1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * XArray implementation 4 * Copyright (c) 2017-2018 Microsoft Corporation 5 * Copyright (c) 2018-2020 Oracle 6 * Author: Matthew Wilcox <willy@infradead.org> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/export.h> 11 #include <linux/list.h> 12 #include <linux/slab.h> 13 #include <linux/xarray.h> 14 15 #include "radix-tree.h" 16 17 /* 18 * Coding conventions in this file: 19 * 20 * @xa is used to refer to the entire xarray. 21 * @xas is the 'xarray operation state'. It may be either a pointer to 22 * an xa_state, or an xa_state stored on the stack. This is an unfortunate 23 * ambiguity. 24 * @index is the index of the entry being operated on 25 * @mark is an xa_mark_t; a small number indicating one of the mark bits. 26 * @node refers to an xa_node; usually the primary one being operated on by 27 * this function. 28 * @offset is the index into the slots array inside an xa_node. 29 * @parent refers to the @xa_node closer to the head than @node. 30 * @entry refers to something stored in a slot in the xarray 31 */ 32 33 static inline unsigned int xa_lock_type(const struct xarray *xa) 34 { 35 return (__force unsigned int)xa->xa_flags & 3; 36 } 37 38 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type) 39 { 40 if (lock_type == XA_LOCK_IRQ) 41 xas_lock_irq(xas); 42 else if (lock_type == XA_LOCK_BH) 43 xas_lock_bh(xas); 44 else 45 xas_lock(xas); 46 } 47 48 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type) 49 { 50 if (lock_type == XA_LOCK_IRQ) 51 xas_unlock_irq(xas); 52 else if (lock_type == XA_LOCK_BH) 53 xas_unlock_bh(xas); 54 else 55 xas_unlock(xas); 56 } 57 58 static inline bool xa_track_free(const struct xarray *xa) 59 { 60 return xa->xa_flags & XA_FLAGS_TRACK_FREE; 61 } 62 63 static inline bool xa_zero_busy(const struct xarray *xa) 64 { 65 return xa->xa_flags & XA_FLAGS_ZERO_BUSY; 66 } 67 68 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark) 69 { 70 if (!(xa->xa_flags & XA_FLAGS_MARK(mark))) 71 xa->xa_flags |= XA_FLAGS_MARK(mark); 72 } 73 74 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark) 75 { 76 if (xa->xa_flags & XA_FLAGS_MARK(mark)) 77 xa->xa_flags &= ~(XA_FLAGS_MARK(mark)); 78 } 79 80 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark) 81 { 82 return node->marks[(__force unsigned)mark]; 83 } 84 85 static inline bool node_get_mark(struct xa_node *node, 86 unsigned int offset, xa_mark_t mark) 87 { 88 return test_bit(offset, node_marks(node, mark)); 89 } 90 91 /* returns true if the bit was set */ 92 static inline bool node_set_mark(struct xa_node *node, unsigned int offset, 93 xa_mark_t mark) 94 { 95 return __test_and_set_bit(offset, node_marks(node, mark)); 96 } 97 98 /* returns true if the bit was set */ 99 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset, 100 xa_mark_t mark) 101 { 102 return __test_and_clear_bit(offset, node_marks(node, mark)); 103 } 104 105 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark) 106 { 107 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE); 108 } 109 110 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark) 111 { 112 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE); 113 } 114 115 #define mark_inc(mark) do { \ 116 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \ 117 } while (0) 118 119 /* 120 * xas_squash_marks() - Merge all marks to the first entry 121 * @xas: Array operation state. 122 * 123 * Set a mark on the first entry if any entry has it set. Clear marks on 124 * all sibling entries. 125 */ 126 static void xas_squash_marks(const struct xa_state *xas) 127 { 128 unsigned int mark = 0; 129 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1; 130 131 if (!xas->xa_sibs) 132 return; 133 134 do { 135 unsigned long *marks = xas->xa_node->marks[mark]; 136 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit) 137 continue; 138 __set_bit(xas->xa_offset, marks); 139 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs); 140 } while (mark++ != (__force unsigned)XA_MARK_MAX); 141 } 142 143 /* extracts the offset within this node from the index */ 144 static unsigned int get_offset(unsigned long index, struct xa_node *node) 145 { 146 return (index >> node->shift) & XA_CHUNK_MASK; 147 } 148 149 static void xas_set_offset(struct xa_state *xas) 150 { 151 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node); 152 } 153 154 /* move the index either forwards (find) or backwards (sibling slot) */ 155 static void xas_move_index(struct xa_state *xas, unsigned long offset) 156 { 157 unsigned int shift = xas->xa_node->shift; 158 xas->xa_index &= ~XA_CHUNK_MASK << shift; 159 xas->xa_index += offset << shift; 160 } 161 162 static void xas_next_offset(struct xa_state *xas) 163 { 164 xas->xa_offset++; 165 xas_move_index(xas, xas->xa_offset); 166 } 167 168 static void *set_bounds(struct xa_state *xas) 169 { 170 xas->xa_node = XAS_BOUNDS; 171 return NULL; 172 } 173 174 /* 175 * Starts a walk. If the @xas is already valid, we assume that it's on 176 * the right path and just return where we've got to. If we're in an 177 * error state, return NULL. If the index is outside the current scope 178 * of the xarray, return NULL without changing @xas->xa_node. Otherwise 179 * set @xas->xa_node to NULL and return the current head of the array. 180 */ 181 static void *xas_start(struct xa_state *xas) 182 { 183 void *entry; 184 185 if (xas_valid(xas)) 186 return xas_reload(xas); 187 if (xas_error(xas)) 188 return NULL; 189 190 entry = xa_head(xas->xa); 191 if (!xa_is_node(entry)) { 192 if (xas->xa_index) 193 return set_bounds(xas); 194 } else { 195 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK) 196 return set_bounds(xas); 197 } 198 199 xas->xa_node = NULL; 200 return entry; 201 } 202 203 static void *xas_descend(struct xa_state *xas, struct xa_node *node) 204 { 205 unsigned int offset = get_offset(xas->xa_index, node); 206 void *entry = xa_entry(xas->xa, node, offset); 207 208 xas->xa_node = node; 209 if (xa_is_sibling(entry)) { 210 offset = xa_to_sibling(entry); 211 entry = xa_entry(xas->xa, node, offset); 212 if (node->shift && xa_is_node(entry)) 213 entry = XA_RETRY_ENTRY; 214 } 215 216 xas->xa_offset = offset; 217 return entry; 218 } 219 220 /** 221 * xas_load() - Load an entry from the XArray (advanced). 222 * @xas: XArray operation state. 223 * 224 * Usually walks the @xas to the appropriate state to load the entry 225 * stored at xa_index. However, it will do nothing and return %NULL if 226 * @xas is in an error state. xas_load() will never expand the tree. 227 * 228 * If the xa_state is set up to operate on a multi-index entry, xas_load() 229 * may return %NULL or an internal entry, even if there are entries 230 * present within the range specified by @xas. 231 * 232 * Context: Any context. The caller should hold the xa_lock or the RCU lock. 233 * Return: Usually an entry in the XArray, but see description for exceptions. 234 */ 235 void *xas_load(struct xa_state *xas) 236 { 237 void *entry = xas_start(xas); 238 239 while (xa_is_node(entry)) { 240 struct xa_node *node = xa_to_node(entry); 241 242 if (xas->xa_shift > node->shift) 243 break; 244 entry = xas_descend(xas, node); 245 if (node->shift == 0) 246 break; 247 } 248 return entry; 249 } 250 EXPORT_SYMBOL_GPL(xas_load); 251 252 #define XA_RCU_FREE ((struct xarray *)1) 253 254 static void xa_node_free(struct xa_node *node) 255 { 256 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 257 node->array = XA_RCU_FREE; 258 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 259 } 260 261 /* 262 * xas_destroy() - Free any resources allocated during the XArray operation. 263 * @xas: XArray operation state. 264 * 265 * Most users will not need to call this function; it is called for you 266 * by xas_nomem(). 267 */ 268 void xas_destroy(struct xa_state *xas) 269 { 270 struct xa_node *next, *node = xas->xa_alloc; 271 272 while (node) { 273 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 274 next = rcu_dereference_raw(node->parent); 275 radix_tree_node_rcu_free(&node->rcu_head); 276 xas->xa_alloc = node = next; 277 } 278 } 279 280 /** 281 * xas_nomem() - Allocate memory if needed. 282 * @xas: XArray operation state. 283 * @gfp: Memory allocation flags. 284 * 285 * If we need to add new nodes to the XArray, we try to allocate memory 286 * with GFP_NOWAIT while holding the lock, which will usually succeed. 287 * If it fails, @xas is flagged as needing memory to continue. The caller 288 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds, 289 * the caller should retry the operation. 290 * 291 * Forward progress is guaranteed as one node is allocated here and 292 * stored in the xa_state where it will be found by xas_alloc(). More 293 * nodes will likely be found in the slab allocator, but we do not tie 294 * them up here. 295 * 296 * Return: true if memory was needed, and was successfully allocated. 297 */ 298 bool xas_nomem(struct xa_state *xas, gfp_t gfp) 299 { 300 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 301 xas_destroy(xas); 302 return false; 303 } 304 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 305 gfp |= __GFP_ACCOUNT; 306 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 307 if (!xas->xa_alloc) 308 return false; 309 xas->xa_alloc->parent = NULL; 310 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 311 xas->xa_node = XAS_RESTART; 312 return true; 313 } 314 EXPORT_SYMBOL_GPL(xas_nomem); 315 316 /* 317 * __xas_nomem() - Drop locks and allocate memory if needed. 318 * @xas: XArray operation state. 319 * @gfp: Memory allocation flags. 320 * 321 * Internal variant of xas_nomem(). 322 * 323 * Return: true if memory was needed, and was successfully allocated. 324 */ 325 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp) 326 __must_hold(xas->xa->xa_lock) 327 { 328 unsigned int lock_type = xa_lock_type(xas->xa); 329 330 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 331 xas_destroy(xas); 332 return false; 333 } 334 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 335 gfp |= __GFP_ACCOUNT; 336 if (gfpflags_allow_blocking(gfp)) { 337 xas_unlock_type(xas, lock_type); 338 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 339 xas_lock_type(xas, lock_type); 340 } else { 341 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 342 } 343 if (!xas->xa_alloc) 344 return false; 345 xas->xa_alloc->parent = NULL; 346 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 347 xas->xa_node = XAS_RESTART; 348 return true; 349 } 350 351 static void xas_update(struct xa_state *xas, struct xa_node *node) 352 { 353 if (xas->xa_update) 354 xas->xa_update(node); 355 else 356 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 357 } 358 359 static void *xas_alloc(struct xa_state *xas, unsigned int shift) 360 { 361 struct xa_node *parent = xas->xa_node; 362 struct xa_node *node = xas->xa_alloc; 363 364 if (xas_invalid(xas)) 365 return NULL; 366 367 if (node) { 368 xas->xa_alloc = NULL; 369 } else { 370 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN; 371 372 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 373 gfp |= __GFP_ACCOUNT; 374 375 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 376 if (!node) { 377 xas_set_err(xas, -ENOMEM); 378 return NULL; 379 } 380 } 381 382 if (parent) { 383 node->offset = xas->xa_offset; 384 parent->count++; 385 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE); 386 xas_update(xas, parent); 387 } 388 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 389 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 390 node->shift = shift; 391 node->count = 0; 392 node->nr_values = 0; 393 RCU_INIT_POINTER(node->parent, xas->xa_node); 394 node->array = xas->xa; 395 396 return node; 397 } 398 399 #ifdef CONFIG_XARRAY_MULTI 400 /* Returns the number of indices covered by a given xa_state */ 401 static unsigned long xas_size(const struct xa_state *xas) 402 { 403 return (xas->xa_sibs + 1UL) << xas->xa_shift; 404 } 405 #endif 406 407 /* 408 * Use this to calculate the maximum index that will need to be created 409 * in order to add the entry described by @xas. Because we cannot store a 410 * multi-index entry at index 0, the calculation is a little more complex 411 * than you might expect. 412 */ 413 static unsigned long xas_max(struct xa_state *xas) 414 { 415 unsigned long max = xas->xa_index; 416 417 #ifdef CONFIG_XARRAY_MULTI 418 if (xas->xa_shift || xas->xa_sibs) { 419 unsigned long mask = xas_size(xas) - 1; 420 max |= mask; 421 if (mask == max) 422 max++; 423 } 424 #endif 425 426 return max; 427 } 428 429 /* The maximum index that can be contained in the array without expanding it */ 430 static unsigned long max_index(void *entry) 431 { 432 if (!xa_is_node(entry)) 433 return 0; 434 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1; 435 } 436 437 static void xas_shrink(struct xa_state *xas) 438 { 439 struct xarray *xa = xas->xa; 440 struct xa_node *node = xas->xa_node; 441 442 for (;;) { 443 void *entry; 444 445 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 446 if (node->count != 1) 447 break; 448 entry = xa_entry_locked(xa, node, 0); 449 if (!entry) 450 break; 451 if (!xa_is_node(entry) && node->shift) 452 break; 453 if (xa_is_zero(entry) && xa_zero_busy(xa)) 454 entry = NULL; 455 xas->xa_node = XAS_BOUNDS; 456 457 RCU_INIT_POINTER(xa->xa_head, entry); 458 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK)) 459 xa_mark_clear(xa, XA_FREE_MARK); 460 461 node->count = 0; 462 node->nr_values = 0; 463 if (!xa_is_node(entry)) 464 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY); 465 xas_update(xas, node); 466 xa_node_free(node); 467 if (!xa_is_node(entry)) 468 break; 469 node = xa_to_node(entry); 470 node->parent = NULL; 471 } 472 } 473 474 /* 475 * xas_delete_node() - Attempt to delete an xa_node 476 * @xas: Array operation state. 477 * 478 * Attempts to delete the @xas->xa_node. This will fail if xa->node has 479 * a non-zero reference count. 480 */ 481 static void xas_delete_node(struct xa_state *xas) 482 { 483 struct xa_node *node = xas->xa_node; 484 485 for (;;) { 486 struct xa_node *parent; 487 488 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 489 if (node->count) 490 break; 491 492 parent = xa_parent_locked(xas->xa, node); 493 xas->xa_node = parent; 494 xas->xa_offset = node->offset; 495 xa_node_free(node); 496 497 if (!parent) { 498 xas->xa->xa_head = NULL; 499 xas->xa_node = XAS_BOUNDS; 500 return; 501 } 502 503 parent->slots[xas->xa_offset] = NULL; 504 parent->count--; 505 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE); 506 node = parent; 507 xas_update(xas, node); 508 } 509 510 if (!node->parent) 511 xas_shrink(xas); 512 } 513 514 /** 515 * xas_free_nodes() - Free this node and all nodes that it references 516 * @xas: Array operation state. 517 * @top: Node to free 518 * 519 * This node has been removed from the tree. We must now free it and all 520 * of its subnodes. There may be RCU walkers with references into the tree, 521 * so we must replace all entries with retry markers. 522 */ 523 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top) 524 { 525 unsigned int offset = 0; 526 struct xa_node *node = top; 527 528 for (;;) { 529 void *entry = xa_entry_locked(xas->xa, node, offset); 530 531 if (node->shift && xa_is_node(entry)) { 532 node = xa_to_node(entry); 533 offset = 0; 534 continue; 535 } 536 if (entry) 537 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY); 538 offset++; 539 while (offset == XA_CHUNK_SIZE) { 540 struct xa_node *parent; 541 542 parent = xa_parent_locked(xas->xa, node); 543 offset = node->offset + 1; 544 node->count = 0; 545 node->nr_values = 0; 546 xas_update(xas, node); 547 xa_node_free(node); 548 if (node == top) 549 return; 550 node = parent; 551 } 552 } 553 } 554 555 /* 556 * xas_expand adds nodes to the head of the tree until it has reached 557 * sufficient height to be able to contain @xas->xa_index 558 */ 559 static int xas_expand(struct xa_state *xas, void *head) 560 { 561 struct xarray *xa = xas->xa; 562 struct xa_node *node = NULL; 563 unsigned int shift = 0; 564 unsigned long max = xas_max(xas); 565 566 if (!head) { 567 if (max == 0) 568 return 0; 569 while ((max >> shift) >= XA_CHUNK_SIZE) 570 shift += XA_CHUNK_SHIFT; 571 return shift + XA_CHUNK_SHIFT; 572 } else if (xa_is_node(head)) { 573 node = xa_to_node(head); 574 shift = node->shift + XA_CHUNK_SHIFT; 575 } 576 xas->xa_node = NULL; 577 578 while (max > max_index(head)) { 579 xa_mark_t mark = 0; 580 581 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 582 node = xas_alloc(xas, shift); 583 if (!node) 584 return -ENOMEM; 585 586 node->count = 1; 587 if (xa_is_value(head)) 588 node->nr_values = 1; 589 RCU_INIT_POINTER(node->slots[0], head); 590 591 /* Propagate the aggregated mark info to the new child */ 592 for (;;) { 593 if (xa_track_free(xa) && mark == XA_FREE_MARK) { 594 node_mark_all(node, XA_FREE_MARK); 595 if (!xa_marked(xa, XA_FREE_MARK)) { 596 node_clear_mark(node, 0, XA_FREE_MARK); 597 xa_mark_set(xa, XA_FREE_MARK); 598 } 599 } else if (xa_marked(xa, mark)) { 600 node_set_mark(node, 0, mark); 601 } 602 if (mark == XA_MARK_MAX) 603 break; 604 mark_inc(mark); 605 } 606 607 /* 608 * Now that the new node is fully initialised, we can add 609 * it to the tree 610 */ 611 if (xa_is_node(head)) { 612 xa_to_node(head)->offset = 0; 613 rcu_assign_pointer(xa_to_node(head)->parent, node); 614 } 615 head = xa_mk_node(node); 616 rcu_assign_pointer(xa->xa_head, head); 617 xas_update(xas, node); 618 619 shift += XA_CHUNK_SHIFT; 620 } 621 622 xas->xa_node = node; 623 return shift; 624 } 625 626 /* 627 * xas_create() - Create a slot to store an entry in. 628 * @xas: XArray operation state. 629 * @allow_root: %true if we can store the entry in the root directly 630 * 631 * Most users will not need to call this function directly, as it is called 632 * by xas_store(). It is useful for doing conditional store operations 633 * (see the xa_cmpxchg() implementation for an example). 634 * 635 * Return: If the slot already existed, returns the contents of this slot. 636 * If the slot was newly created, returns %NULL. If it failed to create the 637 * slot, returns %NULL and indicates the error in @xas. 638 */ 639 static void *xas_create(struct xa_state *xas, bool allow_root) 640 { 641 struct xarray *xa = xas->xa; 642 void *entry; 643 void __rcu **slot; 644 struct xa_node *node = xas->xa_node; 645 int shift; 646 unsigned int order = xas->xa_shift; 647 648 if (xas_top(node)) { 649 entry = xa_head_locked(xa); 650 xas->xa_node = NULL; 651 if (!entry && xa_zero_busy(xa)) 652 entry = XA_ZERO_ENTRY; 653 shift = xas_expand(xas, entry); 654 if (shift < 0) 655 return NULL; 656 if (!shift && !allow_root) 657 shift = XA_CHUNK_SHIFT; 658 entry = xa_head_locked(xa); 659 slot = &xa->xa_head; 660 } else if (xas_error(xas)) { 661 return NULL; 662 } else if (node) { 663 unsigned int offset = xas->xa_offset; 664 665 shift = node->shift; 666 entry = xa_entry_locked(xa, node, offset); 667 slot = &node->slots[offset]; 668 } else { 669 shift = 0; 670 entry = xa_head_locked(xa); 671 slot = &xa->xa_head; 672 } 673 674 while (shift > order) { 675 shift -= XA_CHUNK_SHIFT; 676 if (!entry) { 677 node = xas_alloc(xas, shift); 678 if (!node) 679 break; 680 if (xa_track_free(xa)) 681 node_mark_all(node, XA_FREE_MARK); 682 rcu_assign_pointer(*slot, xa_mk_node(node)); 683 } else if (xa_is_node(entry)) { 684 node = xa_to_node(entry); 685 } else { 686 break; 687 } 688 entry = xas_descend(xas, node); 689 slot = &node->slots[xas->xa_offset]; 690 } 691 692 return entry; 693 } 694 695 /** 696 * xas_create_range() - Ensure that stores to this range will succeed 697 * @xas: XArray operation state. 698 * 699 * Creates all of the slots in the range covered by @xas. Sets @xas to 700 * create single-index entries and positions it at the beginning of the 701 * range. This is for the benefit of users which have not yet been 702 * converted to use multi-index entries. 703 */ 704 void xas_create_range(struct xa_state *xas) 705 { 706 unsigned long index = xas->xa_index; 707 unsigned char shift = xas->xa_shift; 708 unsigned char sibs = xas->xa_sibs; 709 710 xas->xa_index |= ((sibs + 1UL) << shift) - 1; 711 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift) 712 xas->xa_offset |= sibs; 713 xas->xa_shift = 0; 714 xas->xa_sibs = 0; 715 716 for (;;) { 717 xas_create(xas, true); 718 if (xas_error(xas)) 719 goto restore; 720 if (xas->xa_index <= (index | XA_CHUNK_MASK)) 721 goto success; 722 xas->xa_index -= XA_CHUNK_SIZE; 723 724 for (;;) { 725 struct xa_node *node = xas->xa_node; 726 if (node->shift >= shift) 727 break; 728 xas->xa_node = xa_parent_locked(xas->xa, node); 729 xas->xa_offset = node->offset - 1; 730 if (node->offset != 0) 731 break; 732 } 733 } 734 735 restore: 736 xas->xa_shift = shift; 737 xas->xa_sibs = sibs; 738 xas->xa_index = index; 739 return; 740 success: 741 xas->xa_index = index; 742 if (xas->xa_node) 743 xas_set_offset(xas); 744 } 745 EXPORT_SYMBOL_GPL(xas_create_range); 746 747 static void update_node(struct xa_state *xas, struct xa_node *node, 748 int count, int values) 749 { 750 if (!node || (!count && !values)) 751 return; 752 753 node->count += count; 754 node->nr_values += values; 755 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 756 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE); 757 xas_update(xas, node); 758 if (count < 0) 759 xas_delete_node(xas); 760 } 761 762 /** 763 * xas_store() - Store this entry in the XArray. 764 * @xas: XArray operation state. 765 * @entry: New entry. 766 * 767 * If @xas is operating on a multi-index entry, the entry returned by this 768 * function is essentially meaningless (it may be an internal entry or it 769 * may be %NULL, even if there are non-NULL entries at some of the indices 770 * covered by the range). This is not a problem for any current users, 771 * and can be changed if needed. 772 * 773 * Return: The old entry at this index. 774 */ 775 void *xas_store(struct xa_state *xas, void *entry) 776 { 777 struct xa_node *node; 778 void __rcu **slot = &xas->xa->xa_head; 779 unsigned int offset, max; 780 int count = 0; 781 int values = 0; 782 void *first, *next; 783 bool value = xa_is_value(entry); 784 785 if (entry) { 786 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry); 787 first = xas_create(xas, allow_root); 788 } else { 789 first = xas_load(xas); 790 } 791 792 if (xas_invalid(xas)) 793 return first; 794 node = xas->xa_node; 795 if (node && (xas->xa_shift < node->shift)) 796 xas->xa_sibs = 0; 797 if ((first == entry) && !xas->xa_sibs) 798 return first; 799 800 next = first; 801 offset = xas->xa_offset; 802 max = xas->xa_offset + xas->xa_sibs; 803 if (node) { 804 slot = &node->slots[offset]; 805 if (xas->xa_sibs) 806 xas_squash_marks(xas); 807 } 808 if (!entry) 809 xas_init_marks(xas); 810 811 for (;;) { 812 /* 813 * Must clear the marks before setting the entry to NULL, 814 * otherwise xas_for_each_marked may find a NULL entry and 815 * stop early. rcu_assign_pointer contains a release barrier 816 * so the mark clearing will appear to happen before the 817 * entry is set to NULL. 818 */ 819 rcu_assign_pointer(*slot, entry); 820 if (xa_is_node(next) && (!node || node->shift)) 821 xas_free_nodes(xas, xa_to_node(next)); 822 if (!node) 823 break; 824 count += !next - !entry; 825 values += !xa_is_value(first) - !value; 826 if (entry) { 827 if (offset == max) 828 break; 829 if (!xa_is_sibling(entry)) 830 entry = xa_mk_sibling(xas->xa_offset); 831 } else { 832 if (offset == XA_CHUNK_MASK) 833 break; 834 } 835 next = xa_entry_locked(xas->xa, node, ++offset); 836 if (!xa_is_sibling(next)) { 837 if (!entry && (offset > max)) 838 break; 839 first = next; 840 } 841 slot++; 842 } 843 844 update_node(xas, node, count, values); 845 return first; 846 } 847 EXPORT_SYMBOL_GPL(xas_store); 848 849 /** 850 * xas_get_mark() - Returns the state of this mark. 851 * @xas: XArray operation state. 852 * @mark: Mark number. 853 * 854 * Return: true if the mark is set, false if the mark is clear or @xas 855 * is in an error state. 856 */ 857 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark) 858 { 859 if (xas_invalid(xas)) 860 return false; 861 if (!xas->xa_node) 862 return xa_marked(xas->xa, mark); 863 return node_get_mark(xas->xa_node, xas->xa_offset, mark); 864 } 865 EXPORT_SYMBOL_GPL(xas_get_mark); 866 867 /** 868 * xas_set_mark() - Sets the mark on this entry and its parents. 869 * @xas: XArray operation state. 870 * @mark: Mark number. 871 * 872 * Sets the specified mark on this entry, and walks up the tree setting it 873 * on all the ancestor entries. Does nothing if @xas has not been walked to 874 * an entry, or is in an error state. 875 */ 876 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark) 877 { 878 struct xa_node *node = xas->xa_node; 879 unsigned int offset = xas->xa_offset; 880 881 if (xas_invalid(xas)) 882 return; 883 884 while (node) { 885 if (node_set_mark(node, offset, mark)) 886 return; 887 offset = node->offset; 888 node = xa_parent_locked(xas->xa, node); 889 } 890 891 if (!xa_marked(xas->xa, mark)) 892 xa_mark_set(xas->xa, mark); 893 } 894 EXPORT_SYMBOL_GPL(xas_set_mark); 895 896 /** 897 * xas_clear_mark() - Clears the mark on this entry and its parents. 898 * @xas: XArray operation state. 899 * @mark: Mark number. 900 * 901 * Clears the specified mark on this entry, and walks back to the head 902 * attempting to clear it on all the ancestor entries. Does nothing if 903 * @xas has not been walked to an entry, or is in an error state. 904 */ 905 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark) 906 { 907 struct xa_node *node = xas->xa_node; 908 unsigned int offset = xas->xa_offset; 909 910 if (xas_invalid(xas)) 911 return; 912 913 while (node) { 914 if (!node_clear_mark(node, offset, mark)) 915 return; 916 if (node_any_mark(node, mark)) 917 return; 918 919 offset = node->offset; 920 node = xa_parent_locked(xas->xa, node); 921 } 922 923 if (xa_marked(xas->xa, mark)) 924 xa_mark_clear(xas->xa, mark); 925 } 926 EXPORT_SYMBOL_GPL(xas_clear_mark); 927 928 /** 929 * xas_init_marks() - Initialise all marks for the entry 930 * @xas: Array operations state. 931 * 932 * Initialise all marks for the entry specified by @xas. If we're tracking 933 * free entries with a mark, we need to set it on all entries. All other 934 * marks are cleared. 935 * 936 * This implementation is not as efficient as it could be; we may walk 937 * up the tree multiple times. 938 */ 939 void xas_init_marks(const struct xa_state *xas) 940 { 941 xa_mark_t mark = 0; 942 943 for (;;) { 944 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK) 945 xas_set_mark(xas, mark); 946 else 947 xas_clear_mark(xas, mark); 948 if (mark == XA_MARK_MAX) 949 break; 950 mark_inc(mark); 951 } 952 } 953 EXPORT_SYMBOL_GPL(xas_init_marks); 954 955 #ifdef CONFIG_XARRAY_MULTI 956 static unsigned int node_get_marks(struct xa_node *node, unsigned int offset) 957 { 958 unsigned int marks = 0; 959 xa_mark_t mark = XA_MARK_0; 960 961 for (;;) { 962 if (node_get_mark(node, offset, mark)) 963 marks |= 1 << (__force unsigned int)mark; 964 if (mark == XA_MARK_MAX) 965 break; 966 mark_inc(mark); 967 } 968 969 return marks; 970 } 971 972 static void node_set_marks(struct xa_node *node, unsigned int offset, 973 struct xa_node *child, unsigned int marks) 974 { 975 xa_mark_t mark = XA_MARK_0; 976 977 for (;;) { 978 if (marks & (1 << (__force unsigned int)mark)) { 979 node_set_mark(node, offset, mark); 980 if (child) 981 node_mark_all(child, mark); 982 } 983 if (mark == XA_MARK_MAX) 984 break; 985 mark_inc(mark); 986 } 987 } 988 989 /** 990 * xas_split_alloc() - Allocate memory for splitting an entry. 991 * @xas: XArray operation state. 992 * @entry: New entry which will be stored in the array. 993 * @order: Current entry order. 994 * @gfp: Memory allocation flags. 995 * 996 * This function should be called before calling xas_split(). 997 * If necessary, it will allocate new nodes (and fill them with @entry) 998 * to prepare for the upcoming split of an entry of @order size into 999 * entries of the order stored in the @xas. 1000 * 1001 * Context: May sleep if @gfp flags permit. 1002 */ 1003 void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order, 1004 gfp_t gfp) 1005 { 1006 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1007 unsigned int mask = xas->xa_sibs; 1008 1009 /* XXX: no support for splitting really large entries yet */ 1010 if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order)) 1011 goto nomem; 1012 if (xas->xa_shift + XA_CHUNK_SHIFT > order) 1013 return; 1014 1015 do { 1016 unsigned int i; 1017 void *sibling = NULL; 1018 struct xa_node *node; 1019 1020 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 1021 if (!node) 1022 goto nomem; 1023 node->array = xas->xa; 1024 for (i = 0; i < XA_CHUNK_SIZE; i++) { 1025 if ((i & mask) == 0) { 1026 RCU_INIT_POINTER(node->slots[i], entry); 1027 sibling = xa_mk_sibling(i); 1028 } else { 1029 RCU_INIT_POINTER(node->slots[i], sibling); 1030 } 1031 } 1032 RCU_INIT_POINTER(node->parent, xas->xa_alloc); 1033 xas->xa_alloc = node; 1034 } while (sibs-- > 0); 1035 1036 return; 1037 nomem: 1038 xas_destroy(xas); 1039 xas_set_err(xas, -ENOMEM); 1040 } 1041 EXPORT_SYMBOL_GPL(xas_split_alloc); 1042 1043 /** 1044 * xas_split() - Split a multi-index entry into smaller entries. 1045 * @xas: XArray operation state. 1046 * @entry: New entry to store in the array. 1047 * @order: Current entry order. 1048 * 1049 * The size of the new entries is set in @xas. The value in @entry is 1050 * copied to all the replacement entries. 1051 * 1052 * Context: Any context. The caller should hold the xa_lock. 1053 */ 1054 void xas_split(struct xa_state *xas, void *entry, unsigned int order) 1055 { 1056 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1057 unsigned int offset, marks; 1058 struct xa_node *node; 1059 void *curr = xas_load(xas); 1060 int values = 0; 1061 1062 node = xas->xa_node; 1063 if (xas_top(node)) 1064 return; 1065 1066 marks = node_get_marks(node, xas->xa_offset); 1067 1068 offset = xas->xa_offset + sibs; 1069 do { 1070 if (xas->xa_shift < node->shift) { 1071 struct xa_node *child = xas->xa_alloc; 1072 1073 xas->xa_alloc = rcu_dereference_raw(child->parent); 1074 child->shift = node->shift - XA_CHUNK_SHIFT; 1075 child->offset = offset; 1076 child->count = XA_CHUNK_SIZE; 1077 child->nr_values = xa_is_value(entry) ? 1078 XA_CHUNK_SIZE : 0; 1079 RCU_INIT_POINTER(child->parent, node); 1080 node_set_marks(node, offset, child, marks); 1081 rcu_assign_pointer(node->slots[offset], 1082 xa_mk_node(child)); 1083 if (xa_is_value(curr)) 1084 values--; 1085 xas_update(xas, child); 1086 } else { 1087 unsigned int canon = offset - xas->xa_sibs; 1088 1089 node_set_marks(node, canon, NULL, marks); 1090 rcu_assign_pointer(node->slots[canon], entry); 1091 while (offset > canon) 1092 rcu_assign_pointer(node->slots[offset--], 1093 xa_mk_sibling(canon)); 1094 values += (xa_is_value(entry) - xa_is_value(curr)) * 1095 (xas->xa_sibs + 1); 1096 } 1097 } while (offset-- > xas->xa_offset); 1098 1099 node->nr_values += values; 1100 xas_update(xas, node); 1101 } 1102 EXPORT_SYMBOL_GPL(xas_split); 1103 #endif 1104 1105 /** 1106 * xas_pause() - Pause a walk to drop a lock. 1107 * @xas: XArray operation state. 1108 * 1109 * Some users need to pause a walk and drop the lock they're holding in 1110 * order to yield to a higher priority thread or carry out an operation 1111 * on an entry. Those users should call this function before they drop 1112 * the lock. It resets the @xas to be suitable for the next iteration 1113 * of the loop after the user has reacquired the lock. If most entries 1114 * found during a walk require you to call xas_pause(), the xa_for_each() 1115 * iterator may be more appropriate. 1116 * 1117 * Note that xas_pause() only works for forward iteration. If a user needs 1118 * to pause a reverse iteration, we will need a xas_pause_rev(). 1119 */ 1120 void xas_pause(struct xa_state *xas) 1121 { 1122 struct xa_node *node = xas->xa_node; 1123 1124 if (xas_invalid(xas)) 1125 return; 1126 1127 xas->xa_node = XAS_RESTART; 1128 if (node) { 1129 unsigned long offset = xas->xa_offset; 1130 while (++offset < XA_CHUNK_SIZE) { 1131 if (!xa_is_sibling(xa_entry(xas->xa, node, offset))) 1132 break; 1133 } 1134 xas->xa_index += (offset - xas->xa_offset) << node->shift; 1135 if (xas->xa_index == 0) 1136 xas->xa_node = XAS_BOUNDS; 1137 } else { 1138 xas->xa_index++; 1139 } 1140 } 1141 EXPORT_SYMBOL_GPL(xas_pause); 1142 1143 /* 1144 * __xas_prev() - Find the previous entry in the XArray. 1145 * @xas: XArray operation state. 1146 * 1147 * Helper function for xas_prev() which handles all the complex cases 1148 * out of line. 1149 */ 1150 void *__xas_prev(struct xa_state *xas) 1151 { 1152 void *entry; 1153 1154 if (!xas_frozen(xas->xa_node)) 1155 xas->xa_index--; 1156 if (!xas->xa_node) 1157 return set_bounds(xas); 1158 if (xas_not_node(xas->xa_node)) 1159 return xas_load(xas); 1160 1161 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1162 xas->xa_offset--; 1163 1164 while (xas->xa_offset == 255) { 1165 xas->xa_offset = xas->xa_node->offset - 1; 1166 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1167 if (!xas->xa_node) 1168 return set_bounds(xas); 1169 } 1170 1171 for (;;) { 1172 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1173 if (!xa_is_node(entry)) 1174 return entry; 1175 1176 xas->xa_node = xa_to_node(entry); 1177 xas_set_offset(xas); 1178 } 1179 } 1180 EXPORT_SYMBOL_GPL(__xas_prev); 1181 1182 /* 1183 * __xas_next() - Find the next entry in the XArray. 1184 * @xas: XArray operation state. 1185 * 1186 * Helper function for xas_next() which handles all the complex cases 1187 * out of line. 1188 */ 1189 void *__xas_next(struct xa_state *xas) 1190 { 1191 void *entry; 1192 1193 if (!xas_frozen(xas->xa_node)) 1194 xas->xa_index++; 1195 if (!xas->xa_node) 1196 return set_bounds(xas); 1197 if (xas_not_node(xas->xa_node)) 1198 return xas_load(xas); 1199 1200 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1201 xas->xa_offset++; 1202 1203 while (xas->xa_offset == XA_CHUNK_SIZE) { 1204 xas->xa_offset = xas->xa_node->offset + 1; 1205 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1206 if (!xas->xa_node) 1207 return set_bounds(xas); 1208 } 1209 1210 for (;;) { 1211 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1212 if (!xa_is_node(entry)) 1213 return entry; 1214 1215 xas->xa_node = xa_to_node(entry); 1216 xas_set_offset(xas); 1217 } 1218 } 1219 EXPORT_SYMBOL_GPL(__xas_next); 1220 1221 /** 1222 * xas_find() - Find the next present entry in the XArray. 1223 * @xas: XArray operation state. 1224 * @max: Highest index to return. 1225 * 1226 * If the @xas has not yet been walked to an entry, return the entry 1227 * which has an index >= xas.xa_index. If it has been walked, the entry 1228 * currently being pointed at has been processed, and so we move to the 1229 * next entry. 1230 * 1231 * If no entry is found and the array is smaller than @max, the iterator 1232 * is set to the smallest index not yet in the array. This allows @xas 1233 * to be immediately passed to xas_store(). 1234 * 1235 * Return: The entry, if found, otherwise %NULL. 1236 */ 1237 void *xas_find(struct xa_state *xas, unsigned long max) 1238 { 1239 void *entry; 1240 1241 if (xas_error(xas) || xas->xa_node == XAS_BOUNDS) 1242 return NULL; 1243 if (xas->xa_index > max) 1244 return set_bounds(xas); 1245 1246 if (!xas->xa_node) { 1247 xas->xa_index = 1; 1248 return set_bounds(xas); 1249 } else if (xas->xa_node == XAS_RESTART) { 1250 entry = xas_load(xas); 1251 if (entry || xas_not_node(xas->xa_node)) 1252 return entry; 1253 } else if (!xas->xa_node->shift && 1254 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) { 1255 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1; 1256 } 1257 1258 xas_next_offset(xas); 1259 1260 while (xas->xa_node && (xas->xa_index <= max)) { 1261 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1262 xas->xa_offset = xas->xa_node->offset + 1; 1263 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1264 continue; 1265 } 1266 1267 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1268 if (xa_is_node(entry)) { 1269 xas->xa_node = xa_to_node(entry); 1270 xas->xa_offset = 0; 1271 continue; 1272 } 1273 if (entry && !xa_is_sibling(entry)) 1274 return entry; 1275 1276 xas_next_offset(xas); 1277 } 1278 1279 if (!xas->xa_node) 1280 xas->xa_node = XAS_BOUNDS; 1281 return NULL; 1282 } 1283 EXPORT_SYMBOL_GPL(xas_find); 1284 1285 /** 1286 * xas_find_marked() - Find the next marked entry in the XArray. 1287 * @xas: XArray operation state. 1288 * @max: Highest index to return. 1289 * @mark: Mark number to search for. 1290 * 1291 * If the @xas has not yet been walked to an entry, return the marked entry 1292 * which has an index >= xas.xa_index. If it has been walked, the entry 1293 * currently being pointed at has been processed, and so we return the 1294 * first marked entry with an index > xas.xa_index. 1295 * 1296 * If no marked entry is found and the array is smaller than @max, @xas is 1297 * set to the bounds state and xas->xa_index is set to the smallest index 1298 * not yet in the array. This allows @xas to be immediately passed to 1299 * xas_store(). 1300 * 1301 * If no entry is found before @max is reached, @xas is set to the restart 1302 * state. 1303 * 1304 * Return: The entry, if found, otherwise %NULL. 1305 */ 1306 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark) 1307 { 1308 bool advance = true; 1309 unsigned int offset; 1310 void *entry; 1311 1312 if (xas_error(xas)) 1313 return NULL; 1314 if (xas->xa_index > max) 1315 goto max; 1316 1317 if (!xas->xa_node) { 1318 xas->xa_index = 1; 1319 goto out; 1320 } else if (xas_top(xas->xa_node)) { 1321 advance = false; 1322 entry = xa_head(xas->xa); 1323 xas->xa_node = NULL; 1324 if (xas->xa_index > max_index(entry)) 1325 goto out; 1326 if (!xa_is_node(entry)) { 1327 if (xa_marked(xas->xa, mark)) 1328 return entry; 1329 xas->xa_index = 1; 1330 goto out; 1331 } 1332 xas->xa_node = xa_to_node(entry); 1333 xas->xa_offset = xas->xa_index >> xas->xa_node->shift; 1334 } 1335 1336 while (xas->xa_index <= max) { 1337 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1338 xas->xa_offset = xas->xa_node->offset + 1; 1339 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1340 if (!xas->xa_node) 1341 break; 1342 advance = false; 1343 continue; 1344 } 1345 1346 if (!advance) { 1347 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1348 if (xa_is_sibling(entry)) { 1349 xas->xa_offset = xa_to_sibling(entry); 1350 xas_move_index(xas, xas->xa_offset); 1351 } 1352 } 1353 1354 offset = xas_find_chunk(xas, advance, mark); 1355 if (offset > xas->xa_offset) { 1356 advance = false; 1357 xas_move_index(xas, offset); 1358 /* Mind the wrap */ 1359 if ((xas->xa_index - 1) >= max) 1360 goto max; 1361 xas->xa_offset = offset; 1362 if (offset == XA_CHUNK_SIZE) 1363 continue; 1364 } 1365 1366 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1367 if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK)) 1368 continue; 1369 if (!xa_is_node(entry)) 1370 return entry; 1371 xas->xa_node = xa_to_node(entry); 1372 xas_set_offset(xas); 1373 } 1374 1375 out: 1376 if (xas->xa_index > max) 1377 goto max; 1378 return set_bounds(xas); 1379 max: 1380 xas->xa_node = XAS_RESTART; 1381 return NULL; 1382 } 1383 EXPORT_SYMBOL_GPL(xas_find_marked); 1384 1385 /** 1386 * xas_find_conflict() - Find the next present entry in a range. 1387 * @xas: XArray operation state. 1388 * 1389 * The @xas describes both a range and a position within that range. 1390 * 1391 * Context: Any context. Expects xa_lock to be held. 1392 * Return: The next entry in the range covered by @xas or %NULL. 1393 */ 1394 void *xas_find_conflict(struct xa_state *xas) 1395 { 1396 void *curr; 1397 1398 if (xas_error(xas)) 1399 return NULL; 1400 1401 if (!xas->xa_node) 1402 return NULL; 1403 1404 if (xas_top(xas->xa_node)) { 1405 curr = xas_start(xas); 1406 if (!curr) 1407 return NULL; 1408 while (xa_is_node(curr)) { 1409 struct xa_node *node = xa_to_node(curr); 1410 curr = xas_descend(xas, node); 1411 } 1412 if (curr) 1413 return curr; 1414 } 1415 1416 if (xas->xa_node->shift > xas->xa_shift) 1417 return NULL; 1418 1419 for (;;) { 1420 if (xas->xa_node->shift == xas->xa_shift) { 1421 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs) 1422 break; 1423 } else if (xas->xa_offset == XA_CHUNK_MASK) { 1424 xas->xa_offset = xas->xa_node->offset; 1425 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node); 1426 if (!xas->xa_node) 1427 break; 1428 continue; 1429 } 1430 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset); 1431 if (xa_is_sibling(curr)) 1432 continue; 1433 while (xa_is_node(curr)) { 1434 xas->xa_node = xa_to_node(curr); 1435 xas->xa_offset = 0; 1436 curr = xa_entry_locked(xas->xa, xas->xa_node, 0); 1437 } 1438 if (curr) 1439 return curr; 1440 } 1441 xas->xa_offset -= xas->xa_sibs; 1442 return NULL; 1443 } 1444 EXPORT_SYMBOL_GPL(xas_find_conflict); 1445 1446 /** 1447 * xa_load() - Load an entry from an XArray. 1448 * @xa: XArray. 1449 * @index: index into array. 1450 * 1451 * Context: Any context. Takes and releases the RCU lock. 1452 * Return: The entry at @index in @xa. 1453 */ 1454 void *xa_load(struct xarray *xa, unsigned long index) 1455 { 1456 XA_STATE(xas, xa, index); 1457 void *entry; 1458 1459 rcu_read_lock(); 1460 do { 1461 entry = xas_load(&xas); 1462 if (xa_is_zero(entry)) 1463 entry = NULL; 1464 } while (xas_retry(&xas, entry)); 1465 rcu_read_unlock(); 1466 1467 return entry; 1468 } 1469 EXPORT_SYMBOL(xa_load); 1470 1471 static void *xas_result(struct xa_state *xas, void *curr) 1472 { 1473 if (xa_is_zero(curr)) 1474 return NULL; 1475 if (xas_error(xas)) 1476 curr = xas->xa_node; 1477 return curr; 1478 } 1479 1480 /** 1481 * __xa_erase() - Erase this entry from the XArray while locked. 1482 * @xa: XArray. 1483 * @index: Index into array. 1484 * 1485 * After this function returns, loading from @index will return %NULL. 1486 * If the index is part of a multi-index entry, all indices will be erased 1487 * and none of the entries will be part of a multi-index entry. 1488 * 1489 * Context: Any context. Expects xa_lock to be held on entry. 1490 * Return: The entry which used to be at this index. 1491 */ 1492 void *__xa_erase(struct xarray *xa, unsigned long index) 1493 { 1494 XA_STATE(xas, xa, index); 1495 return xas_result(&xas, xas_store(&xas, NULL)); 1496 } 1497 EXPORT_SYMBOL(__xa_erase); 1498 1499 /** 1500 * xa_erase() - Erase this entry from the XArray. 1501 * @xa: XArray. 1502 * @index: Index of entry. 1503 * 1504 * After this function returns, loading from @index will return %NULL. 1505 * If the index is part of a multi-index entry, all indices will be erased 1506 * and none of the entries will be part of a multi-index entry. 1507 * 1508 * Context: Any context. Takes and releases the xa_lock. 1509 * Return: The entry which used to be at this index. 1510 */ 1511 void *xa_erase(struct xarray *xa, unsigned long index) 1512 { 1513 void *entry; 1514 1515 xa_lock(xa); 1516 entry = __xa_erase(xa, index); 1517 xa_unlock(xa); 1518 1519 return entry; 1520 } 1521 EXPORT_SYMBOL(xa_erase); 1522 1523 /** 1524 * __xa_store() - Store this entry in the XArray. 1525 * @xa: XArray. 1526 * @index: Index into array. 1527 * @entry: New entry. 1528 * @gfp: Memory allocation flags. 1529 * 1530 * You must already be holding the xa_lock when calling this function. 1531 * It will drop the lock if needed to allocate memory, and then reacquire 1532 * it afterwards. 1533 * 1534 * Context: Any context. Expects xa_lock to be held on entry. May 1535 * release and reacquire xa_lock if @gfp flags permit. 1536 * Return: The old entry at this index or xa_err() if an error happened. 1537 */ 1538 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1539 { 1540 XA_STATE(xas, xa, index); 1541 void *curr; 1542 1543 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1544 return XA_ERROR(-EINVAL); 1545 if (xa_track_free(xa) && !entry) 1546 entry = XA_ZERO_ENTRY; 1547 1548 do { 1549 curr = xas_store(&xas, entry); 1550 if (xa_track_free(xa)) 1551 xas_clear_mark(&xas, XA_FREE_MARK); 1552 } while (__xas_nomem(&xas, gfp)); 1553 1554 return xas_result(&xas, curr); 1555 } 1556 EXPORT_SYMBOL(__xa_store); 1557 1558 /** 1559 * xa_store() - Store this entry in the XArray. 1560 * @xa: XArray. 1561 * @index: Index into array. 1562 * @entry: New entry. 1563 * @gfp: Memory allocation flags. 1564 * 1565 * After this function returns, loads from this index will return @entry. 1566 * Storing into an existing multi-index entry updates the entry of every index. 1567 * The marks associated with @index are unaffected unless @entry is %NULL. 1568 * 1569 * Context: Any context. Takes and releases the xa_lock. 1570 * May sleep if the @gfp flags permit. 1571 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry 1572 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation 1573 * failed. 1574 */ 1575 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1576 { 1577 void *curr; 1578 1579 xa_lock(xa); 1580 curr = __xa_store(xa, index, entry, gfp); 1581 xa_unlock(xa); 1582 1583 return curr; 1584 } 1585 EXPORT_SYMBOL(xa_store); 1586 1587 /** 1588 * __xa_cmpxchg() - Store this entry in the XArray. 1589 * @xa: XArray. 1590 * @index: Index into array. 1591 * @old: Old value to test against. 1592 * @entry: New entry. 1593 * @gfp: Memory allocation flags. 1594 * 1595 * You must already be holding the xa_lock when calling this function. 1596 * It will drop the lock if needed to allocate memory, and then reacquire 1597 * it afterwards. 1598 * 1599 * Context: Any context. Expects xa_lock to be held on entry. May 1600 * release and reacquire xa_lock if @gfp flags permit. 1601 * Return: The old entry at this index or xa_err() if an error happened. 1602 */ 1603 void *__xa_cmpxchg(struct xarray *xa, unsigned long index, 1604 void *old, void *entry, gfp_t gfp) 1605 { 1606 XA_STATE(xas, xa, index); 1607 void *curr; 1608 1609 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1610 return XA_ERROR(-EINVAL); 1611 1612 do { 1613 curr = xas_load(&xas); 1614 if (curr == old) { 1615 xas_store(&xas, entry); 1616 if (xa_track_free(xa) && entry && !curr) 1617 xas_clear_mark(&xas, XA_FREE_MARK); 1618 } 1619 } while (__xas_nomem(&xas, gfp)); 1620 1621 return xas_result(&xas, curr); 1622 } 1623 EXPORT_SYMBOL(__xa_cmpxchg); 1624 1625 /** 1626 * __xa_insert() - Store this entry in the XArray if no entry is present. 1627 * @xa: XArray. 1628 * @index: Index into array. 1629 * @entry: New entry. 1630 * @gfp: Memory allocation flags. 1631 * 1632 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 1633 * if no entry is present. Inserting will fail if a reserved entry is 1634 * present, even though loading from this index will return NULL. 1635 * 1636 * Context: Any context. Expects xa_lock to be held on entry. May 1637 * release and reacquire xa_lock if @gfp flags permit. 1638 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 1639 * -ENOMEM if memory could not be allocated. 1640 */ 1641 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1642 { 1643 XA_STATE(xas, xa, index); 1644 void *curr; 1645 1646 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1647 return -EINVAL; 1648 if (!entry) 1649 entry = XA_ZERO_ENTRY; 1650 1651 do { 1652 curr = xas_load(&xas); 1653 if (!curr) { 1654 xas_store(&xas, entry); 1655 if (xa_track_free(xa)) 1656 xas_clear_mark(&xas, XA_FREE_MARK); 1657 } else { 1658 xas_set_err(&xas, -EBUSY); 1659 } 1660 } while (__xas_nomem(&xas, gfp)); 1661 1662 return xas_error(&xas); 1663 } 1664 EXPORT_SYMBOL(__xa_insert); 1665 1666 #ifdef CONFIG_XARRAY_MULTI 1667 static void xas_set_range(struct xa_state *xas, unsigned long first, 1668 unsigned long last) 1669 { 1670 unsigned int shift = 0; 1671 unsigned long sibs = last - first; 1672 unsigned int offset = XA_CHUNK_MASK; 1673 1674 xas_set(xas, first); 1675 1676 while ((first & XA_CHUNK_MASK) == 0) { 1677 if (sibs < XA_CHUNK_MASK) 1678 break; 1679 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK)) 1680 break; 1681 shift += XA_CHUNK_SHIFT; 1682 if (offset == XA_CHUNK_MASK) 1683 offset = sibs & XA_CHUNK_MASK; 1684 sibs >>= XA_CHUNK_SHIFT; 1685 first >>= XA_CHUNK_SHIFT; 1686 } 1687 1688 offset = first & XA_CHUNK_MASK; 1689 if (offset + sibs > XA_CHUNK_MASK) 1690 sibs = XA_CHUNK_MASK - offset; 1691 if ((((first + sibs + 1) << shift) - 1) > last) 1692 sibs -= 1; 1693 1694 xas->xa_shift = shift; 1695 xas->xa_sibs = sibs; 1696 } 1697 1698 /** 1699 * xa_store_range() - Store this entry at a range of indices in the XArray. 1700 * @xa: XArray. 1701 * @first: First index to affect. 1702 * @last: Last index to affect. 1703 * @entry: New entry. 1704 * @gfp: Memory allocation flags. 1705 * 1706 * After this function returns, loads from any index between @first and @last, 1707 * inclusive will return @entry. 1708 * Storing into an existing multi-index entry updates the entry of every index. 1709 * The marks associated with @index are unaffected unless @entry is %NULL. 1710 * 1711 * Context: Process context. Takes and releases the xa_lock. May sleep 1712 * if the @gfp flags permit. 1713 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in 1714 * an XArray, or xa_err(-ENOMEM) if memory allocation failed. 1715 */ 1716 void *xa_store_range(struct xarray *xa, unsigned long first, 1717 unsigned long last, void *entry, gfp_t gfp) 1718 { 1719 XA_STATE(xas, xa, 0); 1720 1721 if (WARN_ON_ONCE(xa_is_internal(entry))) 1722 return XA_ERROR(-EINVAL); 1723 if (last < first) 1724 return XA_ERROR(-EINVAL); 1725 1726 do { 1727 xas_lock(&xas); 1728 if (entry) { 1729 unsigned int order = BITS_PER_LONG; 1730 if (last + 1) 1731 order = __ffs(last + 1); 1732 xas_set_order(&xas, last, order); 1733 xas_create(&xas, true); 1734 if (xas_error(&xas)) 1735 goto unlock; 1736 } 1737 do { 1738 xas_set_range(&xas, first, last); 1739 xas_store(&xas, entry); 1740 if (xas_error(&xas)) 1741 goto unlock; 1742 first += xas_size(&xas); 1743 } while (first <= last); 1744 unlock: 1745 xas_unlock(&xas); 1746 } while (xas_nomem(&xas, gfp)); 1747 1748 return xas_result(&xas, NULL); 1749 } 1750 EXPORT_SYMBOL(xa_store_range); 1751 1752 /** 1753 * xa_get_order() - Get the order of an entry. 1754 * @xa: XArray. 1755 * @index: Index of the entry. 1756 * 1757 * Return: A number between 0 and 63 indicating the order of the entry. 1758 */ 1759 int xa_get_order(struct xarray *xa, unsigned long index) 1760 { 1761 XA_STATE(xas, xa, index); 1762 void *entry; 1763 int order = 0; 1764 1765 rcu_read_lock(); 1766 entry = xas_load(&xas); 1767 1768 if (!entry) 1769 goto unlock; 1770 1771 if (!xas.xa_node) 1772 goto unlock; 1773 1774 for (;;) { 1775 unsigned int slot = xas.xa_offset + (1 << order); 1776 1777 if (slot >= XA_CHUNK_SIZE) 1778 break; 1779 if (!xa_is_sibling(xas.xa_node->slots[slot])) 1780 break; 1781 order++; 1782 } 1783 1784 order += xas.xa_node->shift; 1785 unlock: 1786 rcu_read_unlock(); 1787 1788 return order; 1789 } 1790 EXPORT_SYMBOL(xa_get_order); 1791 #endif /* CONFIG_XARRAY_MULTI */ 1792 1793 /** 1794 * __xa_alloc() - Find somewhere to store this entry in the XArray. 1795 * @xa: XArray. 1796 * @id: Pointer to ID. 1797 * @limit: Range for allocated ID. 1798 * @entry: New entry. 1799 * @gfp: Memory allocation flags. 1800 * 1801 * Finds an empty entry in @xa between @limit.min and @limit.max, 1802 * stores the index into the @id pointer, then stores the entry at 1803 * that index. A concurrent lookup will not see an uninitialised @id. 1804 * 1805 * Context: Any context. Expects xa_lock to be held on entry. May 1806 * release and reacquire xa_lock if @gfp flags permit. 1807 * Return: 0 on success, -ENOMEM if memory could not be allocated or 1808 * -EBUSY if there are no free entries in @limit. 1809 */ 1810 int __xa_alloc(struct xarray *xa, u32 *id, void *entry, 1811 struct xa_limit limit, gfp_t gfp) 1812 { 1813 XA_STATE(xas, xa, 0); 1814 1815 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1816 return -EINVAL; 1817 if (WARN_ON_ONCE(!xa_track_free(xa))) 1818 return -EINVAL; 1819 1820 if (!entry) 1821 entry = XA_ZERO_ENTRY; 1822 1823 do { 1824 xas.xa_index = limit.min; 1825 xas_find_marked(&xas, limit.max, XA_FREE_MARK); 1826 if (xas.xa_node == XAS_RESTART) 1827 xas_set_err(&xas, -EBUSY); 1828 else 1829 *id = xas.xa_index; 1830 xas_store(&xas, entry); 1831 xas_clear_mark(&xas, XA_FREE_MARK); 1832 } while (__xas_nomem(&xas, gfp)); 1833 1834 return xas_error(&xas); 1835 } 1836 EXPORT_SYMBOL(__xa_alloc); 1837 1838 /** 1839 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. 1840 * @xa: XArray. 1841 * @id: Pointer to ID. 1842 * @entry: New entry. 1843 * @limit: Range of allocated ID. 1844 * @next: Pointer to next ID to allocate. 1845 * @gfp: Memory allocation flags. 1846 * 1847 * Finds an empty entry in @xa between @limit.min and @limit.max, 1848 * stores the index into the @id pointer, then stores the entry at 1849 * that index. A concurrent lookup will not see an uninitialised @id. 1850 * The search for an empty entry will start at @next and will wrap 1851 * around if necessary. 1852 * 1853 * Context: Any context. Expects xa_lock to be held on entry. May 1854 * release and reacquire xa_lock if @gfp flags permit. 1855 * Return: 0 if the allocation succeeded without wrapping. 1 if the 1856 * allocation succeeded after wrapping, -ENOMEM if memory could not be 1857 * allocated or -EBUSY if there are no free entries in @limit. 1858 */ 1859 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, 1860 struct xa_limit limit, u32 *next, gfp_t gfp) 1861 { 1862 u32 min = limit.min; 1863 int ret; 1864 1865 limit.min = max(min, *next); 1866 ret = __xa_alloc(xa, id, entry, limit, gfp); 1867 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) { 1868 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED; 1869 ret = 1; 1870 } 1871 1872 if (ret < 0 && limit.min > min) { 1873 limit.min = min; 1874 ret = __xa_alloc(xa, id, entry, limit, gfp); 1875 if (ret == 0) 1876 ret = 1; 1877 } 1878 1879 if (ret >= 0) { 1880 *next = *id + 1; 1881 if (*next == 0) 1882 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED; 1883 } 1884 return ret; 1885 } 1886 EXPORT_SYMBOL(__xa_alloc_cyclic); 1887 1888 /** 1889 * __xa_set_mark() - Set this mark on this entry while locked. 1890 * @xa: XArray. 1891 * @index: Index of entry. 1892 * @mark: Mark number. 1893 * 1894 * Attempting to set a mark on a %NULL entry does not succeed. 1895 * 1896 * Context: Any context. Expects xa_lock to be held on entry. 1897 */ 1898 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1899 { 1900 XA_STATE(xas, xa, index); 1901 void *entry = xas_load(&xas); 1902 1903 if (entry) 1904 xas_set_mark(&xas, mark); 1905 } 1906 EXPORT_SYMBOL(__xa_set_mark); 1907 1908 /** 1909 * __xa_clear_mark() - Clear this mark on this entry while locked. 1910 * @xa: XArray. 1911 * @index: Index of entry. 1912 * @mark: Mark number. 1913 * 1914 * Context: Any context. Expects xa_lock to be held on entry. 1915 */ 1916 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1917 { 1918 XA_STATE(xas, xa, index); 1919 void *entry = xas_load(&xas); 1920 1921 if (entry) 1922 xas_clear_mark(&xas, mark); 1923 } 1924 EXPORT_SYMBOL(__xa_clear_mark); 1925 1926 /** 1927 * xa_get_mark() - Inquire whether this mark is set on this entry. 1928 * @xa: XArray. 1929 * @index: Index of entry. 1930 * @mark: Mark number. 1931 * 1932 * This function uses the RCU read lock, so the result may be out of date 1933 * by the time it returns. If you need the result to be stable, use a lock. 1934 * 1935 * Context: Any context. Takes and releases the RCU lock. 1936 * Return: True if the entry at @index has this mark set, false if it doesn't. 1937 */ 1938 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1939 { 1940 XA_STATE(xas, xa, index); 1941 void *entry; 1942 1943 rcu_read_lock(); 1944 entry = xas_start(&xas); 1945 while (xas_get_mark(&xas, mark)) { 1946 if (!xa_is_node(entry)) 1947 goto found; 1948 entry = xas_descend(&xas, xa_to_node(entry)); 1949 } 1950 rcu_read_unlock(); 1951 return false; 1952 found: 1953 rcu_read_unlock(); 1954 return true; 1955 } 1956 EXPORT_SYMBOL(xa_get_mark); 1957 1958 /** 1959 * xa_set_mark() - Set this mark on this entry. 1960 * @xa: XArray. 1961 * @index: Index of entry. 1962 * @mark: Mark number. 1963 * 1964 * Attempting to set a mark on a %NULL entry does not succeed. 1965 * 1966 * Context: Process context. Takes and releases the xa_lock. 1967 */ 1968 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1969 { 1970 xa_lock(xa); 1971 __xa_set_mark(xa, index, mark); 1972 xa_unlock(xa); 1973 } 1974 EXPORT_SYMBOL(xa_set_mark); 1975 1976 /** 1977 * xa_clear_mark() - Clear this mark on this entry. 1978 * @xa: XArray. 1979 * @index: Index of entry. 1980 * @mark: Mark number. 1981 * 1982 * Clearing a mark always succeeds. 1983 * 1984 * Context: Process context. Takes and releases the xa_lock. 1985 */ 1986 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1987 { 1988 xa_lock(xa); 1989 __xa_clear_mark(xa, index, mark); 1990 xa_unlock(xa); 1991 } 1992 EXPORT_SYMBOL(xa_clear_mark); 1993 1994 /** 1995 * xa_find() - Search the XArray for an entry. 1996 * @xa: XArray. 1997 * @indexp: Pointer to an index. 1998 * @max: Maximum index to search to. 1999 * @filter: Selection criterion. 2000 * 2001 * Finds the entry in @xa which matches the @filter, and has the lowest 2002 * index that is at least @indexp and no more than @max. 2003 * If an entry is found, @indexp is updated to be the index of the entry. 2004 * This function is protected by the RCU read lock, so it may not find 2005 * entries which are being simultaneously added. It will not return an 2006 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 2007 * 2008 * Context: Any context. Takes and releases the RCU lock. 2009 * Return: The entry, if found, otherwise %NULL. 2010 */ 2011 void *xa_find(struct xarray *xa, unsigned long *indexp, 2012 unsigned long max, xa_mark_t filter) 2013 { 2014 XA_STATE(xas, xa, *indexp); 2015 void *entry; 2016 2017 rcu_read_lock(); 2018 do { 2019 if ((__force unsigned int)filter < XA_MAX_MARKS) 2020 entry = xas_find_marked(&xas, max, filter); 2021 else 2022 entry = xas_find(&xas, max); 2023 } while (xas_retry(&xas, entry)); 2024 rcu_read_unlock(); 2025 2026 if (entry) 2027 *indexp = xas.xa_index; 2028 return entry; 2029 } 2030 EXPORT_SYMBOL(xa_find); 2031 2032 static bool xas_sibling(struct xa_state *xas) 2033 { 2034 struct xa_node *node = xas->xa_node; 2035 unsigned long mask; 2036 2037 if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node) 2038 return false; 2039 mask = (XA_CHUNK_SIZE << node->shift) - 1; 2040 return (xas->xa_index & mask) > 2041 ((unsigned long)xas->xa_offset << node->shift); 2042 } 2043 2044 /** 2045 * xa_find_after() - Search the XArray for a present entry. 2046 * @xa: XArray. 2047 * @indexp: Pointer to an index. 2048 * @max: Maximum index to search to. 2049 * @filter: Selection criterion. 2050 * 2051 * Finds the entry in @xa which matches the @filter and has the lowest 2052 * index that is above @indexp and no more than @max. 2053 * If an entry is found, @indexp is updated to be the index of the entry. 2054 * This function is protected by the RCU read lock, so it may miss entries 2055 * which are being simultaneously added. It will not return an 2056 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 2057 * 2058 * Context: Any context. Takes and releases the RCU lock. 2059 * Return: The pointer, if found, otherwise %NULL. 2060 */ 2061 void *xa_find_after(struct xarray *xa, unsigned long *indexp, 2062 unsigned long max, xa_mark_t filter) 2063 { 2064 XA_STATE(xas, xa, *indexp + 1); 2065 void *entry; 2066 2067 if (xas.xa_index == 0) 2068 return NULL; 2069 2070 rcu_read_lock(); 2071 for (;;) { 2072 if ((__force unsigned int)filter < XA_MAX_MARKS) 2073 entry = xas_find_marked(&xas, max, filter); 2074 else 2075 entry = xas_find(&xas, max); 2076 2077 if (xas_invalid(&xas)) 2078 break; 2079 if (xas_sibling(&xas)) 2080 continue; 2081 if (!xas_retry(&xas, entry)) 2082 break; 2083 } 2084 rcu_read_unlock(); 2085 2086 if (entry) 2087 *indexp = xas.xa_index; 2088 return entry; 2089 } 2090 EXPORT_SYMBOL(xa_find_after); 2091 2092 static unsigned int xas_extract_present(struct xa_state *xas, void **dst, 2093 unsigned long max, unsigned int n) 2094 { 2095 void *entry; 2096 unsigned int i = 0; 2097 2098 rcu_read_lock(); 2099 xas_for_each(xas, entry, max) { 2100 if (xas_retry(xas, entry)) 2101 continue; 2102 dst[i++] = entry; 2103 if (i == n) 2104 break; 2105 } 2106 rcu_read_unlock(); 2107 2108 return i; 2109 } 2110 2111 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst, 2112 unsigned long max, unsigned int n, xa_mark_t mark) 2113 { 2114 void *entry; 2115 unsigned int i = 0; 2116 2117 rcu_read_lock(); 2118 xas_for_each_marked(xas, entry, max, mark) { 2119 if (xas_retry(xas, entry)) 2120 continue; 2121 dst[i++] = entry; 2122 if (i == n) 2123 break; 2124 } 2125 rcu_read_unlock(); 2126 2127 return i; 2128 } 2129 2130 /** 2131 * xa_extract() - Copy selected entries from the XArray into a normal array. 2132 * @xa: The source XArray to copy from. 2133 * @dst: The buffer to copy entries into. 2134 * @start: The first index in the XArray eligible to be selected. 2135 * @max: The last index in the XArray eligible to be selected. 2136 * @n: The maximum number of entries to copy. 2137 * @filter: Selection criterion. 2138 * 2139 * Copies up to @n entries that match @filter from the XArray. The 2140 * copied entries will have indices between @start and @max, inclusive. 2141 * 2142 * The @filter may be an XArray mark value, in which case entries which are 2143 * marked with that mark will be copied. It may also be %XA_PRESENT, in 2144 * which case all entries which are not %NULL will be copied. 2145 * 2146 * The entries returned may not represent a snapshot of the XArray at a 2147 * moment in time. For example, if another thread stores to index 5, then 2148 * index 10, calling xa_extract() may return the old contents of index 5 2149 * and the new contents of index 10. Indices not modified while this 2150 * function is running will not be skipped. 2151 * 2152 * If you need stronger guarantees, holding the xa_lock across calls to this 2153 * function will prevent concurrent modification. 2154 * 2155 * Context: Any context. Takes and releases the RCU lock. 2156 * Return: The number of entries copied. 2157 */ 2158 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start, 2159 unsigned long max, unsigned int n, xa_mark_t filter) 2160 { 2161 XA_STATE(xas, xa, start); 2162 2163 if (!n) 2164 return 0; 2165 2166 if ((__force unsigned int)filter < XA_MAX_MARKS) 2167 return xas_extract_marked(&xas, dst, max, n, filter); 2168 return xas_extract_present(&xas, dst, max, n); 2169 } 2170 EXPORT_SYMBOL(xa_extract); 2171 2172 /** 2173 * xa_delete_node() - Private interface for workingset code. 2174 * @node: Node to be removed from the tree. 2175 * @update: Function to call to update ancestor nodes. 2176 * 2177 * Context: xa_lock must be held on entry and will not be released. 2178 */ 2179 void xa_delete_node(struct xa_node *node, xa_update_node_t update) 2180 { 2181 struct xa_state xas = { 2182 .xa = node->array, 2183 .xa_index = (unsigned long)node->offset << 2184 (node->shift + XA_CHUNK_SHIFT), 2185 .xa_shift = node->shift + XA_CHUNK_SHIFT, 2186 .xa_offset = node->offset, 2187 .xa_node = xa_parent_locked(node->array, node), 2188 .xa_update = update, 2189 }; 2190 2191 xas_store(&xas, NULL); 2192 } 2193 EXPORT_SYMBOL_GPL(xa_delete_node); /* For the benefit of the test suite */ 2194 2195 /** 2196 * xa_destroy() - Free all internal data structures. 2197 * @xa: XArray. 2198 * 2199 * After calling this function, the XArray is empty and has freed all memory 2200 * allocated for its internal data structures. You are responsible for 2201 * freeing the objects referenced by the XArray. 2202 * 2203 * Context: Any context. Takes and releases the xa_lock, interrupt-safe. 2204 */ 2205 void xa_destroy(struct xarray *xa) 2206 { 2207 XA_STATE(xas, xa, 0); 2208 unsigned long flags; 2209 void *entry; 2210 2211 xas.xa_node = NULL; 2212 xas_lock_irqsave(&xas, flags); 2213 entry = xa_head_locked(xa); 2214 RCU_INIT_POINTER(xa->xa_head, NULL); 2215 xas_init_marks(&xas); 2216 if (xa_zero_busy(xa)) 2217 xa_mark_clear(xa, XA_FREE_MARK); 2218 /* lockdep checks we're still holding the lock in xas_free_nodes() */ 2219 if (xa_is_node(entry)) 2220 xas_free_nodes(&xas, xa_to_node(entry)); 2221 xas_unlock_irqrestore(&xas, flags); 2222 } 2223 EXPORT_SYMBOL(xa_destroy); 2224 2225 #ifdef XA_DEBUG 2226 void xa_dump_node(const struct xa_node *node) 2227 { 2228 unsigned i, j; 2229 2230 if (!node) 2231 return; 2232 if ((unsigned long)node & 3) { 2233 pr_cont("node %px\n", node); 2234 return; 2235 } 2236 2237 pr_cont("node %px %s %d parent %px shift %d count %d values %d " 2238 "array %px list %px %px marks", 2239 node, node->parent ? "offset" : "max", node->offset, 2240 node->parent, node->shift, node->count, node->nr_values, 2241 node->array, node->private_list.prev, node->private_list.next); 2242 for (i = 0; i < XA_MAX_MARKS; i++) 2243 for (j = 0; j < XA_MARK_LONGS; j++) 2244 pr_cont(" %lx", node->marks[i][j]); 2245 pr_cont("\n"); 2246 } 2247 2248 void xa_dump_index(unsigned long index, unsigned int shift) 2249 { 2250 if (!shift) 2251 pr_info("%lu: ", index); 2252 else if (shift >= BITS_PER_LONG) 2253 pr_info("0-%lu: ", ~0UL); 2254 else 2255 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1)); 2256 } 2257 2258 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift) 2259 { 2260 if (!entry) 2261 return; 2262 2263 xa_dump_index(index, shift); 2264 2265 if (xa_is_node(entry)) { 2266 if (shift == 0) { 2267 pr_cont("%px\n", entry); 2268 } else { 2269 unsigned long i; 2270 struct xa_node *node = xa_to_node(entry); 2271 xa_dump_node(node); 2272 for (i = 0; i < XA_CHUNK_SIZE; i++) 2273 xa_dump_entry(node->slots[i], 2274 index + (i << node->shift), node->shift); 2275 } 2276 } else if (xa_is_value(entry)) 2277 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry), 2278 xa_to_value(entry), entry); 2279 else if (!xa_is_internal(entry)) 2280 pr_cont("%px\n", entry); 2281 else if (xa_is_retry(entry)) 2282 pr_cont("retry (%ld)\n", xa_to_internal(entry)); 2283 else if (xa_is_sibling(entry)) 2284 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry)); 2285 else if (xa_is_zero(entry)) 2286 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 2287 else 2288 pr_cont("UNKNOWN ENTRY (%px)\n", entry); 2289 } 2290 2291 void xa_dump(const struct xarray *xa) 2292 { 2293 void *entry = xa->xa_head; 2294 unsigned int shift = 0; 2295 2296 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry, 2297 xa->xa_flags, xa_marked(xa, XA_MARK_0), 2298 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2)); 2299 if (xa_is_node(entry)) 2300 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT; 2301 xa_dump_entry(entry, 0, shift); 2302 } 2303 #endif 2304