xref: /openbmc/linux/lib/test_vmalloc.c (revision 0af5cb349a2c97fbabb3cede96efcde9d54b7940)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Test module for stress and analyze performance of vmalloc allocator.
5  * (C) 2018 Uladzislau Rezki (Sony) <urezki@gmail.com>
6  */
7 #include <linux/init.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/vmalloc.h>
11 #include <linux/random.h>
12 #include <linux/kthread.h>
13 #include <linux/moduleparam.h>
14 #include <linux/completion.h>
15 #include <linux/delay.h>
16 #include <linux/rwsem.h>
17 #include <linux/mm.h>
18 #include <linux/rcupdate.h>
19 #include <linux/slab.h>
20 
21 #define __param(type, name, init, msg)		\
22 	static type name = init;				\
23 	module_param(name, type, 0444);			\
24 	MODULE_PARM_DESC(name, msg)				\
25 
26 __param(int, nr_threads, 0,
27 	"Number of workers to perform tests(min: 1 max: USHRT_MAX)");
28 
29 __param(bool, sequential_test_order, false,
30 	"Use sequential stress tests order");
31 
32 __param(int, test_repeat_count, 1,
33 	"Set test repeat counter");
34 
35 __param(int, test_loop_count, 1000000,
36 	"Set test loop counter");
37 
38 __param(int, nr_pages, 0,
39 	"Set number of pages for fix_size_alloc_test(default: 1)");
40 
41 __param(int, run_test_mask, INT_MAX,
42 	"Set tests specified in the mask.\n\n"
43 		"\t\tid: 1,    name: fix_size_alloc_test\n"
44 		"\t\tid: 2,    name: full_fit_alloc_test\n"
45 		"\t\tid: 4,    name: long_busy_list_alloc_test\n"
46 		"\t\tid: 8,    name: random_size_alloc_test\n"
47 		"\t\tid: 16,   name: fix_align_alloc_test\n"
48 		"\t\tid: 32,   name: random_size_align_alloc_test\n"
49 		"\t\tid: 64,   name: align_shift_alloc_test\n"
50 		"\t\tid: 128,  name: pcpu_alloc_test\n"
51 		"\t\tid: 256,  name: kvfree_rcu_1_arg_vmalloc_test\n"
52 		"\t\tid: 512,  name: kvfree_rcu_2_arg_vmalloc_test\n"
53 		/* Add a new test case description here. */
54 );
55 
56 /*
57  * Read write semaphore for synchronization of setup
58  * phase that is done in main thread and workers.
59  */
60 static DECLARE_RWSEM(prepare_for_test_rwsem);
61 
62 /*
63  * Completion tracking for worker threads.
64  */
65 static DECLARE_COMPLETION(test_all_done_comp);
66 static atomic_t test_n_undone = ATOMIC_INIT(0);
67 
68 static inline void
69 test_report_one_done(void)
70 {
71 	if (atomic_dec_and_test(&test_n_undone))
72 		complete(&test_all_done_comp);
73 }
74 
75 static int random_size_align_alloc_test(void)
76 {
77 	unsigned long size, align;
78 	unsigned int rnd;
79 	void *ptr;
80 	int i;
81 
82 	for (i = 0; i < test_loop_count; i++) {
83 		rnd = prandom_u32();
84 
85 		/*
86 		 * Maximum 1024 pages, if PAGE_SIZE is 4096.
87 		 */
88 		align = 1 << (rnd % 23);
89 
90 		/*
91 		 * Maximum 10 pages.
92 		 */
93 		size = ((rnd % 10) + 1) * PAGE_SIZE;
94 
95 		ptr = __vmalloc_node(size, align, GFP_KERNEL | __GFP_ZERO, 0,
96 				__builtin_return_address(0));
97 		if (!ptr)
98 			return -1;
99 
100 		vfree(ptr);
101 	}
102 
103 	return 0;
104 }
105 
106 /*
107  * This test case is supposed to be failed.
108  */
109 static int align_shift_alloc_test(void)
110 {
111 	unsigned long align;
112 	void *ptr;
113 	int i;
114 
115 	for (i = 0; i < BITS_PER_LONG; i++) {
116 		align = ((unsigned long) 1) << i;
117 
118 		ptr = __vmalloc_node(PAGE_SIZE, align, GFP_KERNEL|__GFP_ZERO, 0,
119 				__builtin_return_address(0));
120 		if (!ptr)
121 			return -1;
122 
123 		vfree(ptr);
124 	}
125 
126 	return 0;
127 }
128 
129 static int fix_align_alloc_test(void)
130 {
131 	void *ptr;
132 	int i;
133 
134 	for (i = 0; i < test_loop_count; i++) {
135 		ptr = __vmalloc_node(5 * PAGE_SIZE, THREAD_ALIGN << 1,
136 				GFP_KERNEL | __GFP_ZERO, 0,
137 				__builtin_return_address(0));
138 		if (!ptr)
139 			return -1;
140 
141 		vfree(ptr);
142 	}
143 
144 	return 0;
145 }
146 
147 static int random_size_alloc_test(void)
148 {
149 	unsigned int n;
150 	void *p;
151 	int i;
152 
153 	for (i = 0; i < test_loop_count; i++) {
154 		n = prandom_u32();
155 		n = (n % 100) + 1;
156 
157 		p = vmalloc(n * PAGE_SIZE);
158 
159 		if (!p)
160 			return -1;
161 
162 		*((__u8 *)p) = 1;
163 		vfree(p);
164 	}
165 
166 	return 0;
167 }
168 
169 static int long_busy_list_alloc_test(void)
170 {
171 	void *ptr_1, *ptr_2;
172 	void **ptr;
173 	int rv = -1;
174 	int i;
175 
176 	ptr = vmalloc(sizeof(void *) * 15000);
177 	if (!ptr)
178 		return rv;
179 
180 	for (i = 0; i < 15000; i++)
181 		ptr[i] = vmalloc(1 * PAGE_SIZE);
182 
183 	for (i = 0; i < test_loop_count; i++) {
184 		ptr_1 = vmalloc(100 * PAGE_SIZE);
185 		if (!ptr_1)
186 			goto leave;
187 
188 		ptr_2 = vmalloc(1 * PAGE_SIZE);
189 		if (!ptr_2) {
190 			vfree(ptr_1);
191 			goto leave;
192 		}
193 
194 		*((__u8 *)ptr_1) = 0;
195 		*((__u8 *)ptr_2) = 1;
196 
197 		vfree(ptr_1);
198 		vfree(ptr_2);
199 	}
200 
201 	/*  Success */
202 	rv = 0;
203 
204 leave:
205 	for (i = 0; i < 15000; i++)
206 		vfree(ptr[i]);
207 
208 	vfree(ptr);
209 	return rv;
210 }
211 
212 static int full_fit_alloc_test(void)
213 {
214 	void **ptr, **junk_ptr, *tmp;
215 	int junk_length;
216 	int rv = -1;
217 	int i;
218 
219 	junk_length = fls(num_online_cpus());
220 	junk_length *= (32 * 1024 * 1024 / PAGE_SIZE);
221 
222 	ptr = vmalloc(sizeof(void *) * junk_length);
223 	if (!ptr)
224 		return rv;
225 
226 	junk_ptr = vmalloc(sizeof(void *) * junk_length);
227 	if (!junk_ptr) {
228 		vfree(ptr);
229 		return rv;
230 	}
231 
232 	for (i = 0; i < junk_length; i++) {
233 		ptr[i] = vmalloc(1 * PAGE_SIZE);
234 		junk_ptr[i] = vmalloc(1 * PAGE_SIZE);
235 	}
236 
237 	for (i = 0; i < junk_length; i++)
238 		vfree(junk_ptr[i]);
239 
240 	for (i = 0; i < test_loop_count; i++) {
241 		tmp = vmalloc(1 * PAGE_SIZE);
242 
243 		if (!tmp)
244 			goto error;
245 
246 		*((__u8 *)tmp) = 1;
247 		vfree(tmp);
248 	}
249 
250 	/* Success */
251 	rv = 0;
252 
253 error:
254 	for (i = 0; i < junk_length; i++)
255 		vfree(ptr[i]);
256 
257 	vfree(ptr);
258 	vfree(junk_ptr);
259 
260 	return rv;
261 }
262 
263 static int fix_size_alloc_test(void)
264 {
265 	void *ptr;
266 	int i;
267 
268 	for (i = 0; i < test_loop_count; i++) {
269 		ptr = vmalloc((nr_pages > 0 ? nr_pages:1) * PAGE_SIZE);
270 
271 		if (!ptr)
272 			return -1;
273 
274 		*((__u8 *)ptr) = 0;
275 
276 		vfree(ptr);
277 	}
278 
279 	return 0;
280 }
281 
282 static int
283 pcpu_alloc_test(void)
284 {
285 	int rv = 0;
286 #ifndef CONFIG_NEED_PER_CPU_KM
287 	void __percpu **pcpu;
288 	size_t size, align;
289 	int i;
290 
291 	pcpu = vmalloc(sizeof(void __percpu *) * 35000);
292 	if (!pcpu)
293 		return -1;
294 
295 	for (i = 0; i < 35000; i++) {
296 		unsigned int r;
297 
298 		r = prandom_u32();
299 		size = (r % (PAGE_SIZE / 4)) + 1;
300 
301 		/*
302 		 * Maximum PAGE_SIZE
303 		 */
304 		r = prandom_u32();
305 		align = 1 << ((r % 11) + 1);
306 
307 		pcpu[i] = __alloc_percpu(size, align);
308 		if (!pcpu[i])
309 			rv = -1;
310 	}
311 
312 	for (i = 0; i < 35000; i++)
313 		free_percpu(pcpu[i]);
314 
315 	vfree(pcpu);
316 #endif
317 	return rv;
318 }
319 
320 struct test_kvfree_rcu {
321 	struct rcu_head rcu;
322 	unsigned char array[20];
323 };
324 
325 static int
326 kvfree_rcu_1_arg_vmalloc_test(void)
327 {
328 	struct test_kvfree_rcu *p;
329 	int i;
330 
331 	for (i = 0; i < test_loop_count; i++) {
332 		p = vmalloc(1 * PAGE_SIZE);
333 		if (!p)
334 			return -1;
335 
336 		p->array[0] = 'a';
337 		kvfree_rcu(p);
338 	}
339 
340 	return 0;
341 }
342 
343 static int
344 kvfree_rcu_2_arg_vmalloc_test(void)
345 {
346 	struct test_kvfree_rcu *p;
347 	int i;
348 
349 	for (i = 0; i < test_loop_count; i++) {
350 		p = vmalloc(1 * PAGE_SIZE);
351 		if (!p)
352 			return -1;
353 
354 		p->array[0] = 'a';
355 		kvfree_rcu(p, rcu);
356 	}
357 
358 	return 0;
359 }
360 
361 struct test_case_desc {
362 	const char *test_name;
363 	int (*test_func)(void);
364 };
365 
366 static struct test_case_desc test_case_array[] = {
367 	{ "fix_size_alloc_test", fix_size_alloc_test },
368 	{ "full_fit_alloc_test", full_fit_alloc_test },
369 	{ "long_busy_list_alloc_test", long_busy_list_alloc_test },
370 	{ "random_size_alloc_test", random_size_alloc_test },
371 	{ "fix_align_alloc_test", fix_align_alloc_test },
372 	{ "random_size_align_alloc_test", random_size_align_alloc_test },
373 	{ "align_shift_alloc_test", align_shift_alloc_test },
374 	{ "pcpu_alloc_test", pcpu_alloc_test },
375 	{ "kvfree_rcu_1_arg_vmalloc_test", kvfree_rcu_1_arg_vmalloc_test },
376 	{ "kvfree_rcu_2_arg_vmalloc_test", kvfree_rcu_2_arg_vmalloc_test },
377 	/* Add a new test case here. */
378 };
379 
380 struct test_case_data {
381 	int test_failed;
382 	int test_passed;
383 	u64 time;
384 };
385 
386 static struct test_driver {
387 	struct task_struct *task;
388 	struct test_case_data data[ARRAY_SIZE(test_case_array)];
389 
390 	unsigned long start;
391 	unsigned long stop;
392 } *tdriver;
393 
394 static void shuffle_array(int *arr, int n)
395 {
396 	unsigned int rnd;
397 	int i, j;
398 
399 	for (i = n - 1; i > 0; i--)  {
400 		rnd = prandom_u32();
401 
402 		/* Cut the range. */
403 		j = rnd % i;
404 
405 		/* Swap indexes. */
406 		swap(arr[i], arr[j]);
407 	}
408 }
409 
410 static int test_func(void *private)
411 {
412 	struct test_driver *t = private;
413 	int random_array[ARRAY_SIZE(test_case_array)];
414 	int index, i, j;
415 	ktime_t kt;
416 	u64 delta;
417 
418 	for (i = 0; i < ARRAY_SIZE(test_case_array); i++)
419 		random_array[i] = i;
420 
421 	if (!sequential_test_order)
422 		shuffle_array(random_array, ARRAY_SIZE(test_case_array));
423 
424 	/*
425 	 * Block until initialization is done.
426 	 */
427 	down_read(&prepare_for_test_rwsem);
428 
429 	t->start = get_cycles();
430 	for (i = 0; i < ARRAY_SIZE(test_case_array); i++) {
431 		index = random_array[i];
432 
433 		/*
434 		 * Skip tests if run_test_mask has been specified.
435 		 */
436 		if (!((run_test_mask & (1 << index)) >> index))
437 			continue;
438 
439 		kt = ktime_get();
440 		for (j = 0; j < test_repeat_count; j++) {
441 			if (!test_case_array[index].test_func())
442 				t->data[index].test_passed++;
443 			else
444 				t->data[index].test_failed++;
445 		}
446 
447 		/*
448 		 * Take an average time that test took.
449 		 */
450 		delta = (u64) ktime_us_delta(ktime_get(), kt);
451 		do_div(delta, (u32) test_repeat_count);
452 
453 		t->data[index].time = delta;
454 	}
455 	t->stop = get_cycles();
456 
457 	up_read(&prepare_for_test_rwsem);
458 	test_report_one_done();
459 
460 	/*
461 	 * Wait for the kthread_stop() call.
462 	 */
463 	while (!kthread_should_stop())
464 		msleep(10);
465 
466 	return 0;
467 }
468 
469 static int
470 init_test_configurtion(void)
471 {
472 	/*
473 	 * A maximum number of workers is defined as hard-coded
474 	 * value and set to USHRT_MAX. We add such gap just in
475 	 * case and for potential heavy stressing.
476 	 */
477 	nr_threads = clamp(nr_threads, 1, (int) USHRT_MAX);
478 
479 	/* Allocate the space for test instances. */
480 	tdriver = kvcalloc(nr_threads, sizeof(*tdriver), GFP_KERNEL);
481 	if (tdriver == NULL)
482 		return -1;
483 
484 	if (test_repeat_count <= 0)
485 		test_repeat_count = 1;
486 
487 	if (test_loop_count <= 0)
488 		test_loop_count = 1;
489 
490 	return 0;
491 }
492 
493 static void do_concurrent_test(void)
494 {
495 	int i, ret;
496 
497 	/*
498 	 * Set some basic configurations plus sanity check.
499 	 */
500 	ret = init_test_configurtion();
501 	if (ret < 0)
502 		return;
503 
504 	/*
505 	 * Put on hold all workers.
506 	 */
507 	down_write(&prepare_for_test_rwsem);
508 
509 	for (i = 0; i < nr_threads; i++) {
510 		struct test_driver *t = &tdriver[i];
511 
512 		t->task = kthread_run(test_func, t, "vmalloc_test/%d", i);
513 
514 		if (!IS_ERR(t->task))
515 			/* Success. */
516 			atomic_inc(&test_n_undone);
517 		else
518 			pr_err("Failed to start %d kthread\n", i);
519 	}
520 
521 	/*
522 	 * Now let the workers do their job.
523 	 */
524 	up_write(&prepare_for_test_rwsem);
525 
526 	/*
527 	 * Sleep quiet until all workers are done with 1 second
528 	 * interval. Since the test can take a lot of time we
529 	 * can run into a stack trace of the hung task. That is
530 	 * why we go with completion_timeout and HZ value.
531 	 */
532 	do {
533 		ret = wait_for_completion_timeout(&test_all_done_comp, HZ);
534 	} while (!ret);
535 
536 	for (i = 0; i < nr_threads; i++) {
537 		struct test_driver *t = &tdriver[i];
538 		int j;
539 
540 		if (!IS_ERR(t->task))
541 			kthread_stop(t->task);
542 
543 		for (j = 0; j < ARRAY_SIZE(test_case_array); j++) {
544 			if (!((run_test_mask & (1 << j)) >> j))
545 				continue;
546 
547 			pr_info(
548 				"Summary: %s passed: %d failed: %d repeat: %d loops: %d avg: %llu usec\n",
549 				test_case_array[j].test_name,
550 				t->data[j].test_passed,
551 				t->data[j].test_failed,
552 				test_repeat_count, test_loop_count,
553 				t->data[j].time);
554 		}
555 
556 		pr_info("All test took worker%d=%lu cycles\n",
557 			i, t->stop - t->start);
558 	}
559 
560 	kvfree(tdriver);
561 }
562 
563 static int vmalloc_test_init(void)
564 {
565 	do_concurrent_test();
566 	return -EAGAIN; /* Fail will directly unload the module */
567 }
568 
569 static void vmalloc_test_exit(void)
570 {
571 }
572 
573 module_init(vmalloc_test_init)
574 module_exit(vmalloc_test_exit)
575 
576 MODULE_LICENSE("GPL");
577 MODULE_AUTHOR("Uladzislau Rezki");
578 MODULE_DESCRIPTION("vmalloc test module");
579