1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * XArray implementation 4 * Copyright (c) 2017 Microsoft Corporation 5 * Author: Matthew Wilcox <willy@infradead.org> 6 */ 7 8 #include <linux/bitmap.h> 9 #include <linux/export.h> 10 #include <linux/list.h> 11 #include <linux/slab.h> 12 #include <linux/xarray.h> 13 14 /* 15 * Coding conventions in this file: 16 * 17 * @xa is used to refer to the entire xarray. 18 * @xas is the 'xarray operation state'. It may be either a pointer to 19 * an xa_state, or an xa_state stored on the stack. This is an unfortunate 20 * ambiguity. 21 * @index is the index of the entry being operated on 22 * @mark is an xa_mark_t; a small number indicating one of the mark bits. 23 * @node refers to an xa_node; usually the primary one being operated on by 24 * this function. 25 * @offset is the index into the slots array inside an xa_node. 26 * @parent refers to the @xa_node closer to the head than @node. 27 * @entry refers to something stored in a slot in the xarray 28 */ 29 30 static inline unsigned int xa_lock_type(const struct xarray *xa) 31 { 32 return (__force unsigned int)xa->xa_flags & 3; 33 } 34 35 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type) 36 { 37 if (lock_type == XA_LOCK_IRQ) 38 xas_lock_irq(xas); 39 else if (lock_type == XA_LOCK_BH) 40 xas_lock_bh(xas); 41 else 42 xas_lock(xas); 43 } 44 45 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type) 46 { 47 if (lock_type == XA_LOCK_IRQ) 48 xas_unlock_irq(xas); 49 else if (lock_type == XA_LOCK_BH) 50 xas_unlock_bh(xas); 51 else 52 xas_unlock(xas); 53 } 54 55 static inline bool xa_track_free(const struct xarray *xa) 56 { 57 return xa->xa_flags & XA_FLAGS_TRACK_FREE; 58 } 59 60 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark) 61 { 62 if (!(xa->xa_flags & XA_FLAGS_MARK(mark))) 63 xa->xa_flags |= XA_FLAGS_MARK(mark); 64 } 65 66 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark) 67 { 68 if (xa->xa_flags & XA_FLAGS_MARK(mark)) 69 xa->xa_flags &= ~(XA_FLAGS_MARK(mark)); 70 } 71 72 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark) 73 { 74 return node->marks[(__force unsigned)mark]; 75 } 76 77 static inline bool node_get_mark(struct xa_node *node, 78 unsigned int offset, xa_mark_t mark) 79 { 80 return test_bit(offset, node_marks(node, mark)); 81 } 82 83 /* returns true if the bit was set */ 84 static inline bool node_set_mark(struct xa_node *node, unsigned int offset, 85 xa_mark_t mark) 86 { 87 return __test_and_set_bit(offset, node_marks(node, mark)); 88 } 89 90 /* returns true if the bit was set */ 91 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset, 92 xa_mark_t mark) 93 { 94 return __test_and_clear_bit(offset, node_marks(node, mark)); 95 } 96 97 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark) 98 { 99 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE); 100 } 101 102 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark) 103 { 104 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE); 105 } 106 107 #define mark_inc(mark) do { \ 108 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \ 109 } while (0) 110 111 /* 112 * xas_squash_marks() - Merge all marks to the first entry 113 * @xas: Array operation state. 114 * 115 * Set a mark on the first entry if any entry has it set. Clear marks on 116 * all sibling entries. 117 */ 118 static void xas_squash_marks(const struct xa_state *xas) 119 { 120 unsigned int mark = 0; 121 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1; 122 123 if (!xas->xa_sibs) 124 return; 125 126 do { 127 unsigned long *marks = xas->xa_node->marks[mark]; 128 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit) 129 continue; 130 __set_bit(xas->xa_offset, marks); 131 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs); 132 } while (mark++ != (__force unsigned)XA_MARK_MAX); 133 } 134 135 /* extracts the offset within this node from the index */ 136 static unsigned int get_offset(unsigned long index, struct xa_node *node) 137 { 138 return (index >> node->shift) & XA_CHUNK_MASK; 139 } 140 141 static void xas_set_offset(struct xa_state *xas) 142 { 143 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node); 144 } 145 146 /* move the index either forwards (find) or backwards (sibling slot) */ 147 static void xas_move_index(struct xa_state *xas, unsigned long offset) 148 { 149 unsigned int shift = xas->xa_node->shift; 150 xas->xa_index &= ~XA_CHUNK_MASK << shift; 151 xas->xa_index += offset << shift; 152 } 153 154 static void xas_advance(struct xa_state *xas) 155 { 156 xas->xa_offset++; 157 xas_move_index(xas, xas->xa_offset); 158 } 159 160 static void *set_bounds(struct xa_state *xas) 161 { 162 xas->xa_node = XAS_BOUNDS; 163 return NULL; 164 } 165 166 /* 167 * Starts a walk. If the @xas is already valid, we assume that it's on 168 * the right path and just return where we've got to. If we're in an 169 * error state, return NULL. If the index is outside the current scope 170 * of the xarray, return NULL without changing @xas->xa_node. Otherwise 171 * set @xas->xa_node to NULL and return the current head of the array. 172 */ 173 static void *xas_start(struct xa_state *xas) 174 { 175 void *entry; 176 177 if (xas_valid(xas)) 178 return xas_reload(xas); 179 if (xas_error(xas)) 180 return NULL; 181 182 entry = xa_head(xas->xa); 183 if (!xa_is_node(entry)) { 184 if (xas->xa_index) 185 return set_bounds(xas); 186 } else { 187 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK) 188 return set_bounds(xas); 189 } 190 191 xas->xa_node = NULL; 192 return entry; 193 } 194 195 static void *xas_descend(struct xa_state *xas, struct xa_node *node) 196 { 197 unsigned int offset = get_offset(xas->xa_index, node); 198 void *entry = xa_entry(xas->xa, node, offset); 199 200 xas->xa_node = node; 201 if (xa_is_sibling(entry)) { 202 offset = xa_to_sibling(entry); 203 entry = xa_entry(xas->xa, node, offset); 204 } 205 206 xas->xa_offset = offset; 207 return entry; 208 } 209 210 /** 211 * xas_load() - Load an entry from the XArray (advanced). 212 * @xas: XArray operation state. 213 * 214 * Usually walks the @xas to the appropriate state to load the entry 215 * stored at xa_index. However, it will do nothing and return %NULL if 216 * @xas is in an error state. xas_load() will never expand the tree. 217 * 218 * If the xa_state is set up to operate on a multi-index entry, xas_load() 219 * may return %NULL or an internal entry, even if there are entries 220 * present within the range specified by @xas. 221 * 222 * Context: Any context. The caller should hold the xa_lock or the RCU lock. 223 * Return: Usually an entry in the XArray, but see description for exceptions. 224 */ 225 void *xas_load(struct xa_state *xas) 226 { 227 void *entry = xas_start(xas); 228 229 while (xa_is_node(entry)) { 230 struct xa_node *node = xa_to_node(entry); 231 232 if (xas->xa_shift > node->shift) 233 break; 234 entry = xas_descend(xas, node); 235 if (node->shift == 0) 236 break; 237 } 238 return entry; 239 } 240 EXPORT_SYMBOL_GPL(xas_load); 241 242 /* Move the radix tree node cache here */ 243 extern struct kmem_cache *radix_tree_node_cachep; 244 extern void radix_tree_node_rcu_free(struct rcu_head *head); 245 246 #define XA_RCU_FREE ((struct xarray *)1) 247 248 static void xa_node_free(struct xa_node *node) 249 { 250 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 251 node->array = XA_RCU_FREE; 252 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 253 } 254 255 /* 256 * xas_destroy() - Free any resources allocated during the XArray operation. 257 * @xas: XArray operation state. 258 * 259 * This function is now internal-only. 260 */ 261 static void xas_destroy(struct xa_state *xas) 262 { 263 struct xa_node *node = xas->xa_alloc; 264 265 if (!node) 266 return; 267 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 268 kmem_cache_free(radix_tree_node_cachep, node); 269 xas->xa_alloc = NULL; 270 } 271 272 /** 273 * xas_nomem() - Allocate memory if needed. 274 * @xas: XArray operation state. 275 * @gfp: Memory allocation flags. 276 * 277 * If we need to add new nodes to the XArray, we try to allocate memory 278 * with GFP_NOWAIT while holding the lock, which will usually succeed. 279 * If it fails, @xas is flagged as needing memory to continue. The caller 280 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds, 281 * the caller should retry the operation. 282 * 283 * Forward progress is guaranteed as one node is allocated here and 284 * stored in the xa_state where it will be found by xas_alloc(). More 285 * nodes will likely be found in the slab allocator, but we do not tie 286 * them up here. 287 * 288 * Return: true if memory was needed, and was successfully allocated. 289 */ 290 bool xas_nomem(struct xa_state *xas, gfp_t gfp) 291 { 292 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 293 xas_destroy(xas); 294 return false; 295 } 296 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); 297 if (!xas->xa_alloc) 298 return false; 299 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 300 xas->xa_node = XAS_RESTART; 301 return true; 302 } 303 EXPORT_SYMBOL_GPL(xas_nomem); 304 305 /* 306 * __xas_nomem() - Drop locks and allocate memory if needed. 307 * @xas: XArray operation state. 308 * @gfp: Memory allocation flags. 309 * 310 * Internal variant of xas_nomem(). 311 * 312 * Return: true if memory was needed, and was successfully allocated. 313 */ 314 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp) 315 __must_hold(xas->xa->xa_lock) 316 { 317 unsigned int lock_type = xa_lock_type(xas->xa); 318 319 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 320 xas_destroy(xas); 321 return false; 322 } 323 if (gfpflags_allow_blocking(gfp)) { 324 xas_unlock_type(xas, lock_type); 325 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); 326 xas_lock_type(xas, lock_type); 327 } else { 328 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); 329 } 330 if (!xas->xa_alloc) 331 return false; 332 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 333 xas->xa_node = XAS_RESTART; 334 return true; 335 } 336 337 static void xas_update(struct xa_state *xas, struct xa_node *node) 338 { 339 if (xas->xa_update) 340 xas->xa_update(node); 341 else 342 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 343 } 344 345 static void *xas_alloc(struct xa_state *xas, unsigned int shift) 346 { 347 struct xa_node *parent = xas->xa_node; 348 struct xa_node *node = xas->xa_alloc; 349 350 if (xas_invalid(xas)) 351 return NULL; 352 353 if (node) { 354 xas->xa_alloc = NULL; 355 } else { 356 node = kmem_cache_alloc(radix_tree_node_cachep, 357 GFP_NOWAIT | __GFP_NOWARN); 358 if (!node) { 359 xas_set_err(xas, -ENOMEM); 360 return NULL; 361 } 362 } 363 364 if (parent) { 365 node->offset = xas->xa_offset; 366 parent->count++; 367 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE); 368 xas_update(xas, parent); 369 } 370 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 371 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 372 node->shift = shift; 373 node->count = 0; 374 node->nr_values = 0; 375 RCU_INIT_POINTER(node->parent, xas->xa_node); 376 node->array = xas->xa; 377 378 return node; 379 } 380 381 #ifdef CONFIG_XARRAY_MULTI 382 /* Returns the number of indices covered by a given xa_state */ 383 static unsigned long xas_size(const struct xa_state *xas) 384 { 385 return (xas->xa_sibs + 1UL) << xas->xa_shift; 386 } 387 #endif 388 389 /* 390 * Use this to calculate the maximum index that will need to be created 391 * in order to add the entry described by @xas. Because we cannot store a 392 * multiple-index entry at index 0, the calculation is a little more complex 393 * than you might expect. 394 */ 395 static unsigned long xas_max(struct xa_state *xas) 396 { 397 unsigned long max = xas->xa_index; 398 399 #ifdef CONFIG_XARRAY_MULTI 400 if (xas->xa_shift || xas->xa_sibs) { 401 unsigned long mask = xas_size(xas) - 1; 402 max |= mask; 403 if (mask == max) 404 max++; 405 } 406 #endif 407 408 return max; 409 } 410 411 /* The maximum index that can be contained in the array without expanding it */ 412 static unsigned long max_index(void *entry) 413 { 414 if (!xa_is_node(entry)) 415 return 0; 416 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1; 417 } 418 419 static void xas_shrink(struct xa_state *xas) 420 { 421 struct xarray *xa = xas->xa; 422 struct xa_node *node = xas->xa_node; 423 424 for (;;) { 425 void *entry; 426 427 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 428 if (node->count != 1) 429 break; 430 entry = xa_entry_locked(xa, node, 0); 431 if (!entry) 432 break; 433 if (!xa_is_node(entry) && node->shift) 434 break; 435 xas->xa_node = XAS_BOUNDS; 436 437 RCU_INIT_POINTER(xa->xa_head, entry); 438 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK)) 439 xa_mark_clear(xa, XA_FREE_MARK); 440 441 node->count = 0; 442 node->nr_values = 0; 443 if (!xa_is_node(entry)) 444 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY); 445 xas_update(xas, node); 446 xa_node_free(node); 447 if (!xa_is_node(entry)) 448 break; 449 node = xa_to_node(entry); 450 node->parent = NULL; 451 } 452 } 453 454 /* 455 * xas_delete_node() - Attempt to delete an xa_node 456 * @xas: Array operation state. 457 * 458 * Attempts to delete the @xas->xa_node. This will fail if xa->node has 459 * a non-zero reference count. 460 */ 461 static void xas_delete_node(struct xa_state *xas) 462 { 463 struct xa_node *node = xas->xa_node; 464 465 for (;;) { 466 struct xa_node *parent; 467 468 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 469 if (node->count) 470 break; 471 472 parent = xa_parent_locked(xas->xa, node); 473 xas->xa_node = parent; 474 xas->xa_offset = node->offset; 475 xa_node_free(node); 476 477 if (!parent) { 478 xas->xa->xa_head = NULL; 479 xas->xa_node = XAS_BOUNDS; 480 return; 481 } 482 483 parent->slots[xas->xa_offset] = NULL; 484 parent->count--; 485 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE); 486 node = parent; 487 xas_update(xas, node); 488 } 489 490 if (!node->parent) 491 xas_shrink(xas); 492 } 493 494 /** 495 * xas_free_nodes() - Free this node and all nodes that it references 496 * @xas: Array operation state. 497 * @top: Node to free 498 * 499 * This node has been removed from the tree. We must now free it and all 500 * of its subnodes. There may be RCU walkers with references into the tree, 501 * so we must replace all entries with retry markers. 502 */ 503 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top) 504 { 505 unsigned int offset = 0; 506 struct xa_node *node = top; 507 508 for (;;) { 509 void *entry = xa_entry_locked(xas->xa, node, offset); 510 511 if (node->shift && xa_is_node(entry)) { 512 node = xa_to_node(entry); 513 offset = 0; 514 continue; 515 } 516 if (entry) 517 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY); 518 offset++; 519 while (offset == XA_CHUNK_SIZE) { 520 struct xa_node *parent; 521 522 parent = xa_parent_locked(xas->xa, node); 523 offset = node->offset + 1; 524 node->count = 0; 525 node->nr_values = 0; 526 xas_update(xas, node); 527 xa_node_free(node); 528 if (node == top) 529 return; 530 node = parent; 531 } 532 } 533 } 534 535 /* 536 * xas_expand adds nodes to the head of the tree until it has reached 537 * sufficient height to be able to contain @xas->xa_index 538 */ 539 static int xas_expand(struct xa_state *xas, void *head) 540 { 541 struct xarray *xa = xas->xa; 542 struct xa_node *node = NULL; 543 unsigned int shift = 0; 544 unsigned long max = xas_max(xas); 545 546 if (!head) { 547 if (max == 0) 548 return 0; 549 while ((max >> shift) >= XA_CHUNK_SIZE) 550 shift += XA_CHUNK_SHIFT; 551 return shift + XA_CHUNK_SHIFT; 552 } else if (xa_is_node(head)) { 553 node = xa_to_node(head); 554 shift = node->shift + XA_CHUNK_SHIFT; 555 } 556 xas->xa_node = NULL; 557 558 while (max > max_index(head)) { 559 xa_mark_t mark = 0; 560 561 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 562 node = xas_alloc(xas, shift); 563 if (!node) 564 return -ENOMEM; 565 566 node->count = 1; 567 if (xa_is_value(head)) 568 node->nr_values = 1; 569 RCU_INIT_POINTER(node->slots[0], head); 570 571 /* Propagate the aggregated mark info to the new child */ 572 for (;;) { 573 if (xa_track_free(xa) && mark == XA_FREE_MARK) { 574 node_mark_all(node, XA_FREE_MARK); 575 if (!xa_marked(xa, XA_FREE_MARK)) { 576 node_clear_mark(node, 0, XA_FREE_MARK); 577 xa_mark_set(xa, XA_FREE_MARK); 578 } 579 } else if (xa_marked(xa, mark)) { 580 node_set_mark(node, 0, mark); 581 } 582 if (mark == XA_MARK_MAX) 583 break; 584 mark_inc(mark); 585 } 586 587 /* 588 * Now that the new node is fully initialised, we can add 589 * it to the tree 590 */ 591 if (xa_is_node(head)) { 592 xa_to_node(head)->offset = 0; 593 rcu_assign_pointer(xa_to_node(head)->parent, node); 594 } 595 head = xa_mk_node(node); 596 rcu_assign_pointer(xa->xa_head, head); 597 xas_update(xas, node); 598 599 shift += XA_CHUNK_SHIFT; 600 } 601 602 xas->xa_node = node; 603 return shift; 604 } 605 606 /* 607 * xas_create() - Create a slot to store an entry in. 608 * @xas: XArray operation state. 609 * @allow_root: %true if we can store the entry in the root directly 610 * 611 * Most users will not need to call this function directly, as it is called 612 * by xas_store(). It is useful for doing conditional store operations 613 * (see the xa_cmpxchg() implementation for an example). 614 * 615 * Return: If the slot already existed, returns the contents of this slot. 616 * If the slot was newly created, returns %NULL. If it failed to create the 617 * slot, returns %NULL and indicates the error in @xas. 618 */ 619 static void *xas_create(struct xa_state *xas, bool allow_root) 620 { 621 struct xarray *xa = xas->xa; 622 void *entry; 623 void __rcu **slot; 624 struct xa_node *node = xas->xa_node; 625 int shift; 626 unsigned int order = xas->xa_shift; 627 628 if (xas_top(node)) { 629 entry = xa_head_locked(xa); 630 xas->xa_node = NULL; 631 shift = xas_expand(xas, entry); 632 if (shift < 0) 633 return NULL; 634 if (!shift && !allow_root) 635 shift = XA_CHUNK_SHIFT; 636 entry = xa_head_locked(xa); 637 slot = &xa->xa_head; 638 } else if (xas_error(xas)) { 639 return NULL; 640 } else if (node) { 641 unsigned int offset = xas->xa_offset; 642 643 shift = node->shift; 644 entry = xa_entry_locked(xa, node, offset); 645 slot = &node->slots[offset]; 646 } else { 647 shift = 0; 648 entry = xa_head_locked(xa); 649 slot = &xa->xa_head; 650 } 651 652 while (shift > order) { 653 shift -= XA_CHUNK_SHIFT; 654 if (!entry) { 655 node = xas_alloc(xas, shift); 656 if (!node) 657 break; 658 if (xa_track_free(xa)) 659 node_mark_all(node, XA_FREE_MARK); 660 rcu_assign_pointer(*slot, xa_mk_node(node)); 661 } else if (xa_is_node(entry)) { 662 node = xa_to_node(entry); 663 } else { 664 break; 665 } 666 entry = xas_descend(xas, node); 667 slot = &node->slots[xas->xa_offset]; 668 } 669 670 return entry; 671 } 672 673 /** 674 * xas_create_range() - Ensure that stores to this range will succeed 675 * @xas: XArray operation state. 676 * 677 * Creates all of the slots in the range covered by @xas. Sets @xas to 678 * create single-index entries and positions it at the beginning of the 679 * range. This is for the benefit of users which have not yet been 680 * converted to use multi-index entries. 681 */ 682 void xas_create_range(struct xa_state *xas) 683 { 684 unsigned long index = xas->xa_index; 685 unsigned char shift = xas->xa_shift; 686 unsigned char sibs = xas->xa_sibs; 687 688 xas->xa_index |= ((sibs + 1) << shift) - 1; 689 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift) 690 xas->xa_offset |= sibs; 691 xas->xa_shift = 0; 692 xas->xa_sibs = 0; 693 694 for (;;) { 695 xas_create(xas, true); 696 if (xas_error(xas)) 697 goto restore; 698 if (xas->xa_index <= (index | XA_CHUNK_MASK)) 699 goto success; 700 xas->xa_index -= XA_CHUNK_SIZE; 701 702 for (;;) { 703 struct xa_node *node = xas->xa_node; 704 xas->xa_node = xa_parent_locked(xas->xa, node); 705 xas->xa_offset = node->offset - 1; 706 if (node->offset != 0) 707 break; 708 } 709 } 710 711 restore: 712 xas->xa_shift = shift; 713 xas->xa_sibs = sibs; 714 xas->xa_index = index; 715 return; 716 success: 717 xas->xa_index = index; 718 if (xas->xa_node) 719 xas_set_offset(xas); 720 } 721 EXPORT_SYMBOL_GPL(xas_create_range); 722 723 static void update_node(struct xa_state *xas, struct xa_node *node, 724 int count, int values) 725 { 726 if (!node || (!count && !values)) 727 return; 728 729 node->count += count; 730 node->nr_values += values; 731 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 732 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE); 733 xas_update(xas, node); 734 if (count < 0) 735 xas_delete_node(xas); 736 } 737 738 /** 739 * xas_store() - Store this entry in the XArray. 740 * @xas: XArray operation state. 741 * @entry: New entry. 742 * 743 * If @xas is operating on a multi-index entry, the entry returned by this 744 * function is essentially meaningless (it may be an internal entry or it 745 * may be %NULL, even if there are non-NULL entries at some of the indices 746 * covered by the range). This is not a problem for any current users, 747 * and can be changed if needed. 748 * 749 * Return: The old entry at this index. 750 */ 751 void *xas_store(struct xa_state *xas, void *entry) 752 { 753 struct xa_node *node; 754 void __rcu **slot = &xas->xa->xa_head; 755 unsigned int offset, max; 756 int count = 0; 757 int values = 0; 758 void *first, *next; 759 bool value = xa_is_value(entry); 760 761 if (entry) 762 first = xas_create(xas, !xa_is_node(entry)); 763 else 764 first = xas_load(xas); 765 766 if (xas_invalid(xas)) 767 return first; 768 node = xas->xa_node; 769 if (node && (xas->xa_shift < node->shift)) 770 xas->xa_sibs = 0; 771 if ((first == entry) && !xas->xa_sibs) 772 return first; 773 774 next = first; 775 offset = xas->xa_offset; 776 max = xas->xa_offset + xas->xa_sibs; 777 if (node) { 778 slot = &node->slots[offset]; 779 if (xas->xa_sibs) 780 xas_squash_marks(xas); 781 } 782 if (!entry) 783 xas_init_marks(xas); 784 785 for (;;) { 786 /* 787 * Must clear the marks before setting the entry to NULL, 788 * otherwise xas_for_each_marked may find a NULL entry and 789 * stop early. rcu_assign_pointer contains a release barrier 790 * so the mark clearing will appear to happen before the 791 * entry is set to NULL. 792 */ 793 rcu_assign_pointer(*slot, entry); 794 if (xa_is_node(next)) 795 xas_free_nodes(xas, xa_to_node(next)); 796 if (!node) 797 break; 798 count += !next - !entry; 799 values += !xa_is_value(first) - !value; 800 if (entry) { 801 if (offset == max) 802 break; 803 if (!xa_is_sibling(entry)) 804 entry = xa_mk_sibling(xas->xa_offset); 805 } else { 806 if (offset == XA_CHUNK_MASK) 807 break; 808 } 809 next = xa_entry_locked(xas->xa, node, ++offset); 810 if (!xa_is_sibling(next)) { 811 if (!entry && (offset > max)) 812 break; 813 first = next; 814 } 815 slot++; 816 } 817 818 update_node(xas, node, count, values); 819 return first; 820 } 821 EXPORT_SYMBOL_GPL(xas_store); 822 823 /** 824 * xas_get_mark() - Returns the state of this mark. 825 * @xas: XArray operation state. 826 * @mark: Mark number. 827 * 828 * Return: true if the mark is set, false if the mark is clear or @xas 829 * is in an error state. 830 */ 831 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark) 832 { 833 if (xas_invalid(xas)) 834 return false; 835 if (!xas->xa_node) 836 return xa_marked(xas->xa, mark); 837 return node_get_mark(xas->xa_node, xas->xa_offset, mark); 838 } 839 EXPORT_SYMBOL_GPL(xas_get_mark); 840 841 /** 842 * xas_set_mark() - Sets the mark on this entry and its parents. 843 * @xas: XArray operation state. 844 * @mark: Mark number. 845 * 846 * Sets the specified mark on this entry, and walks up the tree setting it 847 * on all the ancestor entries. Does nothing if @xas has not been walked to 848 * an entry, or is in an error state. 849 */ 850 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark) 851 { 852 struct xa_node *node = xas->xa_node; 853 unsigned int offset = xas->xa_offset; 854 855 if (xas_invalid(xas)) 856 return; 857 858 while (node) { 859 if (node_set_mark(node, offset, mark)) 860 return; 861 offset = node->offset; 862 node = xa_parent_locked(xas->xa, node); 863 } 864 865 if (!xa_marked(xas->xa, mark)) 866 xa_mark_set(xas->xa, mark); 867 } 868 EXPORT_SYMBOL_GPL(xas_set_mark); 869 870 /** 871 * xas_clear_mark() - Clears the mark on this entry and its parents. 872 * @xas: XArray operation state. 873 * @mark: Mark number. 874 * 875 * Clears the specified mark on this entry, and walks back to the head 876 * attempting to clear it on all the ancestor entries. Does nothing if 877 * @xas has not been walked to an entry, or is in an error state. 878 */ 879 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark) 880 { 881 struct xa_node *node = xas->xa_node; 882 unsigned int offset = xas->xa_offset; 883 884 if (xas_invalid(xas)) 885 return; 886 887 while (node) { 888 if (!node_clear_mark(node, offset, mark)) 889 return; 890 if (node_any_mark(node, mark)) 891 return; 892 893 offset = node->offset; 894 node = xa_parent_locked(xas->xa, node); 895 } 896 897 if (xa_marked(xas->xa, mark)) 898 xa_mark_clear(xas->xa, mark); 899 } 900 EXPORT_SYMBOL_GPL(xas_clear_mark); 901 902 /** 903 * xas_init_marks() - Initialise all marks for the entry 904 * @xas: Array operations state. 905 * 906 * Initialise all marks for the entry specified by @xas. If we're tracking 907 * free entries with a mark, we need to set it on all entries. All other 908 * marks are cleared. 909 * 910 * This implementation is not as efficient as it could be; we may walk 911 * up the tree multiple times. 912 */ 913 void xas_init_marks(const struct xa_state *xas) 914 { 915 xa_mark_t mark = 0; 916 917 for (;;) { 918 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK) 919 xas_set_mark(xas, mark); 920 else 921 xas_clear_mark(xas, mark); 922 if (mark == XA_MARK_MAX) 923 break; 924 mark_inc(mark); 925 } 926 } 927 EXPORT_SYMBOL_GPL(xas_init_marks); 928 929 /** 930 * xas_pause() - Pause a walk to drop a lock. 931 * @xas: XArray operation state. 932 * 933 * Some users need to pause a walk and drop the lock they're holding in 934 * order to yield to a higher priority thread or carry out an operation 935 * on an entry. Those users should call this function before they drop 936 * the lock. It resets the @xas to be suitable for the next iteration 937 * of the loop after the user has reacquired the lock. If most entries 938 * found during a walk require you to call xas_pause(), the xa_for_each() 939 * iterator may be more appropriate. 940 * 941 * Note that xas_pause() only works for forward iteration. If a user needs 942 * to pause a reverse iteration, we will need a xas_pause_rev(). 943 */ 944 void xas_pause(struct xa_state *xas) 945 { 946 struct xa_node *node = xas->xa_node; 947 948 if (xas_invalid(xas)) 949 return; 950 951 if (node) { 952 unsigned int offset = xas->xa_offset; 953 while (++offset < XA_CHUNK_SIZE) { 954 if (!xa_is_sibling(xa_entry(xas->xa, node, offset))) 955 break; 956 } 957 xas->xa_index += (offset - xas->xa_offset) << node->shift; 958 } else { 959 xas->xa_index++; 960 } 961 xas->xa_node = XAS_RESTART; 962 } 963 EXPORT_SYMBOL_GPL(xas_pause); 964 965 /* 966 * __xas_prev() - Find the previous entry in the XArray. 967 * @xas: XArray operation state. 968 * 969 * Helper function for xas_prev() which handles all the complex cases 970 * out of line. 971 */ 972 void *__xas_prev(struct xa_state *xas) 973 { 974 void *entry; 975 976 if (!xas_frozen(xas->xa_node)) 977 xas->xa_index--; 978 if (xas_not_node(xas->xa_node)) 979 return xas_load(xas); 980 981 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 982 xas->xa_offset--; 983 984 while (xas->xa_offset == 255) { 985 xas->xa_offset = xas->xa_node->offset - 1; 986 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 987 if (!xas->xa_node) 988 return set_bounds(xas); 989 } 990 991 for (;;) { 992 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 993 if (!xa_is_node(entry)) 994 return entry; 995 996 xas->xa_node = xa_to_node(entry); 997 xas_set_offset(xas); 998 } 999 } 1000 EXPORT_SYMBOL_GPL(__xas_prev); 1001 1002 /* 1003 * __xas_next() - Find the next entry in the XArray. 1004 * @xas: XArray operation state. 1005 * 1006 * Helper function for xas_next() which handles all the complex cases 1007 * out of line. 1008 */ 1009 void *__xas_next(struct xa_state *xas) 1010 { 1011 void *entry; 1012 1013 if (!xas_frozen(xas->xa_node)) 1014 xas->xa_index++; 1015 if (xas_not_node(xas->xa_node)) 1016 return xas_load(xas); 1017 1018 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1019 xas->xa_offset++; 1020 1021 while (xas->xa_offset == XA_CHUNK_SIZE) { 1022 xas->xa_offset = xas->xa_node->offset + 1; 1023 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1024 if (!xas->xa_node) 1025 return set_bounds(xas); 1026 } 1027 1028 for (;;) { 1029 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1030 if (!xa_is_node(entry)) 1031 return entry; 1032 1033 xas->xa_node = xa_to_node(entry); 1034 xas_set_offset(xas); 1035 } 1036 } 1037 EXPORT_SYMBOL_GPL(__xas_next); 1038 1039 /** 1040 * xas_find() - Find the next present entry in the XArray. 1041 * @xas: XArray operation state. 1042 * @max: Highest index to return. 1043 * 1044 * If the @xas has not yet been walked to an entry, return the entry 1045 * which has an index >= xas.xa_index. If it has been walked, the entry 1046 * currently being pointed at has been processed, and so we move to the 1047 * next entry. 1048 * 1049 * If no entry is found and the array is smaller than @max, the iterator 1050 * is set to the smallest index not yet in the array. This allows @xas 1051 * to be immediately passed to xas_store(). 1052 * 1053 * Return: The entry, if found, otherwise %NULL. 1054 */ 1055 void *xas_find(struct xa_state *xas, unsigned long max) 1056 { 1057 void *entry; 1058 1059 if (xas_error(xas)) 1060 return NULL; 1061 1062 if (!xas->xa_node) { 1063 xas->xa_index = 1; 1064 return set_bounds(xas); 1065 } else if (xas_top(xas->xa_node)) { 1066 entry = xas_load(xas); 1067 if (entry || xas_not_node(xas->xa_node)) 1068 return entry; 1069 } else if (!xas->xa_node->shift && 1070 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) { 1071 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1; 1072 } 1073 1074 xas_advance(xas); 1075 1076 while (xas->xa_node && (xas->xa_index <= max)) { 1077 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1078 xas->xa_offset = xas->xa_node->offset + 1; 1079 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1080 continue; 1081 } 1082 1083 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1084 if (xa_is_node(entry)) { 1085 xas->xa_node = xa_to_node(entry); 1086 xas->xa_offset = 0; 1087 continue; 1088 } 1089 if (entry && !xa_is_sibling(entry)) 1090 return entry; 1091 1092 xas_advance(xas); 1093 } 1094 1095 if (!xas->xa_node) 1096 xas->xa_node = XAS_BOUNDS; 1097 return NULL; 1098 } 1099 EXPORT_SYMBOL_GPL(xas_find); 1100 1101 /** 1102 * xas_find_marked() - Find the next marked entry in the XArray. 1103 * @xas: XArray operation state. 1104 * @max: Highest index to return. 1105 * @mark: Mark number to search for. 1106 * 1107 * If the @xas has not yet been walked to an entry, return the marked entry 1108 * which has an index >= xas.xa_index. If it has been walked, the entry 1109 * currently being pointed at has been processed, and so we return the 1110 * first marked entry with an index > xas.xa_index. 1111 * 1112 * If no marked entry is found and the array is smaller than @max, @xas is 1113 * set to the bounds state and xas->xa_index is set to the smallest index 1114 * not yet in the array. This allows @xas to be immediately passed to 1115 * xas_store(). 1116 * 1117 * If no entry is found before @max is reached, @xas is set to the restart 1118 * state. 1119 * 1120 * Return: The entry, if found, otherwise %NULL. 1121 */ 1122 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark) 1123 { 1124 bool advance = true; 1125 unsigned int offset; 1126 void *entry; 1127 1128 if (xas_error(xas)) 1129 return NULL; 1130 1131 if (!xas->xa_node) { 1132 xas->xa_index = 1; 1133 goto out; 1134 } else if (xas_top(xas->xa_node)) { 1135 advance = false; 1136 entry = xa_head(xas->xa); 1137 xas->xa_node = NULL; 1138 if (xas->xa_index > max_index(entry)) 1139 goto out; 1140 if (!xa_is_node(entry)) { 1141 if (xa_marked(xas->xa, mark)) 1142 return entry; 1143 xas->xa_index = 1; 1144 goto out; 1145 } 1146 xas->xa_node = xa_to_node(entry); 1147 xas->xa_offset = xas->xa_index >> xas->xa_node->shift; 1148 } 1149 1150 while (xas->xa_index <= max) { 1151 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1152 xas->xa_offset = xas->xa_node->offset + 1; 1153 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1154 if (!xas->xa_node) 1155 break; 1156 advance = false; 1157 continue; 1158 } 1159 1160 if (!advance) { 1161 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1162 if (xa_is_sibling(entry)) { 1163 xas->xa_offset = xa_to_sibling(entry); 1164 xas_move_index(xas, xas->xa_offset); 1165 } 1166 } 1167 1168 offset = xas_find_chunk(xas, advance, mark); 1169 if (offset > xas->xa_offset) { 1170 advance = false; 1171 xas_move_index(xas, offset); 1172 /* Mind the wrap */ 1173 if ((xas->xa_index - 1) >= max) 1174 goto max; 1175 xas->xa_offset = offset; 1176 if (offset == XA_CHUNK_SIZE) 1177 continue; 1178 } 1179 1180 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1181 if (!xa_is_node(entry)) 1182 return entry; 1183 xas->xa_node = xa_to_node(entry); 1184 xas_set_offset(xas); 1185 } 1186 1187 out: 1188 if (xas->xa_index > max) 1189 goto max; 1190 return set_bounds(xas); 1191 max: 1192 xas->xa_node = XAS_RESTART; 1193 return NULL; 1194 } 1195 EXPORT_SYMBOL_GPL(xas_find_marked); 1196 1197 /** 1198 * xas_find_conflict() - Find the next present entry in a range. 1199 * @xas: XArray operation state. 1200 * 1201 * The @xas describes both a range and a position within that range. 1202 * 1203 * Context: Any context. Expects xa_lock to be held. 1204 * Return: The next entry in the range covered by @xas or %NULL. 1205 */ 1206 void *xas_find_conflict(struct xa_state *xas) 1207 { 1208 void *curr; 1209 1210 if (xas_error(xas)) 1211 return NULL; 1212 1213 if (!xas->xa_node) 1214 return NULL; 1215 1216 if (xas_top(xas->xa_node)) { 1217 curr = xas_start(xas); 1218 if (!curr) 1219 return NULL; 1220 while (xa_is_node(curr)) { 1221 struct xa_node *node = xa_to_node(curr); 1222 curr = xas_descend(xas, node); 1223 } 1224 if (curr) 1225 return curr; 1226 } 1227 1228 if (xas->xa_node->shift > xas->xa_shift) 1229 return NULL; 1230 1231 for (;;) { 1232 if (xas->xa_node->shift == xas->xa_shift) { 1233 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs) 1234 break; 1235 } else if (xas->xa_offset == XA_CHUNK_MASK) { 1236 xas->xa_offset = xas->xa_node->offset; 1237 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node); 1238 if (!xas->xa_node) 1239 break; 1240 continue; 1241 } 1242 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset); 1243 if (xa_is_sibling(curr)) 1244 continue; 1245 while (xa_is_node(curr)) { 1246 xas->xa_node = xa_to_node(curr); 1247 xas->xa_offset = 0; 1248 curr = xa_entry_locked(xas->xa, xas->xa_node, 0); 1249 } 1250 if (curr) 1251 return curr; 1252 } 1253 xas->xa_offset -= xas->xa_sibs; 1254 return NULL; 1255 } 1256 EXPORT_SYMBOL_GPL(xas_find_conflict); 1257 1258 /** 1259 * xa_load() - Load an entry from an XArray. 1260 * @xa: XArray. 1261 * @index: index into array. 1262 * 1263 * Context: Any context. Takes and releases the RCU lock. 1264 * Return: The entry at @index in @xa. 1265 */ 1266 void *xa_load(struct xarray *xa, unsigned long index) 1267 { 1268 XA_STATE(xas, xa, index); 1269 void *entry; 1270 1271 rcu_read_lock(); 1272 do { 1273 entry = xas_load(&xas); 1274 if (xa_is_zero(entry)) 1275 entry = NULL; 1276 } while (xas_retry(&xas, entry)); 1277 rcu_read_unlock(); 1278 1279 return entry; 1280 } 1281 EXPORT_SYMBOL(xa_load); 1282 1283 static void *xas_result(struct xa_state *xas, void *curr) 1284 { 1285 if (xa_is_zero(curr)) 1286 return NULL; 1287 if (xas_error(xas)) 1288 curr = xas->xa_node; 1289 return curr; 1290 } 1291 1292 /** 1293 * __xa_erase() - Erase this entry from the XArray while locked. 1294 * @xa: XArray. 1295 * @index: Index into array. 1296 * 1297 * If the entry at this index is a multi-index entry then all indices will 1298 * be erased, and the entry will no longer be a multi-index entry. 1299 * This function expects the xa_lock to be held on entry. 1300 * 1301 * Context: Any context. Expects xa_lock to be held on entry. May 1302 * release and reacquire xa_lock if @gfp flags permit. 1303 * Return: The old entry at this index. 1304 */ 1305 void *__xa_erase(struct xarray *xa, unsigned long index) 1306 { 1307 XA_STATE(xas, xa, index); 1308 return xas_result(&xas, xas_store(&xas, NULL)); 1309 } 1310 EXPORT_SYMBOL(__xa_erase); 1311 1312 /** 1313 * xa_erase() - Erase this entry from the XArray. 1314 * @xa: XArray. 1315 * @index: Index of entry. 1316 * 1317 * This function is the equivalent of calling xa_store() with %NULL as 1318 * the third argument. The XArray does not need to allocate memory, so 1319 * the user does not need to provide GFP flags. 1320 * 1321 * Context: Any context. Takes and releases the xa_lock. 1322 * Return: The entry which used to be at this index. 1323 */ 1324 void *xa_erase(struct xarray *xa, unsigned long index) 1325 { 1326 void *entry; 1327 1328 xa_lock(xa); 1329 entry = __xa_erase(xa, index); 1330 xa_unlock(xa); 1331 1332 return entry; 1333 } 1334 EXPORT_SYMBOL(xa_erase); 1335 1336 /** 1337 * __xa_store() - Store this entry in the XArray. 1338 * @xa: XArray. 1339 * @index: Index into array. 1340 * @entry: New entry. 1341 * @gfp: Memory allocation flags. 1342 * 1343 * You must already be holding the xa_lock when calling this function. 1344 * It will drop the lock if needed to allocate memory, and then reacquire 1345 * it afterwards. 1346 * 1347 * Context: Any context. Expects xa_lock to be held on entry. May 1348 * release and reacquire xa_lock if @gfp flags permit. 1349 * Return: The old entry at this index or xa_err() if an error happened. 1350 */ 1351 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1352 { 1353 XA_STATE(xas, xa, index); 1354 void *curr; 1355 1356 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1357 return XA_ERROR(-EINVAL); 1358 if (xa_track_free(xa) && !entry) 1359 entry = XA_ZERO_ENTRY; 1360 1361 do { 1362 curr = xas_store(&xas, entry); 1363 if (xa_track_free(xa)) 1364 xas_clear_mark(&xas, XA_FREE_MARK); 1365 } while (__xas_nomem(&xas, gfp)); 1366 1367 return xas_result(&xas, curr); 1368 } 1369 EXPORT_SYMBOL(__xa_store); 1370 1371 /** 1372 * xa_store() - Store this entry in the XArray. 1373 * @xa: XArray. 1374 * @index: Index into array. 1375 * @entry: New entry. 1376 * @gfp: Memory allocation flags. 1377 * 1378 * After this function returns, loads from this index will return @entry. 1379 * Storing into an existing multislot entry updates the entry of every index. 1380 * The marks associated with @index are unaffected unless @entry is %NULL. 1381 * 1382 * Context: Any context. Takes and releases the xa_lock. 1383 * May sleep if the @gfp flags permit. 1384 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry 1385 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation 1386 * failed. 1387 */ 1388 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1389 { 1390 void *curr; 1391 1392 xa_lock(xa); 1393 curr = __xa_store(xa, index, entry, gfp); 1394 xa_unlock(xa); 1395 1396 return curr; 1397 } 1398 EXPORT_SYMBOL(xa_store); 1399 1400 /** 1401 * __xa_cmpxchg() - Store this entry in the XArray. 1402 * @xa: XArray. 1403 * @index: Index into array. 1404 * @old: Old value to test against. 1405 * @entry: New entry. 1406 * @gfp: Memory allocation flags. 1407 * 1408 * You must already be holding the xa_lock when calling this function. 1409 * It will drop the lock if needed to allocate memory, and then reacquire 1410 * it afterwards. 1411 * 1412 * Context: Any context. Expects xa_lock to be held on entry. May 1413 * release and reacquire xa_lock if @gfp flags permit. 1414 * Return: The old entry at this index or xa_err() if an error happened. 1415 */ 1416 void *__xa_cmpxchg(struct xarray *xa, unsigned long index, 1417 void *old, void *entry, gfp_t gfp) 1418 { 1419 XA_STATE(xas, xa, index); 1420 void *curr; 1421 1422 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1423 return XA_ERROR(-EINVAL); 1424 if (xa_track_free(xa) && !entry) 1425 entry = XA_ZERO_ENTRY; 1426 1427 do { 1428 curr = xas_load(&xas); 1429 if (curr == XA_ZERO_ENTRY) 1430 curr = NULL; 1431 if (curr == old) { 1432 xas_store(&xas, entry); 1433 if (xa_track_free(xa)) 1434 xas_clear_mark(&xas, XA_FREE_MARK); 1435 } 1436 } while (__xas_nomem(&xas, gfp)); 1437 1438 return xas_result(&xas, curr); 1439 } 1440 EXPORT_SYMBOL(__xa_cmpxchg); 1441 1442 /** 1443 * __xa_insert() - Store this entry in the XArray if no entry is present. 1444 * @xa: XArray. 1445 * @index: Index into array. 1446 * @entry: New entry. 1447 * @gfp: Memory allocation flags. 1448 * 1449 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 1450 * if no entry is present. Inserting will fail if a reserved entry is 1451 * present, even though loading from this index will return NULL. 1452 * 1453 * Context: Any context. Expects xa_lock to be held on entry. May 1454 * release and reacquire xa_lock if @gfp flags permit. 1455 * Return: 0 if the store succeeded. -EEXIST if another entry was present. 1456 * -ENOMEM if memory could not be allocated. 1457 */ 1458 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1459 { 1460 XA_STATE(xas, xa, index); 1461 void *curr; 1462 1463 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1464 return -EINVAL; 1465 if (!entry) 1466 entry = XA_ZERO_ENTRY; 1467 1468 do { 1469 curr = xas_load(&xas); 1470 if (!curr) { 1471 xas_store(&xas, entry); 1472 if (xa_track_free(xa)) 1473 xas_clear_mark(&xas, XA_FREE_MARK); 1474 } else { 1475 xas_set_err(&xas, -EEXIST); 1476 } 1477 } while (__xas_nomem(&xas, gfp)); 1478 1479 return xas_error(&xas); 1480 } 1481 EXPORT_SYMBOL(__xa_insert); 1482 1483 /** 1484 * __xa_reserve() - Reserve this index in the XArray. 1485 * @xa: XArray. 1486 * @index: Index into array. 1487 * @gfp: Memory allocation flags. 1488 * 1489 * Ensures there is somewhere to store an entry at @index in the array. 1490 * If there is already something stored at @index, this function does 1491 * nothing. If there was nothing there, the entry is marked as reserved. 1492 * Loading from a reserved entry returns a %NULL pointer. 1493 * 1494 * If you do not use the entry that you have reserved, call xa_release() 1495 * or xa_erase() to free any unnecessary memory. 1496 * 1497 * Context: Any context. Expects the xa_lock to be held on entry. May 1498 * release the lock, sleep and reacquire the lock if the @gfp flags permit. 1499 * Return: 0 if the reservation succeeded or -ENOMEM if it failed. 1500 */ 1501 int __xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp) 1502 { 1503 XA_STATE(xas, xa, index); 1504 void *curr; 1505 1506 do { 1507 curr = xas_load(&xas); 1508 if (!curr) { 1509 xas_store(&xas, XA_ZERO_ENTRY); 1510 if (xa_track_free(xa)) 1511 xas_clear_mark(&xas, XA_FREE_MARK); 1512 } 1513 } while (__xas_nomem(&xas, gfp)); 1514 1515 return xas_error(&xas); 1516 } 1517 EXPORT_SYMBOL(__xa_reserve); 1518 1519 #ifdef CONFIG_XARRAY_MULTI 1520 static void xas_set_range(struct xa_state *xas, unsigned long first, 1521 unsigned long last) 1522 { 1523 unsigned int shift = 0; 1524 unsigned long sibs = last - first; 1525 unsigned int offset = XA_CHUNK_MASK; 1526 1527 xas_set(xas, first); 1528 1529 while ((first & XA_CHUNK_MASK) == 0) { 1530 if (sibs < XA_CHUNK_MASK) 1531 break; 1532 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK)) 1533 break; 1534 shift += XA_CHUNK_SHIFT; 1535 if (offset == XA_CHUNK_MASK) 1536 offset = sibs & XA_CHUNK_MASK; 1537 sibs >>= XA_CHUNK_SHIFT; 1538 first >>= XA_CHUNK_SHIFT; 1539 } 1540 1541 offset = first & XA_CHUNK_MASK; 1542 if (offset + sibs > XA_CHUNK_MASK) 1543 sibs = XA_CHUNK_MASK - offset; 1544 if ((((first + sibs + 1) << shift) - 1) > last) 1545 sibs -= 1; 1546 1547 xas->xa_shift = shift; 1548 xas->xa_sibs = sibs; 1549 } 1550 1551 /** 1552 * xa_store_range() - Store this entry at a range of indices in the XArray. 1553 * @xa: XArray. 1554 * @first: First index to affect. 1555 * @last: Last index to affect. 1556 * @entry: New entry. 1557 * @gfp: Memory allocation flags. 1558 * 1559 * After this function returns, loads from any index between @first and @last, 1560 * inclusive will return @entry. 1561 * Storing into an existing multislot entry updates the entry of every index. 1562 * The marks associated with @index are unaffected unless @entry is %NULL. 1563 * 1564 * Context: Process context. Takes and releases the xa_lock. May sleep 1565 * if the @gfp flags permit. 1566 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in 1567 * an XArray, or xa_err(-ENOMEM) if memory allocation failed. 1568 */ 1569 void *xa_store_range(struct xarray *xa, unsigned long first, 1570 unsigned long last, void *entry, gfp_t gfp) 1571 { 1572 XA_STATE(xas, xa, 0); 1573 1574 if (WARN_ON_ONCE(xa_is_internal(entry))) 1575 return XA_ERROR(-EINVAL); 1576 if (last < first) 1577 return XA_ERROR(-EINVAL); 1578 1579 do { 1580 xas_lock(&xas); 1581 if (entry) { 1582 unsigned int order = BITS_PER_LONG; 1583 if (last + 1) 1584 order = __ffs(last + 1); 1585 xas_set_order(&xas, last, order); 1586 xas_create(&xas, true); 1587 if (xas_error(&xas)) 1588 goto unlock; 1589 } 1590 do { 1591 xas_set_range(&xas, first, last); 1592 xas_store(&xas, entry); 1593 if (xas_error(&xas)) 1594 goto unlock; 1595 first += xas_size(&xas); 1596 } while (first <= last); 1597 unlock: 1598 xas_unlock(&xas); 1599 } while (xas_nomem(&xas, gfp)); 1600 1601 return xas_result(&xas, NULL); 1602 } 1603 EXPORT_SYMBOL(xa_store_range); 1604 #endif /* CONFIG_XARRAY_MULTI */ 1605 1606 /** 1607 * __xa_alloc() - Find somewhere to store this entry in the XArray. 1608 * @xa: XArray. 1609 * @id: Pointer to ID. 1610 * @max: Maximum ID to allocate (inclusive). 1611 * @entry: New entry. 1612 * @gfp: Memory allocation flags. 1613 * 1614 * Allocates an unused ID in the range specified by @id and @max. 1615 * Updates the @id pointer with the index, then stores the entry at that 1616 * index. A concurrent lookup will not see an uninitialised @id. 1617 * 1618 * Context: Any context. Expects xa_lock to be held on entry. May 1619 * release and reacquire xa_lock if @gfp flags permit. 1620 * Return: 0 on success, -ENOMEM if memory allocation fails or -ENOSPC if 1621 * there is no more space in the XArray. 1622 */ 1623 int __xa_alloc(struct xarray *xa, u32 *id, u32 max, void *entry, gfp_t gfp) 1624 { 1625 XA_STATE(xas, xa, 0); 1626 int err; 1627 1628 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1629 return -EINVAL; 1630 if (WARN_ON_ONCE(!xa_track_free(xa))) 1631 return -EINVAL; 1632 1633 if (!entry) 1634 entry = XA_ZERO_ENTRY; 1635 1636 do { 1637 xas.xa_index = *id; 1638 xas_find_marked(&xas, max, XA_FREE_MARK); 1639 if (xas.xa_node == XAS_RESTART) 1640 xas_set_err(&xas, -ENOSPC); 1641 xas_store(&xas, entry); 1642 xas_clear_mark(&xas, XA_FREE_MARK); 1643 } while (__xas_nomem(&xas, gfp)); 1644 1645 err = xas_error(&xas); 1646 if (!err) 1647 *id = xas.xa_index; 1648 return err; 1649 } 1650 EXPORT_SYMBOL(__xa_alloc); 1651 1652 /** 1653 * __xa_set_mark() - Set this mark on this entry while locked. 1654 * @xa: XArray. 1655 * @index: Index of entry. 1656 * @mark: Mark number. 1657 * 1658 * Attempting to set a mark on a %NULL entry does not succeed. 1659 * 1660 * Context: Any context. Expects xa_lock to be held on entry. 1661 */ 1662 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1663 { 1664 XA_STATE(xas, xa, index); 1665 void *entry = xas_load(&xas); 1666 1667 if (entry) 1668 xas_set_mark(&xas, mark); 1669 } 1670 EXPORT_SYMBOL(__xa_set_mark); 1671 1672 /** 1673 * __xa_clear_mark() - Clear this mark on this entry while locked. 1674 * @xa: XArray. 1675 * @index: Index of entry. 1676 * @mark: Mark number. 1677 * 1678 * Context: Any context. Expects xa_lock to be held on entry. 1679 */ 1680 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1681 { 1682 XA_STATE(xas, xa, index); 1683 void *entry = xas_load(&xas); 1684 1685 if (entry) 1686 xas_clear_mark(&xas, mark); 1687 } 1688 EXPORT_SYMBOL(__xa_clear_mark); 1689 1690 /** 1691 * xa_get_mark() - Inquire whether this mark is set on this entry. 1692 * @xa: XArray. 1693 * @index: Index of entry. 1694 * @mark: Mark number. 1695 * 1696 * This function uses the RCU read lock, so the result may be out of date 1697 * by the time it returns. If you need the result to be stable, use a lock. 1698 * 1699 * Context: Any context. Takes and releases the RCU lock. 1700 * Return: True if the entry at @index has this mark set, false if it doesn't. 1701 */ 1702 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1703 { 1704 XA_STATE(xas, xa, index); 1705 void *entry; 1706 1707 rcu_read_lock(); 1708 entry = xas_start(&xas); 1709 while (xas_get_mark(&xas, mark)) { 1710 if (!xa_is_node(entry)) 1711 goto found; 1712 entry = xas_descend(&xas, xa_to_node(entry)); 1713 } 1714 rcu_read_unlock(); 1715 return false; 1716 found: 1717 rcu_read_unlock(); 1718 return true; 1719 } 1720 EXPORT_SYMBOL(xa_get_mark); 1721 1722 /** 1723 * xa_set_mark() - Set this mark on this entry. 1724 * @xa: XArray. 1725 * @index: Index of entry. 1726 * @mark: Mark number. 1727 * 1728 * Attempting to set a mark on a %NULL entry does not succeed. 1729 * 1730 * Context: Process context. Takes and releases the xa_lock. 1731 */ 1732 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1733 { 1734 xa_lock(xa); 1735 __xa_set_mark(xa, index, mark); 1736 xa_unlock(xa); 1737 } 1738 EXPORT_SYMBOL(xa_set_mark); 1739 1740 /** 1741 * xa_clear_mark() - Clear this mark on this entry. 1742 * @xa: XArray. 1743 * @index: Index of entry. 1744 * @mark: Mark number. 1745 * 1746 * Clearing a mark always succeeds. 1747 * 1748 * Context: Process context. Takes and releases the xa_lock. 1749 */ 1750 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1751 { 1752 xa_lock(xa); 1753 __xa_clear_mark(xa, index, mark); 1754 xa_unlock(xa); 1755 } 1756 EXPORT_SYMBOL(xa_clear_mark); 1757 1758 /** 1759 * xa_find() - Search the XArray for an entry. 1760 * @xa: XArray. 1761 * @indexp: Pointer to an index. 1762 * @max: Maximum index to search to. 1763 * @filter: Selection criterion. 1764 * 1765 * Finds the entry in @xa which matches the @filter, and has the lowest 1766 * index that is at least @indexp and no more than @max. 1767 * If an entry is found, @indexp is updated to be the index of the entry. 1768 * This function is protected by the RCU read lock, so it may not find 1769 * entries which are being simultaneously added. It will not return an 1770 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 1771 * 1772 * Context: Any context. Takes and releases the RCU lock. 1773 * Return: The entry, if found, otherwise %NULL. 1774 */ 1775 void *xa_find(struct xarray *xa, unsigned long *indexp, 1776 unsigned long max, xa_mark_t filter) 1777 { 1778 XA_STATE(xas, xa, *indexp); 1779 void *entry; 1780 1781 rcu_read_lock(); 1782 do { 1783 if ((__force unsigned int)filter < XA_MAX_MARKS) 1784 entry = xas_find_marked(&xas, max, filter); 1785 else 1786 entry = xas_find(&xas, max); 1787 } while (xas_retry(&xas, entry)); 1788 rcu_read_unlock(); 1789 1790 if (entry) 1791 *indexp = xas.xa_index; 1792 return entry; 1793 } 1794 EXPORT_SYMBOL(xa_find); 1795 1796 /** 1797 * xa_find_after() - Search the XArray for a present entry. 1798 * @xa: XArray. 1799 * @indexp: Pointer to an index. 1800 * @max: Maximum index to search to. 1801 * @filter: Selection criterion. 1802 * 1803 * Finds the entry in @xa which matches the @filter and has the lowest 1804 * index that is above @indexp and no more than @max. 1805 * If an entry is found, @indexp is updated to be the index of the entry. 1806 * This function is protected by the RCU read lock, so it may miss entries 1807 * which are being simultaneously added. It will not return an 1808 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 1809 * 1810 * Context: Any context. Takes and releases the RCU lock. 1811 * Return: The pointer, if found, otherwise %NULL. 1812 */ 1813 void *xa_find_after(struct xarray *xa, unsigned long *indexp, 1814 unsigned long max, xa_mark_t filter) 1815 { 1816 XA_STATE(xas, xa, *indexp + 1); 1817 void *entry; 1818 1819 rcu_read_lock(); 1820 for (;;) { 1821 if ((__force unsigned int)filter < XA_MAX_MARKS) 1822 entry = xas_find_marked(&xas, max, filter); 1823 else 1824 entry = xas_find(&xas, max); 1825 if (xas.xa_node == XAS_BOUNDS) 1826 break; 1827 if (xas.xa_shift) { 1828 if (xas.xa_index & ((1UL << xas.xa_shift) - 1)) 1829 continue; 1830 } else { 1831 if (xas.xa_offset < (xas.xa_index & XA_CHUNK_MASK)) 1832 continue; 1833 } 1834 if (!xas_retry(&xas, entry)) 1835 break; 1836 } 1837 rcu_read_unlock(); 1838 1839 if (entry) 1840 *indexp = xas.xa_index; 1841 return entry; 1842 } 1843 EXPORT_SYMBOL(xa_find_after); 1844 1845 static unsigned int xas_extract_present(struct xa_state *xas, void **dst, 1846 unsigned long max, unsigned int n) 1847 { 1848 void *entry; 1849 unsigned int i = 0; 1850 1851 rcu_read_lock(); 1852 xas_for_each(xas, entry, max) { 1853 if (xas_retry(xas, entry)) 1854 continue; 1855 dst[i++] = entry; 1856 if (i == n) 1857 break; 1858 } 1859 rcu_read_unlock(); 1860 1861 return i; 1862 } 1863 1864 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst, 1865 unsigned long max, unsigned int n, xa_mark_t mark) 1866 { 1867 void *entry; 1868 unsigned int i = 0; 1869 1870 rcu_read_lock(); 1871 xas_for_each_marked(xas, entry, max, mark) { 1872 if (xas_retry(xas, entry)) 1873 continue; 1874 dst[i++] = entry; 1875 if (i == n) 1876 break; 1877 } 1878 rcu_read_unlock(); 1879 1880 return i; 1881 } 1882 1883 /** 1884 * xa_extract() - Copy selected entries from the XArray into a normal array. 1885 * @xa: The source XArray to copy from. 1886 * @dst: The buffer to copy entries into. 1887 * @start: The first index in the XArray eligible to be selected. 1888 * @max: The last index in the XArray eligible to be selected. 1889 * @n: The maximum number of entries to copy. 1890 * @filter: Selection criterion. 1891 * 1892 * Copies up to @n entries that match @filter from the XArray. The 1893 * copied entries will have indices between @start and @max, inclusive. 1894 * 1895 * The @filter may be an XArray mark value, in which case entries which are 1896 * marked with that mark will be copied. It may also be %XA_PRESENT, in 1897 * which case all entries which are not %NULL will be copied. 1898 * 1899 * The entries returned may not represent a snapshot of the XArray at a 1900 * moment in time. For example, if another thread stores to index 5, then 1901 * index 10, calling xa_extract() may return the old contents of index 5 1902 * and the new contents of index 10. Indices not modified while this 1903 * function is running will not be skipped. 1904 * 1905 * If you need stronger guarantees, holding the xa_lock across calls to this 1906 * function will prevent concurrent modification. 1907 * 1908 * Context: Any context. Takes and releases the RCU lock. 1909 * Return: The number of entries copied. 1910 */ 1911 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start, 1912 unsigned long max, unsigned int n, xa_mark_t filter) 1913 { 1914 XA_STATE(xas, xa, start); 1915 1916 if (!n) 1917 return 0; 1918 1919 if ((__force unsigned int)filter < XA_MAX_MARKS) 1920 return xas_extract_marked(&xas, dst, max, n, filter); 1921 return xas_extract_present(&xas, dst, max, n); 1922 } 1923 EXPORT_SYMBOL(xa_extract); 1924 1925 /** 1926 * xa_destroy() - Free all internal data structures. 1927 * @xa: XArray. 1928 * 1929 * After calling this function, the XArray is empty and has freed all memory 1930 * allocated for its internal data structures. You are responsible for 1931 * freeing the objects referenced by the XArray. 1932 * 1933 * Context: Any context. Takes and releases the xa_lock, interrupt-safe. 1934 */ 1935 void xa_destroy(struct xarray *xa) 1936 { 1937 XA_STATE(xas, xa, 0); 1938 unsigned long flags; 1939 void *entry; 1940 1941 xas.xa_node = NULL; 1942 xas_lock_irqsave(&xas, flags); 1943 entry = xa_head_locked(xa); 1944 RCU_INIT_POINTER(xa->xa_head, NULL); 1945 xas_init_marks(&xas); 1946 /* lockdep checks we're still holding the lock in xas_free_nodes() */ 1947 if (xa_is_node(entry)) 1948 xas_free_nodes(&xas, xa_to_node(entry)); 1949 xas_unlock_irqrestore(&xas, flags); 1950 } 1951 EXPORT_SYMBOL(xa_destroy); 1952 1953 #ifdef XA_DEBUG 1954 void xa_dump_node(const struct xa_node *node) 1955 { 1956 unsigned i, j; 1957 1958 if (!node) 1959 return; 1960 if ((unsigned long)node & 3) { 1961 pr_cont("node %px\n", node); 1962 return; 1963 } 1964 1965 pr_cont("node %px %s %d parent %px shift %d count %d values %d " 1966 "array %px list %px %px marks", 1967 node, node->parent ? "offset" : "max", node->offset, 1968 node->parent, node->shift, node->count, node->nr_values, 1969 node->array, node->private_list.prev, node->private_list.next); 1970 for (i = 0; i < XA_MAX_MARKS; i++) 1971 for (j = 0; j < XA_MARK_LONGS; j++) 1972 pr_cont(" %lx", node->marks[i][j]); 1973 pr_cont("\n"); 1974 } 1975 1976 void xa_dump_index(unsigned long index, unsigned int shift) 1977 { 1978 if (!shift) 1979 pr_info("%lu: ", index); 1980 else if (shift >= BITS_PER_LONG) 1981 pr_info("0-%lu: ", ~0UL); 1982 else 1983 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1)); 1984 } 1985 1986 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift) 1987 { 1988 if (!entry) 1989 return; 1990 1991 xa_dump_index(index, shift); 1992 1993 if (xa_is_node(entry)) { 1994 if (shift == 0) { 1995 pr_cont("%px\n", entry); 1996 } else { 1997 unsigned long i; 1998 struct xa_node *node = xa_to_node(entry); 1999 xa_dump_node(node); 2000 for (i = 0; i < XA_CHUNK_SIZE; i++) 2001 xa_dump_entry(node->slots[i], 2002 index + (i << node->shift), node->shift); 2003 } 2004 } else if (xa_is_value(entry)) 2005 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry), 2006 xa_to_value(entry), entry); 2007 else if (!xa_is_internal(entry)) 2008 pr_cont("%px\n", entry); 2009 else if (xa_is_retry(entry)) 2010 pr_cont("retry (%ld)\n", xa_to_internal(entry)); 2011 else if (xa_is_sibling(entry)) 2012 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry)); 2013 else if (xa_is_zero(entry)) 2014 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 2015 else 2016 pr_cont("UNKNOWN ENTRY (%px)\n", entry); 2017 } 2018 2019 void xa_dump(const struct xarray *xa) 2020 { 2021 void *entry = xa->xa_head; 2022 unsigned int shift = 0; 2023 2024 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry, 2025 xa->xa_flags, xa_marked(xa, XA_MARK_0), 2026 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2)); 2027 if (xa_is_node(entry)) 2028 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT; 2029 xa_dump_entry(entry, 0, shift); 2030 } 2031 #endif 2032