1050 void xas_split(struct xa_state *xas, void *entry, unsigned int order) 1051 { 1052 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1053 unsigned int offset, marks; 1054 struct xa_node *node; 1055 void *curr = xas_load(xas); 1056 int values = 0; 1057 1058 node = xas->xa_node; 1059 if (xas_top(node)) 1060 return; 1061 1062 marks = node_get_marks(node, xas->xa_offset); 1063 1064 offset = xas->xa_offset + sibs; 1065 do { 1066 if (xas->xa_shift < node->shift) { 1067 struct xa_node *child = xas->xa_alloc; 1068 1069 xas->xa_alloc = rcu_dereference_raw(child->parent); 1070 child->shift = node->shift - XA_CHUNK_SHIFT; 1071 child->offset = offset; 1072 child->count = XA_CHUNK_SIZE; 1073 child->nr_values = xa_is_value(entry) ? 1074 XA_CHUNK_SIZE : 0; 1075 RCU_INIT_POINTER(child->parent, node); 1076 node_set_marks(node, offset, child, marks); 1077 rcu_assign_pointer(node->slots[offset], 1078 xa_mk_node(child)); 1079 if (xa_is_value(curr)) 1080 values--; 1081 } else { 1082 unsigned int canon = offset - xas->xa_sibs; 1083 1084 node_set_marks(node, canon, NULL, marks); 1085 rcu_assign_pointer(node->slots[canon], entry); 1086 while (offset > canon) 1087 rcu_assign_pointer(node->slots[offset--], 1088 xa_mk_sibling(canon)); 1089 values += (xa_is_value(entry) - xa_is_value(curr)) * 1090 (xas->xa_sibs + 1); 1091 } 1092 } while (offset-- > xas->xa_offset); 1093 1094 node->nr_values += values; 1095 } 1096 EXPORT_SYMBOL_GPL(xas_split); 1097 #endif 1098 1099 /** 1100 * xas_pause() - Pause a walk to drop a lock. 1101 * @xas: XArray operation state. 1102 * 1103 * Some users need to pause a walk and drop the lock they're holding in 1104 * order to yield to a higher priority thread or carry out an operation 1105 * on an entry. Those users should call this function before they drop 1106 * the lock. It resets the @xas to be suitable for the next iteration 1107 * of the loop after the user has reacquired the lock. If most entries 1108 * found during a walk require you to call xas_pause(), the xa_for_each() 1109 * iterator may be more appropriate. 1110 * 1111 * Note that xas_pause() only works for forward iteration. If a user needs 1112 * to pause a reverse iteration, we will need a xas_pause_rev(). 1113 */ 1114 void xas_pause(struct xa_state *xas) 1115 { 1116 struct xa_node *node = xas->xa_node; 1117 1118 if (xas_invalid(xas)) 1119 return; 1120 1121 xas->xa_node = XAS_RESTART; 1122 if (node) { 1123 unsigned long offset = xas->xa_offset; 1124 while (++offset < XA_CHUNK_SIZE) { 1125 if (!xa_is_sibling(xa_entry(xas->xa, node, offset))) 1126 break; 1127 } 1128 xas->xa_index += (offset - xas->xa_offset) << node->shift; 1129 if (xas->xa_index == 0) 1130 xas->xa_node = XAS_BOUNDS; 1131 } else { 1132 xas->xa_index++; 1133 } 1134 } 1135 EXPORT_SYMBOL_GPL(xas_pause); 1136 1137 /* 1138 * __xas_prev() - Find the previous entry in the XArray. 1139 * @xas: XArray operation state. 1140 * 1141 * Helper function for xas_prev() which handles all the complex cases 1142 * out of line. 1143 */ 1144 void *__xas_prev(struct xa_state *xas) 1145 { 1146 void *entry; 1147 1148 if (!xas_frozen(xas->xa_node)) 1149 xas->xa_index--; 1150 if (!xas->xa_node) 1151 return set_bounds(xas); 1152 if (xas_not_node(xas->xa_node)) 1153 return xas_load(xas); 1154 1155 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1156 xas->xa_offset--; 1157 1158 while (xas->xa_offset == 255) { 1159 xas->xa_offset = xas->xa_node->offset - 1; 1160 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1161 if (!xas->xa_node) 1162 return set_bounds(xas); 1163 } 1164 1165 for (;;) { 1166 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1167 if (!xa_is_node(entry)) 1168 return entry; 1169 1170 xas->xa_node = xa_to_node(entry); 1171 xas_set_offset(xas); 1172 } 1173 } 1174 EXPORT_SYMBOL_GPL(__xas_prev); 1175 1176 /* 1177 * __xas_next() - Find the next entry in the XArray. 1178 * @xas: XArray operation state. 1179 * 1180 * Helper function for xas_next() which handles all the complex cases 1181 * out of line. 1182 */ 1183 void *__xas_next(struct xa_state *xas) 1184 { 1185 void *entry; 1186 1187 if (!xas_frozen(xas->xa_node)) 1188 xas->xa_index++; 1189 if (!xas->xa_node) 1190 return set_bounds(xas); 1191 if (xas_not_node(xas->xa_node)) 1192 return xas_load(xas); 1193 1194 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1195 xas->xa_offset++; 1196 1197 while (xas->xa_offset == XA_CHUNK_SIZE) { 1198 xas->xa_offset = xas->xa_node->offset + 1; 1199 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1200 if (!xas->xa_node) 1201 return set_bounds(xas); 1202 } 1203 1204 for (;;) { 1205 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1206 if (!xa_is_node(entry)) 1207 return entry; 1208 1209 xas->xa_node = xa_to_node(entry); 1210 xas_set_offset(xas); 1211 } 1212 } 1213 EXPORT_SYMBOL_GPL(__xas_next); 1214 1215 /** 1216 * xas_find() - Find the next present entry in the XArray. 1217 * @xas: XArray operation state. 1218 * @max: Highest index to return. 1219 * 1220 * If the @xas has not yet been walked to an entry, return the entry 1221 * which has an index >= xas.xa_index. If it has been walked, the entry 1222 * currently being pointed at has been processed, and so we move to the 1223 * next entry. 1224 * 1225 * If no entry is found and the array is smaller than @max, the iterator 1226 * is set to the smallest index not yet in the array. This allows @xas 1227 * to be immediately passed to xas_store(). 1228 * 1229 * Return: The entry, if found, otherwise %NULL. 1230 */ 1231 void *xas_find(struct xa_state *xas, unsigned long max) 1232 { 1233 void *entry; 1234 1235 if (xas_error(xas) || xas->xa_node == XAS_BOUNDS) 1236 return NULL; 1237 if (xas->xa_index > max) 1238 return set_bounds(xas); 1239 1240 if (!xas->xa_node) { 1241 xas->xa_index = 1; 1242 return set_bounds(xas); 1243 } else if (xas->xa_node == XAS_RESTART) { 1244 entry = xas_load(xas); 1245 if (entry || xas_not_node(xas->xa_node)) 1246 return entry; 1247 } else if (!xas->xa_node->shift && 1248 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) { 1249 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1; 1250 } 1251 1252 xas_advance(xas); 1253 1254 while (xas->xa_node && (xas->xa_index <= max)) { 1255 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1256 xas->xa_offset = xas->xa_node->offset + 1; 1257 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1258 continue; 1259 } 1260 1261 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1262 if (xa_is_node(entry)) { 1263 xas->xa_node = xa_to_node(entry); 1264 xas->xa_offset = 0; 1265 continue; 1266 } 1267 if (entry && !xa_is_sibling(entry)) 1268 return entry; 1269 1270 xas_advance(xas); 1271 } 1272 1273 if (!xas->xa_node) 1274 xas->xa_node = XAS_BOUNDS; 1275 return NULL; 1276 } 1277 EXPORT_SYMBOL_GPL(xas_find); 1278 1279 /** 1280 * xas_find_marked() - Find the next marked entry in the XArray. 1281 * @xas: XArray operation state. 1282 * @max: Highest index to return. 1283 * @mark: Mark number to search for. 1284 * 1285 * If the @xas has not yet been walked to an entry, return the marked entry 1286 * which has an index >= xas.xa_index. If it has been walked, the entry 1287 * currently being pointed at has been processed, and so we return the 1288 * first marked entry with an index > xas.xa_index. 1289 * 1290 * If no marked entry is found and the array is smaller than @max, @xas is 1291 * set to the bounds state and xas->xa_index is set to the smallest index 1292 * not yet in the array. This allows @xas to be immediately passed to 1293 * xas_store(). 1294 * 1295 * If no entry is found before @max is reached, @xas is set to the restart 1296 * state. 1297 * 1298 * Return: The entry, if found, otherwise %NULL. 1299 */ 1300 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark) 1301 { 1302 bool advance = true; 1303 unsigned int offset; 1304 void *entry; 1305 1306 if (xas_error(xas)) 1307 return NULL; 1308 if (xas->xa_index > max) 1309 goto max; 1310 1311 if (!xas->xa_node) { 1312 xas->xa_index = 1; 1313 goto out; 1314 } else if (xas_top(xas->xa_node)) { 1315 advance = false; 1316 entry = xa_head(xas->xa); 1317 xas->xa_node = NULL; 1318 if (xas->xa_index > max_index(entry)) 1319 goto out; 1320 if (!xa_is_node(entry)) { 1321 if (xa_marked(xas->xa, mark)) 1322 return entry; 1323 xas->xa_index = 1; 1324 goto out; 1325 } 1326 xas->xa_node = xa_to_node(entry); 1327 xas->xa_offset = xas->xa_index >> xas->xa_node->shift; 1328 } 1329 1330 while (xas->xa_index <= max) { 1331 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1332 xas->xa_offset = xas->xa_node->offset + 1; 1333 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1334 if (!xas->xa_node) 1335 break; 1336 advance = false; 1337 continue; 1338 } 1339 1340 if (!advance) { 1341 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1342 if (xa_is_sibling(entry)) { 1343 xas->xa_offset = xa_to_sibling(entry); 1344 xas_move_index(xas, xas->xa_offset); 1345 } 1346 } 1347 1348 offset = xas_find_chunk(xas, advance, mark); 1349 if (offset > xas->xa_offset) { 1350 advance = false; 1351 xas_move_index(xas, offset); 1352 /* Mind the wrap */ 1353 if ((xas->xa_index - 1) >= max) 1354 goto max; 1355 xas->xa_offset = offset; 1356 if (offset == XA_CHUNK_SIZE) 1357 continue; 1358 } 1359 1360 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1361 if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK)) 1362 continue; 1363 if (!xa_is_node(entry)) 1364 return entry; 1365 xas->xa_node = xa_to_node(entry); 1366 xas_set_offset(xas); 1367 } 1368 1369 out: 1370 if (xas->xa_index > max) 1371 goto max; 1372 return set_bounds(xas); 1373 max: 1374 xas->xa_node = XAS_RESTART; 1375 return NULL; 1376 } 1377 EXPORT_SYMBOL_GPL(xas_find_marked); 1378 1379 /** 1380 * xas_find_conflict() - Find the next present entry in a range. 1381 * @xas: XArray operation state. 1382 * 1383 * The @xas describes both a range and a position within that range. 1384 * 1385 * Context: Any context. Expects xa_lock to be held. 1386 * Return: The next entry in the range covered by @xas or %NULL. 1387 */ 1388 void *xas_find_conflict(struct xa_state *xas) 1389 { 1390 void *curr; 1391 1392 if (xas_error(xas)) 1393 return NULL; 1394 1395 if (!xas->xa_node) 1396 return NULL; 1397 1398 if (xas_top(xas->xa_node)) { 1399 curr = xas_start(xas); 1400 if (!curr) 1401 return NULL; 1402 while (xa_is_node(curr)) { 1403 struct xa_node *node = xa_to_node(curr); 1404 curr = xas_descend(xas, node); 1405 } 1406 if (curr) 1407 return curr; 1408 } 1409 1410 if (xas->xa_node->shift > xas->xa_shift) 1411 return NULL; 1412 1413 for (;;) { 1414 if (xas->xa_node->shift == xas->xa_shift) { 1415 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs) 1416 break; 1417 } else if (xas->xa_offset == XA_CHUNK_MASK) { 1418 xas->xa_offset = xas->xa_node->offset; 1419 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node); 1420 if (!xas->xa_node) 1421 break; 1422 continue; 1423 } 1424 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset); 1425 if (xa_is_sibling(curr)) 1426 continue; 1427 while (xa_is_node(curr)) { 1428 xas->xa_node = xa_to_node(curr); 1429 xas->xa_offset = 0; 1430 curr = xa_entry_locked(xas->xa, xas->xa_node, 0); 1431 } 1432 if (curr) 1433 return curr; 1434 } 1435 xas->xa_offset -= xas->xa_sibs; 1436 return NULL; 1437 } 1438 EXPORT_SYMBOL_GPL(xas_find_conflict); 1439 1440 /** 1441 * xa_load() - Load an entry from an XArray. 1442 * @xa: XArray. 1443 * @index: index into array. 1444 * 1445 * Context: Any context. Takes and releases the RCU lock. 1446 * Return: The entry at @index in @xa. 1447 */ 1448 void *xa_load(struct xarray *xa, unsigned long index) 1449 { 1450 XA_STATE(xas, xa, index); 1451 void *entry; 1452 1453 rcu_read_lock(); 1454 do { 1455 entry = xas_load(&xas); 1456 if (xa_is_zero(entry)) 1457 entry = NULL; 1458 } while (xas_retry(&xas, entry)); 1459 rcu_read_unlock(); 1460 1461 return entry; 1462 } 1463 EXPORT_SYMBOL(xa_load); 1464 1465 static void *xas_result(struct xa_state *xas, void *curr) 1466 { 1467 if (xa_is_zero(curr)) 1468 return NULL; 1469 if (xas_error(xas)) 1470 curr = xas->xa_node; 1471 return curr; 1472 } 1473 1474 /** 1475 * __xa_erase() - Erase this entry from the XArray while locked. 1476 * @xa: XArray. 1477 * @index: Index into array. 1478 * 1479 * After this function returns, loading from @index will return %NULL. 1480 * If the index is part of a multi-index entry, all indices will be erased 1481 * and none of the entries will be part of a multi-index entry. 1482 * 1483 * Context: Any context. Expects xa_lock to be held on entry. 1484 * Return: The entry which used to be at this index. 1485 */ 1486 void *__xa_erase(struct xarray *xa, unsigned long index) 1487 { 1488 XA_STATE(xas, xa, index); 1489 return xas_result(&xas, xas_store(&xas, NULL)); 1490 } 1491 EXPORT_SYMBOL(__xa_erase); 1492 1493 /** 1494 * xa_erase() - Erase this entry from the XArray. 1495 * @xa: XArray. 1496 * @index: Index of entry. 1497 * 1498 * After this function returns, loading from @index will return %NULL. 1499 * If the index is part of a multi-index entry, all indices will be erased 1500 * and none of the entries will be part of a multi-index entry. 1501 * 1502 * Context: Any context. Takes and releases the xa_lock. 1503 * Return: The entry which used to be at this index. 1504 */ 1505 void *xa_erase(struct xarray *xa, unsigned long index) 1506 { 1507 void *entry; 1508 1509 xa_lock(xa); 1510 entry = __xa_erase(xa, index); 1511 xa_unlock(xa); 1512 1513 return entry; 1514 } 1515 EXPORT_SYMBOL(xa_erase); 1516 1517 /** 1518 * __xa_store() - Store this entry in the XArray. 1519 * @xa: XArray. 1520 * @index: Index into array. 1521 * @entry: New entry. 1522 * @gfp: Memory allocation flags. 1523 * 1524 * You must already be holding the xa_lock when calling this function. 1525 * It will drop the lock if needed to allocate memory, and then reacquire 1526 * it afterwards. 1527 * 1528 * Context: Any context. Expects xa_lock to be held on entry. May 1529 * release and reacquire xa_lock if @gfp flags permit. 1530 * Return: The old entry at this index or xa_err() if an error happened. 1531 */ 1532 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1533 { 1534 XA_STATE(xas, xa, index); 1535 void *curr; 1536 1537 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1538 return XA_ERROR(-EINVAL); 1539 if (xa_track_free(xa) && !entry) 1540 entry = XA_ZERO_ENTRY; 1541 1542 do { 1543 curr = xas_store(&xas, entry); 1544 if (xa_track_free(xa)) 1545 xas_clear_mark(&xas, XA_FREE_MARK); 1546 } while (__xas_nomem(&xas, gfp)); 1547 1548 return xas_result(&xas, curr); 1549 } 1550 EXPORT_SYMBOL(__xa_store); 1551 1552 /** 1553 * xa_store() - Store this entry in the XArray. 1554 * @xa: XArray. 1555 * @index: Index into array. 1556 * @entry: New entry. 1557 * @gfp: Memory allocation flags. 1558 * 1559 * After this function returns, loads from this index will return @entry. 1560 * Storing into an existing multi-index entry updates the entry of every index. 1561 * The marks associated with @index are unaffected unless @entry is %NULL. 1562 * 1563 * Context: Any context. Takes and releases the xa_lock. 1564 * May sleep if the @gfp flags permit. 1565 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry 1566 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation 1567 * failed. 1568 */ 1569 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1570 { 1571 void *curr; 1572 1573 xa_lock(xa); 1574 curr = __xa_store(xa, index, entry, gfp); 1575 xa_unlock(xa); 1576 1577 return curr; 1578 } 1579 EXPORT_SYMBOL(xa_store); 1580 1581 /** 1582 * __xa_cmpxchg() - Store this entry in the XArray. 1583 * @xa: XArray. 1584 * @index: Index into array. 1585 * @old: Old value to test against. 1586 * @entry: New entry. 1587 * @gfp: Memory allocation flags. 1588 * 1589 * You must already be holding the xa_lock when calling this function. 1590 * It will drop the lock if needed to allocate memory, and then reacquire 1591 * it afterwards. 1592 * 1593 * Context: Any context. Expects xa_lock to be held on entry. May 1594 * release and reacquire xa_lock if @gfp flags permit. 1595 * Return: The old entry at this index or xa_err() if an error happened. 1596 */ 1597 void *__xa_cmpxchg(struct xarray *xa, unsigned long index, 1598 void *old, void *entry, gfp_t gfp) 1599 { 1600 XA_STATE(xas, xa, index); 1601 void *curr; 1602 1603 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1604 return XA_ERROR(-EINVAL); 1605 1606 do { 1607 curr = xas_load(&xas); 1608 if (curr == old) { 1609 xas_store(&xas, entry); 1610 if (xa_track_free(xa) && entry && !curr) 1611 xas_clear_mark(&xas, XA_FREE_MARK); 1612 } 1613 } while (__xas_nomem(&xas, gfp)); 1614 1615 return xas_result(&xas, curr); 1616 } 1617 EXPORT_SYMBOL(__xa_cmpxchg); 1618 1619 /** 1620 * __xa_insert() - Store this entry in the XArray if no entry is present. 1621 * @xa: XArray. 1622 * @index: Index into array. 1623 * @entry: New entry. 1624 * @gfp: Memory allocation flags. 1625 * 1626 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 1627 * if no entry is present. Inserting will fail if a reserved entry is 1628 * present, even though loading from this index will return NULL. 1629 * 1630 * Context: Any context. Expects xa_lock to be held on entry. May 1631 * release and reacquire xa_lock if @gfp flags permit. 1632 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 1633 * -ENOMEM if memory could not be allocated. 1634 */ 1635 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1636 { 1637 XA_STATE(xas, xa, index); 1638 void *curr; 1639 1640 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1641 return -EINVAL; 1642 if (!entry) 1643 entry = XA_ZERO_ENTRY; 1644 1645 do { 1646 curr = xas_load(&xas); 1647 if (!curr) { 1648 xas_store(&xas, entry); 1649 if (xa_track_free(xa)) 1650 xas_clear_mark(&xas, XA_FREE_MARK); 1651 } else { 1652 xas_set_err(&xas, -EBUSY); 1653 } 1654 } while (__xas_nomem(&xas, gfp)); 1655 1656 return xas_error(&xas); 1657 } 1658 EXPORT_SYMBOL(__xa_insert); 1659 1660 #ifdef CONFIG_XARRAY_MULTI 1661 static void xas_set_range(struct xa_state *xas, unsigned long first, 1662 unsigned long last) 1663 { 1664 unsigned int shift = 0; 1665 unsigned long sibs = last - first; 1666 unsigned int offset = XA_CHUNK_MASK; 1667 1668 xas_set(xas, first); 1669 1670 while ((first & XA_CHUNK_MASK) == 0) { 1671 if (sibs < XA_CHUNK_MASK) 1672 break; 1673 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK)) 1674 break; 1675 shift += XA_CHUNK_SHIFT; 1676 if (offset == XA_CHUNK_MASK) 1677 offset = sibs & XA_CHUNK_MASK; 1678 sibs >>= XA_CHUNK_SHIFT; 1679 first >>= XA_CHUNK_SHIFT; 1680 } 1681 1682 offset = first & XA_CHUNK_MASK; 1683 if (offset + sibs > XA_CHUNK_MASK) 1684 sibs = XA_CHUNK_MASK - offset; 1685 if ((((first + sibs + 1) << shift) - 1) > last) 1686 sibs -= 1; 1687 1688 xas->xa_shift = shift; 1689 xas->xa_sibs = sibs; 1690 } 1691 1692 /** 1693 * xa_store_range() - Store this entry at a range of indices in the XArray. 1694 * @xa: XArray. 1695 * @first: First index to affect. 1696 * @last: Last index to affect. 1697 * @entry: New entry. 1698 * @gfp: Memory allocation flags. 1699 * 1700 * After this function returns, loads from any index between @first and @last, 1701 * inclusive will return @entry. 1702 * Storing into an existing multi-index entry updates the entry of every index. 1703 * The marks associated with @index are unaffected unless @entry is %NULL. 1704 * 1705 * Context: Process context. Takes and releases the xa_lock. May sleep 1706 * if the @gfp flags permit. 1707 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in 1708 * an XArray, or xa_err(-ENOMEM) if memory allocation failed. 1709 */ 1710 void *xa_store_range(struct xarray *xa, unsigned long first, 1711 unsigned long last, void *entry, gfp_t gfp) 1712 { 1713 XA_STATE(xas, xa, 0); 1714 1715 if (WARN_ON_ONCE(xa_is_internal(entry))) 1716 return XA_ERROR(-EINVAL); 1717 if (last < first) 1718 return XA_ERROR(-EINVAL); 1719 1720 do { 1721 xas_lock(&xas); 1722 if (entry) { 1723 unsigned int order = BITS_PER_LONG; 1724 if (last + 1) 1725 order = __ffs(last + 1); 1726 xas_set_order(&xas, last, order); 1727 xas_create(&xas, true); 1728 if (xas_error(&xas)) 1729 goto unlock; 1730 } 1731 do { 1732 xas_set_range(&xas, first, last); 1733 xas_store(&xas, entry); 1734 if (xas_error(&xas)) 1735 goto unlock; 1736 first += xas_size(&xas); 1737 } while (first <= last); 1738 unlock: 1739 xas_unlock(&xas); 1740 } while (xas_nomem(&xas, gfp)); 1741 1742 return xas_result(&xas, NULL); 1743 } 1744 EXPORT_SYMBOL(xa_store_range); 1745 1746 /** 1747 * xa_get_order() - Get the order of an entry. 1748 * @xa: XArray. 1749 * @index: Index of the entry. 1750 * 1751 * Return: A number between 0 and 63 indicating the order of the entry. 1752 */ 1753 int xa_get_order(struct xarray *xa, unsigned long index) 1754 { 1755 XA_STATE(xas, xa, index); 1756 void *entry; 1757 int order = 0; 1758 1759 rcu_read_lock(); 1760 entry = xas_load(&xas); 1761 1762 if (!entry) 1763 goto unlock; 1764 1765 if (!xas.xa_node) 1766 goto unlock; 1767 1768 for (;;) { 1769 unsigned int slot = xas.xa_offset + (1 << order); 1770 1771 if (slot >= XA_CHUNK_SIZE) 1772 break; 1773 if (!xa_is_sibling(xas.xa_node->slots[slot])) 1774 break; 1775 order++; 1776 } 1777 1778 order += xas.xa_node->shift; 1779 unlock: 1780 rcu_read_unlock(); 1781 1782 return order; 1783 } 1784 EXPORT_SYMBOL(xa_get_order); 1785 #endif /* CONFIG_XARRAY_MULTI */ 1786 1787 /** 1788 * __xa_alloc() - Find somewhere to store this entry in the XArray. 1789 * @xa: XArray. 1790 * @id: Pointer to ID. 1791 * @limit: Range for allocated ID. 1792 * @entry: New entry. 1793 * @gfp: Memory allocation flags. 1794 * 1795 * Finds an empty entry in @xa between @limit.min and @limit.max, 1796 * stores the index into the @id pointer, then stores the entry at 1797 * that index. A concurrent lookup will not see an uninitialised @id. 1798 * 1799 * Context: Any context. Expects xa_lock to be held on entry. May 1800 * release and reacquire xa_lock if @gfp flags permit. 1801 * Return: 0 on success, -ENOMEM if memory could not be allocated or 1802 * -EBUSY if there are no free entries in @limit. 1803 */ 1804 int __xa_alloc(struct xarray *xa, u32 *id, void *entry, 1805 struct xa_limit limit, gfp_t gfp) 1806 { 1807 XA_STATE(xas, xa, 0); 1808 1809 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1810 return -EINVAL; 1811 if (WARN_ON_ONCE(!xa_track_free(xa))) 1812 return -EINVAL; 1813 1814 if (!entry) 1815 entry = XA_ZERO_ENTRY; 1816 1817 do { 1818 xas.xa_index = limit.min; 1819 xas_find_marked(&xas, limit.max, XA_FREE_MARK); 1820 if (xas.xa_node == XAS_RESTART) 1821 xas_set_err(&xas, -EBUSY); 1822 else 1823 *id = xas.xa_index; 1824 xas_store(&xas, entry); 1825 xas_clear_mark(&xas, XA_FREE_MARK); 1826 } while (__xas_nomem(&xas, gfp)); 1827 1828 return xas_error(&xas); 1829 } 1830 EXPORT_SYMBOL(__xa_alloc); 1831 1832 /** 1833 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. 1834 * @xa: XArray. 1835 * @id: Pointer to ID. 1836 * @entry: New entry. 1837 * @limit: Range of allocated ID. 1838 * @next: Pointer to next ID to allocate. 1839 * @gfp: Memory allocation flags. 1840 * 1841 * Finds an empty entry in @xa between @limit.min and @limit.max, 1842 * stores the index into the @id pointer, then stores the entry at 1843 * that index. A concurrent lookup will not see an uninitialised @id. 1844 * The search for an empty entry will start at @next and will wrap 1845 * around if necessary. 1846 * 1847 * Context: Any context. Expects xa_lock to be held on entry. May 1848 * release and reacquire xa_lock if @gfp flags permit. 1849 * Return: 0 if the allocation succeeded without wrapping. 1 if the 1850 * allocation succeeded after wrapping, -ENOMEM if memory could not be 1851 * allocated or -EBUSY if there are no free entries in @limit. 1852 */ 1853 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, 1854 struct xa_limit limit, u32 *next, gfp_t gfp) 1855 { 1856 u32 min = limit.min; 1857 int ret; 1858 1859 limit.min = max(min, *next); 1860 ret = __xa_alloc(xa, id, entry, limit, gfp); 1861 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) { 1862 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED; 1863 ret = 1; 1864 } 1865 1866 if (ret < 0 && limit.min > min) { 1867 limit.min = min; 1868 ret = __xa_alloc(xa, id, entry, limit, gfp); 1869 if (ret == 0) 1870 ret = 1; 1871 } 1872 1873 if (ret >= 0) { 1874 *next = *id + 1; 1875 if (*next == 0) 1876 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED; 1877 } 1878 return ret; 1879 } 1880 EXPORT_SYMBOL(__xa_alloc_cyclic); 1881 1882 /** 1883 * __xa_set_mark() - Set this mark on this entry while locked. 1884 * @xa: XArray. 1885 * @index: Index of entry. 1886 * @mark: Mark number. 1887 * 1888 * Attempting to set a mark on a %NULL entry does not succeed. 1889 * 1890 * Context: Any context. Expects xa_lock to be held on entry. 1891 */ 1892 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1893 { 1894 XA_STATE(xas, xa, index); 1895 void *entry = xas_load(&xas); 1896 1897 if (entry) 1898 xas_set_mark(&xas, mark); 1899 } 1900 EXPORT_SYMBOL(__xa_set_mark); 1901 1902 /** 1903 * __xa_clear_mark() - Clear this mark on this entry while locked. 1904 * @xa: XArray. 1905 * @index: Index of entry. 1906 * @mark: Mark number. 1907 * 1908 * Context: Any context. Expects xa_lock to be held on entry. 1909 */ 1910 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1911 { 1912 XA_STATE(xas, xa, index); 1913 void *entry = xas_load(&xas); 1914 1915 if (entry) 1916 xas_clear_mark(&xas, mark); 1917 } 1918 EXPORT_SYMBOL(__xa_clear_mark); 1919 1920 /** 1921 * xa_get_mark() - Inquire whether this mark is set on this entry. 1922 * @xa: XArray. 1923 * @index: Index of entry. 1924 * @mark: Mark number. 1925 * 1926 * This function uses the RCU read lock, so the result may be out of date 1927 * by the time it returns. If you need the result to be stable, use a lock. 1928 * 1929 * Context: Any context. Takes and releases the RCU lock. 1930 * Return: True if the entry at @index has this mark set, false if it doesn't. 1931 */ 1932 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1933 { 1934 XA_STATE(xas, xa, index); 1935 void *entry; 1936 1937 rcu_read_lock(); 1938 entry = xas_start(&xas); 1939 while (xas_get_mark(&xas, mark)) { 1940 if (!xa_is_node(entry)) 1941 goto found; 1942 entry = xas_descend(&xas, xa_to_node(entry)); 1943 } 1944 rcu_read_unlock(); 1945 return false; 1946 found: 1947 rcu_read_unlock(); 1948 return true; 1949 } 1950 EXPORT_SYMBOL(xa_get_mark); 1951 1952 /** 1953 * xa_set_mark() - Set this mark on this entry. 1954 * @xa: XArray. 1955 * @index: Index of entry. 1956 * @mark: Mark number. 1957 * 1958 * Attempting to set a mark on a %NULL entry does not succeed. 1959 * 1960 * Context: Process context. Takes and releases the xa_lock. 1961 */ 1962 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1963 { 1964 xa_lock(xa); 1965 __xa_set_mark(xa, index, mark); 1966 xa_unlock(xa); 1967 } 1968 EXPORT_SYMBOL(xa_set_mark); 1969 1970 /** 1971 * xa_clear_mark() - Clear this mark on this entry. 1972 * @xa: XArray. 1973 * @index: Index of entry. 1974 * @mark: Mark number. 1975 * 1976 * Clearing a mark always succeeds. 1977 * 1978 * Context: Process context. Takes and releases the xa_lock. 1979 */ 1980 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1981 { 1982 xa_lock(xa); 1983 __xa_clear_mark(xa, index, mark); 1984 xa_unlock(xa); 1985 } 1986 EXPORT_SYMBOL(xa_clear_mark); 1987 1988 /** 1989 * xa_find() - Search the XArray for an entry. 1990 * @xa: XArray. 1991 * @indexp: Pointer to an index. 1992 * @max: Maximum index to search to. 1993 * @filter: Selection criterion. 1994 * 1995 * Finds the entry in @xa which matches the @filter, and has the lowest 1996 * index that is at least @indexp and no more than @max. 1997 * If an entry is found, @indexp is updated to be the index of the entry. 1998 * This function is protected by the RCU read lock, so it may not find 1999 * entries which are being simultaneously added. It will not return an 2000 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 2001 * 2002 * Context: Any context. Takes and releases the RCU lock. 2003 * Return: The entry, if found, otherwise %NULL. 2004 */ 2005 void *xa_find(struct xarray *xa, unsigned long *indexp, 2006 unsigned long max, xa_mark_t filter) 2007 { 2008 XA_STATE(xas, xa, *indexp); 2009 void *entry; 2010 2011 rcu_read_lock(); 2012 do { 2013 if ((__force unsigned int)filter < XA_MAX_MARKS) 2014 entry = xas_find_marked(&xas, max, filter); 2015 else 2016 entry = xas_find(&xas, max); 2017 } while (xas_retry(&xas, entry)); 2018 rcu_read_unlock(); 2019 2020 if (entry) 2021 *indexp = xas.xa_index; 2022 return entry; 2023 } 2024 EXPORT_SYMBOL(xa_find); 2025 2026 static bool xas_sibling(struct xa_state *xas) 2027 { 2028 struct xa_node *node = xas->xa_node; 2029 unsigned long mask; 2030 2031 if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node) 2032 return false; 2033 mask = (XA_CHUNK_SIZE << node->shift) - 1; 2034 return (xas->xa_index & mask) > 2035 ((unsigned long)xas->xa_offset << node->shift); 2036 } 2037 2038 /** 2039 * xa_find_after() - Search the XArray for a present entry. 2040 * @xa: XArray. 2041 * @indexp: Pointer to an index. 2042 * @max: Maximum index to search to. 2043 * @filter: Selection criterion. 2044 * 2045 * Finds the entry in @xa which matches the @filter and has the lowest 2046 * index that is above @indexp and no more than @max. 2047 * If an entry is found, @indexp is updated to be the index of the entry. 2048 * This function is protected by the RCU read lock, so it may miss entries 2049 * which are being simultaneously added. It will not return an 2050 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 2051 * 2052 * Context: Any context. Takes and releases the RCU lock. 2053 * Return: The pointer, if found, otherwise %NULL. 2054 */ 2055 void *xa_find_after(struct xarray *xa, unsigned long *indexp, 2056 unsigned long max, xa_mark_t filter) 2057 { 2058 XA_STATE(xas, xa, *indexp + 1); 2059 void *entry; 2060 2061 if (xas.xa_index == 0) 2062 return NULL; 2063 2064 rcu_read_lock(); 2065 for (;;) { 2066 if ((__force unsigned int)filter < XA_MAX_MARKS) 2067 entry = xas_find_marked(&xas, max, filter); 2068 else 2069 entry = xas_find(&xas, max); 2070 2071 if (xas_invalid(&xas)) 2072 break; 2073 if (xas_sibling(&xas)) 2074 continue; 2075 if (!xas_retry(&xas, entry)) 2076 break; 2077 } 2078 rcu_read_unlock(); 2079 2080 if (entry) 2081 *indexp = xas.xa_index; 2082 return entry; 2083 } 2084 EXPORT_SYMBOL(xa_find_after); 2085 2086 static unsigned int xas_extract_present(struct xa_state *xas, void **dst, 2087 unsigned long max, unsigned int n) 2088 { 2089 void *entry; 2090 unsigned int i = 0; 2091 2092 rcu_read_lock(); 2093 xas_for_each(xas, entry, max) { 2094 if (xas_retry(xas, entry)) 2095 continue; 2096 dst[i++] = entry; 2097 if (i == n) 2098 break; 2099 } 2100 rcu_read_unlock(); 2101 2102 return i; 2103 } 2104 2105 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst, 2106 unsigned long max, unsigned int n, xa_mark_t mark) 2107 { 2108 void *entry; 2109 unsigned int i = 0; 2110 2111 rcu_read_lock(); 2112 xas_for_each_marked(xas, entry, max, mark) { 2113 if (xas_retry(xas, entry)) 2114 continue; 2115 dst[i++] = entry; 2116 if (i == n) 2117 break; 2118 } 2119 rcu_read_unlock(); 2120 2121 return i; 2122 } 2123 2124 /** 2125 * xa_extract() - Copy selected entries from the XArray into a normal array. 2126 * @xa: The source XArray to copy from. 2127 * @dst: The buffer to copy entries into. 2128 * @start: The first index in the XArray eligible to be selected. 2129 * @max: The last index in the XArray eligible to be selected. 2130 * @n: The maximum number of entries to copy. 2131 * @filter: Selection criterion. 2132 * 2133 * Copies up to @n entries that match @filter from the XArray. The 2134 * copied entries will have indices between @start and @max, inclusive. 2135 * 2136 * The @filter may be an XArray mark value, in which case entries which are 2137 * marked with that mark will be copied. It may also be %XA_PRESENT, in 2138 * which case all entries which are not %NULL will be copied. 2139 * 2140 * The entries returned may not represent a snapshot of the XArray at a 2141 * moment in time. For example, if another thread stores to index 5, then 2142 * index 10, calling xa_extract() may return the old contents of index 5 2143 * and the new contents of index 10. Indices not modified while this 2144 * function is running will not be skipped. 2145 * 2146 * If you need stronger guarantees, holding the xa_lock across calls to this 2147 * function will prevent concurrent modification. 2148 * 2149 * Context: Any context. Takes and releases the RCU lock. 2150 * Return: The number of entries copied. 2151 */ 2152 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start, 2153 unsigned long max, unsigned int n, xa_mark_t filter) 2154 { 2155 XA_STATE(xas, xa, start); 2156 2157 if (!n) 2158 return 0; 2159 2160 if ((__force unsigned int)filter < XA_MAX_MARKS) 2161 return xas_extract_marked(&xas, dst, max, n, filter); 2162 return xas_extract_present(&xas, dst, max, n); 2163 } 2164 EXPORT_SYMBOL(xa_extract); 2165 2166 /** 2167 * xa_delete_node() - Private interface for workingset code. 2168 * @node: Node to be removed from the tree. 2169 * @update: Function to call to update ancestor nodes. 2170 * 2171 * Context: xa_lock must be held on entry and will not be released. 2172 */ 2173 void xa_delete_node(struct xa_node *node, xa_update_node_t update) 2174 { 2175 struct xa_state xas = { 2176 .xa = node->array, 2177 .xa_index = (unsigned long)node->offset << 2178 (node->shift + XA_CHUNK_SHIFT), 2179 .xa_shift = node->shift + XA_CHUNK_SHIFT, 2180 .xa_offset = node->offset, 2181 .xa_node = xa_parent_locked(node->array, node), 2182 .xa_update = update, 2183 }; 2184 2185 xas_store(&xas, NULL); 2186 } 2187 EXPORT_SYMBOL_GPL(xa_delete_node); /* For the benefit of the test suite */ 2188 2189 /** 2190 * xa_destroy() - Free all internal data structures. 2191 * @xa: XArray. 2192 * 2193 * After calling this function, the XArray is empty and has freed all memory 2194 * allocated for its internal data structures. You are responsible for 2195 * freeing the objects referenced by the XArray. 2196 * 2197 * Context: Any context. Takes and releases the xa_lock, interrupt-safe. 2198 */ 2199 void xa_destroy(struct xarray *xa) 2200 { 2201 XA_STATE(xas, xa, 0); 2202 unsigned long flags; 2203 void *entry; 2204 2205 xas.xa_node = NULL; 2206 xas_lock_irqsave(&xas, flags); 2207 entry = xa_head_locked(xa); 2208 RCU_INIT_POINTER(xa->xa_head, NULL); 2209 xas_init_marks(&xas); 2210 if (xa_zero_busy(xa)) 2211 xa_mark_clear(xa, XA_FREE_MARK); 2212 /* lockdep checks we're still holding the lock in xas_free_nodes() */ 2213 if (xa_is_node(entry)) 2214 xas_free_nodes(&xas, xa_to_node(entry)); 2215 xas_unlock_irqrestore(&xas, flags); 2216 } 2217 EXPORT_SYMBOL(xa_destroy); 2218 2219 #ifdef XA_DEBUG 2220 void xa_dump_node(const struct xa_node *node) 2221 { 2222 unsigned i, j; 2223 2224 if (!node) 2225 return; 2226 if ((unsigned long)node & 3) { 2227 pr_cont("node %px\n", node); 2228 return; 2229 } 2230 2231 pr_cont("node %px %s %d parent %px shift %d count %d values %d " 2232 "array %px list %px %px marks", 2233 node, node->parent ? "offset" : "max", node->offset, 2234 node->parent, node->shift, node->count, node->nr_values, 2235 node->array, node->private_list.prev, node->private_list.next); 2236 for (i = 0; i < XA_MAX_MARKS; i++) 2237 for (j = 0; j < XA_MARK_LONGS; j++) 2238 pr_cont(" %lx", node->marks[i][j]); 2239 pr_cont("\n"); 2240 } 2241 2242 void xa_dump_index(unsigned long index, unsigned int shift) 2243 { 2244 if (!shift) 2245 pr_info("%lu: ", index); 2246 else if (shift >= BITS_PER_LONG) 2247 pr_info("0-%lu: ", ~0UL); 2248 else 2249 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1)); 2250 } 2251 2252 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift) 2253 { 2254 if (!entry) 2255 return; 2256 2257 xa_dump_index(index, shift); 2258 2259 if (xa_is_node(entry)) { 2260 if (shift == 0) { 2261 pr_cont("%px\n", entry); 2262 } else { 2263 unsigned long i; 2264 struct xa_node *node = xa_to_node(entry); 2265 xa_dump_node(node); 2266 for (i = 0; i < XA_CHUNK_SIZE; i++) 2267 xa_dump_entry(node->slots[i], 2268 index + (i << node->shift), node->shift); 2269 } 2270 } else if (xa_is_value(entry)) 2271 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry), 2272 xa_to_value(entry), entry); 2273 else if (!xa_is_internal(entry)) 2274 pr_cont("%px\n", entry); 2275 else if (xa_is_retry(entry)) 2276 pr_cont("retry (%ld)\n", xa_to_internal(entry)); 2277 else if (xa_is_sibling(entry)) 2278 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry)); 2279 else if (xa_is_zero(entry)) 2280 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 2281 else 2282 pr_cont("UNKNOWN ENTRY (%px)\n", entry); 2283 } 2284 2285 void xa_dump(const struct xarray *xa) 2286 { 2287 void *entry = xa->xa_head; 2288 unsigned int shift = 0; 2289 2290 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry, 2291 xa->xa_flags, xa_marked(xa, XA_MARK_0), 2292 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2)); 2293 if (xa_is_node(entry)) 2294 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT; 2295 xa_dump_entry(entry, 0, shift); 2296 } 2297 #endif 2298