1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * XArray implementation 4 * Copyright (c) 2017 Microsoft Corporation 5 * Author: Matthew Wilcox <willy@infradead.org> 6 */ 7 8 #include <linux/bitmap.h> 9 #include <linux/export.h> 10 #include <linux/list.h> 11 #include <linux/slab.h> 12 #include <linux/xarray.h> 13 14 /* 15 * Coding conventions in this file: 16 * 17 * @xa is used to refer to the entire xarray. 18 * @xas is the 'xarray operation state'. It may be either a pointer to 19 * an xa_state, or an xa_state stored on the stack. This is an unfortunate 20 * ambiguity. 21 * @index is the index of the entry being operated on 22 * @mark is an xa_mark_t; a small number indicating one of the mark bits. 23 * @node refers to an xa_node; usually the primary one being operated on by 24 * this function. 25 * @offset is the index into the slots array inside an xa_node. 26 * @parent refers to the @xa_node closer to the head than @node. 27 * @entry refers to something stored in a slot in the xarray 28 */ 29 30 static inline unsigned int xa_lock_type(const struct xarray *xa) 31 { 32 return (__force unsigned int)xa->xa_flags & 3; 33 } 34 35 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type) 36 { 37 if (lock_type == XA_LOCK_IRQ) 38 xas_lock_irq(xas); 39 else if (lock_type == XA_LOCK_BH) 40 xas_lock_bh(xas); 41 else 42 xas_lock(xas); 43 } 44 45 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type) 46 { 47 if (lock_type == XA_LOCK_IRQ) 48 xas_unlock_irq(xas); 49 else if (lock_type == XA_LOCK_BH) 50 xas_unlock_bh(xas); 51 else 52 xas_unlock(xas); 53 } 54 55 static inline bool xa_track_free(const struct xarray *xa) 56 { 57 return xa->xa_flags & XA_FLAGS_TRACK_FREE; 58 } 59 60 static inline bool xa_zero_busy(const struct xarray *xa) 61 { 62 return xa->xa_flags & XA_FLAGS_ZERO_BUSY; 63 } 64 65 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark) 66 { 67 if (!(xa->xa_flags & XA_FLAGS_MARK(mark))) 68 xa->xa_flags |= XA_FLAGS_MARK(mark); 69 } 70 71 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark) 72 { 73 if (xa->xa_flags & XA_FLAGS_MARK(mark)) 74 xa->xa_flags &= ~(XA_FLAGS_MARK(mark)); 75 } 76 77 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark) 78 { 79 return node->marks[(__force unsigned)mark]; 80 } 81 82 static inline bool node_get_mark(struct xa_node *node, 83 unsigned int offset, xa_mark_t mark) 84 { 85 return test_bit(offset, node_marks(node, mark)); 86 } 87 88 /* returns true if the bit was set */ 89 static inline bool node_set_mark(struct xa_node *node, unsigned int offset, 90 xa_mark_t mark) 91 { 92 return __test_and_set_bit(offset, node_marks(node, mark)); 93 } 94 95 /* returns true if the bit was set */ 96 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset, 97 xa_mark_t mark) 98 { 99 return __test_and_clear_bit(offset, node_marks(node, mark)); 100 } 101 102 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark) 103 { 104 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE); 105 } 106 107 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark) 108 { 109 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE); 110 } 111 112 #define mark_inc(mark) do { \ 113 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \ 114 } while (0) 115 116 /* 117 * xas_squash_marks() - Merge all marks to the first entry 118 * @xas: Array operation state. 119 * 120 * Set a mark on the first entry if any entry has it set. Clear marks on 121 * all sibling entries. 122 */ 123 static void xas_squash_marks(const struct xa_state *xas) 124 { 125 unsigned int mark = 0; 126 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1; 127 128 if (!xas->xa_sibs) 129 return; 130 131 do { 132 unsigned long *marks = xas->xa_node->marks[mark]; 133 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit) 134 continue; 135 __set_bit(xas->xa_offset, marks); 136 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs); 137 } while (mark++ != (__force unsigned)XA_MARK_MAX); 138 } 139 140 /* extracts the offset within this node from the index */ 141 static unsigned int get_offset(unsigned long index, struct xa_node *node) 142 { 143 return (index >> node->shift) & XA_CHUNK_MASK; 144 } 145 146 static void xas_set_offset(struct xa_state *xas) 147 { 148 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node); 149 } 150 151 /* move the index either forwards (find) or backwards (sibling slot) */ 152 static void xas_move_index(struct xa_state *xas, unsigned long offset) 153 { 154 unsigned int shift = xas->xa_node->shift; 155 xas->xa_index &= ~XA_CHUNK_MASK << shift; 156 xas->xa_index += offset << shift; 157 } 158 159 static void xas_advance(struct xa_state *xas) 160 { 161 xas->xa_offset++; 162 xas_move_index(xas, xas->xa_offset); 163 } 164 165 static void *set_bounds(struct xa_state *xas) 166 { 167 xas->xa_node = XAS_BOUNDS; 168 return NULL; 169 } 170 171 /* 172 * Starts a walk. If the @xas is already valid, we assume that it's on 173 * the right path and just return where we've got to. If we're in an 174 * error state, return NULL. If the index is outside the current scope 175 * of the xarray, return NULL without changing @xas->xa_node. Otherwise 176 * set @xas->xa_node to NULL and return the current head of the array. 177 */ 178 static void *xas_start(struct xa_state *xas) 179 { 180 void *entry; 181 182 if (xas_valid(xas)) 183 return xas_reload(xas); 184 if (xas_error(xas)) 185 return NULL; 186 187 entry = xa_head(xas->xa); 188 if (!xa_is_node(entry)) { 189 if (xas->xa_index) 190 return set_bounds(xas); 191 } else { 192 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK) 193 return set_bounds(xas); 194 } 195 196 xas->xa_node = NULL; 197 return entry; 198 } 199 200 static void *xas_descend(struct xa_state *xas, struct xa_node *node) 201 { 202 unsigned int offset = get_offset(xas->xa_index, node); 203 void *entry = xa_entry(xas->xa, node, offset); 204 205 xas->xa_node = node; 206 if (xa_is_sibling(entry)) { 207 offset = xa_to_sibling(entry); 208 entry = xa_entry(xas->xa, node, offset); 209 } 210 211 xas->xa_offset = offset; 212 return entry; 213 } 214 215 /** 216 * xas_load() - Load an entry from the XArray (advanced). 217 * @xas: XArray operation state. 218 * 219 * Usually walks the @xas to the appropriate state to load the entry 220 * stored at xa_index. However, it will do nothing and return %NULL if 221 * @xas is in an error state. xas_load() will never expand the tree. 222 * 223 * If the xa_state is set up to operate on a multi-index entry, xas_load() 224 * may return %NULL or an internal entry, even if there are entries 225 * present within the range specified by @xas. 226 * 227 * Context: Any context. The caller should hold the xa_lock or the RCU lock. 228 * Return: Usually an entry in the XArray, but see description for exceptions. 229 */ 230 void *xas_load(struct xa_state *xas) 231 { 232 void *entry = xas_start(xas); 233 234 while (xa_is_node(entry)) { 235 struct xa_node *node = xa_to_node(entry); 236 237 if (xas->xa_shift > node->shift) 238 break; 239 entry = xas_descend(xas, node); 240 if (node->shift == 0) 241 break; 242 } 243 return entry; 244 } 245 EXPORT_SYMBOL_GPL(xas_load); 246 247 /* Move the radix tree node cache here */ 248 extern struct kmem_cache *radix_tree_node_cachep; 249 extern void radix_tree_node_rcu_free(struct rcu_head *head); 250 251 #define XA_RCU_FREE ((struct xarray *)1) 252 253 static void xa_node_free(struct xa_node *node) 254 { 255 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 256 node->array = XA_RCU_FREE; 257 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 258 } 259 260 /* 261 * xas_destroy() - Free any resources allocated during the XArray operation. 262 * @xas: XArray operation state. 263 * 264 * This function is now internal-only. 265 */ 266 static void xas_destroy(struct xa_state *xas) 267 { 268 struct xa_node *node = xas->xa_alloc; 269 270 if (!node) 271 return; 272 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 273 kmem_cache_free(radix_tree_node_cachep, node); 274 xas->xa_alloc = NULL; 275 } 276 277 /** 278 * xas_nomem() - Allocate memory if needed. 279 * @xas: XArray operation state. 280 * @gfp: Memory allocation flags. 281 * 282 * If we need to add new nodes to the XArray, we try to allocate memory 283 * with GFP_NOWAIT while holding the lock, which will usually succeed. 284 * If it fails, @xas is flagged as needing memory to continue. The caller 285 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds, 286 * the caller should retry the operation. 287 * 288 * Forward progress is guaranteed as one node is allocated here and 289 * stored in the xa_state where it will be found by xas_alloc(). More 290 * nodes will likely be found in the slab allocator, but we do not tie 291 * them up here. 292 * 293 * Return: true if memory was needed, and was successfully allocated. 294 */ 295 bool xas_nomem(struct xa_state *xas, gfp_t gfp) 296 { 297 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 298 xas_destroy(xas); 299 return false; 300 } 301 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 302 gfp |= __GFP_ACCOUNT; 303 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); 304 if (!xas->xa_alloc) 305 return false; 306 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 307 xas->xa_node = XAS_RESTART; 308 return true; 309 } 310 EXPORT_SYMBOL_GPL(xas_nomem); 311 312 /* 313 * __xas_nomem() - Drop locks and allocate memory if needed. 314 * @xas: XArray operation state. 315 * @gfp: Memory allocation flags. 316 * 317 * Internal variant of xas_nomem(). 318 * 319 * Return: true if memory was needed, and was successfully allocated. 320 */ 321 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp) 322 __must_hold(xas->xa->xa_lock) 323 { 324 unsigned int lock_type = xa_lock_type(xas->xa); 325 326 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 327 xas_destroy(xas); 328 return false; 329 } 330 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 331 gfp |= __GFP_ACCOUNT; 332 if (gfpflags_allow_blocking(gfp)) { 333 xas_unlock_type(xas, lock_type); 334 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); 335 xas_lock_type(xas, lock_type); 336 } else { 337 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); 338 } 339 if (!xas->xa_alloc) 340 return false; 341 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 342 xas->xa_node = XAS_RESTART; 343 return true; 344 } 345 346 static void xas_update(struct xa_state *xas, struct xa_node *node) 347 { 348 if (xas->xa_update) 349 xas->xa_update(node); 350 else 351 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 352 } 353 354 static void *xas_alloc(struct xa_state *xas, unsigned int shift) 355 { 356 struct xa_node *parent = xas->xa_node; 357 struct xa_node *node = xas->xa_alloc; 358 359 if (xas_invalid(xas)) 360 return NULL; 361 362 if (node) { 363 xas->xa_alloc = NULL; 364 } else { 365 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN; 366 367 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 368 gfp |= __GFP_ACCOUNT; 369 370 node = kmem_cache_alloc(radix_tree_node_cachep, gfp); 371 if (!node) { 372 xas_set_err(xas, -ENOMEM); 373 return NULL; 374 } 375 } 376 377 if (parent) { 378 node->offset = xas->xa_offset; 379 parent->count++; 380 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE); 381 xas_update(xas, parent); 382 } 383 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 384 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 385 node->shift = shift; 386 node->count = 0; 387 node->nr_values = 0; 388 RCU_INIT_POINTER(node->parent, xas->xa_node); 389 node->array = xas->xa; 390 391 return node; 392 } 393 394 #ifdef CONFIG_XARRAY_MULTI 395 /* Returns the number of indices covered by a given xa_state */ 396 static unsigned long xas_size(const struct xa_state *xas) 397 { 398 return (xas->xa_sibs + 1UL) << xas->xa_shift; 399 } 400 #endif 401 402 /* 403 * Use this to calculate the maximum index that will need to be created 404 * in order to add the entry described by @xas. Because we cannot store a 405 * multiple-index entry at index 0, the calculation is a little more complex 406 * than you might expect. 407 */ 408 static unsigned long xas_max(struct xa_state *xas) 409 { 410 unsigned long max = xas->xa_index; 411 412 #ifdef CONFIG_XARRAY_MULTI 413 if (xas->xa_shift || xas->xa_sibs) { 414 unsigned long mask = xas_size(xas) - 1; 415 max |= mask; 416 if (mask == max) 417 max++; 418 } 419 #endif 420 421 return max; 422 } 423 424 /* The maximum index that can be contained in the array without expanding it */ 425 static unsigned long max_index(void *entry) 426 { 427 if (!xa_is_node(entry)) 428 return 0; 429 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1; 430 } 431 432 static void xas_shrink(struct xa_state *xas) 433 { 434 struct xarray *xa = xas->xa; 435 struct xa_node *node = xas->xa_node; 436 437 for (;;) { 438 void *entry; 439 440 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 441 if (node->count != 1) 442 break; 443 entry = xa_entry_locked(xa, node, 0); 444 if (!entry) 445 break; 446 if (!xa_is_node(entry) && node->shift) 447 break; 448 if (xa_is_zero(entry) && xa_zero_busy(xa)) 449 entry = NULL; 450 xas->xa_node = XAS_BOUNDS; 451 452 RCU_INIT_POINTER(xa->xa_head, entry); 453 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK)) 454 xa_mark_clear(xa, XA_FREE_MARK); 455 456 node->count = 0; 457 node->nr_values = 0; 458 if (!xa_is_node(entry)) 459 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY); 460 xas_update(xas, node); 461 xa_node_free(node); 462 if (!xa_is_node(entry)) 463 break; 464 node = xa_to_node(entry); 465 node->parent = NULL; 466 } 467 } 468 469 /* 470 * xas_delete_node() - Attempt to delete an xa_node 471 * @xas: Array operation state. 472 * 473 * Attempts to delete the @xas->xa_node. This will fail if xa->node has 474 * a non-zero reference count. 475 */ 476 static void xas_delete_node(struct xa_state *xas) 477 { 478 struct xa_node *node = xas->xa_node; 479 480 for (;;) { 481 struct xa_node *parent; 482 483 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 484 if (node->count) 485 break; 486 487 parent = xa_parent_locked(xas->xa, node); 488 xas->xa_node = parent; 489 xas->xa_offset = node->offset; 490 xa_node_free(node); 491 492 if (!parent) { 493 xas->xa->xa_head = NULL; 494 xas->xa_node = XAS_BOUNDS; 495 return; 496 } 497 498 parent->slots[xas->xa_offset] = NULL; 499 parent->count--; 500 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE); 501 node = parent; 502 xas_update(xas, node); 503 } 504 505 if (!node->parent) 506 xas_shrink(xas); 507 } 508 509 /** 510 * xas_free_nodes() - Free this node and all nodes that it references 511 * @xas: Array operation state. 512 * @top: Node to free 513 * 514 * This node has been removed from the tree. We must now free it and all 515 * of its subnodes. There may be RCU walkers with references into the tree, 516 * so we must replace all entries with retry markers. 517 */ 518 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top) 519 { 520 unsigned int offset = 0; 521 struct xa_node *node = top; 522 523 for (;;) { 524 void *entry = xa_entry_locked(xas->xa, node, offset); 525 526 if (node->shift && xa_is_node(entry)) { 527 node = xa_to_node(entry); 528 offset = 0; 529 continue; 530 } 531 if (entry) 532 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY); 533 offset++; 534 while (offset == XA_CHUNK_SIZE) { 535 struct xa_node *parent; 536 537 parent = xa_parent_locked(xas->xa, node); 538 offset = node->offset + 1; 539 node->count = 0; 540 node->nr_values = 0; 541 xas_update(xas, node); 542 xa_node_free(node); 543 if (node == top) 544 return; 545 node = parent; 546 } 547 } 548 } 549 550 /* 551 * xas_expand adds nodes to the head of the tree until it has reached 552 * sufficient height to be able to contain @xas->xa_index 553 */ 554 static int xas_expand(struct xa_state *xas, void *head) 555 { 556 struct xarray *xa = xas->xa; 557 struct xa_node *node = NULL; 558 unsigned int shift = 0; 559 unsigned long max = xas_max(xas); 560 561 if (!head) { 562 if (max == 0) 563 return 0; 564 while ((max >> shift) >= XA_CHUNK_SIZE) 565 shift += XA_CHUNK_SHIFT; 566 return shift + XA_CHUNK_SHIFT; 567 } else if (xa_is_node(head)) { 568 node = xa_to_node(head); 569 shift = node->shift + XA_CHUNK_SHIFT; 570 } 571 xas->xa_node = NULL; 572 573 while (max > max_index(head)) { 574 xa_mark_t mark = 0; 575 576 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 577 node = xas_alloc(xas, shift); 578 if (!node) 579 return -ENOMEM; 580 581 node->count = 1; 582 if (xa_is_value(head)) 583 node->nr_values = 1; 584 RCU_INIT_POINTER(node->slots[0], head); 585 586 /* Propagate the aggregated mark info to the new child */ 587 for (;;) { 588 if (xa_track_free(xa) && mark == XA_FREE_MARK) { 589 node_mark_all(node, XA_FREE_MARK); 590 if (!xa_marked(xa, XA_FREE_MARK)) { 591 node_clear_mark(node, 0, XA_FREE_MARK); 592 xa_mark_set(xa, XA_FREE_MARK); 593 } 594 } else if (xa_marked(xa, mark)) { 595 node_set_mark(node, 0, mark); 596 } 597 if (mark == XA_MARK_MAX) 598 break; 599 mark_inc(mark); 600 } 601 602 /* 603 * Now that the new node is fully initialised, we can add 604 * it to the tree 605 */ 606 if (xa_is_node(head)) { 607 xa_to_node(head)->offset = 0; 608 rcu_assign_pointer(xa_to_node(head)->parent, node); 609 } 610 head = xa_mk_node(node); 611 rcu_assign_pointer(xa->xa_head, head); 612 xas_update(xas, node); 613 614 shift += XA_CHUNK_SHIFT; 615 } 616 617 xas->xa_node = node; 618 return shift; 619 } 620 621 /* 622 * xas_create() - Create a slot to store an entry in. 623 * @xas: XArray operation state. 624 * @allow_root: %true if we can store the entry in the root directly 625 * 626 * Most users will not need to call this function directly, as it is called 627 * by xas_store(). It is useful for doing conditional store operations 628 * (see the xa_cmpxchg() implementation for an example). 629 * 630 * Return: If the slot already existed, returns the contents of this slot. 631 * If the slot was newly created, returns %NULL. If it failed to create the 632 * slot, returns %NULL and indicates the error in @xas. 633 */ 634 static void *xas_create(struct xa_state *xas, bool allow_root) 635 { 636 struct xarray *xa = xas->xa; 637 void *entry; 638 void __rcu **slot; 639 struct xa_node *node = xas->xa_node; 640 int shift; 641 unsigned int order = xas->xa_shift; 642 643 if (xas_top(node)) { 644 entry = xa_head_locked(xa); 645 xas->xa_node = NULL; 646 if (!entry && xa_zero_busy(xa)) 647 entry = XA_ZERO_ENTRY; 648 shift = xas_expand(xas, entry); 649 if (shift < 0) 650 return NULL; 651 if (!shift && !allow_root) 652 shift = XA_CHUNK_SHIFT; 653 entry = xa_head_locked(xa); 654 slot = &xa->xa_head; 655 } else if (xas_error(xas)) { 656 return NULL; 657 } else if (node) { 658 unsigned int offset = xas->xa_offset; 659 660 shift = node->shift; 661 entry = xa_entry_locked(xa, node, offset); 662 slot = &node->slots[offset]; 663 } else { 664 shift = 0; 665 entry = xa_head_locked(xa); 666 slot = &xa->xa_head; 667 } 668 669 while (shift > order) { 670 shift -= XA_CHUNK_SHIFT; 671 if (!entry) { 672 node = xas_alloc(xas, shift); 673 if (!node) 674 break; 675 if (xa_track_free(xa)) 676 node_mark_all(node, XA_FREE_MARK); 677 rcu_assign_pointer(*slot, xa_mk_node(node)); 678 } else if (xa_is_node(entry)) { 679 node = xa_to_node(entry); 680 } else { 681 break; 682 } 683 entry = xas_descend(xas, node); 684 slot = &node->slots[xas->xa_offset]; 685 } 686 687 return entry; 688 } 689 690 /** 691 * xas_create_range() - Ensure that stores to this range will succeed 692 * @xas: XArray operation state. 693 * 694 * Creates all of the slots in the range covered by @xas. Sets @xas to 695 * create single-index entries and positions it at the beginning of the 696 * range. This is for the benefit of users which have not yet been 697 * converted to use multi-index entries. 698 */ 699 void xas_create_range(struct xa_state *xas) 700 { 701 unsigned long index = xas->xa_index; 702 unsigned char shift = xas->xa_shift; 703 unsigned char sibs = xas->xa_sibs; 704 705 xas->xa_index |= ((sibs + 1) << shift) - 1; 706 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift) 707 xas->xa_offset |= sibs; 708 xas->xa_shift = 0; 709 xas->xa_sibs = 0; 710 711 for (;;) { 712 xas_create(xas, true); 713 if (xas_error(xas)) 714 goto restore; 715 if (xas->xa_index <= (index | XA_CHUNK_MASK)) 716 goto success; 717 xas->xa_index -= XA_CHUNK_SIZE; 718 719 for (;;) { 720 struct xa_node *node = xas->xa_node; 721 xas->xa_node = xa_parent_locked(xas->xa, node); 722 xas->xa_offset = node->offset - 1; 723 if (node->offset != 0) 724 break; 725 } 726 } 727 728 restore: 729 xas->xa_shift = shift; 730 xas->xa_sibs = sibs; 731 xas->xa_index = index; 732 return; 733 success: 734 xas->xa_index = index; 735 if (xas->xa_node) 736 xas_set_offset(xas); 737 } 738 EXPORT_SYMBOL_GPL(xas_create_range); 739 740 static void update_node(struct xa_state *xas, struct xa_node *node, 741 int count, int values) 742 { 743 if (!node || (!count && !values)) 744 return; 745 746 node->count += count; 747 node->nr_values += values; 748 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 749 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE); 750 xas_update(xas, node); 751 if (count < 0) 752 xas_delete_node(xas); 753 } 754 755 /** 756 * xas_store() - Store this entry in the XArray. 757 * @xas: XArray operation state. 758 * @entry: New entry. 759 * 760 * If @xas is operating on a multi-index entry, the entry returned by this 761 * function is essentially meaningless (it may be an internal entry or it 762 * may be %NULL, even if there are non-NULL entries at some of the indices 763 * covered by the range). This is not a problem for any current users, 764 * and can be changed if needed. 765 * 766 * Return: The old entry at this index. 767 */ 768 void *xas_store(struct xa_state *xas, void *entry) 769 { 770 struct xa_node *node; 771 void __rcu **slot = &xas->xa->xa_head; 772 unsigned int offset, max; 773 int count = 0; 774 int values = 0; 775 void *first, *next; 776 bool value = xa_is_value(entry); 777 778 if (entry) { 779 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry); 780 first = xas_create(xas, allow_root); 781 } else { 782 first = xas_load(xas); 783 } 784 785 if (xas_invalid(xas)) 786 return first; 787 node = xas->xa_node; 788 if (node && (xas->xa_shift < node->shift)) 789 xas->xa_sibs = 0; 790 if ((first == entry) && !xas->xa_sibs) 791 return first; 792 793 next = first; 794 offset = xas->xa_offset; 795 max = xas->xa_offset + xas->xa_sibs; 796 if (node) { 797 slot = &node->slots[offset]; 798 if (xas->xa_sibs) 799 xas_squash_marks(xas); 800 } 801 if (!entry) 802 xas_init_marks(xas); 803 804 for (;;) { 805 /* 806 * Must clear the marks before setting the entry to NULL, 807 * otherwise xas_for_each_marked may find a NULL entry and 808 * stop early. rcu_assign_pointer contains a release barrier 809 * so the mark clearing will appear to happen before the 810 * entry is set to NULL. 811 */ 812 rcu_assign_pointer(*slot, entry); 813 if (xa_is_node(next) && (!node || node->shift)) 814 xas_free_nodes(xas, xa_to_node(next)); 815 if (!node) 816 break; 817 count += !next - !entry; 818 values += !xa_is_value(first) - !value; 819 if (entry) { 820 if (offset == max) 821 break; 822 if (!xa_is_sibling(entry)) 823 entry = xa_mk_sibling(xas->xa_offset); 824 } else { 825 if (offset == XA_CHUNK_MASK) 826 break; 827 } 828 next = xa_entry_locked(xas->xa, node, ++offset); 829 if (!xa_is_sibling(next)) { 830 if (!entry && (offset > max)) 831 break; 832 first = next; 833 } 834 slot++; 835 } 836 837 update_node(xas, node, count, values); 838 return first; 839 } 840 EXPORT_SYMBOL_GPL(xas_store); 841 842 /** 843 * xas_get_mark() - Returns the state of this mark. 844 * @xas: XArray operation state. 845 * @mark: Mark number. 846 * 847 * Return: true if the mark is set, false if the mark is clear or @xas 848 * is in an error state. 849 */ 850 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark) 851 { 852 if (xas_invalid(xas)) 853 return false; 854 if (!xas->xa_node) 855 return xa_marked(xas->xa, mark); 856 return node_get_mark(xas->xa_node, xas->xa_offset, mark); 857 } 858 EXPORT_SYMBOL_GPL(xas_get_mark); 859 860 /** 861 * xas_set_mark() - Sets the mark on this entry and its parents. 862 * @xas: XArray operation state. 863 * @mark: Mark number. 864 * 865 * Sets the specified mark on this entry, and walks up the tree setting it 866 * on all the ancestor entries. Does nothing if @xas has not been walked to 867 * an entry, or is in an error state. 868 */ 869 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark) 870 { 871 struct xa_node *node = xas->xa_node; 872 unsigned int offset = xas->xa_offset; 873 874 if (xas_invalid(xas)) 875 return; 876 877 while (node) { 878 if (node_set_mark(node, offset, mark)) 879 return; 880 offset = node->offset; 881 node = xa_parent_locked(xas->xa, node); 882 } 883 884 if (!xa_marked(xas->xa, mark)) 885 xa_mark_set(xas->xa, mark); 886 } 887 EXPORT_SYMBOL_GPL(xas_set_mark); 888 889 /** 890 * xas_clear_mark() - Clears the mark on this entry and its parents. 891 * @xas: XArray operation state. 892 * @mark: Mark number. 893 * 894 * Clears the specified mark on this entry, and walks back to the head 895 * attempting to clear it on all the ancestor entries. Does nothing if 896 * @xas has not been walked to an entry, or is in an error state. 897 */ 898 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark) 899 { 900 struct xa_node *node = xas->xa_node; 901 unsigned int offset = xas->xa_offset; 902 903 if (xas_invalid(xas)) 904 return; 905 906 while (node) { 907 if (!node_clear_mark(node, offset, mark)) 908 return; 909 if (node_any_mark(node, mark)) 910 return; 911 912 offset = node->offset; 913 node = xa_parent_locked(xas->xa, node); 914 } 915 916 if (xa_marked(xas->xa, mark)) 917 xa_mark_clear(xas->xa, mark); 918 } 919 EXPORT_SYMBOL_GPL(xas_clear_mark); 920 921 /** 922 * xas_init_marks() - Initialise all marks for the entry 923 * @xas: Array operations state. 924 * 925 * Initialise all marks for the entry specified by @xas. If we're tracking 926 * free entries with a mark, we need to set it on all entries. All other 927 * marks are cleared. 928 * 929 * This implementation is not as efficient as it could be; we may walk 930 * up the tree multiple times. 931 */ 932 void xas_init_marks(const struct xa_state *xas) 933 { 934 xa_mark_t mark = 0; 935 936 for (;;) { 937 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK) 938 xas_set_mark(xas, mark); 939 else 940 xas_clear_mark(xas, mark); 941 if (mark == XA_MARK_MAX) 942 break; 943 mark_inc(mark); 944 } 945 } 946 EXPORT_SYMBOL_GPL(xas_init_marks); 947 948 /** 949 * xas_pause() - Pause a walk to drop a lock. 950 * @xas: XArray operation state. 951 * 952 * Some users need to pause a walk and drop the lock they're holding in 953 * order to yield to a higher priority thread or carry out an operation 954 * on an entry. Those users should call this function before they drop 955 * the lock. It resets the @xas to be suitable for the next iteration 956 * of the loop after the user has reacquired the lock. If most entries 957 * found during a walk require you to call xas_pause(), the xa_for_each() 958 * iterator may be more appropriate. 959 * 960 * Note that xas_pause() only works for forward iteration. If a user needs 961 * to pause a reverse iteration, we will need a xas_pause_rev(). 962 */ 963 void xas_pause(struct xa_state *xas) 964 { 965 struct xa_node *node = xas->xa_node; 966 967 if (xas_invalid(xas)) 968 return; 969 970 if (node) { 971 unsigned int offset = xas->xa_offset; 972 while (++offset < XA_CHUNK_SIZE) { 973 if (!xa_is_sibling(xa_entry(xas->xa, node, offset))) 974 break; 975 } 976 xas->xa_index += (offset - xas->xa_offset) << node->shift; 977 } else { 978 xas->xa_index++; 979 } 980 xas->xa_node = XAS_RESTART; 981 } 982 EXPORT_SYMBOL_GPL(xas_pause); 983 984 /* 985 * __xas_prev() - Find the previous entry in the XArray. 986 * @xas: XArray operation state. 987 * 988 * Helper function for xas_prev() which handles all the complex cases 989 * out of line. 990 */ 991 void *__xas_prev(struct xa_state *xas) 992 { 993 void *entry; 994 995 if (!xas_frozen(xas->xa_node)) 996 xas->xa_index--; 997 if (xas_not_node(xas->xa_node)) 998 return xas_load(xas); 999 1000 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1001 xas->xa_offset--; 1002 1003 while (xas->xa_offset == 255) { 1004 xas->xa_offset = xas->xa_node->offset - 1; 1005 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1006 if (!xas->xa_node) 1007 return set_bounds(xas); 1008 } 1009 1010 for (;;) { 1011 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1012 if (!xa_is_node(entry)) 1013 return entry; 1014 1015 xas->xa_node = xa_to_node(entry); 1016 xas_set_offset(xas); 1017 } 1018 } 1019 EXPORT_SYMBOL_GPL(__xas_prev); 1020 1021 /* 1022 * __xas_next() - Find the next entry in the XArray. 1023 * @xas: XArray operation state. 1024 * 1025 * Helper function for xas_next() which handles all the complex cases 1026 * out of line. 1027 */ 1028 void *__xas_next(struct xa_state *xas) 1029 { 1030 void *entry; 1031 1032 if (!xas_frozen(xas->xa_node)) 1033 xas->xa_index++; 1034 if (xas_not_node(xas->xa_node)) 1035 return xas_load(xas); 1036 1037 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1038 xas->xa_offset++; 1039 1040 while (xas->xa_offset == XA_CHUNK_SIZE) { 1041 xas->xa_offset = xas->xa_node->offset + 1; 1042 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1043 if (!xas->xa_node) 1044 return set_bounds(xas); 1045 } 1046 1047 for (;;) { 1048 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1049 if (!xa_is_node(entry)) 1050 return entry; 1051 1052 xas->xa_node = xa_to_node(entry); 1053 xas_set_offset(xas); 1054 } 1055 } 1056 EXPORT_SYMBOL_GPL(__xas_next); 1057 1058 /** 1059 * xas_find() - Find the next present entry in the XArray. 1060 * @xas: XArray operation state. 1061 * @max: Highest index to return. 1062 * 1063 * If the @xas has not yet been walked to an entry, return the entry 1064 * which has an index >= xas.xa_index. If it has been walked, the entry 1065 * currently being pointed at has been processed, and so we move to the 1066 * next entry. 1067 * 1068 * If no entry is found and the array is smaller than @max, the iterator 1069 * is set to the smallest index not yet in the array. This allows @xas 1070 * to be immediately passed to xas_store(). 1071 * 1072 * Return: The entry, if found, otherwise %NULL. 1073 */ 1074 void *xas_find(struct xa_state *xas, unsigned long max) 1075 { 1076 void *entry; 1077 1078 if (xas_error(xas)) 1079 return NULL; 1080 1081 if (!xas->xa_node) { 1082 xas->xa_index = 1; 1083 return set_bounds(xas); 1084 } else if (xas_top(xas->xa_node)) { 1085 entry = xas_load(xas); 1086 if (entry || xas_not_node(xas->xa_node)) 1087 return entry; 1088 } else if (!xas->xa_node->shift && 1089 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) { 1090 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1; 1091 } 1092 1093 xas_advance(xas); 1094 1095 while (xas->xa_node && (xas->xa_index <= max)) { 1096 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1097 xas->xa_offset = xas->xa_node->offset + 1; 1098 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1099 continue; 1100 } 1101 1102 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1103 if (xa_is_node(entry)) { 1104 xas->xa_node = xa_to_node(entry); 1105 xas->xa_offset = 0; 1106 continue; 1107 } 1108 if (entry && !xa_is_sibling(entry)) 1109 return entry; 1110 1111 xas_advance(xas); 1112 } 1113 1114 if (!xas->xa_node) 1115 xas->xa_node = XAS_BOUNDS; 1116 return NULL; 1117 } 1118 EXPORT_SYMBOL_GPL(xas_find); 1119 1120 /** 1121 * xas_find_marked() - Find the next marked entry in the XArray. 1122 * @xas: XArray operation state. 1123 * @max: Highest index to return. 1124 * @mark: Mark number to search for. 1125 * 1126 * If the @xas has not yet been walked to an entry, return the marked entry 1127 * which has an index >= xas.xa_index. If it has been walked, the entry 1128 * currently being pointed at has been processed, and so we return the 1129 * first marked entry with an index > xas.xa_index. 1130 * 1131 * If no marked entry is found and the array is smaller than @max, @xas is 1132 * set to the bounds state and xas->xa_index is set to the smallest index 1133 * not yet in the array. This allows @xas to be immediately passed to 1134 * xas_store(). 1135 * 1136 * If no entry is found before @max is reached, @xas is set to the restart 1137 * state. 1138 * 1139 * Return: The entry, if found, otherwise %NULL. 1140 */ 1141 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark) 1142 { 1143 bool advance = true; 1144 unsigned int offset; 1145 void *entry; 1146 1147 if (xas_error(xas)) 1148 return NULL; 1149 1150 if (!xas->xa_node) { 1151 xas->xa_index = 1; 1152 goto out; 1153 } else if (xas_top(xas->xa_node)) { 1154 advance = false; 1155 entry = xa_head(xas->xa); 1156 xas->xa_node = NULL; 1157 if (xas->xa_index > max_index(entry)) 1158 goto out; 1159 if (!xa_is_node(entry)) { 1160 if (xa_marked(xas->xa, mark)) 1161 return entry; 1162 xas->xa_index = 1; 1163 goto out; 1164 } 1165 xas->xa_node = xa_to_node(entry); 1166 xas->xa_offset = xas->xa_index >> xas->xa_node->shift; 1167 } 1168 1169 while (xas->xa_index <= max) { 1170 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1171 xas->xa_offset = xas->xa_node->offset + 1; 1172 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1173 if (!xas->xa_node) 1174 break; 1175 advance = false; 1176 continue; 1177 } 1178 1179 if (!advance) { 1180 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1181 if (xa_is_sibling(entry)) { 1182 xas->xa_offset = xa_to_sibling(entry); 1183 xas_move_index(xas, xas->xa_offset); 1184 } 1185 } 1186 1187 offset = xas_find_chunk(xas, advance, mark); 1188 if (offset > xas->xa_offset) { 1189 advance = false; 1190 xas_move_index(xas, offset); 1191 /* Mind the wrap */ 1192 if ((xas->xa_index - 1) >= max) 1193 goto max; 1194 xas->xa_offset = offset; 1195 if (offset == XA_CHUNK_SIZE) 1196 continue; 1197 } 1198 1199 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1200 if (!xa_is_node(entry)) 1201 return entry; 1202 xas->xa_node = xa_to_node(entry); 1203 xas_set_offset(xas); 1204 } 1205 1206 out: 1207 if (xas->xa_index > max) 1208 goto max; 1209 return set_bounds(xas); 1210 max: 1211 xas->xa_node = XAS_RESTART; 1212 return NULL; 1213 } 1214 EXPORT_SYMBOL_GPL(xas_find_marked); 1215 1216 /** 1217 * xas_find_conflict() - Find the next present entry in a range. 1218 * @xas: XArray operation state. 1219 * 1220 * The @xas describes both a range and a position within that range. 1221 * 1222 * Context: Any context. Expects xa_lock to be held. 1223 * Return: The next entry in the range covered by @xas or %NULL. 1224 */ 1225 void *xas_find_conflict(struct xa_state *xas) 1226 { 1227 void *curr; 1228 1229 if (xas_error(xas)) 1230 return NULL; 1231 1232 if (!xas->xa_node) 1233 return NULL; 1234 1235 if (xas_top(xas->xa_node)) { 1236 curr = xas_start(xas); 1237 if (!curr) 1238 return NULL; 1239 while (xa_is_node(curr)) { 1240 struct xa_node *node = xa_to_node(curr); 1241 curr = xas_descend(xas, node); 1242 } 1243 if (curr) 1244 return curr; 1245 } 1246 1247 if (xas->xa_node->shift > xas->xa_shift) 1248 return NULL; 1249 1250 for (;;) { 1251 if (xas->xa_node->shift == xas->xa_shift) { 1252 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs) 1253 break; 1254 } else if (xas->xa_offset == XA_CHUNK_MASK) { 1255 xas->xa_offset = xas->xa_node->offset; 1256 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node); 1257 if (!xas->xa_node) 1258 break; 1259 continue; 1260 } 1261 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset); 1262 if (xa_is_sibling(curr)) 1263 continue; 1264 while (xa_is_node(curr)) { 1265 xas->xa_node = xa_to_node(curr); 1266 xas->xa_offset = 0; 1267 curr = xa_entry_locked(xas->xa, xas->xa_node, 0); 1268 } 1269 if (curr) 1270 return curr; 1271 } 1272 xas->xa_offset -= xas->xa_sibs; 1273 return NULL; 1274 } 1275 EXPORT_SYMBOL_GPL(xas_find_conflict); 1276 1277 /** 1278 * xa_load() - Load an entry from an XArray. 1279 * @xa: XArray. 1280 * @index: index into array. 1281 * 1282 * Context: Any context. Takes and releases the RCU lock. 1283 * Return: The entry at @index in @xa. 1284 */ 1285 void *xa_load(struct xarray *xa, unsigned long index) 1286 { 1287 XA_STATE(xas, xa, index); 1288 void *entry; 1289 1290 rcu_read_lock(); 1291 do { 1292 entry = xas_load(&xas); 1293 if (xa_is_zero(entry)) 1294 entry = NULL; 1295 } while (xas_retry(&xas, entry)); 1296 rcu_read_unlock(); 1297 1298 return entry; 1299 } 1300 EXPORT_SYMBOL(xa_load); 1301 1302 static void *xas_result(struct xa_state *xas, void *curr) 1303 { 1304 if (xa_is_zero(curr)) 1305 return NULL; 1306 if (xas_error(xas)) 1307 curr = xas->xa_node; 1308 return curr; 1309 } 1310 1311 /** 1312 * __xa_erase() - Erase this entry from the XArray while locked. 1313 * @xa: XArray. 1314 * @index: Index into array. 1315 * 1316 * After this function returns, loading from @index will return %NULL. 1317 * If the index is part of a multi-index entry, all indices will be erased 1318 * and none of the entries will be part of a multi-index entry. 1319 * 1320 * Context: Any context. Expects xa_lock to be held on entry. 1321 * Return: The entry which used to be at this index. 1322 */ 1323 void *__xa_erase(struct xarray *xa, unsigned long index) 1324 { 1325 XA_STATE(xas, xa, index); 1326 return xas_result(&xas, xas_store(&xas, NULL)); 1327 } 1328 EXPORT_SYMBOL(__xa_erase); 1329 1330 /** 1331 * xa_erase() - Erase this entry from the XArray. 1332 * @xa: XArray. 1333 * @index: Index of entry. 1334 * 1335 * After this function returns, loading from @index will return %NULL. 1336 * If the index is part of a multi-index entry, all indices will be erased 1337 * and none of the entries will be part of a multi-index entry. 1338 * 1339 * Context: Any context. Takes and releases the xa_lock. 1340 * Return: The entry which used to be at this index. 1341 */ 1342 void *xa_erase(struct xarray *xa, unsigned long index) 1343 { 1344 void *entry; 1345 1346 xa_lock(xa); 1347 entry = __xa_erase(xa, index); 1348 xa_unlock(xa); 1349 1350 return entry; 1351 } 1352 EXPORT_SYMBOL(xa_erase); 1353 1354 /** 1355 * __xa_store() - Store this entry in the XArray. 1356 * @xa: XArray. 1357 * @index: Index into array. 1358 * @entry: New entry. 1359 * @gfp: Memory allocation flags. 1360 * 1361 * You must already be holding the xa_lock when calling this function. 1362 * It will drop the lock if needed to allocate memory, and then reacquire 1363 * it afterwards. 1364 * 1365 * Context: Any context. Expects xa_lock to be held on entry. May 1366 * release and reacquire xa_lock if @gfp flags permit. 1367 * Return: The old entry at this index or xa_err() if an error happened. 1368 */ 1369 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1370 { 1371 XA_STATE(xas, xa, index); 1372 void *curr; 1373 1374 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1375 return XA_ERROR(-EINVAL); 1376 if (xa_track_free(xa) && !entry) 1377 entry = XA_ZERO_ENTRY; 1378 1379 do { 1380 curr = xas_store(&xas, entry); 1381 if (xa_track_free(xa)) 1382 xas_clear_mark(&xas, XA_FREE_MARK); 1383 } while (__xas_nomem(&xas, gfp)); 1384 1385 return xas_result(&xas, curr); 1386 } 1387 EXPORT_SYMBOL(__xa_store); 1388 1389 /** 1390 * xa_store() - Store this entry in the XArray. 1391 * @xa: XArray. 1392 * @index: Index into array. 1393 * @entry: New entry. 1394 * @gfp: Memory allocation flags. 1395 * 1396 * After this function returns, loads from this index will return @entry. 1397 * Storing into an existing multislot entry updates the entry of every index. 1398 * The marks associated with @index are unaffected unless @entry is %NULL. 1399 * 1400 * Context: Any context. Takes and releases the xa_lock. 1401 * May sleep if the @gfp flags permit. 1402 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry 1403 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation 1404 * failed. 1405 */ 1406 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1407 { 1408 void *curr; 1409 1410 xa_lock(xa); 1411 curr = __xa_store(xa, index, entry, gfp); 1412 xa_unlock(xa); 1413 1414 return curr; 1415 } 1416 EXPORT_SYMBOL(xa_store); 1417 1418 /** 1419 * __xa_cmpxchg() - Store this entry in the XArray. 1420 * @xa: XArray. 1421 * @index: Index into array. 1422 * @old: Old value to test against. 1423 * @entry: New entry. 1424 * @gfp: Memory allocation flags. 1425 * 1426 * You must already be holding the xa_lock when calling this function. 1427 * It will drop the lock if needed to allocate memory, and then reacquire 1428 * it afterwards. 1429 * 1430 * Context: Any context. Expects xa_lock to be held on entry. May 1431 * release and reacquire xa_lock if @gfp flags permit. 1432 * Return: The old entry at this index or xa_err() if an error happened. 1433 */ 1434 void *__xa_cmpxchg(struct xarray *xa, unsigned long index, 1435 void *old, void *entry, gfp_t gfp) 1436 { 1437 XA_STATE(xas, xa, index); 1438 void *curr; 1439 1440 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1441 return XA_ERROR(-EINVAL); 1442 1443 do { 1444 curr = xas_load(&xas); 1445 if (curr == old) { 1446 xas_store(&xas, entry); 1447 if (xa_track_free(xa) && entry && !curr) 1448 xas_clear_mark(&xas, XA_FREE_MARK); 1449 } 1450 } while (__xas_nomem(&xas, gfp)); 1451 1452 return xas_result(&xas, curr); 1453 } 1454 EXPORT_SYMBOL(__xa_cmpxchg); 1455 1456 /** 1457 * __xa_insert() - Store this entry in the XArray if no entry is present. 1458 * @xa: XArray. 1459 * @index: Index into array. 1460 * @entry: New entry. 1461 * @gfp: Memory allocation flags. 1462 * 1463 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 1464 * if no entry is present. Inserting will fail if a reserved entry is 1465 * present, even though loading from this index will return NULL. 1466 * 1467 * Context: Any context. Expects xa_lock to be held on entry. May 1468 * release and reacquire xa_lock if @gfp flags permit. 1469 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 1470 * -ENOMEM if memory could not be allocated. 1471 */ 1472 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1473 { 1474 XA_STATE(xas, xa, index); 1475 void *curr; 1476 1477 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1478 return -EINVAL; 1479 if (!entry) 1480 entry = XA_ZERO_ENTRY; 1481 1482 do { 1483 curr = xas_load(&xas); 1484 if (!curr) { 1485 xas_store(&xas, entry); 1486 if (xa_track_free(xa)) 1487 xas_clear_mark(&xas, XA_FREE_MARK); 1488 } else { 1489 xas_set_err(&xas, -EBUSY); 1490 } 1491 } while (__xas_nomem(&xas, gfp)); 1492 1493 return xas_error(&xas); 1494 } 1495 EXPORT_SYMBOL(__xa_insert); 1496 1497 #ifdef CONFIG_XARRAY_MULTI 1498 static void xas_set_range(struct xa_state *xas, unsigned long first, 1499 unsigned long last) 1500 { 1501 unsigned int shift = 0; 1502 unsigned long sibs = last - first; 1503 unsigned int offset = XA_CHUNK_MASK; 1504 1505 xas_set(xas, first); 1506 1507 while ((first & XA_CHUNK_MASK) == 0) { 1508 if (sibs < XA_CHUNK_MASK) 1509 break; 1510 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK)) 1511 break; 1512 shift += XA_CHUNK_SHIFT; 1513 if (offset == XA_CHUNK_MASK) 1514 offset = sibs & XA_CHUNK_MASK; 1515 sibs >>= XA_CHUNK_SHIFT; 1516 first >>= XA_CHUNK_SHIFT; 1517 } 1518 1519 offset = first & XA_CHUNK_MASK; 1520 if (offset + sibs > XA_CHUNK_MASK) 1521 sibs = XA_CHUNK_MASK - offset; 1522 if ((((first + sibs + 1) << shift) - 1) > last) 1523 sibs -= 1; 1524 1525 xas->xa_shift = shift; 1526 xas->xa_sibs = sibs; 1527 } 1528 1529 /** 1530 * xa_store_range() - Store this entry at a range of indices in the XArray. 1531 * @xa: XArray. 1532 * @first: First index to affect. 1533 * @last: Last index to affect. 1534 * @entry: New entry. 1535 * @gfp: Memory allocation flags. 1536 * 1537 * After this function returns, loads from any index between @first and @last, 1538 * inclusive will return @entry. 1539 * Storing into an existing multislot entry updates the entry of every index. 1540 * The marks associated with @index are unaffected unless @entry is %NULL. 1541 * 1542 * Context: Process context. Takes and releases the xa_lock. May sleep 1543 * if the @gfp flags permit. 1544 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in 1545 * an XArray, or xa_err(-ENOMEM) if memory allocation failed. 1546 */ 1547 void *xa_store_range(struct xarray *xa, unsigned long first, 1548 unsigned long last, void *entry, gfp_t gfp) 1549 { 1550 XA_STATE(xas, xa, 0); 1551 1552 if (WARN_ON_ONCE(xa_is_internal(entry))) 1553 return XA_ERROR(-EINVAL); 1554 if (last < first) 1555 return XA_ERROR(-EINVAL); 1556 1557 do { 1558 xas_lock(&xas); 1559 if (entry) { 1560 unsigned int order = BITS_PER_LONG; 1561 if (last + 1) 1562 order = __ffs(last + 1); 1563 xas_set_order(&xas, last, order); 1564 xas_create(&xas, true); 1565 if (xas_error(&xas)) 1566 goto unlock; 1567 } 1568 do { 1569 xas_set_range(&xas, first, last); 1570 xas_store(&xas, entry); 1571 if (xas_error(&xas)) 1572 goto unlock; 1573 first += xas_size(&xas); 1574 } while (first <= last); 1575 unlock: 1576 xas_unlock(&xas); 1577 } while (xas_nomem(&xas, gfp)); 1578 1579 return xas_result(&xas, NULL); 1580 } 1581 EXPORT_SYMBOL(xa_store_range); 1582 #endif /* CONFIG_XARRAY_MULTI */ 1583 1584 /** 1585 * __xa_alloc() - Find somewhere to store this entry in the XArray. 1586 * @xa: XArray. 1587 * @id: Pointer to ID. 1588 * @limit: Range for allocated ID. 1589 * @entry: New entry. 1590 * @gfp: Memory allocation flags. 1591 * 1592 * Finds an empty entry in @xa between @limit.min and @limit.max, 1593 * stores the index into the @id pointer, then stores the entry at 1594 * that index. A concurrent lookup will not see an uninitialised @id. 1595 * 1596 * Context: Any context. Expects xa_lock to be held on entry. May 1597 * release and reacquire xa_lock if @gfp flags permit. 1598 * Return: 0 on success, -ENOMEM if memory could not be allocated or 1599 * -EBUSY if there are no free entries in @limit. 1600 */ 1601 int __xa_alloc(struct xarray *xa, u32 *id, void *entry, 1602 struct xa_limit limit, gfp_t gfp) 1603 { 1604 XA_STATE(xas, xa, 0); 1605 1606 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1607 return -EINVAL; 1608 if (WARN_ON_ONCE(!xa_track_free(xa))) 1609 return -EINVAL; 1610 1611 if (!entry) 1612 entry = XA_ZERO_ENTRY; 1613 1614 do { 1615 xas.xa_index = limit.min; 1616 xas_find_marked(&xas, limit.max, XA_FREE_MARK); 1617 if (xas.xa_node == XAS_RESTART) 1618 xas_set_err(&xas, -EBUSY); 1619 else 1620 *id = xas.xa_index; 1621 xas_store(&xas, entry); 1622 xas_clear_mark(&xas, XA_FREE_MARK); 1623 } while (__xas_nomem(&xas, gfp)); 1624 1625 return xas_error(&xas); 1626 } 1627 EXPORT_SYMBOL(__xa_alloc); 1628 1629 /** 1630 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. 1631 * @xa: XArray. 1632 * @id: Pointer to ID. 1633 * @entry: New entry. 1634 * @limit: Range of allocated ID. 1635 * @next: Pointer to next ID to allocate. 1636 * @gfp: Memory allocation flags. 1637 * 1638 * Finds an empty entry in @xa between @limit.min and @limit.max, 1639 * stores the index into the @id pointer, then stores the entry at 1640 * that index. A concurrent lookup will not see an uninitialised @id. 1641 * The search for an empty entry will start at @next and will wrap 1642 * around if necessary. 1643 * 1644 * Context: Any context. Expects xa_lock to be held on entry. May 1645 * release and reacquire xa_lock if @gfp flags permit. 1646 * Return: 0 if the allocation succeeded without wrapping. 1 if the 1647 * allocation succeeded after wrapping, -ENOMEM if memory could not be 1648 * allocated or -EBUSY if there are no free entries in @limit. 1649 */ 1650 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, 1651 struct xa_limit limit, u32 *next, gfp_t gfp) 1652 { 1653 u32 min = limit.min; 1654 int ret; 1655 1656 limit.min = max(min, *next); 1657 ret = __xa_alloc(xa, id, entry, limit, gfp); 1658 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) { 1659 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED; 1660 ret = 1; 1661 } 1662 1663 if (ret < 0 && limit.min > min) { 1664 limit.min = min; 1665 ret = __xa_alloc(xa, id, entry, limit, gfp); 1666 if (ret == 0) 1667 ret = 1; 1668 } 1669 1670 if (ret >= 0) { 1671 *next = *id + 1; 1672 if (*next == 0) 1673 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED; 1674 } 1675 return ret; 1676 } 1677 EXPORT_SYMBOL(__xa_alloc_cyclic); 1678 1679 /** 1680 * __xa_set_mark() - Set this mark on this entry while locked. 1681 * @xa: XArray. 1682 * @index: Index of entry. 1683 * @mark: Mark number. 1684 * 1685 * Attempting to set a mark on a %NULL entry does not succeed. 1686 * 1687 * Context: Any context. Expects xa_lock to be held on entry. 1688 */ 1689 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1690 { 1691 XA_STATE(xas, xa, index); 1692 void *entry = xas_load(&xas); 1693 1694 if (entry) 1695 xas_set_mark(&xas, mark); 1696 } 1697 EXPORT_SYMBOL(__xa_set_mark); 1698 1699 /** 1700 * __xa_clear_mark() - Clear this mark on this entry while locked. 1701 * @xa: XArray. 1702 * @index: Index of entry. 1703 * @mark: Mark number. 1704 * 1705 * Context: Any context. Expects xa_lock to be held on entry. 1706 */ 1707 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1708 { 1709 XA_STATE(xas, xa, index); 1710 void *entry = xas_load(&xas); 1711 1712 if (entry) 1713 xas_clear_mark(&xas, mark); 1714 } 1715 EXPORT_SYMBOL(__xa_clear_mark); 1716 1717 /** 1718 * xa_get_mark() - Inquire whether this mark is set on this entry. 1719 * @xa: XArray. 1720 * @index: Index of entry. 1721 * @mark: Mark number. 1722 * 1723 * This function uses the RCU read lock, so the result may be out of date 1724 * by the time it returns. If you need the result to be stable, use a lock. 1725 * 1726 * Context: Any context. Takes and releases the RCU lock. 1727 * Return: True if the entry at @index has this mark set, false if it doesn't. 1728 */ 1729 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1730 { 1731 XA_STATE(xas, xa, index); 1732 void *entry; 1733 1734 rcu_read_lock(); 1735 entry = xas_start(&xas); 1736 while (xas_get_mark(&xas, mark)) { 1737 if (!xa_is_node(entry)) 1738 goto found; 1739 entry = xas_descend(&xas, xa_to_node(entry)); 1740 } 1741 rcu_read_unlock(); 1742 return false; 1743 found: 1744 rcu_read_unlock(); 1745 return true; 1746 } 1747 EXPORT_SYMBOL(xa_get_mark); 1748 1749 /** 1750 * xa_set_mark() - Set this mark on this entry. 1751 * @xa: XArray. 1752 * @index: Index of entry. 1753 * @mark: Mark number. 1754 * 1755 * Attempting to set a mark on a %NULL entry does not succeed. 1756 * 1757 * Context: Process context. Takes and releases the xa_lock. 1758 */ 1759 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1760 { 1761 xa_lock(xa); 1762 __xa_set_mark(xa, index, mark); 1763 xa_unlock(xa); 1764 } 1765 EXPORT_SYMBOL(xa_set_mark); 1766 1767 /** 1768 * xa_clear_mark() - Clear this mark on this entry. 1769 * @xa: XArray. 1770 * @index: Index of entry. 1771 * @mark: Mark number. 1772 * 1773 * Clearing a mark always succeeds. 1774 * 1775 * Context: Process context. Takes and releases the xa_lock. 1776 */ 1777 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1778 { 1779 xa_lock(xa); 1780 __xa_clear_mark(xa, index, mark); 1781 xa_unlock(xa); 1782 } 1783 EXPORT_SYMBOL(xa_clear_mark); 1784 1785 /** 1786 * xa_find() - Search the XArray for an entry. 1787 * @xa: XArray. 1788 * @indexp: Pointer to an index. 1789 * @max: Maximum index to search to. 1790 * @filter: Selection criterion. 1791 * 1792 * Finds the entry in @xa which matches the @filter, and has the lowest 1793 * index that is at least @indexp and no more than @max. 1794 * If an entry is found, @indexp is updated to be the index of the entry. 1795 * This function is protected by the RCU read lock, so it may not find 1796 * entries which are being simultaneously added. It will not return an 1797 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 1798 * 1799 * Context: Any context. Takes and releases the RCU lock. 1800 * Return: The entry, if found, otherwise %NULL. 1801 */ 1802 void *xa_find(struct xarray *xa, unsigned long *indexp, 1803 unsigned long max, xa_mark_t filter) 1804 { 1805 XA_STATE(xas, xa, *indexp); 1806 void *entry; 1807 1808 rcu_read_lock(); 1809 do { 1810 if ((__force unsigned int)filter < XA_MAX_MARKS) 1811 entry = xas_find_marked(&xas, max, filter); 1812 else 1813 entry = xas_find(&xas, max); 1814 } while (xas_retry(&xas, entry)); 1815 rcu_read_unlock(); 1816 1817 if (entry) 1818 *indexp = xas.xa_index; 1819 return entry; 1820 } 1821 EXPORT_SYMBOL(xa_find); 1822 1823 /** 1824 * xa_find_after() - Search the XArray for a present entry. 1825 * @xa: XArray. 1826 * @indexp: Pointer to an index. 1827 * @max: Maximum index to search to. 1828 * @filter: Selection criterion. 1829 * 1830 * Finds the entry in @xa which matches the @filter and has the lowest 1831 * index that is above @indexp and no more than @max. 1832 * If an entry is found, @indexp is updated to be the index of the entry. 1833 * This function is protected by the RCU read lock, so it may miss entries 1834 * which are being simultaneously added. It will not return an 1835 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 1836 * 1837 * Context: Any context. Takes and releases the RCU lock. 1838 * Return: The pointer, if found, otherwise %NULL. 1839 */ 1840 void *xa_find_after(struct xarray *xa, unsigned long *indexp, 1841 unsigned long max, xa_mark_t filter) 1842 { 1843 XA_STATE(xas, xa, *indexp + 1); 1844 void *entry; 1845 1846 rcu_read_lock(); 1847 for (;;) { 1848 if ((__force unsigned int)filter < XA_MAX_MARKS) 1849 entry = xas_find_marked(&xas, max, filter); 1850 else 1851 entry = xas_find(&xas, max); 1852 if (xas.xa_node == XAS_BOUNDS) 1853 break; 1854 if (xas.xa_shift) { 1855 if (xas.xa_index & ((1UL << xas.xa_shift) - 1)) 1856 continue; 1857 } else { 1858 if (xas.xa_offset < (xas.xa_index & XA_CHUNK_MASK)) 1859 continue; 1860 } 1861 if (!xas_retry(&xas, entry)) 1862 break; 1863 } 1864 rcu_read_unlock(); 1865 1866 if (entry) 1867 *indexp = xas.xa_index; 1868 return entry; 1869 } 1870 EXPORT_SYMBOL(xa_find_after); 1871 1872 static unsigned int xas_extract_present(struct xa_state *xas, void **dst, 1873 unsigned long max, unsigned int n) 1874 { 1875 void *entry; 1876 unsigned int i = 0; 1877 1878 rcu_read_lock(); 1879 xas_for_each(xas, entry, max) { 1880 if (xas_retry(xas, entry)) 1881 continue; 1882 dst[i++] = entry; 1883 if (i == n) 1884 break; 1885 } 1886 rcu_read_unlock(); 1887 1888 return i; 1889 } 1890 1891 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst, 1892 unsigned long max, unsigned int n, xa_mark_t mark) 1893 { 1894 void *entry; 1895 unsigned int i = 0; 1896 1897 rcu_read_lock(); 1898 xas_for_each_marked(xas, entry, max, mark) { 1899 if (xas_retry(xas, entry)) 1900 continue; 1901 dst[i++] = entry; 1902 if (i == n) 1903 break; 1904 } 1905 rcu_read_unlock(); 1906 1907 return i; 1908 } 1909 1910 /** 1911 * xa_extract() - Copy selected entries from the XArray into a normal array. 1912 * @xa: The source XArray to copy from. 1913 * @dst: The buffer to copy entries into. 1914 * @start: The first index in the XArray eligible to be selected. 1915 * @max: The last index in the XArray eligible to be selected. 1916 * @n: The maximum number of entries to copy. 1917 * @filter: Selection criterion. 1918 * 1919 * Copies up to @n entries that match @filter from the XArray. The 1920 * copied entries will have indices between @start and @max, inclusive. 1921 * 1922 * The @filter may be an XArray mark value, in which case entries which are 1923 * marked with that mark will be copied. It may also be %XA_PRESENT, in 1924 * which case all entries which are not %NULL will be copied. 1925 * 1926 * The entries returned may not represent a snapshot of the XArray at a 1927 * moment in time. For example, if another thread stores to index 5, then 1928 * index 10, calling xa_extract() may return the old contents of index 5 1929 * and the new contents of index 10. Indices not modified while this 1930 * function is running will not be skipped. 1931 * 1932 * If you need stronger guarantees, holding the xa_lock across calls to this 1933 * function will prevent concurrent modification. 1934 * 1935 * Context: Any context. Takes and releases the RCU lock. 1936 * Return: The number of entries copied. 1937 */ 1938 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start, 1939 unsigned long max, unsigned int n, xa_mark_t filter) 1940 { 1941 XA_STATE(xas, xa, start); 1942 1943 if (!n) 1944 return 0; 1945 1946 if ((__force unsigned int)filter < XA_MAX_MARKS) 1947 return xas_extract_marked(&xas, dst, max, n, filter); 1948 return xas_extract_present(&xas, dst, max, n); 1949 } 1950 EXPORT_SYMBOL(xa_extract); 1951 1952 /** 1953 * xa_destroy() - Free all internal data structures. 1954 * @xa: XArray. 1955 * 1956 * After calling this function, the XArray is empty and has freed all memory 1957 * allocated for its internal data structures. You are responsible for 1958 * freeing the objects referenced by the XArray. 1959 * 1960 * Context: Any context. Takes and releases the xa_lock, interrupt-safe. 1961 */ 1962 void xa_destroy(struct xarray *xa) 1963 { 1964 XA_STATE(xas, xa, 0); 1965 unsigned long flags; 1966 void *entry; 1967 1968 xas.xa_node = NULL; 1969 xas_lock_irqsave(&xas, flags); 1970 entry = xa_head_locked(xa); 1971 RCU_INIT_POINTER(xa->xa_head, NULL); 1972 xas_init_marks(&xas); 1973 if (xa_zero_busy(xa)) 1974 xa_mark_clear(xa, XA_FREE_MARK); 1975 /* lockdep checks we're still holding the lock in xas_free_nodes() */ 1976 if (xa_is_node(entry)) 1977 xas_free_nodes(&xas, xa_to_node(entry)); 1978 xas_unlock_irqrestore(&xas, flags); 1979 } 1980 EXPORT_SYMBOL(xa_destroy); 1981 1982 #ifdef XA_DEBUG 1983 void xa_dump_node(const struct xa_node *node) 1984 { 1985 unsigned i, j; 1986 1987 if (!node) 1988 return; 1989 if ((unsigned long)node & 3) { 1990 pr_cont("node %px\n", node); 1991 return; 1992 } 1993 1994 pr_cont("node %px %s %d parent %px shift %d count %d values %d " 1995 "array %px list %px %px marks", 1996 node, node->parent ? "offset" : "max", node->offset, 1997 node->parent, node->shift, node->count, node->nr_values, 1998 node->array, node->private_list.prev, node->private_list.next); 1999 for (i = 0; i < XA_MAX_MARKS; i++) 2000 for (j = 0; j < XA_MARK_LONGS; j++) 2001 pr_cont(" %lx", node->marks[i][j]); 2002 pr_cont("\n"); 2003 } 2004 2005 void xa_dump_index(unsigned long index, unsigned int shift) 2006 { 2007 if (!shift) 2008 pr_info("%lu: ", index); 2009 else if (shift >= BITS_PER_LONG) 2010 pr_info("0-%lu: ", ~0UL); 2011 else 2012 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1)); 2013 } 2014 2015 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift) 2016 { 2017 if (!entry) 2018 return; 2019 2020 xa_dump_index(index, shift); 2021 2022 if (xa_is_node(entry)) { 2023 if (shift == 0) { 2024 pr_cont("%px\n", entry); 2025 } else { 2026 unsigned long i; 2027 struct xa_node *node = xa_to_node(entry); 2028 xa_dump_node(node); 2029 for (i = 0; i < XA_CHUNK_SIZE; i++) 2030 xa_dump_entry(node->slots[i], 2031 index + (i << node->shift), node->shift); 2032 } 2033 } else if (xa_is_value(entry)) 2034 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry), 2035 xa_to_value(entry), entry); 2036 else if (!xa_is_internal(entry)) 2037 pr_cont("%px\n", entry); 2038 else if (xa_is_retry(entry)) 2039 pr_cont("retry (%ld)\n", xa_to_internal(entry)); 2040 else if (xa_is_sibling(entry)) 2041 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry)); 2042 else if (xa_is_zero(entry)) 2043 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 2044 else 2045 pr_cont("UNKNOWN ENTRY (%px)\n", entry); 2046 } 2047 2048 void xa_dump(const struct xarray *xa) 2049 { 2050 void *entry = xa->xa_head; 2051 unsigned int shift = 0; 2052 2053 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry, 2054 xa->xa_flags, xa_marked(xa, XA_MARK_0), 2055 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2)); 2056 if (xa_is_node(entry)) 2057 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT; 2058 xa_dump_entry(entry, 0, shift); 2059 } 2060 #endif 2061