1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This is a module to test the HMM (Heterogeneous Memory Management) 4 * mirror and zone device private memory migration APIs of the kernel. 5 * Userspace programs can register with the driver to mirror their own address 6 * space and can use the device to read/write any valid virtual address. 7 */ 8 #include <linux/init.h> 9 #include <linux/fs.h> 10 #include <linux/mm.h> 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/cdev.h> 14 #include <linux/device.h> 15 #include <linux/mutex.h> 16 #include <linux/rwsem.h> 17 #include <linux/sched.h> 18 #include <linux/slab.h> 19 #include <linux/highmem.h> 20 #include <linux/delay.h> 21 #include <linux/pagemap.h> 22 #include <linux/hmm.h> 23 #include <linux/vmalloc.h> 24 #include <linux/swap.h> 25 #include <linux/swapops.h> 26 #include <linux/sched/mm.h> 27 #include <linux/platform_device.h> 28 29 #include "test_hmm_uapi.h" 30 31 #define DMIRROR_NDEVICES 2 32 #define DMIRROR_RANGE_FAULT_TIMEOUT 1000 33 #define DEVMEM_CHUNK_SIZE (256 * 1024 * 1024U) 34 #define DEVMEM_CHUNKS_RESERVE 16 35 36 static const struct dev_pagemap_ops dmirror_devmem_ops; 37 static const struct mmu_interval_notifier_ops dmirror_min_ops; 38 static dev_t dmirror_dev; 39 static struct page *dmirror_zero_page; 40 41 struct dmirror_device; 42 43 struct dmirror_bounce { 44 void *ptr; 45 unsigned long size; 46 unsigned long addr; 47 unsigned long cpages; 48 }; 49 50 #define DPT_XA_TAG_WRITE 3UL 51 52 /* 53 * Data structure to track address ranges and register for mmu interval 54 * notifier updates. 55 */ 56 struct dmirror_interval { 57 struct mmu_interval_notifier notifier; 58 struct dmirror *dmirror; 59 }; 60 61 /* 62 * Data attached to the open device file. 63 * Note that it might be shared after a fork(). 64 */ 65 struct dmirror { 66 struct dmirror_device *mdevice; 67 struct xarray pt; 68 struct mmu_interval_notifier notifier; 69 struct mutex mutex; 70 }; 71 72 /* 73 * ZONE_DEVICE pages for migration and simulating device memory. 74 */ 75 struct dmirror_chunk { 76 struct dev_pagemap pagemap; 77 struct dmirror_device *mdevice; 78 }; 79 80 /* 81 * Per device data. 82 */ 83 struct dmirror_device { 84 struct cdev cdevice; 85 struct hmm_devmem *devmem; 86 87 unsigned int devmem_capacity; 88 unsigned int devmem_count; 89 struct dmirror_chunk **devmem_chunks; 90 struct mutex devmem_lock; /* protects the above */ 91 92 unsigned long calloc; 93 unsigned long cfree; 94 struct page *free_pages; 95 spinlock_t lock; /* protects the above */ 96 }; 97 98 static struct dmirror_device dmirror_devices[DMIRROR_NDEVICES]; 99 100 static int dmirror_bounce_init(struct dmirror_bounce *bounce, 101 unsigned long addr, 102 unsigned long size) 103 { 104 bounce->addr = addr; 105 bounce->size = size; 106 bounce->cpages = 0; 107 bounce->ptr = vmalloc(size); 108 if (!bounce->ptr) 109 return -ENOMEM; 110 return 0; 111 } 112 113 static void dmirror_bounce_fini(struct dmirror_bounce *bounce) 114 { 115 vfree(bounce->ptr); 116 } 117 118 static int dmirror_fops_open(struct inode *inode, struct file *filp) 119 { 120 struct cdev *cdev = inode->i_cdev; 121 struct dmirror *dmirror; 122 int ret; 123 124 /* Mirror this process address space */ 125 dmirror = kzalloc(sizeof(*dmirror), GFP_KERNEL); 126 if (dmirror == NULL) 127 return -ENOMEM; 128 129 dmirror->mdevice = container_of(cdev, struct dmirror_device, cdevice); 130 mutex_init(&dmirror->mutex); 131 xa_init(&dmirror->pt); 132 133 ret = mmu_interval_notifier_insert(&dmirror->notifier, current->mm, 134 0, ULONG_MAX & PAGE_MASK, &dmirror_min_ops); 135 if (ret) { 136 kfree(dmirror); 137 return ret; 138 } 139 140 filp->private_data = dmirror; 141 return 0; 142 } 143 144 static int dmirror_fops_release(struct inode *inode, struct file *filp) 145 { 146 struct dmirror *dmirror = filp->private_data; 147 148 mmu_interval_notifier_remove(&dmirror->notifier); 149 xa_destroy(&dmirror->pt); 150 kfree(dmirror); 151 return 0; 152 } 153 154 static struct dmirror_device *dmirror_page_to_device(struct page *page) 155 156 { 157 return container_of(page->pgmap, struct dmirror_chunk, 158 pagemap)->mdevice; 159 } 160 161 static int dmirror_do_fault(struct dmirror *dmirror, struct hmm_range *range) 162 { 163 unsigned long *pfns = range->hmm_pfns; 164 unsigned long pfn; 165 166 for (pfn = (range->start >> PAGE_SHIFT); 167 pfn < (range->end >> PAGE_SHIFT); 168 pfn++, pfns++) { 169 struct page *page; 170 void *entry; 171 172 /* 173 * Since we asked for hmm_range_fault() to populate pages, 174 * it shouldn't return an error entry on success. 175 */ 176 WARN_ON(*pfns & HMM_PFN_ERROR); 177 WARN_ON(!(*pfns & HMM_PFN_VALID)); 178 179 page = hmm_pfn_to_page(*pfns); 180 WARN_ON(!page); 181 182 entry = page; 183 if (*pfns & HMM_PFN_WRITE) 184 entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE); 185 else if (WARN_ON(range->default_flags & HMM_PFN_WRITE)) 186 return -EFAULT; 187 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC); 188 if (xa_is_err(entry)) 189 return xa_err(entry); 190 } 191 192 return 0; 193 } 194 195 static void dmirror_do_update(struct dmirror *dmirror, unsigned long start, 196 unsigned long end) 197 { 198 unsigned long pfn; 199 void *entry; 200 201 /* 202 * The XArray doesn't hold references to pages since it relies on 203 * the mmu notifier to clear page pointers when they become stale. 204 * Therefore, it is OK to just clear the entry. 205 */ 206 xa_for_each_range(&dmirror->pt, pfn, entry, start >> PAGE_SHIFT, 207 end >> PAGE_SHIFT) 208 xa_erase(&dmirror->pt, pfn); 209 } 210 211 static bool dmirror_interval_invalidate(struct mmu_interval_notifier *mni, 212 const struct mmu_notifier_range *range, 213 unsigned long cur_seq) 214 { 215 struct dmirror *dmirror = container_of(mni, struct dmirror, notifier); 216 217 /* 218 * Ignore invalidation callbacks for device private pages since 219 * the invalidation is handled as part of the migration process. 220 */ 221 if (range->event == MMU_NOTIFY_MIGRATE && 222 range->migrate_pgmap_owner == dmirror->mdevice) 223 return true; 224 225 if (mmu_notifier_range_blockable(range)) 226 mutex_lock(&dmirror->mutex); 227 else if (!mutex_trylock(&dmirror->mutex)) 228 return false; 229 230 mmu_interval_set_seq(mni, cur_seq); 231 dmirror_do_update(dmirror, range->start, range->end); 232 233 mutex_unlock(&dmirror->mutex); 234 return true; 235 } 236 237 static const struct mmu_interval_notifier_ops dmirror_min_ops = { 238 .invalidate = dmirror_interval_invalidate, 239 }; 240 241 static int dmirror_range_fault(struct dmirror *dmirror, 242 struct hmm_range *range) 243 { 244 struct mm_struct *mm = dmirror->notifier.mm; 245 unsigned long timeout = 246 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); 247 int ret; 248 249 while (true) { 250 if (time_after(jiffies, timeout)) { 251 ret = -EBUSY; 252 goto out; 253 } 254 255 range->notifier_seq = mmu_interval_read_begin(range->notifier); 256 mmap_read_lock(mm); 257 ret = hmm_range_fault(range); 258 mmap_read_unlock(mm); 259 if (ret) { 260 if (ret == -EBUSY) 261 continue; 262 goto out; 263 } 264 265 mutex_lock(&dmirror->mutex); 266 if (mmu_interval_read_retry(range->notifier, 267 range->notifier_seq)) { 268 mutex_unlock(&dmirror->mutex); 269 continue; 270 } 271 break; 272 } 273 274 ret = dmirror_do_fault(dmirror, range); 275 276 mutex_unlock(&dmirror->mutex); 277 out: 278 return ret; 279 } 280 281 static int dmirror_fault(struct dmirror *dmirror, unsigned long start, 282 unsigned long end, bool write) 283 { 284 struct mm_struct *mm = dmirror->notifier.mm; 285 unsigned long addr; 286 unsigned long pfns[64]; 287 struct hmm_range range = { 288 .notifier = &dmirror->notifier, 289 .hmm_pfns = pfns, 290 .pfn_flags_mask = 0, 291 .default_flags = 292 HMM_PFN_REQ_FAULT | (write ? HMM_PFN_REQ_WRITE : 0), 293 .dev_private_owner = dmirror->mdevice, 294 }; 295 int ret = 0; 296 297 /* Since the mm is for the mirrored process, get a reference first. */ 298 if (!mmget_not_zero(mm)) 299 return 0; 300 301 for (addr = start; addr < end; addr = range.end) { 302 range.start = addr; 303 range.end = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end); 304 305 ret = dmirror_range_fault(dmirror, &range); 306 if (ret) 307 break; 308 } 309 310 mmput(mm); 311 return ret; 312 } 313 314 static int dmirror_do_read(struct dmirror *dmirror, unsigned long start, 315 unsigned long end, struct dmirror_bounce *bounce) 316 { 317 unsigned long pfn; 318 void *ptr; 319 320 ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK); 321 322 for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) { 323 void *entry; 324 struct page *page; 325 void *tmp; 326 327 entry = xa_load(&dmirror->pt, pfn); 328 page = xa_untag_pointer(entry); 329 if (!page) 330 return -ENOENT; 331 332 tmp = kmap(page); 333 memcpy(ptr, tmp, PAGE_SIZE); 334 kunmap(page); 335 336 ptr += PAGE_SIZE; 337 bounce->cpages++; 338 } 339 340 return 0; 341 } 342 343 static int dmirror_read(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd) 344 { 345 struct dmirror_bounce bounce; 346 unsigned long start, end; 347 unsigned long size = cmd->npages << PAGE_SHIFT; 348 int ret; 349 350 start = cmd->addr; 351 end = start + size; 352 if (end < start) 353 return -EINVAL; 354 355 ret = dmirror_bounce_init(&bounce, start, size); 356 if (ret) 357 return ret; 358 359 while (1) { 360 mutex_lock(&dmirror->mutex); 361 ret = dmirror_do_read(dmirror, start, end, &bounce); 362 mutex_unlock(&dmirror->mutex); 363 if (ret != -ENOENT) 364 break; 365 366 start = cmd->addr + (bounce.cpages << PAGE_SHIFT); 367 ret = dmirror_fault(dmirror, start, end, false); 368 if (ret) 369 break; 370 cmd->faults++; 371 } 372 373 if (ret == 0) { 374 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr, 375 bounce.size)) 376 ret = -EFAULT; 377 } 378 cmd->cpages = bounce.cpages; 379 dmirror_bounce_fini(&bounce); 380 return ret; 381 } 382 383 static int dmirror_do_write(struct dmirror *dmirror, unsigned long start, 384 unsigned long end, struct dmirror_bounce *bounce) 385 { 386 unsigned long pfn; 387 void *ptr; 388 389 ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK); 390 391 for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) { 392 void *entry; 393 struct page *page; 394 void *tmp; 395 396 entry = xa_load(&dmirror->pt, pfn); 397 page = xa_untag_pointer(entry); 398 if (!page || xa_pointer_tag(entry) != DPT_XA_TAG_WRITE) 399 return -ENOENT; 400 401 tmp = kmap(page); 402 memcpy(tmp, ptr, PAGE_SIZE); 403 kunmap(page); 404 405 ptr += PAGE_SIZE; 406 bounce->cpages++; 407 } 408 409 return 0; 410 } 411 412 static int dmirror_write(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd) 413 { 414 struct dmirror_bounce bounce; 415 unsigned long start, end; 416 unsigned long size = cmd->npages << PAGE_SHIFT; 417 int ret; 418 419 start = cmd->addr; 420 end = start + size; 421 if (end < start) 422 return -EINVAL; 423 424 ret = dmirror_bounce_init(&bounce, start, size); 425 if (ret) 426 return ret; 427 if (copy_from_user(bounce.ptr, u64_to_user_ptr(cmd->ptr), 428 bounce.size)) { 429 ret = -EFAULT; 430 goto fini; 431 } 432 433 while (1) { 434 mutex_lock(&dmirror->mutex); 435 ret = dmirror_do_write(dmirror, start, end, &bounce); 436 mutex_unlock(&dmirror->mutex); 437 if (ret != -ENOENT) 438 break; 439 440 start = cmd->addr + (bounce.cpages << PAGE_SHIFT); 441 ret = dmirror_fault(dmirror, start, end, true); 442 if (ret) 443 break; 444 cmd->faults++; 445 } 446 447 fini: 448 cmd->cpages = bounce.cpages; 449 dmirror_bounce_fini(&bounce); 450 return ret; 451 } 452 453 static bool dmirror_allocate_chunk(struct dmirror_device *mdevice, 454 struct page **ppage) 455 { 456 struct dmirror_chunk *devmem; 457 struct resource *res; 458 unsigned long pfn; 459 unsigned long pfn_first; 460 unsigned long pfn_last; 461 void *ptr; 462 463 mutex_lock(&mdevice->devmem_lock); 464 465 if (mdevice->devmem_count == mdevice->devmem_capacity) { 466 struct dmirror_chunk **new_chunks; 467 unsigned int new_capacity; 468 469 new_capacity = mdevice->devmem_capacity + 470 DEVMEM_CHUNKS_RESERVE; 471 new_chunks = krealloc(mdevice->devmem_chunks, 472 sizeof(new_chunks[0]) * new_capacity, 473 GFP_KERNEL); 474 if (!new_chunks) 475 goto err; 476 mdevice->devmem_capacity = new_capacity; 477 mdevice->devmem_chunks = new_chunks; 478 } 479 480 res = request_free_mem_region(&iomem_resource, DEVMEM_CHUNK_SIZE, 481 "hmm_dmirror"); 482 if (IS_ERR(res)) 483 goto err; 484 485 devmem = kzalloc(sizeof(*devmem), GFP_KERNEL); 486 if (!devmem) 487 goto err_release; 488 489 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE; 490 devmem->pagemap.res = *res; 491 devmem->pagemap.ops = &dmirror_devmem_ops; 492 devmem->pagemap.owner = mdevice; 493 494 ptr = memremap_pages(&devmem->pagemap, numa_node_id()); 495 if (IS_ERR(ptr)) 496 goto err_free; 497 498 devmem->mdevice = mdevice; 499 pfn_first = devmem->pagemap.res.start >> PAGE_SHIFT; 500 pfn_last = pfn_first + 501 (resource_size(&devmem->pagemap.res) >> PAGE_SHIFT); 502 mdevice->devmem_chunks[mdevice->devmem_count++] = devmem; 503 504 mutex_unlock(&mdevice->devmem_lock); 505 506 pr_info("added new %u MB chunk (total %u chunks, %u MB) PFNs [0x%lx 0x%lx)\n", 507 DEVMEM_CHUNK_SIZE / (1024 * 1024), 508 mdevice->devmem_count, 509 mdevice->devmem_count * (DEVMEM_CHUNK_SIZE / (1024 * 1024)), 510 pfn_first, pfn_last); 511 512 spin_lock(&mdevice->lock); 513 for (pfn = pfn_first; pfn < pfn_last; pfn++) { 514 struct page *page = pfn_to_page(pfn); 515 516 page->zone_device_data = mdevice->free_pages; 517 mdevice->free_pages = page; 518 } 519 if (ppage) { 520 *ppage = mdevice->free_pages; 521 mdevice->free_pages = (*ppage)->zone_device_data; 522 mdevice->calloc++; 523 } 524 spin_unlock(&mdevice->lock); 525 526 return true; 527 528 err_free: 529 kfree(devmem); 530 err_release: 531 release_mem_region(res->start, resource_size(res)); 532 err: 533 mutex_unlock(&mdevice->devmem_lock); 534 return false; 535 } 536 537 static struct page *dmirror_devmem_alloc_page(struct dmirror_device *mdevice) 538 { 539 struct page *dpage = NULL; 540 struct page *rpage; 541 542 /* 543 * This is a fake device so we alloc real system memory to store 544 * our device memory. 545 */ 546 rpage = alloc_page(GFP_HIGHUSER); 547 if (!rpage) 548 return NULL; 549 550 spin_lock(&mdevice->lock); 551 552 if (mdevice->free_pages) { 553 dpage = mdevice->free_pages; 554 mdevice->free_pages = dpage->zone_device_data; 555 mdevice->calloc++; 556 spin_unlock(&mdevice->lock); 557 } else { 558 spin_unlock(&mdevice->lock); 559 if (!dmirror_allocate_chunk(mdevice, &dpage)) 560 goto error; 561 } 562 563 dpage->zone_device_data = rpage; 564 get_page(dpage); 565 lock_page(dpage); 566 return dpage; 567 568 error: 569 __free_page(rpage); 570 return NULL; 571 } 572 573 static void dmirror_migrate_alloc_and_copy(struct migrate_vma *args, 574 struct dmirror *dmirror) 575 { 576 struct dmirror_device *mdevice = dmirror->mdevice; 577 const unsigned long *src = args->src; 578 unsigned long *dst = args->dst; 579 unsigned long addr; 580 581 for (addr = args->start; addr < args->end; addr += PAGE_SIZE, 582 src++, dst++) { 583 struct page *spage; 584 struct page *dpage; 585 struct page *rpage; 586 587 if (!(*src & MIGRATE_PFN_MIGRATE)) 588 continue; 589 590 /* 591 * Note that spage might be NULL which is OK since it is an 592 * unallocated pte_none() or read-only zero page. 593 */ 594 spage = migrate_pfn_to_page(*src); 595 596 dpage = dmirror_devmem_alloc_page(mdevice); 597 if (!dpage) 598 continue; 599 600 rpage = dpage->zone_device_data; 601 if (spage) 602 copy_highpage(rpage, spage); 603 else 604 clear_highpage(rpage); 605 606 /* 607 * Normally, a device would use the page->zone_device_data to 608 * point to the mirror but here we use it to hold the page for 609 * the simulated device memory and that page holds the pointer 610 * to the mirror. 611 */ 612 rpage->zone_device_data = dmirror; 613 614 *dst = migrate_pfn(page_to_pfn(dpage)) | 615 MIGRATE_PFN_LOCKED; 616 if ((*src & MIGRATE_PFN_WRITE) || 617 (!spage && args->vma->vm_flags & VM_WRITE)) 618 *dst |= MIGRATE_PFN_WRITE; 619 } 620 } 621 622 static int dmirror_migrate_finalize_and_map(struct migrate_vma *args, 623 struct dmirror *dmirror) 624 { 625 unsigned long start = args->start; 626 unsigned long end = args->end; 627 const unsigned long *src = args->src; 628 const unsigned long *dst = args->dst; 629 unsigned long pfn; 630 631 /* Map the migrated pages into the device's page tables. */ 632 mutex_lock(&dmirror->mutex); 633 634 for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++, 635 src++, dst++) { 636 struct page *dpage; 637 void *entry; 638 639 if (!(*src & MIGRATE_PFN_MIGRATE)) 640 continue; 641 642 dpage = migrate_pfn_to_page(*dst); 643 if (!dpage) 644 continue; 645 646 /* 647 * Store the page that holds the data so the page table 648 * doesn't have to deal with ZONE_DEVICE private pages. 649 */ 650 entry = dpage->zone_device_data; 651 if (*dst & MIGRATE_PFN_WRITE) 652 entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE); 653 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC); 654 if (xa_is_err(entry)) { 655 mutex_unlock(&dmirror->mutex); 656 return xa_err(entry); 657 } 658 } 659 660 mutex_unlock(&dmirror->mutex); 661 return 0; 662 } 663 664 static int dmirror_migrate(struct dmirror *dmirror, 665 struct hmm_dmirror_cmd *cmd) 666 { 667 unsigned long start, end, addr; 668 unsigned long size = cmd->npages << PAGE_SHIFT; 669 struct mm_struct *mm = dmirror->notifier.mm; 670 struct vm_area_struct *vma; 671 unsigned long src_pfns[64]; 672 unsigned long dst_pfns[64]; 673 struct dmirror_bounce bounce; 674 struct migrate_vma args; 675 unsigned long next; 676 int ret; 677 678 start = cmd->addr; 679 end = start + size; 680 if (end < start) 681 return -EINVAL; 682 683 /* Since the mm is for the mirrored process, get a reference first. */ 684 if (!mmget_not_zero(mm)) 685 return -EINVAL; 686 687 mmap_read_lock(mm); 688 for (addr = start; addr < end; addr = next) { 689 vma = find_vma(mm, addr); 690 if (!vma || addr < vma->vm_start || 691 !(vma->vm_flags & VM_READ)) { 692 ret = -EINVAL; 693 goto out; 694 } 695 next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT)); 696 if (next > vma->vm_end) 697 next = vma->vm_end; 698 699 args.vma = vma; 700 args.src = src_pfns; 701 args.dst = dst_pfns; 702 args.start = addr; 703 args.end = next; 704 args.pgmap_owner = dmirror->mdevice; 705 args.flags = MIGRATE_VMA_SELECT_SYSTEM; 706 ret = migrate_vma_setup(&args); 707 if (ret) 708 goto out; 709 710 dmirror_migrate_alloc_and_copy(&args, dmirror); 711 migrate_vma_pages(&args); 712 dmirror_migrate_finalize_and_map(&args, dmirror); 713 migrate_vma_finalize(&args); 714 } 715 mmap_read_unlock(mm); 716 mmput(mm); 717 718 /* Return the migrated data for verification. */ 719 ret = dmirror_bounce_init(&bounce, start, size); 720 if (ret) 721 return ret; 722 mutex_lock(&dmirror->mutex); 723 ret = dmirror_do_read(dmirror, start, end, &bounce); 724 mutex_unlock(&dmirror->mutex); 725 if (ret == 0) { 726 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr, 727 bounce.size)) 728 ret = -EFAULT; 729 } 730 cmd->cpages = bounce.cpages; 731 dmirror_bounce_fini(&bounce); 732 return ret; 733 734 out: 735 mmap_read_unlock(mm); 736 mmput(mm); 737 return ret; 738 } 739 740 static void dmirror_mkentry(struct dmirror *dmirror, struct hmm_range *range, 741 unsigned char *perm, unsigned long entry) 742 { 743 struct page *page; 744 745 if (entry & HMM_PFN_ERROR) { 746 *perm = HMM_DMIRROR_PROT_ERROR; 747 return; 748 } 749 if (!(entry & HMM_PFN_VALID)) { 750 *perm = HMM_DMIRROR_PROT_NONE; 751 return; 752 } 753 754 page = hmm_pfn_to_page(entry); 755 if (is_device_private_page(page)) { 756 /* Is the page migrated to this device or some other? */ 757 if (dmirror->mdevice == dmirror_page_to_device(page)) 758 *perm = HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL; 759 else 760 *perm = HMM_DMIRROR_PROT_DEV_PRIVATE_REMOTE; 761 } else if (is_zero_pfn(page_to_pfn(page))) 762 *perm = HMM_DMIRROR_PROT_ZERO; 763 else 764 *perm = HMM_DMIRROR_PROT_NONE; 765 if (entry & HMM_PFN_WRITE) 766 *perm |= HMM_DMIRROR_PROT_WRITE; 767 else 768 *perm |= HMM_DMIRROR_PROT_READ; 769 if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PMD_SHIFT) 770 *perm |= HMM_DMIRROR_PROT_PMD; 771 else if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PUD_SHIFT) 772 *perm |= HMM_DMIRROR_PROT_PUD; 773 } 774 775 static bool dmirror_snapshot_invalidate(struct mmu_interval_notifier *mni, 776 const struct mmu_notifier_range *range, 777 unsigned long cur_seq) 778 { 779 struct dmirror_interval *dmi = 780 container_of(mni, struct dmirror_interval, notifier); 781 struct dmirror *dmirror = dmi->dmirror; 782 783 if (mmu_notifier_range_blockable(range)) 784 mutex_lock(&dmirror->mutex); 785 else if (!mutex_trylock(&dmirror->mutex)) 786 return false; 787 788 /* 789 * Snapshots only need to set the sequence number since any 790 * invalidation in the interval invalidates the whole snapshot. 791 */ 792 mmu_interval_set_seq(mni, cur_seq); 793 794 mutex_unlock(&dmirror->mutex); 795 return true; 796 } 797 798 static const struct mmu_interval_notifier_ops dmirror_mrn_ops = { 799 .invalidate = dmirror_snapshot_invalidate, 800 }; 801 802 static int dmirror_range_snapshot(struct dmirror *dmirror, 803 struct hmm_range *range, 804 unsigned char *perm) 805 { 806 struct mm_struct *mm = dmirror->notifier.mm; 807 struct dmirror_interval notifier; 808 unsigned long timeout = 809 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); 810 unsigned long i; 811 unsigned long n; 812 int ret = 0; 813 814 notifier.dmirror = dmirror; 815 range->notifier = ¬ifier.notifier; 816 817 ret = mmu_interval_notifier_insert(range->notifier, mm, 818 range->start, range->end - range->start, 819 &dmirror_mrn_ops); 820 if (ret) 821 return ret; 822 823 while (true) { 824 if (time_after(jiffies, timeout)) { 825 ret = -EBUSY; 826 goto out; 827 } 828 829 range->notifier_seq = mmu_interval_read_begin(range->notifier); 830 831 mmap_read_lock(mm); 832 ret = hmm_range_fault(range); 833 mmap_read_unlock(mm); 834 if (ret) { 835 if (ret == -EBUSY) 836 continue; 837 goto out; 838 } 839 840 mutex_lock(&dmirror->mutex); 841 if (mmu_interval_read_retry(range->notifier, 842 range->notifier_seq)) { 843 mutex_unlock(&dmirror->mutex); 844 continue; 845 } 846 break; 847 } 848 849 n = (range->end - range->start) >> PAGE_SHIFT; 850 for (i = 0; i < n; i++) 851 dmirror_mkentry(dmirror, range, perm + i, range->hmm_pfns[i]); 852 853 mutex_unlock(&dmirror->mutex); 854 out: 855 mmu_interval_notifier_remove(range->notifier); 856 return ret; 857 } 858 859 static int dmirror_snapshot(struct dmirror *dmirror, 860 struct hmm_dmirror_cmd *cmd) 861 { 862 struct mm_struct *mm = dmirror->notifier.mm; 863 unsigned long start, end; 864 unsigned long size = cmd->npages << PAGE_SHIFT; 865 unsigned long addr; 866 unsigned long next; 867 unsigned long pfns[64]; 868 unsigned char perm[64]; 869 char __user *uptr; 870 struct hmm_range range = { 871 .hmm_pfns = pfns, 872 .dev_private_owner = dmirror->mdevice, 873 }; 874 int ret = 0; 875 876 start = cmd->addr; 877 end = start + size; 878 if (end < start) 879 return -EINVAL; 880 881 /* Since the mm is for the mirrored process, get a reference first. */ 882 if (!mmget_not_zero(mm)) 883 return -EINVAL; 884 885 /* 886 * Register a temporary notifier to detect invalidations even if it 887 * overlaps with other mmu_interval_notifiers. 888 */ 889 uptr = u64_to_user_ptr(cmd->ptr); 890 for (addr = start; addr < end; addr = next) { 891 unsigned long n; 892 893 next = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end); 894 range.start = addr; 895 range.end = next; 896 897 ret = dmirror_range_snapshot(dmirror, &range, perm); 898 if (ret) 899 break; 900 901 n = (range.end - range.start) >> PAGE_SHIFT; 902 if (copy_to_user(uptr, perm, n)) { 903 ret = -EFAULT; 904 break; 905 } 906 907 cmd->cpages += n; 908 uptr += n; 909 } 910 mmput(mm); 911 912 return ret; 913 } 914 915 static long dmirror_fops_unlocked_ioctl(struct file *filp, 916 unsigned int command, 917 unsigned long arg) 918 { 919 void __user *uarg = (void __user *)arg; 920 struct hmm_dmirror_cmd cmd; 921 struct dmirror *dmirror; 922 int ret; 923 924 dmirror = filp->private_data; 925 if (!dmirror) 926 return -EINVAL; 927 928 if (copy_from_user(&cmd, uarg, sizeof(cmd))) 929 return -EFAULT; 930 931 if (cmd.addr & ~PAGE_MASK) 932 return -EINVAL; 933 if (cmd.addr >= (cmd.addr + (cmd.npages << PAGE_SHIFT))) 934 return -EINVAL; 935 936 cmd.cpages = 0; 937 cmd.faults = 0; 938 939 switch (command) { 940 case HMM_DMIRROR_READ: 941 ret = dmirror_read(dmirror, &cmd); 942 break; 943 944 case HMM_DMIRROR_WRITE: 945 ret = dmirror_write(dmirror, &cmd); 946 break; 947 948 case HMM_DMIRROR_MIGRATE: 949 ret = dmirror_migrate(dmirror, &cmd); 950 break; 951 952 case HMM_DMIRROR_SNAPSHOT: 953 ret = dmirror_snapshot(dmirror, &cmd); 954 break; 955 956 default: 957 return -EINVAL; 958 } 959 if (ret) 960 return ret; 961 962 if (copy_to_user(uarg, &cmd, sizeof(cmd))) 963 return -EFAULT; 964 965 return 0; 966 } 967 968 static const struct file_operations dmirror_fops = { 969 .open = dmirror_fops_open, 970 .release = dmirror_fops_release, 971 .unlocked_ioctl = dmirror_fops_unlocked_ioctl, 972 .llseek = default_llseek, 973 .owner = THIS_MODULE, 974 }; 975 976 static void dmirror_devmem_free(struct page *page) 977 { 978 struct page *rpage = page->zone_device_data; 979 struct dmirror_device *mdevice; 980 981 if (rpage) 982 __free_page(rpage); 983 984 mdevice = dmirror_page_to_device(page); 985 986 spin_lock(&mdevice->lock); 987 mdevice->cfree++; 988 page->zone_device_data = mdevice->free_pages; 989 mdevice->free_pages = page; 990 spin_unlock(&mdevice->lock); 991 } 992 993 static vm_fault_t dmirror_devmem_fault_alloc_and_copy(struct migrate_vma *args, 994 struct dmirror *dmirror) 995 { 996 const unsigned long *src = args->src; 997 unsigned long *dst = args->dst; 998 unsigned long start = args->start; 999 unsigned long end = args->end; 1000 unsigned long addr; 1001 1002 for (addr = start; addr < end; addr += PAGE_SIZE, 1003 src++, dst++) { 1004 struct page *dpage, *spage; 1005 1006 spage = migrate_pfn_to_page(*src); 1007 if (!spage || !(*src & MIGRATE_PFN_MIGRATE)) 1008 continue; 1009 spage = spage->zone_device_data; 1010 1011 dpage = alloc_page_vma(GFP_HIGHUSER_MOVABLE, args->vma, addr); 1012 if (!dpage) 1013 continue; 1014 1015 lock_page(dpage); 1016 xa_erase(&dmirror->pt, addr >> PAGE_SHIFT); 1017 copy_highpage(dpage, spage); 1018 *dst = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED; 1019 if (*src & MIGRATE_PFN_WRITE) 1020 *dst |= MIGRATE_PFN_WRITE; 1021 } 1022 return 0; 1023 } 1024 1025 static vm_fault_t dmirror_devmem_fault(struct vm_fault *vmf) 1026 { 1027 struct migrate_vma args; 1028 unsigned long src_pfns; 1029 unsigned long dst_pfns; 1030 struct page *rpage; 1031 struct dmirror *dmirror; 1032 vm_fault_t ret; 1033 1034 /* 1035 * Normally, a device would use the page->zone_device_data to point to 1036 * the mirror but here we use it to hold the page for the simulated 1037 * device memory and that page holds the pointer to the mirror. 1038 */ 1039 rpage = vmf->page->zone_device_data; 1040 dmirror = rpage->zone_device_data; 1041 1042 /* FIXME demonstrate how we can adjust migrate range */ 1043 args.vma = vmf->vma; 1044 args.start = vmf->address; 1045 args.end = args.start + PAGE_SIZE; 1046 args.src = &src_pfns; 1047 args.dst = &dst_pfns; 1048 args.pgmap_owner = dmirror->mdevice; 1049 args.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE; 1050 1051 if (migrate_vma_setup(&args)) 1052 return VM_FAULT_SIGBUS; 1053 1054 ret = dmirror_devmem_fault_alloc_and_copy(&args, dmirror); 1055 if (ret) 1056 return ret; 1057 migrate_vma_pages(&args); 1058 /* 1059 * No device finalize step is needed since 1060 * dmirror_devmem_fault_alloc_and_copy() will have already 1061 * invalidated the device page table. 1062 */ 1063 migrate_vma_finalize(&args); 1064 return 0; 1065 } 1066 1067 static const struct dev_pagemap_ops dmirror_devmem_ops = { 1068 .page_free = dmirror_devmem_free, 1069 .migrate_to_ram = dmirror_devmem_fault, 1070 }; 1071 1072 static int dmirror_device_init(struct dmirror_device *mdevice, int id) 1073 { 1074 dev_t dev; 1075 int ret; 1076 1077 dev = MKDEV(MAJOR(dmirror_dev), id); 1078 mutex_init(&mdevice->devmem_lock); 1079 spin_lock_init(&mdevice->lock); 1080 1081 cdev_init(&mdevice->cdevice, &dmirror_fops); 1082 mdevice->cdevice.owner = THIS_MODULE; 1083 ret = cdev_add(&mdevice->cdevice, dev, 1); 1084 if (ret) 1085 return ret; 1086 1087 /* Build a list of free ZONE_DEVICE private struct pages */ 1088 dmirror_allocate_chunk(mdevice, NULL); 1089 1090 return 0; 1091 } 1092 1093 static void dmirror_device_remove(struct dmirror_device *mdevice) 1094 { 1095 unsigned int i; 1096 1097 if (mdevice->devmem_chunks) { 1098 for (i = 0; i < mdevice->devmem_count; i++) { 1099 struct dmirror_chunk *devmem = 1100 mdevice->devmem_chunks[i]; 1101 1102 memunmap_pages(&devmem->pagemap); 1103 release_mem_region(devmem->pagemap.res.start, 1104 resource_size(&devmem->pagemap.res)); 1105 kfree(devmem); 1106 } 1107 kfree(mdevice->devmem_chunks); 1108 } 1109 1110 cdev_del(&mdevice->cdevice); 1111 } 1112 1113 static int __init hmm_dmirror_init(void) 1114 { 1115 int ret; 1116 int id; 1117 1118 ret = alloc_chrdev_region(&dmirror_dev, 0, DMIRROR_NDEVICES, 1119 "HMM_DMIRROR"); 1120 if (ret) 1121 goto err_unreg; 1122 1123 for (id = 0; id < DMIRROR_NDEVICES; id++) { 1124 ret = dmirror_device_init(dmirror_devices + id, id); 1125 if (ret) 1126 goto err_chrdev; 1127 } 1128 1129 /* 1130 * Allocate a zero page to simulate a reserved page of device private 1131 * memory which is always zero. The zero_pfn page isn't used just to 1132 * make the code here simpler (i.e., we need a struct page for it). 1133 */ 1134 dmirror_zero_page = alloc_page(GFP_HIGHUSER | __GFP_ZERO); 1135 if (!dmirror_zero_page) { 1136 ret = -ENOMEM; 1137 goto err_chrdev; 1138 } 1139 1140 pr_info("HMM test module loaded. This is only for testing HMM.\n"); 1141 return 0; 1142 1143 err_chrdev: 1144 while (--id >= 0) 1145 dmirror_device_remove(dmirror_devices + id); 1146 unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES); 1147 err_unreg: 1148 return ret; 1149 } 1150 1151 static void __exit hmm_dmirror_exit(void) 1152 { 1153 int id; 1154 1155 if (dmirror_zero_page) 1156 __free_page(dmirror_zero_page); 1157 for (id = 0; id < DMIRROR_NDEVICES; id++) 1158 dmirror_device_remove(dmirror_devices + id); 1159 unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES); 1160 } 1161 1162 module_init(hmm_dmirror_init); 1163 module_exit(hmm_dmirror_exit); 1164 MODULE_LICENSE("GPL"); 1165