xref: /openbmc/linux/lib/test_hmm.c (revision 1e8fc4ff)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is a module to test the HMM (Heterogeneous Memory Management)
4  * mirror and zone device private memory migration APIs of the kernel.
5  * Userspace programs can register with the driver to mirror their own address
6  * space and can use the device to read/write any valid virtual address.
7  */
8 #include <linux/init.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/cdev.h>
14 #include <linux/device.h>
15 #include <linux/memremap.h>
16 #include <linux/mutex.h>
17 #include <linux/rwsem.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/highmem.h>
21 #include <linux/delay.h>
22 #include <linux/pagemap.h>
23 #include <linux/hmm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/sched/mm.h>
28 #include <linux/platform_device.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/migrate.h>
32 
33 #include "test_hmm_uapi.h"
34 
35 #define DMIRROR_NDEVICES		4
36 #define DMIRROR_RANGE_FAULT_TIMEOUT	1000
37 #define DEVMEM_CHUNK_SIZE		(256 * 1024 * 1024U)
38 #define DEVMEM_CHUNKS_RESERVE		16
39 
40 /*
41  * For device_private pages, dpage is just a dummy struct page
42  * representing a piece of device memory. dmirror_devmem_alloc_page
43  * allocates a real system memory page as backing storage to fake a
44  * real device. zone_device_data points to that backing page. But
45  * for device_coherent memory, the struct page represents real
46  * physical CPU-accessible memory that we can use directly.
47  */
48 #define BACKING_PAGE(page) (is_device_private_page((page)) ? \
49 			   (page)->zone_device_data : (page))
50 
51 static unsigned long spm_addr_dev0;
52 module_param(spm_addr_dev0, long, 0644);
53 MODULE_PARM_DESC(spm_addr_dev0,
54 		"Specify start address for SPM (special purpose memory) used for device 0. By setting this Coherent device type will be used. Make sure spm_addr_dev1 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE.");
55 
56 static unsigned long spm_addr_dev1;
57 module_param(spm_addr_dev1, long, 0644);
58 MODULE_PARM_DESC(spm_addr_dev1,
59 		"Specify start address for SPM (special purpose memory) used for device 1. By setting this Coherent device type will be used. Make sure spm_addr_dev0 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE.");
60 
61 static const struct dev_pagemap_ops dmirror_devmem_ops;
62 static const struct mmu_interval_notifier_ops dmirror_min_ops;
63 static dev_t dmirror_dev;
64 
65 struct dmirror_device;
66 
67 struct dmirror_bounce {
68 	void			*ptr;
69 	unsigned long		size;
70 	unsigned long		addr;
71 	unsigned long		cpages;
72 };
73 
74 #define DPT_XA_TAG_ATOMIC 1UL
75 #define DPT_XA_TAG_WRITE 3UL
76 
77 /*
78  * Data structure to track address ranges and register for mmu interval
79  * notifier updates.
80  */
81 struct dmirror_interval {
82 	struct mmu_interval_notifier	notifier;
83 	struct dmirror			*dmirror;
84 };
85 
86 /*
87  * Data attached to the open device file.
88  * Note that it might be shared after a fork().
89  */
90 struct dmirror {
91 	struct dmirror_device		*mdevice;
92 	struct xarray			pt;
93 	struct mmu_interval_notifier	notifier;
94 	struct mutex			mutex;
95 };
96 
97 /*
98  * ZONE_DEVICE pages for migration and simulating device memory.
99  */
100 struct dmirror_chunk {
101 	struct dev_pagemap	pagemap;
102 	struct dmirror_device	*mdevice;
103 	bool remove;
104 };
105 
106 /*
107  * Per device data.
108  */
109 struct dmirror_device {
110 	struct cdev		cdevice;
111 	unsigned int            zone_device_type;
112 	struct device		device;
113 
114 	unsigned int		devmem_capacity;
115 	unsigned int		devmem_count;
116 	struct dmirror_chunk	**devmem_chunks;
117 	struct mutex		devmem_lock;	/* protects the above */
118 
119 	unsigned long		calloc;
120 	unsigned long		cfree;
121 	struct page		*free_pages;
122 	spinlock_t		lock;		/* protects the above */
123 };
124 
125 static struct dmirror_device dmirror_devices[DMIRROR_NDEVICES];
126 
127 static int dmirror_bounce_init(struct dmirror_bounce *bounce,
128 			       unsigned long addr,
129 			       unsigned long size)
130 {
131 	bounce->addr = addr;
132 	bounce->size = size;
133 	bounce->cpages = 0;
134 	bounce->ptr = vmalloc(size);
135 	if (!bounce->ptr)
136 		return -ENOMEM;
137 	return 0;
138 }
139 
140 static bool dmirror_is_private_zone(struct dmirror_device *mdevice)
141 {
142 	return (mdevice->zone_device_type ==
143 		HMM_DMIRROR_MEMORY_DEVICE_PRIVATE) ? true : false;
144 }
145 
146 static enum migrate_vma_direction
147 dmirror_select_device(struct dmirror *dmirror)
148 {
149 	return (dmirror->mdevice->zone_device_type ==
150 		HMM_DMIRROR_MEMORY_DEVICE_PRIVATE) ?
151 		MIGRATE_VMA_SELECT_DEVICE_PRIVATE :
152 		MIGRATE_VMA_SELECT_DEVICE_COHERENT;
153 }
154 
155 static void dmirror_bounce_fini(struct dmirror_bounce *bounce)
156 {
157 	vfree(bounce->ptr);
158 }
159 
160 static int dmirror_fops_open(struct inode *inode, struct file *filp)
161 {
162 	struct cdev *cdev = inode->i_cdev;
163 	struct dmirror *dmirror;
164 	int ret;
165 
166 	/* Mirror this process address space */
167 	dmirror = kzalloc(sizeof(*dmirror), GFP_KERNEL);
168 	if (dmirror == NULL)
169 		return -ENOMEM;
170 
171 	dmirror->mdevice = container_of(cdev, struct dmirror_device, cdevice);
172 	mutex_init(&dmirror->mutex);
173 	xa_init(&dmirror->pt);
174 
175 	ret = mmu_interval_notifier_insert(&dmirror->notifier, current->mm,
176 				0, ULONG_MAX & PAGE_MASK, &dmirror_min_ops);
177 	if (ret) {
178 		kfree(dmirror);
179 		return ret;
180 	}
181 
182 	filp->private_data = dmirror;
183 	return 0;
184 }
185 
186 static int dmirror_fops_release(struct inode *inode, struct file *filp)
187 {
188 	struct dmirror *dmirror = filp->private_data;
189 
190 	mmu_interval_notifier_remove(&dmirror->notifier);
191 	xa_destroy(&dmirror->pt);
192 	kfree(dmirror);
193 	return 0;
194 }
195 
196 static struct dmirror_chunk *dmirror_page_to_chunk(struct page *page)
197 {
198 	return container_of(page->pgmap, struct dmirror_chunk, pagemap);
199 }
200 
201 static struct dmirror_device *dmirror_page_to_device(struct page *page)
202 
203 {
204 	return dmirror_page_to_chunk(page)->mdevice;
205 }
206 
207 static int dmirror_do_fault(struct dmirror *dmirror, struct hmm_range *range)
208 {
209 	unsigned long *pfns = range->hmm_pfns;
210 	unsigned long pfn;
211 
212 	for (pfn = (range->start >> PAGE_SHIFT);
213 	     pfn < (range->end >> PAGE_SHIFT);
214 	     pfn++, pfns++) {
215 		struct page *page;
216 		void *entry;
217 
218 		/*
219 		 * Since we asked for hmm_range_fault() to populate pages,
220 		 * it shouldn't return an error entry on success.
221 		 */
222 		WARN_ON(*pfns & HMM_PFN_ERROR);
223 		WARN_ON(!(*pfns & HMM_PFN_VALID));
224 
225 		page = hmm_pfn_to_page(*pfns);
226 		WARN_ON(!page);
227 
228 		entry = page;
229 		if (*pfns & HMM_PFN_WRITE)
230 			entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
231 		else if (WARN_ON(range->default_flags & HMM_PFN_WRITE))
232 			return -EFAULT;
233 		entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
234 		if (xa_is_err(entry))
235 			return xa_err(entry);
236 	}
237 
238 	return 0;
239 }
240 
241 static void dmirror_do_update(struct dmirror *dmirror, unsigned long start,
242 			      unsigned long end)
243 {
244 	unsigned long pfn;
245 	void *entry;
246 
247 	/*
248 	 * The XArray doesn't hold references to pages since it relies on
249 	 * the mmu notifier to clear page pointers when they become stale.
250 	 * Therefore, it is OK to just clear the entry.
251 	 */
252 	xa_for_each_range(&dmirror->pt, pfn, entry, start >> PAGE_SHIFT,
253 			  end >> PAGE_SHIFT)
254 		xa_erase(&dmirror->pt, pfn);
255 }
256 
257 static bool dmirror_interval_invalidate(struct mmu_interval_notifier *mni,
258 				const struct mmu_notifier_range *range,
259 				unsigned long cur_seq)
260 {
261 	struct dmirror *dmirror = container_of(mni, struct dmirror, notifier);
262 
263 	/*
264 	 * Ignore invalidation callbacks for device private pages since
265 	 * the invalidation is handled as part of the migration process.
266 	 */
267 	if (range->event == MMU_NOTIFY_MIGRATE &&
268 	    range->owner == dmirror->mdevice)
269 		return true;
270 
271 	if (mmu_notifier_range_blockable(range))
272 		mutex_lock(&dmirror->mutex);
273 	else if (!mutex_trylock(&dmirror->mutex))
274 		return false;
275 
276 	mmu_interval_set_seq(mni, cur_seq);
277 	dmirror_do_update(dmirror, range->start, range->end);
278 
279 	mutex_unlock(&dmirror->mutex);
280 	return true;
281 }
282 
283 static const struct mmu_interval_notifier_ops dmirror_min_ops = {
284 	.invalidate = dmirror_interval_invalidate,
285 };
286 
287 static int dmirror_range_fault(struct dmirror *dmirror,
288 				struct hmm_range *range)
289 {
290 	struct mm_struct *mm = dmirror->notifier.mm;
291 	unsigned long timeout =
292 		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
293 	int ret;
294 
295 	while (true) {
296 		if (time_after(jiffies, timeout)) {
297 			ret = -EBUSY;
298 			goto out;
299 		}
300 
301 		range->notifier_seq = mmu_interval_read_begin(range->notifier);
302 		mmap_read_lock(mm);
303 		ret = hmm_range_fault(range);
304 		mmap_read_unlock(mm);
305 		if (ret) {
306 			if (ret == -EBUSY)
307 				continue;
308 			goto out;
309 		}
310 
311 		mutex_lock(&dmirror->mutex);
312 		if (mmu_interval_read_retry(range->notifier,
313 					    range->notifier_seq)) {
314 			mutex_unlock(&dmirror->mutex);
315 			continue;
316 		}
317 		break;
318 	}
319 
320 	ret = dmirror_do_fault(dmirror, range);
321 
322 	mutex_unlock(&dmirror->mutex);
323 out:
324 	return ret;
325 }
326 
327 static int dmirror_fault(struct dmirror *dmirror, unsigned long start,
328 			 unsigned long end, bool write)
329 {
330 	struct mm_struct *mm = dmirror->notifier.mm;
331 	unsigned long addr;
332 	unsigned long pfns[64];
333 	struct hmm_range range = {
334 		.notifier = &dmirror->notifier,
335 		.hmm_pfns = pfns,
336 		.pfn_flags_mask = 0,
337 		.default_flags =
338 			HMM_PFN_REQ_FAULT | (write ? HMM_PFN_REQ_WRITE : 0),
339 		.dev_private_owner = dmirror->mdevice,
340 	};
341 	int ret = 0;
342 
343 	/* Since the mm is for the mirrored process, get a reference first. */
344 	if (!mmget_not_zero(mm))
345 		return 0;
346 
347 	for (addr = start; addr < end; addr = range.end) {
348 		range.start = addr;
349 		range.end = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
350 
351 		ret = dmirror_range_fault(dmirror, &range);
352 		if (ret)
353 			break;
354 	}
355 
356 	mmput(mm);
357 	return ret;
358 }
359 
360 static int dmirror_do_read(struct dmirror *dmirror, unsigned long start,
361 			   unsigned long end, struct dmirror_bounce *bounce)
362 {
363 	unsigned long pfn;
364 	void *ptr;
365 
366 	ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
367 
368 	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
369 		void *entry;
370 		struct page *page;
371 
372 		entry = xa_load(&dmirror->pt, pfn);
373 		page = xa_untag_pointer(entry);
374 		if (!page)
375 			return -ENOENT;
376 
377 		memcpy_from_page(ptr, page, 0, PAGE_SIZE);
378 
379 		ptr += PAGE_SIZE;
380 		bounce->cpages++;
381 	}
382 
383 	return 0;
384 }
385 
386 static int dmirror_read(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
387 {
388 	struct dmirror_bounce bounce;
389 	unsigned long start, end;
390 	unsigned long size = cmd->npages << PAGE_SHIFT;
391 	int ret;
392 
393 	start = cmd->addr;
394 	end = start + size;
395 	if (end < start)
396 		return -EINVAL;
397 
398 	ret = dmirror_bounce_init(&bounce, start, size);
399 	if (ret)
400 		return ret;
401 
402 	while (1) {
403 		mutex_lock(&dmirror->mutex);
404 		ret = dmirror_do_read(dmirror, start, end, &bounce);
405 		mutex_unlock(&dmirror->mutex);
406 		if (ret != -ENOENT)
407 			break;
408 
409 		start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
410 		ret = dmirror_fault(dmirror, start, end, false);
411 		if (ret)
412 			break;
413 		cmd->faults++;
414 	}
415 
416 	if (ret == 0) {
417 		if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
418 				 bounce.size))
419 			ret = -EFAULT;
420 	}
421 	cmd->cpages = bounce.cpages;
422 	dmirror_bounce_fini(&bounce);
423 	return ret;
424 }
425 
426 static int dmirror_do_write(struct dmirror *dmirror, unsigned long start,
427 			    unsigned long end, struct dmirror_bounce *bounce)
428 {
429 	unsigned long pfn;
430 	void *ptr;
431 
432 	ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
433 
434 	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
435 		void *entry;
436 		struct page *page;
437 
438 		entry = xa_load(&dmirror->pt, pfn);
439 		page = xa_untag_pointer(entry);
440 		if (!page || xa_pointer_tag(entry) != DPT_XA_TAG_WRITE)
441 			return -ENOENT;
442 
443 		memcpy_to_page(page, 0, ptr, PAGE_SIZE);
444 
445 		ptr += PAGE_SIZE;
446 		bounce->cpages++;
447 	}
448 
449 	return 0;
450 }
451 
452 static int dmirror_write(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
453 {
454 	struct dmirror_bounce bounce;
455 	unsigned long start, end;
456 	unsigned long size = cmd->npages << PAGE_SHIFT;
457 	int ret;
458 
459 	start = cmd->addr;
460 	end = start + size;
461 	if (end < start)
462 		return -EINVAL;
463 
464 	ret = dmirror_bounce_init(&bounce, start, size);
465 	if (ret)
466 		return ret;
467 	if (copy_from_user(bounce.ptr, u64_to_user_ptr(cmd->ptr),
468 			   bounce.size)) {
469 		ret = -EFAULT;
470 		goto fini;
471 	}
472 
473 	while (1) {
474 		mutex_lock(&dmirror->mutex);
475 		ret = dmirror_do_write(dmirror, start, end, &bounce);
476 		mutex_unlock(&dmirror->mutex);
477 		if (ret != -ENOENT)
478 			break;
479 
480 		start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
481 		ret = dmirror_fault(dmirror, start, end, true);
482 		if (ret)
483 			break;
484 		cmd->faults++;
485 	}
486 
487 fini:
488 	cmd->cpages = bounce.cpages;
489 	dmirror_bounce_fini(&bounce);
490 	return ret;
491 }
492 
493 static int dmirror_allocate_chunk(struct dmirror_device *mdevice,
494 				   struct page **ppage)
495 {
496 	struct dmirror_chunk *devmem;
497 	struct resource *res = NULL;
498 	unsigned long pfn;
499 	unsigned long pfn_first;
500 	unsigned long pfn_last;
501 	void *ptr;
502 	int ret = -ENOMEM;
503 
504 	devmem = kzalloc(sizeof(*devmem), GFP_KERNEL);
505 	if (!devmem)
506 		return ret;
507 
508 	switch (mdevice->zone_device_type) {
509 	case HMM_DMIRROR_MEMORY_DEVICE_PRIVATE:
510 		res = request_free_mem_region(&iomem_resource, DEVMEM_CHUNK_SIZE,
511 					      "hmm_dmirror");
512 		if (IS_ERR_OR_NULL(res))
513 			goto err_devmem;
514 		devmem->pagemap.range.start = res->start;
515 		devmem->pagemap.range.end = res->end;
516 		devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
517 		break;
518 	case HMM_DMIRROR_MEMORY_DEVICE_COHERENT:
519 		devmem->pagemap.range.start = (MINOR(mdevice->cdevice.dev) - 2) ?
520 							spm_addr_dev0 :
521 							spm_addr_dev1;
522 		devmem->pagemap.range.end = devmem->pagemap.range.start +
523 					    DEVMEM_CHUNK_SIZE - 1;
524 		devmem->pagemap.type = MEMORY_DEVICE_COHERENT;
525 		break;
526 	default:
527 		ret = -EINVAL;
528 		goto err_devmem;
529 	}
530 
531 	devmem->pagemap.nr_range = 1;
532 	devmem->pagemap.ops = &dmirror_devmem_ops;
533 	devmem->pagemap.owner = mdevice;
534 
535 	mutex_lock(&mdevice->devmem_lock);
536 
537 	if (mdevice->devmem_count == mdevice->devmem_capacity) {
538 		struct dmirror_chunk **new_chunks;
539 		unsigned int new_capacity;
540 
541 		new_capacity = mdevice->devmem_capacity +
542 				DEVMEM_CHUNKS_RESERVE;
543 		new_chunks = krealloc(mdevice->devmem_chunks,
544 				sizeof(new_chunks[0]) * new_capacity,
545 				GFP_KERNEL);
546 		if (!new_chunks)
547 			goto err_release;
548 		mdevice->devmem_capacity = new_capacity;
549 		mdevice->devmem_chunks = new_chunks;
550 	}
551 	ptr = memremap_pages(&devmem->pagemap, numa_node_id());
552 	if (IS_ERR_OR_NULL(ptr)) {
553 		if (ptr)
554 			ret = PTR_ERR(ptr);
555 		else
556 			ret = -EFAULT;
557 		goto err_release;
558 	}
559 
560 	devmem->mdevice = mdevice;
561 	pfn_first = devmem->pagemap.range.start >> PAGE_SHIFT;
562 	pfn_last = pfn_first + (range_len(&devmem->pagemap.range) >> PAGE_SHIFT);
563 	mdevice->devmem_chunks[mdevice->devmem_count++] = devmem;
564 
565 	mutex_unlock(&mdevice->devmem_lock);
566 
567 	pr_info("added new %u MB chunk (total %u chunks, %u MB) PFNs [0x%lx 0x%lx)\n",
568 		DEVMEM_CHUNK_SIZE / (1024 * 1024),
569 		mdevice->devmem_count,
570 		mdevice->devmem_count * (DEVMEM_CHUNK_SIZE / (1024 * 1024)),
571 		pfn_first, pfn_last);
572 
573 	spin_lock(&mdevice->lock);
574 	for (pfn = pfn_first; pfn < pfn_last; pfn++) {
575 		struct page *page = pfn_to_page(pfn);
576 
577 		page->zone_device_data = mdevice->free_pages;
578 		mdevice->free_pages = page;
579 	}
580 	if (ppage) {
581 		*ppage = mdevice->free_pages;
582 		mdevice->free_pages = (*ppage)->zone_device_data;
583 		mdevice->calloc++;
584 	}
585 	spin_unlock(&mdevice->lock);
586 
587 	return 0;
588 
589 err_release:
590 	mutex_unlock(&mdevice->devmem_lock);
591 	if (res && devmem->pagemap.type == MEMORY_DEVICE_PRIVATE)
592 		release_mem_region(devmem->pagemap.range.start,
593 				   range_len(&devmem->pagemap.range));
594 err_devmem:
595 	kfree(devmem);
596 
597 	return ret;
598 }
599 
600 static struct page *dmirror_devmem_alloc_page(struct dmirror_device *mdevice)
601 {
602 	struct page *dpage = NULL;
603 	struct page *rpage = NULL;
604 
605 	/*
606 	 * For ZONE_DEVICE private type, this is a fake device so we allocate
607 	 * real system memory to store our device memory.
608 	 * For ZONE_DEVICE coherent type we use the actual dpage to store the
609 	 * data and ignore rpage.
610 	 */
611 	if (dmirror_is_private_zone(mdevice)) {
612 		rpage = alloc_page(GFP_HIGHUSER);
613 		if (!rpage)
614 			return NULL;
615 	}
616 	spin_lock(&mdevice->lock);
617 
618 	if (mdevice->free_pages) {
619 		dpage = mdevice->free_pages;
620 		mdevice->free_pages = dpage->zone_device_data;
621 		mdevice->calloc++;
622 		spin_unlock(&mdevice->lock);
623 	} else {
624 		spin_unlock(&mdevice->lock);
625 		if (dmirror_allocate_chunk(mdevice, &dpage))
626 			goto error;
627 	}
628 
629 	zone_device_page_init(dpage);
630 	dpage->zone_device_data = rpage;
631 	return dpage;
632 
633 error:
634 	if (rpage)
635 		__free_page(rpage);
636 	return NULL;
637 }
638 
639 static void dmirror_migrate_alloc_and_copy(struct migrate_vma *args,
640 					   struct dmirror *dmirror)
641 {
642 	struct dmirror_device *mdevice = dmirror->mdevice;
643 	const unsigned long *src = args->src;
644 	unsigned long *dst = args->dst;
645 	unsigned long addr;
646 
647 	for (addr = args->start; addr < args->end; addr += PAGE_SIZE,
648 						   src++, dst++) {
649 		struct page *spage;
650 		struct page *dpage;
651 		struct page *rpage;
652 
653 		if (!(*src & MIGRATE_PFN_MIGRATE))
654 			continue;
655 
656 		/*
657 		 * Note that spage might be NULL which is OK since it is an
658 		 * unallocated pte_none() or read-only zero page.
659 		 */
660 		spage = migrate_pfn_to_page(*src);
661 		if (WARN(spage && is_zone_device_page(spage),
662 		     "page already in device spage pfn: 0x%lx\n",
663 		     page_to_pfn(spage)))
664 			continue;
665 
666 		dpage = dmirror_devmem_alloc_page(mdevice);
667 		if (!dpage)
668 			continue;
669 
670 		rpage = BACKING_PAGE(dpage);
671 		if (spage)
672 			copy_highpage(rpage, spage);
673 		else
674 			clear_highpage(rpage);
675 
676 		/*
677 		 * Normally, a device would use the page->zone_device_data to
678 		 * point to the mirror but here we use it to hold the page for
679 		 * the simulated device memory and that page holds the pointer
680 		 * to the mirror.
681 		 */
682 		rpage->zone_device_data = dmirror;
683 
684 		pr_debug("migrating from sys to dev pfn src: 0x%lx pfn dst: 0x%lx\n",
685 			 page_to_pfn(spage), page_to_pfn(dpage));
686 		*dst = migrate_pfn(page_to_pfn(dpage));
687 		if ((*src & MIGRATE_PFN_WRITE) ||
688 		    (!spage && args->vma->vm_flags & VM_WRITE))
689 			*dst |= MIGRATE_PFN_WRITE;
690 	}
691 }
692 
693 static int dmirror_check_atomic(struct dmirror *dmirror, unsigned long start,
694 			     unsigned long end)
695 {
696 	unsigned long pfn;
697 
698 	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
699 		void *entry;
700 
701 		entry = xa_load(&dmirror->pt, pfn);
702 		if (xa_pointer_tag(entry) == DPT_XA_TAG_ATOMIC)
703 			return -EPERM;
704 	}
705 
706 	return 0;
707 }
708 
709 static int dmirror_atomic_map(unsigned long start, unsigned long end,
710 			      struct page **pages, struct dmirror *dmirror)
711 {
712 	unsigned long pfn, mapped = 0;
713 	int i;
714 
715 	/* Map the migrated pages into the device's page tables. */
716 	mutex_lock(&dmirror->mutex);
717 
718 	for (i = 0, pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++, i++) {
719 		void *entry;
720 
721 		if (!pages[i])
722 			continue;
723 
724 		entry = pages[i];
725 		entry = xa_tag_pointer(entry, DPT_XA_TAG_ATOMIC);
726 		entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
727 		if (xa_is_err(entry)) {
728 			mutex_unlock(&dmirror->mutex);
729 			return xa_err(entry);
730 		}
731 
732 		mapped++;
733 	}
734 
735 	mutex_unlock(&dmirror->mutex);
736 	return mapped;
737 }
738 
739 static int dmirror_migrate_finalize_and_map(struct migrate_vma *args,
740 					    struct dmirror *dmirror)
741 {
742 	unsigned long start = args->start;
743 	unsigned long end = args->end;
744 	const unsigned long *src = args->src;
745 	const unsigned long *dst = args->dst;
746 	unsigned long pfn;
747 
748 	/* Map the migrated pages into the device's page tables. */
749 	mutex_lock(&dmirror->mutex);
750 
751 	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++,
752 								src++, dst++) {
753 		struct page *dpage;
754 		void *entry;
755 
756 		if (!(*src & MIGRATE_PFN_MIGRATE))
757 			continue;
758 
759 		dpage = migrate_pfn_to_page(*dst);
760 		if (!dpage)
761 			continue;
762 
763 		entry = BACKING_PAGE(dpage);
764 		if (*dst & MIGRATE_PFN_WRITE)
765 			entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
766 		entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
767 		if (xa_is_err(entry)) {
768 			mutex_unlock(&dmirror->mutex);
769 			return xa_err(entry);
770 		}
771 	}
772 
773 	mutex_unlock(&dmirror->mutex);
774 	return 0;
775 }
776 
777 static int dmirror_exclusive(struct dmirror *dmirror,
778 			     struct hmm_dmirror_cmd *cmd)
779 {
780 	unsigned long start, end, addr;
781 	unsigned long size = cmd->npages << PAGE_SHIFT;
782 	struct mm_struct *mm = dmirror->notifier.mm;
783 	struct page *pages[64];
784 	struct dmirror_bounce bounce;
785 	unsigned long next;
786 	int ret;
787 
788 	start = cmd->addr;
789 	end = start + size;
790 	if (end < start)
791 		return -EINVAL;
792 
793 	/* Since the mm is for the mirrored process, get a reference first. */
794 	if (!mmget_not_zero(mm))
795 		return -EINVAL;
796 
797 	mmap_read_lock(mm);
798 	for (addr = start; addr < end; addr = next) {
799 		unsigned long mapped = 0;
800 		int i;
801 
802 		if (end < addr + (ARRAY_SIZE(pages) << PAGE_SHIFT))
803 			next = end;
804 		else
805 			next = addr + (ARRAY_SIZE(pages) << PAGE_SHIFT);
806 
807 		ret = make_device_exclusive_range(mm, addr, next, pages, NULL);
808 		/*
809 		 * Do dmirror_atomic_map() iff all pages are marked for
810 		 * exclusive access to avoid accessing uninitialized
811 		 * fields of pages.
812 		 */
813 		if (ret == (next - addr) >> PAGE_SHIFT)
814 			mapped = dmirror_atomic_map(addr, next, pages, dmirror);
815 		for (i = 0; i < ret; i++) {
816 			if (pages[i]) {
817 				unlock_page(pages[i]);
818 				put_page(pages[i]);
819 			}
820 		}
821 
822 		if (addr + (mapped << PAGE_SHIFT) < next) {
823 			mmap_read_unlock(mm);
824 			mmput(mm);
825 			return -EBUSY;
826 		}
827 	}
828 	mmap_read_unlock(mm);
829 	mmput(mm);
830 
831 	/* Return the migrated data for verification. */
832 	ret = dmirror_bounce_init(&bounce, start, size);
833 	if (ret)
834 		return ret;
835 	mutex_lock(&dmirror->mutex);
836 	ret = dmirror_do_read(dmirror, start, end, &bounce);
837 	mutex_unlock(&dmirror->mutex);
838 	if (ret == 0) {
839 		if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
840 				 bounce.size))
841 			ret = -EFAULT;
842 	}
843 
844 	cmd->cpages = bounce.cpages;
845 	dmirror_bounce_fini(&bounce);
846 	return ret;
847 }
848 
849 static vm_fault_t dmirror_devmem_fault_alloc_and_copy(struct migrate_vma *args,
850 						      struct dmirror *dmirror)
851 {
852 	const unsigned long *src = args->src;
853 	unsigned long *dst = args->dst;
854 	unsigned long start = args->start;
855 	unsigned long end = args->end;
856 	unsigned long addr;
857 
858 	for (addr = start; addr < end; addr += PAGE_SIZE,
859 				       src++, dst++) {
860 		struct page *dpage, *spage;
861 
862 		spage = migrate_pfn_to_page(*src);
863 		if (!spage || !(*src & MIGRATE_PFN_MIGRATE))
864 			continue;
865 
866 		if (WARN_ON(!is_device_private_page(spage) &&
867 			    !is_device_coherent_page(spage)))
868 			continue;
869 		spage = BACKING_PAGE(spage);
870 		dpage = alloc_page_vma(GFP_HIGHUSER_MOVABLE, args->vma, addr);
871 		if (!dpage)
872 			continue;
873 		pr_debug("migrating from dev to sys pfn src: 0x%lx pfn dst: 0x%lx\n",
874 			 page_to_pfn(spage), page_to_pfn(dpage));
875 
876 		lock_page(dpage);
877 		xa_erase(&dmirror->pt, addr >> PAGE_SHIFT);
878 		copy_highpage(dpage, spage);
879 		*dst = migrate_pfn(page_to_pfn(dpage));
880 		if (*src & MIGRATE_PFN_WRITE)
881 			*dst |= MIGRATE_PFN_WRITE;
882 	}
883 	return 0;
884 }
885 
886 static unsigned long
887 dmirror_successful_migrated_pages(struct migrate_vma *migrate)
888 {
889 	unsigned long cpages = 0;
890 	unsigned long i;
891 
892 	for (i = 0; i < migrate->npages; i++) {
893 		if (migrate->src[i] & MIGRATE_PFN_VALID &&
894 		    migrate->src[i] & MIGRATE_PFN_MIGRATE)
895 			cpages++;
896 	}
897 	return cpages;
898 }
899 
900 static int dmirror_migrate_to_system(struct dmirror *dmirror,
901 				     struct hmm_dmirror_cmd *cmd)
902 {
903 	unsigned long start, end, addr;
904 	unsigned long size = cmd->npages << PAGE_SHIFT;
905 	struct mm_struct *mm = dmirror->notifier.mm;
906 	struct vm_area_struct *vma;
907 	unsigned long src_pfns[64] = { 0 };
908 	unsigned long dst_pfns[64] = { 0 };
909 	struct migrate_vma args = { 0 };
910 	unsigned long next;
911 	int ret;
912 
913 	start = cmd->addr;
914 	end = start + size;
915 	if (end < start)
916 		return -EINVAL;
917 
918 	/* Since the mm is for the mirrored process, get a reference first. */
919 	if (!mmget_not_zero(mm))
920 		return -EINVAL;
921 
922 	cmd->cpages = 0;
923 	mmap_read_lock(mm);
924 	for (addr = start; addr < end; addr = next) {
925 		vma = vma_lookup(mm, addr);
926 		if (!vma || !(vma->vm_flags & VM_READ)) {
927 			ret = -EINVAL;
928 			goto out;
929 		}
930 		next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
931 		if (next > vma->vm_end)
932 			next = vma->vm_end;
933 
934 		args.vma = vma;
935 		args.src = src_pfns;
936 		args.dst = dst_pfns;
937 		args.start = addr;
938 		args.end = next;
939 		args.pgmap_owner = dmirror->mdevice;
940 		args.flags = dmirror_select_device(dmirror);
941 
942 		ret = migrate_vma_setup(&args);
943 		if (ret)
944 			goto out;
945 
946 		pr_debug("Migrating from device mem to sys mem\n");
947 		dmirror_devmem_fault_alloc_and_copy(&args, dmirror);
948 
949 		migrate_vma_pages(&args);
950 		cmd->cpages += dmirror_successful_migrated_pages(&args);
951 		migrate_vma_finalize(&args);
952 	}
953 out:
954 	mmap_read_unlock(mm);
955 	mmput(mm);
956 
957 	return ret;
958 }
959 
960 static int dmirror_migrate_to_device(struct dmirror *dmirror,
961 				struct hmm_dmirror_cmd *cmd)
962 {
963 	unsigned long start, end, addr;
964 	unsigned long size = cmd->npages << PAGE_SHIFT;
965 	struct mm_struct *mm = dmirror->notifier.mm;
966 	struct vm_area_struct *vma;
967 	unsigned long src_pfns[64] = { 0 };
968 	unsigned long dst_pfns[64] = { 0 };
969 	struct dmirror_bounce bounce;
970 	struct migrate_vma args = { 0 };
971 	unsigned long next;
972 	int ret;
973 
974 	start = cmd->addr;
975 	end = start + size;
976 	if (end < start)
977 		return -EINVAL;
978 
979 	/* Since the mm is for the mirrored process, get a reference first. */
980 	if (!mmget_not_zero(mm))
981 		return -EINVAL;
982 
983 	mmap_read_lock(mm);
984 	for (addr = start; addr < end; addr = next) {
985 		vma = vma_lookup(mm, addr);
986 		if (!vma || !(vma->vm_flags & VM_READ)) {
987 			ret = -EINVAL;
988 			goto out;
989 		}
990 		next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
991 		if (next > vma->vm_end)
992 			next = vma->vm_end;
993 
994 		args.vma = vma;
995 		args.src = src_pfns;
996 		args.dst = dst_pfns;
997 		args.start = addr;
998 		args.end = next;
999 		args.pgmap_owner = dmirror->mdevice;
1000 		args.flags = MIGRATE_VMA_SELECT_SYSTEM;
1001 		ret = migrate_vma_setup(&args);
1002 		if (ret)
1003 			goto out;
1004 
1005 		pr_debug("Migrating from sys mem to device mem\n");
1006 		dmirror_migrate_alloc_and_copy(&args, dmirror);
1007 		migrate_vma_pages(&args);
1008 		dmirror_migrate_finalize_and_map(&args, dmirror);
1009 		migrate_vma_finalize(&args);
1010 	}
1011 	mmap_read_unlock(mm);
1012 	mmput(mm);
1013 
1014 	/*
1015 	 * Return the migrated data for verification.
1016 	 * Only for pages in device zone
1017 	 */
1018 	ret = dmirror_bounce_init(&bounce, start, size);
1019 	if (ret)
1020 		return ret;
1021 	mutex_lock(&dmirror->mutex);
1022 	ret = dmirror_do_read(dmirror, start, end, &bounce);
1023 	mutex_unlock(&dmirror->mutex);
1024 	if (ret == 0) {
1025 		if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
1026 				 bounce.size))
1027 			ret = -EFAULT;
1028 	}
1029 	cmd->cpages = bounce.cpages;
1030 	dmirror_bounce_fini(&bounce);
1031 	return ret;
1032 
1033 out:
1034 	mmap_read_unlock(mm);
1035 	mmput(mm);
1036 	return ret;
1037 }
1038 
1039 static void dmirror_mkentry(struct dmirror *dmirror, struct hmm_range *range,
1040 			    unsigned char *perm, unsigned long entry)
1041 {
1042 	struct page *page;
1043 
1044 	if (entry & HMM_PFN_ERROR) {
1045 		*perm = HMM_DMIRROR_PROT_ERROR;
1046 		return;
1047 	}
1048 	if (!(entry & HMM_PFN_VALID)) {
1049 		*perm = HMM_DMIRROR_PROT_NONE;
1050 		return;
1051 	}
1052 
1053 	page = hmm_pfn_to_page(entry);
1054 	if (is_device_private_page(page)) {
1055 		/* Is the page migrated to this device or some other? */
1056 		if (dmirror->mdevice == dmirror_page_to_device(page))
1057 			*perm = HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL;
1058 		else
1059 			*perm = HMM_DMIRROR_PROT_DEV_PRIVATE_REMOTE;
1060 	} else if (is_device_coherent_page(page)) {
1061 		/* Is the page migrated to this device or some other? */
1062 		if (dmirror->mdevice == dmirror_page_to_device(page))
1063 			*perm = HMM_DMIRROR_PROT_DEV_COHERENT_LOCAL;
1064 		else
1065 			*perm = HMM_DMIRROR_PROT_DEV_COHERENT_REMOTE;
1066 	} else if (is_zero_pfn(page_to_pfn(page)))
1067 		*perm = HMM_DMIRROR_PROT_ZERO;
1068 	else
1069 		*perm = HMM_DMIRROR_PROT_NONE;
1070 	if (entry & HMM_PFN_WRITE)
1071 		*perm |= HMM_DMIRROR_PROT_WRITE;
1072 	else
1073 		*perm |= HMM_DMIRROR_PROT_READ;
1074 	if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PMD_SHIFT)
1075 		*perm |= HMM_DMIRROR_PROT_PMD;
1076 	else if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PUD_SHIFT)
1077 		*perm |= HMM_DMIRROR_PROT_PUD;
1078 }
1079 
1080 static bool dmirror_snapshot_invalidate(struct mmu_interval_notifier *mni,
1081 				const struct mmu_notifier_range *range,
1082 				unsigned long cur_seq)
1083 {
1084 	struct dmirror_interval *dmi =
1085 		container_of(mni, struct dmirror_interval, notifier);
1086 	struct dmirror *dmirror = dmi->dmirror;
1087 
1088 	if (mmu_notifier_range_blockable(range))
1089 		mutex_lock(&dmirror->mutex);
1090 	else if (!mutex_trylock(&dmirror->mutex))
1091 		return false;
1092 
1093 	/*
1094 	 * Snapshots only need to set the sequence number since any
1095 	 * invalidation in the interval invalidates the whole snapshot.
1096 	 */
1097 	mmu_interval_set_seq(mni, cur_seq);
1098 
1099 	mutex_unlock(&dmirror->mutex);
1100 	return true;
1101 }
1102 
1103 static const struct mmu_interval_notifier_ops dmirror_mrn_ops = {
1104 	.invalidate = dmirror_snapshot_invalidate,
1105 };
1106 
1107 static int dmirror_range_snapshot(struct dmirror *dmirror,
1108 				  struct hmm_range *range,
1109 				  unsigned char *perm)
1110 {
1111 	struct mm_struct *mm = dmirror->notifier.mm;
1112 	struct dmirror_interval notifier;
1113 	unsigned long timeout =
1114 		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
1115 	unsigned long i;
1116 	unsigned long n;
1117 	int ret = 0;
1118 
1119 	notifier.dmirror = dmirror;
1120 	range->notifier = &notifier.notifier;
1121 
1122 	ret = mmu_interval_notifier_insert(range->notifier, mm,
1123 			range->start, range->end - range->start,
1124 			&dmirror_mrn_ops);
1125 	if (ret)
1126 		return ret;
1127 
1128 	while (true) {
1129 		if (time_after(jiffies, timeout)) {
1130 			ret = -EBUSY;
1131 			goto out;
1132 		}
1133 
1134 		range->notifier_seq = mmu_interval_read_begin(range->notifier);
1135 
1136 		mmap_read_lock(mm);
1137 		ret = hmm_range_fault(range);
1138 		mmap_read_unlock(mm);
1139 		if (ret) {
1140 			if (ret == -EBUSY)
1141 				continue;
1142 			goto out;
1143 		}
1144 
1145 		mutex_lock(&dmirror->mutex);
1146 		if (mmu_interval_read_retry(range->notifier,
1147 					    range->notifier_seq)) {
1148 			mutex_unlock(&dmirror->mutex);
1149 			continue;
1150 		}
1151 		break;
1152 	}
1153 
1154 	n = (range->end - range->start) >> PAGE_SHIFT;
1155 	for (i = 0; i < n; i++)
1156 		dmirror_mkentry(dmirror, range, perm + i, range->hmm_pfns[i]);
1157 
1158 	mutex_unlock(&dmirror->mutex);
1159 out:
1160 	mmu_interval_notifier_remove(range->notifier);
1161 	return ret;
1162 }
1163 
1164 static int dmirror_snapshot(struct dmirror *dmirror,
1165 			    struct hmm_dmirror_cmd *cmd)
1166 {
1167 	struct mm_struct *mm = dmirror->notifier.mm;
1168 	unsigned long start, end;
1169 	unsigned long size = cmd->npages << PAGE_SHIFT;
1170 	unsigned long addr;
1171 	unsigned long next;
1172 	unsigned long pfns[64];
1173 	unsigned char perm[64];
1174 	char __user *uptr;
1175 	struct hmm_range range = {
1176 		.hmm_pfns = pfns,
1177 		.dev_private_owner = dmirror->mdevice,
1178 	};
1179 	int ret = 0;
1180 
1181 	start = cmd->addr;
1182 	end = start + size;
1183 	if (end < start)
1184 		return -EINVAL;
1185 
1186 	/* Since the mm is for the mirrored process, get a reference first. */
1187 	if (!mmget_not_zero(mm))
1188 		return -EINVAL;
1189 
1190 	/*
1191 	 * Register a temporary notifier to detect invalidations even if it
1192 	 * overlaps with other mmu_interval_notifiers.
1193 	 */
1194 	uptr = u64_to_user_ptr(cmd->ptr);
1195 	for (addr = start; addr < end; addr = next) {
1196 		unsigned long n;
1197 
1198 		next = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
1199 		range.start = addr;
1200 		range.end = next;
1201 
1202 		ret = dmirror_range_snapshot(dmirror, &range, perm);
1203 		if (ret)
1204 			break;
1205 
1206 		n = (range.end - range.start) >> PAGE_SHIFT;
1207 		if (copy_to_user(uptr, perm, n)) {
1208 			ret = -EFAULT;
1209 			break;
1210 		}
1211 
1212 		cmd->cpages += n;
1213 		uptr += n;
1214 	}
1215 	mmput(mm);
1216 
1217 	return ret;
1218 }
1219 
1220 static void dmirror_device_evict_chunk(struct dmirror_chunk *chunk)
1221 {
1222 	unsigned long start_pfn = chunk->pagemap.range.start >> PAGE_SHIFT;
1223 	unsigned long end_pfn = chunk->pagemap.range.end >> PAGE_SHIFT;
1224 	unsigned long npages = end_pfn - start_pfn + 1;
1225 	unsigned long i;
1226 	unsigned long *src_pfns;
1227 	unsigned long *dst_pfns;
1228 
1229 	src_pfns = kvcalloc(npages, sizeof(*src_pfns), GFP_KERNEL | __GFP_NOFAIL);
1230 	dst_pfns = kvcalloc(npages, sizeof(*dst_pfns), GFP_KERNEL | __GFP_NOFAIL);
1231 
1232 	migrate_device_range(src_pfns, start_pfn, npages);
1233 	for (i = 0; i < npages; i++) {
1234 		struct page *dpage, *spage;
1235 
1236 		spage = migrate_pfn_to_page(src_pfns[i]);
1237 		if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE))
1238 			continue;
1239 
1240 		if (WARN_ON(!is_device_private_page(spage) &&
1241 			    !is_device_coherent_page(spage)))
1242 			continue;
1243 		spage = BACKING_PAGE(spage);
1244 		dpage = alloc_page(GFP_HIGHUSER_MOVABLE | __GFP_NOFAIL);
1245 		lock_page(dpage);
1246 		copy_highpage(dpage, spage);
1247 		dst_pfns[i] = migrate_pfn(page_to_pfn(dpage));
1248 		if (src_pfns[i] & MIGRATE_PFN_WRITE)
1249 			dst_pfns[i] |= MIGRATE_PFN_WRITE;
1250 	}
1251 	migrate_device_pages(src_pfns, dst_pfns, npages);
1252 	migrate_device_finalize(src_pfns, dst_pfns, npages);
1253 	kvfree(src_pfns);
1254 	kvfree(dst_pfns);
1255 }
1256 
1257 /* Removes free pages from the free list so they can't be re-allocated */
1258 static void dmirror_remove_free_pages(struct dmirror_chunk *devmem)
1259 {
1260 	struct dmirror_device *mdevice = devmem->mdevice;
1261 	struct page *page;
1262 
1263 	for (page = mdevice->free_pages; page; page = page->zone_device_data)
1264 		if (dmirror_page_to_chunk(page) == devmem)
1265 			mdevice->free_pages = page->zone_device_data;
1266 }
1267 
1268 static void dmirror_device_remove_chunks(struct dmirror_device *mdevice)
1269 {
1270 	unsigned int i;
1271 
1272 	mutex_lock(&mdevice->devmem_lock);
1273 	if (mdevice->devmem_chunks) {
1274 		for (i = 0; i < mdevice->devmem_count; i++) {
1275 			struct dmirror_chunk *devmem =
1276 				mdevice->devmem_chunks[i];
1277 
1278 			spin_lock(&mdevice->lock);
1279 			devmem->remove = true;
1280 			dmirror_remove_free_pages(devmem);
1281 			spin_unlock(&mdevice->lock);
1282 
1283 			dmirror_device_evict_chunk(devmem);
1284 			memunmap_pages(&devmem->pagemap);
1285 			if (devmem->pagemap.type == MEMORY_DEVICE_PRIVATE)
1286 				release_mem_region(devmem->pagemap.range.start,
1287 						   range_len(&devmem->pagemap.range));
1288 			kfree(devmem);
1289 		}
1290 		mdevice->devmem_count = 0;
1291 		mdevice->devmem_capacity = 0;
1292 		mdevice->free_pages = NULL;
1293 		kfree(mdevice->devmem_chunks);
1294 		mdevice->devmem_chunks = NULL;
1295 	}
1296 	mutex_unlock(&mdevice->devmem_lock);
1297 }
1298 
1299 static long dmirror_fops_unlocked_ioctl(struct file *filp,
1300 					unsigned int command,
1301 					unsigned long arg)
1302 {
1303 	void __user *uarg = (void __user *)arg;
1304 	struct hmm_dmirror_cmd cmd;
1305 	struct dmirror *dmirror;
1306 	int ret;
1307 
1308 	dmirror = filp->private_data;
1309 	if (!dmirror)
1310 		return -EINVAL;
1311 
1312 	if (copy_from_user(&cmd, uarg, sizeof(cmd)))
1313 		return -EFAULT;
1314 
1315 	if (cmd.addr & ~PAGE_MASK)
1316 		return -EINVAL;
1317 	if (cmd.addr >= (cmd.addr + (cmd.npages << PAGE_SHIFT)))
1318 		return -EINVAL;
1319 
1320 	cmd.cpages = 0;
1321 	cmd.faults = 0;
1322 
1323 	switch (command) {
1324 	case HMM_DMIRROR_READ:
1325 		ret = dmirror_read(dmirror, &cmd);
1326 		break;
1327 
1328 	case HMM_DMIRROR_WRITE:
1329 		ret = dmirror_write(dmirror, &cmd);
1330 		break;
1331 
1332 	case HMM_DMIRROR_MIGRATE_TO_DEV:
1333 		ret = dmirror_migrate_to_device(dmirror, &cmd);
1334 		break;
1335 
1336 	case HMM_DMIRROR_MIGRATE_TO_SYS:
1337 		ret = dmirror_migrate_to_system(dmirror, &cmd);
1338 		break;
1339 
1340 	case HMM_DMIRROR_EXCLUSIVE:
1341 		ret = dmirror_exclusive(dmirror, &cmd);
1342 		break;
1343 
1344 	case HMM_DMIRROR_CHECK_EXCLUSIVE:
1345 		ret = dmirror_check_atomic(dmirror, cmd.addr,
1346 					cmd.addr + (cmd.npages << PAGE_SHIFT));
1347 		break;
1348 
1349 	case HMM_DMIRROR_SNAPSHOT:
1350 		ret = dmirror_snapshot(dmirror, &cmd);
1351 		break;
1352 
1353 	case HMM_DMIRROR_RELEASE:
1354 		dmirror_device_remove_chunks(dmirror->mdevice);
1355 		ret = 0;
1356 		break;
1357 
1358 	default:
1359 		return -EINVAL;
1360 	}
1361 	if (ret)
1362 		return ret;
1363 
1364 	if (copy_to_user(uarg, &cmd, sizeof(cmd)))
1365 		return -EFAULT;
1366 
1367 	return 0;
1368 }
1369 
1370 static int dmirror_fops_mmap(struct file *file, struct vm_area_struct *vma)
1371 {
1372 	unsigned long addr;
1373 
1374 	for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE) {
1375 		struct page *page;
1376 		int ret;
1377 
1378 		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1379 		if (!page)
1380 			return -ENOMEM;
1381 
1382 		ret = vm_insert_page(vma, addr, page);
1383 		if (ret) {
1384 			__free_page(page);
1385 			return ret;
1386 		}
1387 		put_page(page);
1388 	}
1389 
1390 	return 0;
1391 }
1392 
1393 static const struct file_operations dmirror_fops = {
1394 	.open		= dmirror_fops_open,
1395 	.release	= dmirror_fops_release,
1396 	.mmap		= dmirror_fops_mmap,
1397 	.unlocked_ioctl = dmirror_fops_unlocked_ioctl,
1398 	.llseek		= default_llseek,
1399 	.owner		= THIS_MODULE,
1400 };
1401 
1402 static void dmirror_devmem_free(struct page *page)
1403 {
1404 	struct page *rpage = BACKING_PAGE(page);
1405 	struct dmirror_device *mdevice;
1406 
1407 	if (rpage != page)
1408 		__free_page(rpage);
1409 
1410 	mdevice = dmirror_page_to_device(page);
1411 	spin_lock(&mdevice->lock);
1412 
1413 	/* Return page to our allocator if not freeing the chunk */
1414 	if (!dmirror_page_to_chunk(page)->remove) {
1415 		mdevice->cfree++;
1416 		page->zone_device_data = mdevice->free_pages;
1417 		mdevice->free_pages = page;
1418 	}
1419 	spin_unlock(&mdevice->lock);
1420 }
1421 
1422 static vm_fault_t dmirror_devmem_fault(struct vm_fault *vmf)
1423 {
1424 	struct migrate_vma args = { 0 };
1425 	unsigned long src_pfns = 0;
1426 	unsigned long dst_pfns = 0;
1427 	struct page *rpage;
1428 	struct dmirror *dmirror;
1429 	vm_fault_t ret;
1430 
1431 	/*
1432 	 * Normally, a device would use the page->zone_device_data to point to
1433 	 * the mirror but here we use it to hold the page for the simulated
1434 	 * device memory and that page holds the pointer to the mirror.
1435 	 */
1436 	rpage = vmf->page->zone_device_data;
1437 	dmirror = rpage->zone_device_data;
1438 
1439 	/* FIXME demonstrate how we can adjust migrate range */
1440 	args.vma = vmf->vma;
1441 	args.start = vmf->address;
1442 	args.end = args.start + PAGE_SIZE;
1443 	args.src = &src_pfns;
1444 	args.dst = &dst_pfns;
1445 	args.pgmap_owner = dmirror->mdevice;
1446 	args.flags = dmirror_select_device(dmirror);
1447 	args.fault_page = vmf->page;
1448 
1449 	if (migrate_vma_setup(&args))
1450 		return VM_FAULT_SIGBUS;
1451 
1452 	ret = dmirror_devmem_fault_alloc_and_copy(&args, dmirror);
1453 	if (ret)
1454 		return ret;
1455 	migrate_vma_pages(&args);
1456 	/*
1457 	 * No device finalize step is needed since
1458 	 * dmirror_devmem_fault_alloc_and_copy() will have already
1459 	 * invalidated the device page table.
1460 	 */
1461 	migrate_vma_finalize(&args);
1462 	return 0;
1463 }
1464 
1465 static const struct dev_pagemap_ops dmirror_devmem_ops = {
1466 	.page_free	= dmirror_devmem_free,
1467 	.migrate_to_ram	= dmirror_devmem_fault,
1468 };
1469 
1470 static int dmirror_device_init(struct dmirror_device *mdevice, int id)
1471 {
1472 	dev_t dev;
1473 	int ret;
1474 
1475 	dev = MKDEV(MAJOR(dmirror_dev), id);
1476 	mutex_init(&mdevice->devmem_lock);
1477 	spin_lock_init(&mdevice->lock);
1478 
1479 	cdev_init(&mdevice->cdevice, &dmirror_fops);
1480 	mdevice->cdevice.owner = THIS_MODULE;
1481 	device_initialize(&mdevice->device);
1482 	mdevice->device.devt = dev;
1483 
1484 	ret = dev_set_name(&mdevice->device, "hmm_dmirror%u", id);
1485 	if (ret)
1486 		return ret;
1487 
1488 	ret = cdev_device_add(&mdevice->cdevice, &mdevice->device);
1489 	if (ret)
1490 		return ret;
1491 
1492 	/* Build a list of free ZONE_DEVICE struct pages */
1493 	return dmirror_allocate_chunk(mdevice, NULL);
1494 }
1495 
1496 static void dmirror_device_remove(struct dmirror_device *mdevice)
1497 {
1498 	dmirror_device_remove_chunks(mdevice);
1499 	cdev_device_del(&mdevice->cdevice, &mdevice->device);
1500 }
1501 
1502 static int __init hmm_dmirror_init(void)
1503 {
1504 	int ret;
1505 	int id = 0;
1506 	int ndevices = 0;
1507 
1508 	ret = alloc_chrdev_region(&dmirror_dev, 0, DMIRROR_NDEVICES,
1509 				  "HMM_DMIRROR");
1510 	if (ret)
1511 		goto err_unreg;
1512 
1513 	memset(dmirror_devices, 0, DMIRROR_NDEVICES * sizeof(dmirror_devices[0]));
1514 	dmirror_devices[ndevices++].zone_device_type =
1515 				HMM_DMIRROR_MEMORY_DEVICE_PRIVATE;
1516 	dmirror_devices[ndevices++].zone_device_type =
1517 				HMM_DMIRROR_MEMORY_DEVICE_PRIVATE;
1518 	if (spm_addr_dev0 && spm_addr_dev1) {
1519 		dmirror_devices[ndevices++].zone_device_type =
1520 					HMM_DMIRROR_MEMORY_DEVICE_COHERENT;
1521 		dmirror_devices[ndevices++].zone_device_type =
1522 					HMM_DMIRROR_MEMORY_DEVICE_COHERENT;
1523 	}
1524 	for (id = 0; id < ndevices; id++) {
1525 		ret = dmirror_device_init(dmirror_devices + id, id);
1526 		if (ret)
1527 			goto err_chrdev;
1528 	}
1529 
1530 	pr_info("HMM test module loaded. This is only for testing HMM.\n");
1531 	return 0;
1532 
1533 err_chrdev:
1534 	while (--id >= 0)
1535 		dmirror_device_remove(dmirror_devices + id);
1536 	unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1537 err_unreg:
1538 	return ret;
1539 }
1540 
1541 static void __exit hmm_dmirror_exit(void)
1542 {
1543 	int id;
1544 
1545 	for (id = 0; id < DMIRROR_NDEVICES; id++)
1546 		if (dmirror_devices[id].zone_device_type)
1547 			dmirror_device_remove(dmirror_devices + id);
1548 	unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1549 }
1550 
1551 module_init(hmm_dmirror_init);
1552 module_exit(hmm_dmirror_exit);
1553 MODULE_LICENSE("GPL");
1554