xref: /openbmc/linux/lib/test_hmm.c (revision 8365a898)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is a module to test the HMM (Heterogeneous Memory Management)
4  * mirror and zone device private memory migration APIs of the kernel.
5  * Userspace programs can register with the driver to mirror their own address
6  * space and can use the device to read/write any valid virtual address.
7  */
8 #include <linux/init.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/cdev.h>
14 #include <linux/device.h>
15 #include <linux/mutex.h>
16 #include <linux/rwsem.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/highmem.h>
20 #include <linux/delay.h>
21 #include <linux/pagemap.h>
22 #include <linux/hmm.h>
23 #include <linux/vmalloc.h>
24 #include <linux/swap.h>
25 #include <linux/swapops.h>
26 #include <linux/sched/mm.h>
27 #include <linux/platform_device.h>
28 
29 #include "test_hmm_uapi.h"
30 
31 #define DMIRROR_NDEVICES		2
32 #define DMIRROR_RANGE_FAULT_TIMEOUT	1000
33 #define DEVMEM_CHUNK_SIZE		(256 * 1024 * 1024U)
34 #define DEVMEM_CHUNKS_RESERVE		16
35 
36 static const struct dev_pagemap_ops dmirror_devmem_ops;
37 static const struct mmu_interval_notifier_ops dmirror_min_ops;
38 static dev_t dmirror_dev;
39 static struct page *dmirror_zero_page;
40 
41 struct dmirror_device;
42 
43 struct dmirror_bounce {
44 	void			*ptr;
45 	unsigned long		size;
46 	unsigned long		addr;
47 	unsigned long		cpages;
48 };
49 
50 #define DPT_XA_TAG_WRITE 3UL
51 
52 /*
53  * Data structure to track address ranges and register for mmu interval
54  * notifier updates.
55  */
56 struct dmirror_interval {
57 	struct mmu_interval_notifier	notifier;
58 	struct dmirror			*dmirror;
59 };
60 
61 /*
62  * Data attached to the open device file.
63  * Note that it might be shared after a fork().
64  */
65 struct dmirror {
66 	struct dmirror_device		*mdevice;
67 	struct xarray			pt;
68 	struct mmu_interval_notifier	notifier;
69 	struct mutex			mutex;
70 };
71 
72 /*
73  * ZONE_DEVICE pages for migration and simulating device memory.
74  */
75 struct dmirror_chunk {
76 	struct dev_pagemap	pagemap;
77 	struct dmirror_device	*mdevice;
78 };
79 
80 /*
81  * Per device data.
82  */
83 struct dmirror_device {
84 	struct cdev		cdevice;
85 	struct hmm_devmem	*devmem;
86 
87 	unsigned int		devmem_capacity;
88 	unsigned int		devmem_count;
89 	struct dmirror_chunk	**devmem_chunks;
90 	struct mutex		devmem_lock;	/* protects the above */
91 
92 	unsigned long		calloc;
93 	unsigned long		cfree;
94 	struct page		*free_pages;
95 	spinlock_t		lock;		/* protects the above */
96 };
97 
98 static struct dmirror_device dmirror_devices[DMIRROR_NDEVICES];
99 
100 static int dmirror_bounce_init(struct dmirror_bounce *bounce,
101 			       unsigned long addr,
102 			       unsigned long size)
103 {
104 	bounce->addr = addr;
105 	bounce->size = size;
106 	bounce->cpages = 0;
107 	bounce->ptr = vmalloc(size);
108 	if (!bounce->ptr)
109 		return -ENOMEM;
110 	return 0;
111 }
112 
113 static void dmirror_bounce_fini(struct dmirror_bounce *bounce)
114 {
115 	vfree(bounce->ptr);
116 }
117 
118 static int dmirror_fops_open(struct inode *inode, struct file *filp)
119 {
120 	struct cdev *cdev = inode->i_cdev;
121 	struct dmirror *dmirror;
122 	int ret;
123 
124 	/* Mirror this process address space */
125 	dmirror = kzalloc(sizeof(*dmirror), GFP_KERNEL);
126 	if (dmirror == NULL)
127 		return -ENOMEM;
128 
129 	dmirror->mdevice = container_of(cdev, struct dmirror_device, cdevice);
130 	mutex_init(&dmirror->mutex);
131 	xa_init(&dmirror->pt);
132 
133 	ret = mmu_interval_notifier_insert(&dmirror->notifier, current->mm,
134 				0, ULONG_MAX & PAGE_MASK, &dmirror_min_ops);
135 	if (ret) {
136 		kfree(dmirror);
137 		return ret;
138 	}
139 
140 	filp->private_data = dmirror;
141 	return 0;
142 }
143 
144 static int dmirror_fops_release(struct inode *inode, struct file *filp)
145 {
146 	struct dmirror *dmirror = filp->private_data;
147 
148 	mmu_interval_notifier_remove(&dmirror->notifier);
149 	xa_destroy(&dmirror->pt);
150 	kfree(dmirror);
151 	return 0;
152 }
153 
154 static struct dmirror_device *dmirror_page_to_device(struct page *page)
155 
156 {
157 	return container_of(page->pgmap, struct dmirror_chunk,
158 			    pagemap)->mdevice;
159 }
160 
161 static int dmirror_do_fault(struct dmirror *dmirror, struct hmm_range *range)
162 {
163 	unsigned long *pfns = range->hmm_pfns;
164 	unsigned long pfn;
165 
166 	for (pfn = (range->start >> PAGE_SHIFT);
167 	     pfn < (range->end >> PAGE_SHIFT);
168 	     pfn++, pfns++) {
169 		struct page *page;
170 		void *entry;
171 
172 		/*
173 		 * Since we asked for hmm_range_fault() to populate pages,
174 		 * it shouldn't return an error entry on success.
175 		 */
176 		WARN_ON(*pfns & HMM_PFN_ERROR);
177 		WARN_ON(!(*pfns & HMM_PFN_VALID));
178 
179 		page = hmm_pfn_to_page(*pfns);
180 		WARN_ON(!page);
181 
182 		entry = page;
183 		if (*pfns & HMM_PFN_WRITE)
184 			entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
185 		else if (WARN_ON(range->default_flags & HMM_PFN_WRITE))
186 			return -EFAULT;
187 		entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
188 		if (xa_is_err(entry))
189 			return xa_err(entry);
190 	}
191 
192 	return 0;
193 }
194 
195 static void dmirror_do_update(struct dmirror *dmirror, unsigned long start,
196 			      unsigned long end)
197 {
198 	unsigned long pfn;
199 	void *entry;
200 
201 	/*
202 	 * The XArray doesn't hold references to pages since it relies on
203 	 * the mmu notifier to clear page pointers when they become stale.
204 	 * Therefore, it is OK to just clear the entry.
205 	 */
206 	xa_for_each_range(&dmirror->pt, pfn, entry, start >> PAGE_SHIFT,
207 			  end >> PAGE_SHIFT)
208 		xa_erase(&dmirror->pt, pfn);
209 }
210 
211 static bool dmirror_interval_invalidate(struct mmu_interval_notifier *mni,
212 				const struct mmu_notifier_range *range,
213 				unsigned long cur_seq)
214 {
215 	struct dmirror *dmirror = container_of(mni, struct dmirror, notifier);
216 
217 	if (mmu_notifier_range_blockable(range))
218 		mutex_lock(&dmirror->mutex);
219 	else if (!mutex_trylock(&dmirror->mutex))
220 		return false;
221 
222 	mmu_interval_set_seq(mni, cur_seq);
223 	dmirror_do_update(dmirror, range->start, range->end);
224 
225 	mutex_unlock(&dmirror->mutex);
226 	return true;
227 }
228 
229 static const struct mmu_interval_notifier_ops dmirror_min_ops = {
230 	.invalidate = dmirror_interval_invalidate,
231 };
232 
233 static int dmirror_range_fault(struct dmirror *dmirror,
234 				struct hmm_range *range)
235 {
236 	struct mm_struct *mm = dmirror->notifier.mm;
237 	unsigned long timeout =
238 		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
239 	int ret;
240 
241 	while (true) {
242 		if (time_after(jiffies, timeout)) {
243 			ret = -EBUSY;
244 			goto out;
245 		}
246 
247 		range->notifier_seq = mmu_interval_read_begin(range->notifier);
248 		mmap_read_lock(mm);
249 		ret = hmm_range_fault(range);
250 		mmap_read_unlock(mm);
251 		if (ret) {
252 			if (ret == -EBUSY)
253 				continue;
254 			goto out;
255 		}
256 
257 		mutex_lock(&dmirror->mutex);
258 		if (mmu_interval_read_retry(range->notifier,
259 					    range->notifier_seq)) {
260 			mutex_unlock(&dmirror->mutex);
261 			continue;
262 		}
263 		break;
264 	}
265 
266 	ret = dmirror_do_fault(dmirror, range);
267 
268 	mutex_unlock(&dmirror->mutex);
269 out:
270 	return ret;
271 }
272 
273 static int dmirror_fault(struct dmirror *dmirror, unsigned long start,
274 			 unsigned long end, bool write)
275 {
276 	struct mm_struct *mm = dmirror->notifier.mm;
277 	unsigned long addr;
278 	unsigned long pfns[64];
279 	struct hmm_range range = {
280 		.notifier = &dmirror->notifier,
281 		.hmm_pfns = pfns,
282 		.pfn_flags_mask = 0,
283 		.default_flags =
284 			HMM_PFN_REQ_FAULT | (write ? HMM_PFN_REQ_WRITE : 0),
285 		.dev_private_owner = dmirror->mdevice,
286 	};
287 	int ret = 0;
288 
289 	/* Since the mm is for the mirrored process, get a reference first. */
290 	if (!mmget_not_zero(mm))
291 		return 0;
292 
293 	for (addr = start; addr < end; addr = range.end) {
294 		range.start = addr;
295 		range.end = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
296 
297 		ret = dmirror_range_fault(dmirror, &range);
298 		if (ret)
299 			break;
300 	}
301 
302 	mmput(mm);
303 	return ret;
304 }
305 
306 static int dmirror_do_read(struct dmirror *dmirror, unsigned long start,
307 			   unsigned long end, struct dmirror_bounce *bounce)
308 {
309 	unsigned long pfn;
310 	void *ptr;
311 
312 	ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
313 
314 	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
315 		void *entry;
316 		struct page *page;
317 		void *tmp;
318 
319 		entry = xa_load(&dmirror->pt, pfn);
320 		page = xa_untag_pointer(entry);
321 		if (!page)
322 			return -ENOENT;
323 
324 		tmp = kmap(page);
325 		memcpy(ptr, tmp, PAGE_SIZE);
326 		kunmap(page);
327 
328 		ptr += PAGE_SIZE;
329 		bounce->cpages++;
330 	}
331 
332 	return 0;
333 }
334 
335 static int dmirror_read(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
336 {
337 	struct dmirror_bounce bounce;
338 	unsigned long start, end;
339 	unsigned long size = cmd->npages << PAGE_SHIFT;
340 	int ret;
341 
342 	start = cmd->addr;
343 	end = start + size;
344 	if (end < start)
345 		return -EINVAL;
346 
347 	ret = dmirror_bounce_init(&bounce, start, size);
348 	if (ret)
349 		return ret;
350 
351 	while (1) {
352 		mutex_lock(&dmirror->mutex);
353 		ret = dmirror_do_read(dmirror, start, end, &bounce);
354 		mutex_unlock(&dmirror->mutex);
355 		if (ret != -ENOENT)
356 			break;
357 
358 		start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
359 		ret = dmirror_fault(dmirror, start, end, false);
360 		if (ret)
361 			break;
362 		cmd->faults++;
363 	}
364 
365 	if (ret == 0) {
366 		if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
367 				 bounce.size))
368 			ret = -EFAULT;
369 	}
370 	cmd->cpages = bounce.cpages;
371 	dmirror_bounce_fini(&bounce);
372 	return ret;
373 }
374 
375 static int dmirror_do_write(struct dmirror *dmirror, unsigned long start,
376 			    unsigned long end, struct dmirror_bounce *bounce)
377 {
378 	unsigned long pfn;
379 	void *ptr;
380 
381 	ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
382 
383 	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
384 		void *entry;
385 		struct page *page;
386 		void *tmp;
387 
388 		entry = xa_load(&dmirror->pt, pfn);
389 		page = xa_untag_pointer(entry);
390 		if (!page || xa_pointer_tag(entry) != DPT_XA_TAG_WRITE)
391 			return -ENOENT;
392 
393 		tmp = kmap(page);
394 		memcpy(tmp, ptr, PAGE_SIZE);
395 		kunmap(page);
396 
397 		ptr += PAGE_SIZE;
398 		bounce->cpages++;
399 	}
400 
401 	return 0;
402 }
403 
404 static int dmirror_write(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
405 {
406 	struct dmirror_bounce bounce;
407 	unsigned long start, end;
408 	unsigned long size = cmd->npages << PAGE_SHIFT;
409 	int ret;
410 
411 	start = cmd->addr;
412 	end = start + size;
413 	if (end < start)
414 		return -EINVAL;
415 
416 	ret = dmirror_bounce_init(&bounce, start, size);
417 	if (ret)
418 		return ret;
419 	if (copy_from_user(bounce.ptr, u64_to_user_ptr(cmd->ptr),
420 			   bounce.size)) {
421 		ret = -EFAULT;
422 		goto fini;
423 	}
424 
425 	while (1) {
426 		mutex_lock(&dmirror->mutex);
427 		ret = dmirror_do_write(dmirror, start, end, &bounce);
428 		mutex_unlock(&dmirror->mutex);
429 		if (ret != -ENOENT)
430 			break;
431 
432 		start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
433 		ret = dmirror_fault(dmirror, start, end, true);
434 		if (ret)
435 			break;
436 		cmd->faults++;
437 	}
438 
439 fini:
440 	cmd->cpages = bounce.cpages;
441 	dmirror_bounce_fini(&bounce);
442 	return ret;
443 }
444 
445 static bool dmirror_allocate_chunk(struct dmirror_device *mdevice,
446 				   struct page **ppage)
447 {
448 	struct dmirror_chunk *devmem;
449 	struct resource *res;
450 	unsigned long pfn;
451 	unsigned long pfn_first;
452 	unsigned long pfn_last;
453 	void *ptr;
454 
455 	mutex_lock(&mdevice->devmem_lock);
456 
457 	if (mdevice->devmem_count == mdevice->devmem_capacity) {
458 		struct dmirror_chunk **new_chunks;
459 		unsigned int new_capacity;
460 
461 		new_capacity = mdevice->devmem_capacity +
462 				DEVMEM_CHUNKS_RESERVE;
463 		new_chunks = krealloc(mdevice->devmem_chunks,
464 				sizeof(new_chunks[0]) * new_capacity,
465 				GFP_KERNEL);
466 		if (!new_chunks)
467 			goto err;
468 		mdevice->devmem_capacity = new_capacity;
469 		mdevice->devmem_chunks = new_chunks;
470 	}
471 
472 	res = request_free_mem_region(&iomem_resource, DEVMEM_CHUNK_SIZE,
473 					"hmm_dmirror");
474 	if (IS_ERR(res))
475 		goto err;
476 
477 	devmem = kzalloc(sizeof(*devmem), GFP_KERNEL);
478 	if (!devmem)
479 		goto err_release;
480 
481 	devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
482 	devmem->pagemap.res = *res;
483 	devmem->pagemap.ops = &dmirror_devmem_ops;
484 	devmem->pagemap.owner = mdevice;
485 
486 	ptr = memremap_pages(&devmem->pagemap, numa_node_id());
487 	if (IS_ERR(ptr))
488 		goto err_free;
489 
490 	devmem->mdevice = mdevice;
491 	pfn_first = devmem->pagemap.res.start >> PAGE_SHIFT;
492 	pfn_last = pfn_first +
493 		(resource_size(&devmem->pagemap.res) >> PAGE_SHIFT);
494 	mdevice->devmem_chunks[mdevice->devmem_count++] = devmem;
495 
496 	mutex_unlock(&mdevice->devmem_lock);
497 
498 	pr_info("added new %u MB chunk (total %u chunks, %u MB) PFNs [0x%lx 0x%lx)\n",
499 		DEVMEM_CHUNK_SIZE / (1024 * 1024),
500 		mdevice->devmem_count,
501 		mdevice->devmem_count * (DEVMEM_CHUNK_SIZE / (1024 * 1024)),
502 		pfn_first, pfn_last);
503 
504 	spin_lock(&mdevice->lock);
505 	for (pfn = pfn_first; pfn < pfn_last; pfn++) {
506 		struct page *page = pfn_to_page(pfn);
507 
508 		page->zone_device_data = mdevice->free_pages;
509 		mdevice->free_pages = page;
510 	}
511 	if (ppage) {
512 		*ppage = mdevice->free_pages;
513 		mdevice->free_pages = (*ppage)->zone_device_data;
514 		mdevice->calloc++;
515 	}
516 	spin_unlock(&mdevice->lock);
517 
518 	return true;
519 
520 err_free:
521 	kfree(devmem);
522 err_release:
523 	release_mem_region(res->start, resource_size(res));
524 err:
525 	mutex_unlock(&mdevice->devmem_lock);
526 	return false;
527 }
528 
529 static struct page *dmirror_devmem_alloc_page(struct dmirror_device *mdevice)
530 {
531 	struct page *dpage = NULL;
532 	struct page *rpage;
533 
534 	/*
535 	 * This is a fake device so we alloc real system memory to store
536 	 * our device memory.
537 	 */
538 	rpage = alloc_page(GFP_HIGHUSER);
539 	if (!rpage)
540 		return NULL;
541 
542 	spin_lock(&mdevice->lock);
543 
544 	if (mdevice->free_pages) {
545 		dpage = mdevice->free_pages;
546 		mdevice->free_pages = dpage->zone_device_data;
547 		mdevice->calloc++;
548 		spin_unlock(&mdevice->lock);
549 	} else {
550 		spin_unlock(&mdevice->lock);
551 		if (!dmirror_allocate_chunk(mdevice, &dpage))
552 			goto error;
553 	}
554 
555 	dpage->zone_device_data = rpage;
556 	get_page(dpage);
557 	lock_page(dpage);
558 	return dpage;
559 
560 error:
561 	__free_page(rpage);
562 	return NULL;
563 }
564 
565 static void dmirror_migrate_alloc_and_copy(struct migrate_vma *args,
566 					   struct dmirror *dmirror)
567 {
568 	struct dmirror_device *mdevice = dmirror->mdevice;
569 	const unsigned long *src = args->src;
570 	unsigned long *dst = args->dst;
571 	unsigned long addr;
572 
573 	for (addr = args->start; addr < args->end; addr += PAGE_SIZE,
574 						   src++, dst++) {
575 		struct page *spage;
576 		struct page *dpage;
577 		struct page *rpage;
578 
579 		if (!(*src & MIGRATE_PFN_MIGRATE))
580 			continue;
581 
582 		/*
583 		 * Note that spage might be NULL which is OK since it is an
584 		 * unallocated pte_none() or read-only zero page.
585 		 */
586 		spage = migrate_pfn_to_page(*src);
587 
588 		/*
589 		 * Don't migrate device private pages from our own driver or
590 		 * others. For our own we would do a device private memory copy
591 		 * not a migration and for others, we would need to fault the
592 		 * other device's page into system memory first.
593 		 */
594 		if (spage && is_zone_device_page(spage))
595 			continue;
596 
597 		dpage = dmirror_devmem_alloc_page(mdevice);
598 		if (!dpage)
599 			continue;
600 
601 		rpage = dpage->zone_device_data;
602 		if (spage)
603 			copy_highpage(rpage, spage);
604 		else
605 			clear_highpage(rpage);
606 
607 		/*
608 		 * Normally, a device would use the page->zone_device_data to
609 		 * point to the mirror but here we use it to hold the page for
610 		 * the simulated device memory and that page holds the pointer
611 		 * to the mirror.
612 		 */
613 		rpage->zone_device_data = dmirror;
614 
615 		*dst = migrate_pfn(page_to_pfn(dpage)) |
616 			    MIGRATE_PFN_LOCKED;
617 		if ((*src & MIGRATE_PFN_WRITE) ||
618 		    (!spage && args->vma->vm_flags & VM_WRITE))
619 			*dst |= MIGRATE_PFN_WRITE;
620 	}
621 }
622 
623 static int dmirror_migrate_finalize_and_map(struct migrate_vma *args,
624 					    struct dmirror *dmirror)
625 {
626 	unsigned long start = args->start;
627 	unsigned long end = args->end;
628 	const unsigned long *src = args->src;
629 	const unsigned long *dst = args->dst;
630 	unsigned long pfn;
631 
632 	/* Map the migrated pages into the device's page tables. */
633 	mutex_lock(&dmirror->mutex);
634 
635 	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++,
636 								src++, dst++) {
637 		struct page *dpage;
638 		void *entry;
639 
640 		if (!(*src & MIGRATE_PFN_MIGRATE))
641 			continue;
642 
643 		dpage = migrate_pfn_to_page(*dst);
644 		if (!dpage)
645 			continue;
646 
647 		/*
648 		 * Store the page that holds the data so the page table
649 		 * doesn't have to deal with ZONE_DEVICE private pages.
650 		 */
651 		entry = dpage->zone_device_data;
652 		if (*dst & MIGRATE_PFN_WRITE)
653 			entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
654 		entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
655 		if (xa_is_err(entry)) {
656 			mutex_unlock(&dmirror->mutex);
657 			return xa_err(entry);
658 		}
659 	}
660 
661 	mutex_unlock(&dmirror->mutex);
662 	return 0;
663 }
664 
665 static int dmirror_migrate(struct dmirror *dmirror,
666 			   struct hmm_dmirror_cmd *cmd)
667 {
668 	unsigned long start, end, addr;
669 	unsigned long size = cmd->npages << PAGE_SHIFT;
670 	struct mm_struct *mm = dmirror->notifier.mm;
671 	struct vm_area_struct *vma;
672 	unsigned long src_pfns[64];
673 	unsigned long dst_pfns[64];
674 	struct dmirror_bounce bounce;
675 	struct migrate_vma args;
676 	unsigned long next;
677 	int ret;
678 
679 	start = cmd->addr;
680 	end = start + size;
681 	if (end < start)
682 		return -EINVAL;
683 
684 	/* Since the mm is for the mirrored process, get a reference first. */
685 	if (!mmget_not_zero(mm))
686 		return -EINVAL;
687 
688 	mmap_read_lock(mm);
689 	for (addr = start; addr < end; addr = next) {
690 		vma = find_vma(mm, addr);
691 		if (!vma || addr < vma->vm_start ||
692 		    !(vma->vm_flags & VM_READ)) {
693 			ret = -EINVAL;
694 			goto out;
695 		}
696 		next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
697 		if (next > vma->vm_end)
698 			next = vma->vm_end;
699 
700 		args.vma = vma;
701 		args.src = src_pfns;
702 		args.dst = dst_pfns;
703 		args.start = addr;
704 		args.end = next;
705 		args.src_owner = NULL;
706 		ret = migrate_vma_setup(&args);
707 		if (ret)
708 			goto out;
709 
710 		dmirror_migrate_alloc_and_copy(&args, dmirror);
711 		migrate_vma_pages(&args);
712 		dmirror_migrate_finalize_and_map(&args, dmirror);
713 		migrate_vma_finalize(&args);
714 	}
715 	mmap_read_unlock(mm);
716 	mmput(mm);
717 
718 	/* Return the migrated data for verification. */
719 	ret = dmirror_bounce_init(&bounce, start, size);
720 	if (ret)
721 		return ret;
722 	mutex_lock(&dmirror->mutex);
723 	ret = dmirror_do_read(dmirror, start, end, &bounce);
724 	mutex_unlock(&dmirror->mutex);
725 	if (ret == 0) {
726 		if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
727 				 bounce.size))
728 			ret = -EFAULT;
729 	}
730 	cmd->cpages = bounce.cpages;
731 	dmirror_bounce_fini(&bounce);
732 	return ret;
733 
734 out:
735 	mmap_read_unlock(mm);
736 	mmput(mm);
737 	return ret;
738 }
739 
740 static void dmirror_mkentry(struct dmirror *dmirror, struct hmm_range *range,
741 			    unsigned char *perm, unsigned long entry)
742 {
743 	struct page *page;
744 
745 	if (entry & HMM_PFN_ERROR) {
746 		*perm = HMM_DMIRROR_PROT_ERROR;
747 		return;
748 	}
749 	if (!(entry & HMM_PFN_VALID)) {
750 		*perm = HMM_DMIRROR_PROT_NONE;
751 		return;
752 	}
753 
754 	page = hmm_pfn_to_page(entry);
755 	if (is_device_private_page(page)) {
756 		/* Is the page migrated to this device or some other? */
757 		if (dmirror->mdevice == dmirror_page_to_device(page))
758 			*perm = HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL;
759 		else
760 			*perm = HMM_DMIRROR_PROT_DEV_PRIVATE_REMOTE;
761 	} else if (is_zero_pfn(page_to_pfn(page)))
762 		*perm = HMM_DMIRROR_PROT_ZERO;
763 	else
764 		*perm = HMM_DMIRROR_PROT_NONE;
765 	if (entry & HMM_PFN_WRITE)
766 		*perm |= HMM_DMIRROR_PROT_WRITE;
767 	else
768 		*perm |= HMM_DMIRROR_PROT_READ;
769 }
770 
771 static bool dmirror_snapshot_invalidate(struct mmu_interval_notifier *mni,
772 				const struct mmu_notifier_range *range,
773 				unsigned long cur_seq)
774 {
775 	struct dmirror_interval *dmi =
776 		container_of(mni, struct dmirror_interval, notifier);
777 	struct dmirror *dmirror = dmi->dmirror;
778 
779 	if (mmu_notifier_range_blockable(range))
780 		mutex_lock(&dmirror->mutex);
781 	else if (!mutex_trylock(&dmirror->mutex))
782 		return false;
783 
784 	/*
785 	 * Snapshots only need to set the sequence number since any
786 	 * invalidation in the interval invalidates the whole snapshot.
787 	 */
788 	mmu_interval_set_seq(mni, cur_seq);
789 
790 	mutex_unlock(&dmirror->mutex);
791 	return true;
792 }
793 
794 static const struct mmu_interval_notifier_ops dmirror_mrn_ops = {
795 	.invalidate = dmirror_snapshot_invalidate,
796 };
797 
798 static int dmirror_range_snapshot(struct dmirror *dmirror,
799 				  struct hmm_range *range,
800 				  unsigned char *perm)
801 {
802 	struct mm_struct *mm = dmirror->notifier.mm;
803 	struct dmirror_interval notifier;
804 	unsigned long timeout =
805 		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
806 	unsigned long i;
807 	unsigned long n;
808 	int ret = 0;
809 
810 	notifier.dmirror = dmirror;
811 	range->notifier = &notifier.notifier;
812 
813 	ret = mmu_interval_notifier_insert(range->notifier, mm,
814 			range->start, range->end - range->start,
815 			&dmirror_mrn_ops);
816 	if (ret)
817 		return ret;
818 
819 	while (true) {
820 		if (time_after(jiffies, timeout)) {
821 			ret = -EBUSY;
822 			goto out;
823 		}
824 
825 		range->notifier_seq = mmu_interval_read_begin(range->notifier);
826 
827 		mmap_read_lock(mm);
828 		ret = hmm_range_fault(range);
829 		mmap_read_unlock(mm);
830 		if (ret) {
831 			if (ret == -EBUSY)
832 				continue;
833 			goto out;
834 		}
835 
836 		mutex_lock(&dmirror->mutex);
837 		if (mmu_interval_read_retry(range->notifier,
838 					    range->notifier_seq)) {
839 			mutex_unlock(&dmirror->mutex);
840 			continue;
841 		}
842 		break;
843 	}
844 
845 	n = (range->end - range->start) >> PAGE_SHIFT;
846 	for (i = 0; i < n; i++)
847 		dmirror_mkentry(dmirror, range, perm + i, range->hmm_pfns[i]);
848 
849 	mutex_unlock(&dmirror->mutex);
850 out:
851 	mmu_interval_notifier_remove(range->notifier);
852 	return ret;
853 }
854 
855 static int dmirror_snapshot(struct dmirror *dmirror,
856 			    struct hmm_dmirror_cmd *cmd)
857 {
858 	struct mm_struct *mm = dmirror->notifier.mm;
859 	unsigned long start, end;
860 	unsigned long size = cmd->npages << PAGE_SHIFT;
861 	unsigned long addr;
862 	unsigned long next;
863 	unsigned long pfns[64];
864 	unsigned char perm[64];
865 	char __user *uptr;
866 	struct hmm_range range = {
867 		.hmm_pfns = pfns,
868 		.dev_private_owner = dmirror->mdevice,
869 	};
870 	int ret = 0;
871 
872 	start = cmd->addr;
873 	end = start + size;
874 	if (end < start)
875 		return -EINVAL;
876 
877 	/* Since the mm is for the mirrored process, get a reference first. */
878 	if (!mmget_not_zero(mm))
879 		return -EINVAL;
880 
881 	/*
882 	 * Register a temporary notifier to detect invalidations even if it
883 	 * overlaps with other mmu_interval_notifiers.
884 	 */
885 	uptr = u64_to_user_ptr(cmd->ptr);
886 	for (addr = start; addr < end; addr = next) {
887 		unsigned long n;
888 
889 		next = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
890 		range.start = addr;
891 		range.end = next;
892 
893 		ret = dmirror_range_snapshot(dmirror, &range, perm);
894 		if (ret)
895 			break;
896 
897 		n = (range.end - range.start) >> PAGE_SHIFT;
898 		if (copy_to_user(uptr, perm, n)) {
899 			ret = -EFAULT;
900 			break;
901 		}
902 
903 		cmd->cpages += n;
904 		uptr += n;
905 	}
906 	mmput(mm);
907 
908 	return ret;
909 }
910 
911 static long dmirror_fops_unlocked_ioctl(struct file *filp,
912 					unsigned int command,
913 					unsigned long arg)
914 {
915 	void __user *uarg = (void __user *)arg;
916 	struct hmm_dmirror_cmd cmd;
917 	struct dmirror *dmirror;
918 	int ret;
919 
920 	dmirror = filp->private_data;
921 	if (!dmirror)
922 		return -EINVAL;
923 
924 	if (copy_from_user(&cmd, uarg, sizeof(cmd)))
925 		return -EFAULT;
926 
927 	if (cmd.addr & ~PAGE_MASK)
928 		return -EINVAL;
929 	if (cmd.addr >= (cmd.addr + (cmd.npages << PAGE_SHIFT)))
930 		return -EINVAL;
931 
932 	cmd.cpages = 0;
933 	cmd.faults = 0;
934 
935 	switch (command) {
936 	case HMM_DMIRROR_READ:
937 		ret = dmirror_read(dmirror, &cmd);
938 		break;
939 
940 	case HMM_DMIRROR_WRITE:
941 		ret = dmirror_write(dmirror, &cmd);
942 		break;
943 
944 	case HMM_DMIRROR_MIGRATE:
945 		ret = dmirror_migrate(dmirror, &cmd);
946 		break;
947 
948 	case HMM_DMIRROR_SNAPSHOT:
949 		ret = dmirror_snapshot(dmirror, &cmd);
950 		break;
951 
952 	default:
953 		return -EINVAL;
954 	}
955 	if (ret)
956 		return ret;
957 
958 	if (copy_to_user(uarg, &cmd, sizeof(cmd)))
959 		return -EFAULT;
960 
961 	return 0;
962 }
963 
964 static const struct file_operations dmirror_fops = {
965 	.open		= dmirror_fops_open,
966 	.release	= dmirror_fops_release,
967 	.unlocked_ioctl = dmirror_fops_unlocked_ioctl,
968 	.llseek		= default_llseek,
969 	.owner		= THIS_MODULE,
970 };
971 
972 static void dmirror_devmem_free(struct page *page)
973 {
974 	struct page *rpage = page->zone_device_data;
975 	struct dmirror_device *mdevice;
976 
977 	if (rpage)
978 		__free_page(rpage);
979 
980 	mdevice = dmirror_page_to_device(page);
981 
982 	spin_lock(&mdevice->lock);
983 	mdevice->cfree++;
984 	page->zone_device_data = mdevice->free_pages;
985 	mdevice->free_pages = page;
986 	spin_unlock(&mdevice->lock);
987 }
988 
989 static vm_fault_t dmirror_devmem_fault_alloc_and_copy(struct migrate_vma *args,
990 						struct dmirror_device *mdevice)
991 {
992 	const unsigned long *src = args->src;
993 	unsigned long *dst = args->dst;
994 	unsigned long start = args->start;
995 	unsigned long end = args->end;
996 	unsigned long addr;
997 
998 	for (addr = start; addr < end; addr += PAGE_SIZE,
999 				       src++, dst++) {
1000 		struct page *dpage, *spage;
1001 
1002 		spage = migrate_pfn_to_page(*src);
1003 		if (!spage || !(*src & MIGRATE_PFN_MIGRATE))
1004 			continue;
1005 		spage = spage->zone_device_data;
1006 
1007 		dpage = alloc_page_vma(GFP_HIGHUSER_MOVABLE, args->vma, addr);
1008 		if (!dpage)
1009 			continue;
1010 
1011 		lock_page(dpage);
1012 		copy_highpage(dpage, spage);
1013 		*dst = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED;
1014 		if (*src & MIGRATE_PFN_WRITE)
1015 			*dst |= MIGRATE_PFN_WRITE;
1016 	}
1017 	return 0;
1018 }
1019 
1020 static void dmirror_devmem_fault_finalize_and_map(struct migrate_vma *args,
1021 						  struct dmirror *dmirror)
1022 {
1023 	/* Invalidate the device's page table mapping. */
1024 	mutex_lock(&dmirror->mutex);
1025 	dmirror_do_update(dmirror, args->start, args->end);
1026 	mutex_unlock(&dmirror->mutex);
1027 }
1028 
1029 static vm_fault_t dmirror_devmem_fault(struct vm_fault *vmf)
1030 {
1031 	struct migrate_vma args;
1032 	unsigned long src_pfns;
1033 	unsigned long dst_pfns;
1034 	struct page *rpage;
1035 	struct dmirror *dmirror;
1036 	vm_fault_t ret;
1037 
1038 	/*
1039 	 * Normally, a device would use the page->zone_device_data to point to
1040 	 * the mirror but here we use it to hold the page for the simulated
1041 	 * device memory and that page holds the pointer to the mirror.
1042 	 */
1043 	rpage = vmf->page->zone_device_data;
1044 	dmirror = rpage->zone_device_data;
1045 
1046 	/* FIXME demonstrate how we can adjust migrate range */
1047 	args.vma = vmf->vma;
1048 	args.start = vmf->address;
1049 	args.end = args.start + PAGE_SIZE;
1050 	args.src = &src_pfns;
1051 	args.dst = &dst_pfns;
1052 	args.src_owner = dmirror->mdevice;
1053 
1054 	if (migrate_vma_setup(&args))
1055 		return VM_FAULT_SIGBUS;
1056 
1057 	ret = dmirror_devmem_fault_alloc_and_copy(&args, dmirror->mdevice);
1058 	if (ret)
1059 		return ret;
1060 	migrate_vma_pages(&args);
1061 	dmirror_devmem_fault_finalize_and_map(&args, dmirror);
1062 	migrate_vma_finalize(&args);
1063 	return 0;
1064 }
1065 
1066 static const struct dev_pagemap_ops dmirror_devmem_ops = {
1067 	.page_free	= dmirror_devmem_free,
1068 	.migrate_to_ram	= dmirror_devmem_fault,
1069 };
1070 
1071 static int dmirror_device_init(struct dmirror_device *mdevice, int id)
1072 {
1073 	dev_t dev;
1074 	int ret;
1075 
1076 	dev = MKDEV(MAJOR(dmirror_dev), id);
1077 	mutex_init(&mdevice->devmem_lock);
1078 	spin_lock_init(&mdevice->lock);
1079 
1080 	cdev_init(&mdevice->cdevice, &dmirror_fops);
1081 	mdevice->cdevice.owner = THIS_MODULE;
1082 	ret = cdev_add(&mdevice->cdevice, dev, 1);
1083 	if (ret)
1084 		return ret;
1085 
1086 	/* Build a list of free ZONE_DEVICE private struct pages */
1087 	dmirror_allocate_chunk(mdevice, NULL);
1088 
1089 	return 0;
1090 }
1091 
1092 static void dmirror_device_remove(struct dmirror_device *mdevice)
1093 {
1094 	unsigned int i;
1095 
1096 	if (mdevice->devmem_chunks) {
1097 		for (i = 0; i < mdevice->devmem_count; i++) {
1098 			struct dmirror_chunk *devmem =
1099 				mdevice->devmem_chunks[i];
1100 
1101 			memunmap_pages(&devmem->pagemap);
1102 			release_mem_region(devmem->pagemap.res.start,
1103 					   resource_size(&devmem->pagemap.res));
1104 			kfree(devmem);
1105 		}
1106 		kfree(mdevice->devmem_chunks);
1107 	}
1108 
1109 	cdev_del(&mdevice->cdevice);
1110 }
1111 
1112 static int __init hmm_dmirror_init(void)
1113 {
1114 	int ret;
1115 	int id;
1116 
1117 	ret = alloc_chrdev_region(&dmirror_dev, 0, DMIRROR_NDEVICES,
1118 				  "HMM_DMIRROR");
1119 	if (ret)
1120 		goto err_unreg;
1121 
1122 	for (id = 0; id < DMIRROR_NDEVICES; id++) {
1123 		ret = dmirror_device_init(dmirror_devices + id, id);
1124 		if (ret)
1125 			goto err_chrdev;
1126 	}
1127 
1128 	/*
1129 	 * Allocate a zero page to simulate a reserved page of device private
1130 	 * memory which is always zero. The zero_pfn page isn't used just to
1131 	 * make the code here simpler (i.e., we need a struct page for it).
1132 	 */
1133 	dmirror_zero_page = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
1134 	if (!dmirror_zero_page) {
1135 		ret = -ENOMEM;
1136 		goto err_chrdev;
1137 	}
1138 
1139 	pr_info("HMM test module loaded. This is only for testing HMM.\n");
1140 	return 0;
1141 
1142 err_chrdev:
1143 	while (--id >= 0)
1144 		dmirror_device_remove(dmirror_devices + id);
1145 	unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1146 err_unreg:
1147 	return ret;
1148 }
1149 
1150 static void __exit hmm_dmirror_exit(void)
1151 {
1152 	int id;
1153 
1154 	if (dmirror_zero_page)
1155 		__free_page(dmirror_zero_page);
1156 	for (id = 0; id < DMIRROR_NDEVICES; id++)
1157 		dmirror_device_remove(dmirror_devices + id);
1158 	unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1159 }
1160 
1161 module_init(hmm_dmirror_init);
1162 module_exit(hmm_dmirror_exit);
1163 MODULE_LICENSE("GPL");
1164