xref: /openbmc/linux/lib/scatterlist.c (revision f17f06a0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
4  *
5  * Scatterlist handling helpers.
6  */
7 #include <linux/export.h>
8 #include <linux/slab.h>
9 #include <linux/scatterlist.h>
10 #include <linux/highmem.h>
11 #include <linux/kmemleak.h>
12 
13 /**
14  * sg_next - return the next scatterlist entry in a list
15  * @sg:		The current sg entry
16  *
17  * Description:
18  *   Usually the next entry will be @sg@ + 1, but if this sg element is part
19  *   of a chained scatterlist, it could jump to the start of a new
20  *   scatterlist array.
21  *
22  **/
23 struct scatterlist *sg_next(struct scatterlist *sg)
24 {
25 	if (sg_is_last(sg))
26 		return NULL;
27 
28 	sg++;
29 	if (unlikely(sg_is_chain(sg)))
30 		sg = sg_chain_ptr(sg);
31 
32 	return sg;
33 }
34 EXPORT_SYMBOL(sg_next);
35 
36 /**
37  * sg_nents - return total count of entries in scatterlist
38  * @sg:		The scatterlist
39  *
40  * Description:
41  * Allows to know how many entries are in sg, taking into acount
42  * chaining as well
43  *
44  **/
45 int sg_nents(struct scatterlist *sg)
46 {
47 	int nents;
48 	for (nents = 0; sg; sg = sg_next(sg))
49 		nents++;
50 	return nents;
51 }
52 EXPORT_SYMBOL(sg_nents);
53 
54 /**
55  * sg_nents_for_len - return total count of entries in scatterlist
56  *                    needed to satisfy the supplied length
57  * @sg:		The scatterlist
58  * @len:	The total required length
59  *
60  * Description:
61  * Determines the number of entries in sg that are required to meet
62  * the supplied length, taking into acount chaining as well
63  *
64  * Returns:
65  *   the number of sg entries needed, negative error on failure
66  *
67  **/
68 int sg_nents_for_len(struct scatterlist *sg, u64 len)
69 {
70 	int nents;
71 	u64 total;
72 
73 	if (!len)
74 		return 0;
75 
76 	for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
77 		nents++;
78 		total += sg->length;
79 		if (total >= len)
80 			return nents;
81 	}
82 
83 	return -EINVAL;
84 }
85 EXPORT_SYMBOL(sg_nents_for_len);
86 
87 /**
88  * sg_last - return the last scatterlist entry in a list
89  * @sgl:	First entry in the scatterlist
90  * @nents:	Number of entries in the scatterlist
91  *
92  * Description:
93  *   Should only be used casually, it (currently) scans the entire list
94  *   to get the last entry.
95  *
96  *   Note that the @sgl@ pointer passed in need not be the first one,
97  *   the important bit is that @nents@ denotes the number of entries that
98  *   exist from @sgl@.
99  *
100  **/
101 struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
102 {
103 	struct scatterlist *sg, *ret = NULL;
104 	unsigned int i;
105 
106 	for_each_sg(sgl, sg, nents, i)
107 		ret = sg;
108 
109 	BUG_ON(!sg_is_last(ret));
110 	return ret;
111 }
112 EXPORT_SYMBOL(sg_last);
113 
114 /**
115  * sg_init_table - Initialize SG table
116  * @sgl:	   The SG table
117  * @nents:	   Number of entries in table
118  *
119  * Notes:
120  *   If this is part of a chained sg table, sg_mark_end() should be
121  *   used only on the last table part.
122  *
123  **/
124 void sg_init_table(struct scatterlist *sgl, unsigned int nents)
125 {
126 	memset(sgl, 0, sizeof(*sgl) * nents);
127 	sg_init_marker(sgl, nents);
128 }
129 EXPORT_SYMBOL(sg_init_table);
130 
131 /**
132  * sg_init_one - Initialize a single entry sg list
133  * @sg:		 SG entry
134  * @buf:	 Virtual address for IO
135  * @buflen:	 IO length
136  *
137  **/
138 void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
139 {
140 	sg_init_table(sg, 1);
141 	sg_set_buf(sg, buf, buflen);
142 }
143 EXPORT_SYMBOL(sg_init_one);
144 
145 /*
146  * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
147  * helpers.
148  */
149 static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
150 {
151 	if (nents == SG_MAX_SINGLE_ALLOC) {
152 		/*
153 		 * Kmemleak doesn't track page allocations as they are not
154 		 * commonly used (in a raw form) for kernel data structures.
155 		 * As we chain together a list of pages and then a normal
156 		 * kmalloc (tracked by kmemleak), in order to for that last
157 		 * allocation not to become decoupled (and thus a
158 		 * false-positive) we need to inform kmemleak of all the
159 		 * intermediate allocations.
160 		 */
161 		void *ptr = (void *) __get_free_page(gfp_mask);
162 		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
163 		return ptr;
164 	} else
165 		return kmalloc_array(nents, sizeof(struct scatterlist),
166 				     gfp_mask);
167 }
168 
169 static void sg_kfree(struct scatterlist *sg, unsigned int nents)
170 {
171 	if (nents == SG_MAX_SINGLE_ALLOC) {
172 		kmemleak_free(sg);
173 		free_page((unsigned long) sg);
174 	} else
175 		kfree(sg);
176 }
177 
178 /**
179  * __sg_free_table - Free a previously mapped sg table
180  * @table:	The sg table header to use
181  * @max_ents:	The maximum number of entries per single scatterlist
182  * @nents_first_chunk: Number of entries int the (preallocated) first
183  * 	scatterlist chunk, 0 means no such preallocated first chunk
184  * @free_fn:	Free function
185  *
186  *  Description:
187  *    Free an sg table previously allocated and setup with
188  *    __sg_alloc_table().  The @max_ents value must be identical to
189  *    that previously used with __sg_alloc_table().
190  *
191  **/
192 void __sg_free_table(struct sg_table *table, unsigned int max_ents,
193 		     unsigned int nents_first_chunk, sg_free_fn *free_fn)
194 {
195 	struct scatterlist *sgl, *next;
196 	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
197 
198 	if (unlikely(!table->sgl))
199 		return;
200 
201 	sgl = table->sgl;
202 	while (table->orig_nents) {
203 		unsigned int alloc_size = table->orig_nents;
204 		unsigned int sg_size;
205 
206 		/*
207 		 * If we have more than max_ents segments left,
208 		 * then assign 'next' to the sg table after the current one.
209 		 * sg_size is then one less than alloc size, since the last
210 		 * element is the chain pointer.
211 		 */
212 		if (alloc_size > curr_max_ents) {
213 			next = sg_chain_ptr(&sgl[curr_max_ents - 1]);
214 			alloc_size = curr_max_ents;
215 			sg_size = alloc_size - 1;
216 		} else {
217 			sg_size = alloc_size;
218 			next = NULL;
219 		}
220 
221 		table->orig_nents -= sg_size;
222 		if (nents_first_chunk)
223 			nents_first_chunk = 0;
224 		else
225 			free_fn(sgl, alloc_size);
226 		sgl = next;
227 		curr_max_ents = max_ents;
228 	}
229 
230 	table->sgl = NULL;
231 }
232 EXPORT_SYMBOL(__sg_free_table);
233 
234 /**
235  * sg_free_table - Free a previously allocated sg table
236  * @table:	The mapped sg table header
237  *
238  **/
239 void sg_free_table(struct sg_table *table)
240 {
241 	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
242 }
243 EXPORT_SYMBOL(sg_free_table);
244 
245 /**
246  * __sg_alloc_table - Allocate and initialize an sg table with given allocator
247  * @table:	The sg table header to use
248  * @nents:	Number of entries in sg list
249  * @max_ents:	The maximum number of entries the allocator returns per call
250  * @nents_first_chunk: Number of entries int the (preallocated) first
251  * 	scatterlist chunk, 0 means no such preallocated chunk provided by user
252  * @gfp_mask:	GFP allocation mask
253  * @alloc_fn:	Allocator to use
254  *
255  * Description:
256  *   This function returns a @table @nents long. The allocator is
257  *   defined to return scatterlist chunks of maximum size @max_ents.
258  *   Thus if @nents is bigger than @max_ents, the scatterlists will be
259  *   chained in units of @max_ents.
260  *
261  * Notes:
262  *   If this function returns non-0 (eg failure), the caller must call
263  *   __sg_free_table() to cleanup any leftover allocations.
264  *
265  **/
266 int __sg_alloc_table(struct sg_table *table, unsigned int nents,
267 		     unsigned int max_ents, struct scatterlist *first_chunk,
268 		     unsigned int nents_first_chunk, gfp_t gfp_mask,
269 		     sg_alloc_fn *alloc_fn)
270 {
271 	struct scatterlist *sg, *prv;
272 	unsigned int left;
273 	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
274 	unsigned prv_max_ents;
275 
276 	memset(table, 0, sizeof(*table));
277 
278 	if (nents == 0)
279 		return -EINVAL;
280 #ifdef CONFIG_ARCH_NO_SG_CHAIN
281 	if (WARN_ON_ONCE(nents > max_ents))
282 		return -EINVAL;
283 #endif
284 
285 	left = nents;
286 	prv = NULL;
287 	do {
288 		unsigned int sg_size, alloc_size = left;
289 
290 		if (alloc_size > curr_max_ents) {
291 			alloc_size = curr_max_ents;
292 			sg_size = alloc_size - 1;
293 		} else
294 			sg_size = alloc_size;
295 
296 		left -= sg_size;
297 
298 		if (first_chunk) {
299 			sg = first_chunk;
300 			first_chunk = NULL;
301 		} else {
302 			sg = alloc_fn(alloc_size, gfp_mask);
303 		}
304 		if (unlikely(!sg)) {
305 			/*
306 			 * Adjust entry count to reflect that the last
307 			 * entry of the previous table won't be used for
308 			 * linkage.  Without this, sg_kfree() may get
309 			 * confused.
310 			 */
311 			if (prv)
312 				table->nents = ++table->orig_nents;
313 
314 			return -ENOMEM;
315 		}
316 
317 		sg_init_table(sg, alloc_size);
318 		table->nents = table->orig_nents += sg_size;
319 
320 		/*
321 		 * If this is the first mapping, assign the sg table header.
322 		 * If this is not the first mapping, chain previous part.
323 		 */
324 		if (prv)
325 			sg_chain(prv, prv_max_ents, sg);
326 		else
327 			table->sgl = sg;
328 
329 		/*
330 		 * If no more entries after this one, mark the end
331 		 */
332 		if (!left)
333 			sg_mark_end(&sg[sg_size - 1]);
334 
335 		prv = sg;
336 		prv_max_ents = curr_max_ents;
337 		curr_max_ents = max_ents;
338 	} while (left);
339 
340 	return 0;
341 }
342 EXPORT_SYMBOL(__sg_alloc_table);
343 
344 /**
345  * sg_alloc_table - Allocate and initialize an sg table
346  * @table:	The sg table header to use
347  * @nents:	Number of entries in sg list
348  * @gfp_mask:	GFP allocation mask
349  *
350  *  Description:
351  *    Allocate and initialize an sg table. If @nents@ is larger than
352  *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
353  *
354  **/
355 int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
356 {
357 	int ret;
358 
359 	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
360 			       NULL, 0, gfp_mask, sg_kmalloc);
361 	if (unlikely(ret))
362 		__sg_free_table(table, SG_MAX_SINGLE_ALLOC, 0, sg_kfree);
363 
364 	return ret;
365 }
366 EXPORT_SYMBOL(sg_alloc_table);
367 
368 /**
369  * __sg_alloc_table_from_pages - Allocate and initialize an sg table from
370  *			         an array of pages
371  * @sgt:	 The sg table header to use
372  * @pages:	 Pointer to an array of page pointers
373  * @n_pages:	 Number of pages in the pages array
374  * @offset:      Offset from start of the first page to the start of a buffer
375  * @size:        Number of valid bytes in the buffer (after offset)
376  * @max_segment: Maximum size of a scatterlist node in bytes (page aligned)
377  * @gfp_mask:	 GFP allocation mask
378  *
379  *  Description:
380  *    Allocate and initialize an sg table from a list of pages. Contiguous
381  *    ranges of the pages are squashed into a single scatterlist node up to the
382  *    maximum size specified in @max_segment. An user may provide an offset at a
383  *    start and a size of valid data in a buffer specified by the page array.
384  *    The returned sg table is released by sg_free_table.
385  *
386  * Returns:
387  *   0 on success, negative error on failure
388  */
389 int __sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
390 				unsigned int n_pages, unsigned int offset,
391 				unsigned long size, unsigned int max_segment,
392 				gfp_t gfp_mask)
393 {
394 	unsigned int chunks, cur_page, seg_len, i;
395 	int ret;
396 	struct scatterlist *s;
397 
398 	if (WARN_ON(!max_segment || offset_in_page(max_segment)))
399 		return -EINVAL;
400 
401 	/* compute number of contiguous chunks */
402 	chunks = 1;
403 	seg_len = 0;
404 	for (i = 1; i < n_pages; i++) {
405 		seg_len += PAGE_SIZE;
406 		if (seg_len >= max_segment ||
407 		    page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1) {
408 			chunks++;
409 			seg_len = 0;
410 		}
411 	}
412 
413 	ret = sg_alloc_table(sgt, chunks, gfp_mask);
414 	if (unlikely(ret))
415 		return ret;
416 
417 	/* merging chunks and putting them into the scatterlist */
418 	cur_page = 0;
419 	for_each_sg(sgt->sgl, s, sgt->orig_nents, i) {
420 		unsigned int j, chunk_size;
421 
422 		/* look for the end of the current chunk */
423 		seg_len = 0;
424 		for (j = cur_page + 1; j < n_pages; j++) {
425 			seg_len += PAGE_SIZE;
426 			if (seg_len >= max_segment ||
427 			    page_to_pfn(pages[j]) !=
428 			    page_to_pfn(pages[j - 1]) + 1)
429 				break;
430 		}
431 
432 		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
433 		sg_set_page(s, pages[cur_page],
434 			    min_t(unsigned long, size, chunk_size), offset);
435 		size -= chunk_size;
436 		offset = 0;
437 		cur_page = j;
438 	}
439 
440 	return 0;
441 }
442 EXPORT_SYMBOL(__sg_alloc_table_from_pages);
443 
444 /**
445  * sg_alloc_table_from_pages - Allocate and initialize an sg table from
446  *			       an array of pages
447  * @sgt:	 The sg table header to use
448  * @pages:	 Pointer to an array of page pointers
449  * @n_pages:	 Number of pages in the pages array
450  * @offset:      Offset from start of the first page to the start of a buffer
451  * @size:        Number of valid bytes in the buffer (after offset)
452  * @gfp_mask:	 GFP allocation mask
453  *
454  *  Description:
455  *    Allocate and initialize an sg table from a list of pages. Contiguous
456  *    ranges of the pages are squashed into a single scatterlist node. A user
457  *    may provide an offset at a start and a size of valid data in a buffer
458  *    specified by the page array. The returned sg table is released by
459  *    sg_free_table.
460  *
461  * Returns:
462  *   0 on success, negative error on failure
463  */
464 int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
465 			      unsigned int n_pages, unsigned int offset,
466 			      unsigned long size, gfp_t gfp_mask)
467 {
468 	return __sg_alloc_table_from_pages(sgt, pages, n_pages, offset, size,
469 					   SCATTERLIST_MAX_SEGMENT, gfp_mask);
470 }
471 EXPORT_SYMBOL(sg_alloc_table_from_pages);
472 
473 #ifdef CONFIG_SGL_ALLOC
474 
475 /**
476  * sgl_alloc_order - allocate a scatterlist and its pages
477  * @length: Length in bytes of the scatterlist. Must be at least one
478  * @order: Second argument for alloc_pages()
479  * @chainable: Whether or not to allocate an extra element in the scatterlist
480  *	for scatterlist chaining purposes
481  * @gfp: Memory allocation flags
482  * @nent_p: [out] Number of entries in the scatterlist that have pages
483  *
484  * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
485  */
486 struct scatterlist *sgl_alloc_order(unsigned long long length,
487 				    unsigned int order, bool chainable,
488 				    gfp_t gfp, unsigned int *nent_p)
489 {
490 	struct scatterlist *sgl, *sg;
491 	struct page *page;
492 	unsigned int nent, nalloc;
493 	u32 elem_len;
494 
495 	nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
496 	/* Check for integer overflow */
497 	if (length > (nent << (PAGE_SHIFT + order)))
498 		return NULL;
499 	nalloc = nent;
500 	if (chainable) {
501 		/* Check for integer overflow */
502 		if (nalloc + 1 < nalloc)
503 			return NULL;
504 		nalloc++;
505 	}
506 	sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
507 			    (gfp & ~GFP_DMA) | __GFP_ZERO);
508 	if (!sgl)
509 		return NULL;
510 
511 	sg_init_table(sgl, nalloc);
512 	sg = sgl;
513 	while (length) {
514 		elem_len = min_t(u64, length, PAGE_SIZE << order);
515 		page = alloc_pages(gfp, order);
516 		if (!page) {
517 			sgl_free(sgl);
518 			return NULL;
519 		}
520 
521 		sg_set_page(sg, page, elem_len, 0);
522 		length -= elem_len;
523 		sg = sg_next(sg);
524 	}
525 	WARN_ONCE(length, "length = %lld\n", length);
526 	if (nent_p)
527 		*nent_p = nent;
528 	return sgl;
529 }
530 EXPORT_SYMBOL(sgl_alloc_order);
531 
532 /**
533  * sgl_alloc - allocate a scatterlist and its pages
534  * @length: Length in bytes of the scatterlist
535  * @gfp: Memory allocation flags
536  * @nent_p: [out] Number of entries in the scatterlist
537  *
538  * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
539  */
540 struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
541 			      unsigned int *nent_p)
542 {
543 	return sgl_alloc_order(length, 0, false, gfp, nent_p);
544 }
545 EXPORT_SYMBOL(sgl_alloc);
546 
547 /**
548  * sgl_free_n_order - free a scatterlist and its pages
549  * @sgl: Scatterlist with one or more elements
550  * @nents: Maximum number of elements to free
551  * @order: Second argument for __free_pages()
552  *
553  * Notes:
554  * - If several scatterlists have been chained and each chain element is
555  *   freed separately then it's essential to set nents correctly to avoid that a
556  *   page would get freed twice.
557  * - All pages in a chained scatterlist can be freed at once by setting @nents
558  *   to a high number.
559  */
560 void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
561 {
562 	struct scatterlist *sg;
563 	struct page *page;
564 	int i;
565 
566 	for_each_sg(sgl, sg, nents, i) {
567 		if (!sg)
568 			break;
569 		page = sg_page(sg);
570 		if (page)
571 			__free_pages(page, order);
572 	}
573 	kfree(sgl);
574 }
575 EXPORT_SYMBOL(sgl_free_n_order);
576 
577 /**
578  * sgl_free_order - free a scatterlist and its pages
579  * @sgl: Scatterlist with one or more elements
580  * @order: Second argument for __free_pages()
581  */
582 void sgl_free_order(struct scatterlist *sgl, int order)
583 {
584 	sgl_free_n_order(sgl, INT_MAX, order);
585 }
586 EXPORT_SYMBOL(sgl_free_order);
587 
588 /**
589  * sgl_free - free a scatterlist and its pages
590  * @sgl: Scatterlist with one or more elements
591  */
592 void sgl_free(struct scatterlist *sgl)
593 {
594 	sgl_free_order(sgl, 0);
595 }
596 EXPORT_SYMBOL(sgl_free);
597 
598 #endif /* CONFIG_SGL_ALLOC */
599 
600 void __sg_page_iter_start(struct sg_page_iter *piter,
601 			  struct scatterlist *sglist, unsigned int nents,
602 			  unsigned long pgoffset)
603 {
604 	piter->__pg_advance = 0;
605 	piter->__nents = nents;
606 
607 	piter->sg = sglist;
608 	piter->sg_pgoffset = pgoffset;
609 }
610 EXPORT_SYMBOL(__sg_page_iter_start);
611 
612 static int sg_page_count(struct scatterlist *sg)
613 {
614 	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
615 }
616 
617 bool __sg_page_iter_next(struct sg_page_iter *piter)
618 {
619 	if (!piter->__nents || !piter->sg)
620 		return false;
621 
622 	piter->sg_pgoffset += piter->__pg_advance;
623 	piter->__pg_advance = 1;
624 
625 	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
626 		piter->sg_pgoffset -= sg_page_count(piter->sg);
627 		piter->sg = sg_next(piter->sg);
628 		if (!--piter->__nents || !piter->sg)
629 			return false;
630 	}
631 
632 	return true;
633 }
634 EXPORT_SYMBOL(__sg_page_iter_next);
635 
636 static int sg_dma_page_count(struct scatterlist *sg)
637 {
638 	return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT;
639 }
640 
641 bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter)
642 {
643 	struct sg_page_iter *piter = &dma_iter->base;
644 
645 	if (!piter->__nents || !piter->sg)
646 		return false;
647 
648 	piter->sg_pgoffset += piter->__pg_advance;
649 	piter->__pg_advance = 1;
650 
651 	while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) {
652 		piter->sg_pgoffset -= sg_dma_page_count(piter->sg);
653 		piter->sg = sg_next(piter->sg);
654 		if (!--piter->__nents || !piter->sg)
655 			return false;
656 	}
657 
658 	return true;
659 }
660 EXPORT_SYMBOL(__sg_page_iter_dma_next);
661 
662 /**
663  * sg_miter_start - start mapping iteration over a sg list
664  * @miter: sg mapping iter to be started
665  * @sgl: sg list to iterate over
666  * @nents: number of sg entries
667  *
668  * Description:
669  *   Starts mapping iterator @miter.
670  *
671  * Context:
672  *   Don't care.
673  */
674 void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
675 		    unsigned int nents, unsigned int flags)
676 {
677 	memset(miter, 0, sizeof(struct sg_mapping_iter));
678 
679 	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
680 	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
681 	miter->__flags = flags;
682 }
683 EXPORT_SYMBOL(sg_miter_start);
684 
685 static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
686 {
687 	if (!miter->__remaining) {
688 		struct scatterlist *sg;
689 
690 		if (!__sg_page_iter_next(&miter->piter))
691 			return false;
692 
693 		sg = miter->piter.sg;
694 
695 		miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset;
696 		miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT;
697 		miter->__offset &= PAGE_SIZE - 1;
698 		miter->__remaining = sg->offset + sg->length -
699 				     (miter->piter.sg_pgoffset << PAGE_SHIFT) -
700 				     miter->__offset;
701 		miter->__remaining = min_t(unsigned long, miter->__remaining,
702 					   PAGE_SIZE - miter->__offset);
703 	}
704 
705 	return true;
706 }
707 
708 /**
709  * sg_miter_skip - reposition mapping iterator
710  * @miter: sg mapping iter to be skipped
711  * @offset: number of bytes to plus the current location
712  *
713  * Description:
714  *   Sets the offset of @miter to its current location plus @offset bytes.
715  *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
716  *   stops @miter.
717  *
718  * Context:
719  *   Don't care if @miter is stopped, or not proceeded yet.
720  *   Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
721  *
722  * Returns:
723  *   true if @miter contains the valid mapping.  false if end of sg
724  *   list is reached.
725  */
726 bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
727 {
728 	sg_miter_stop(miter);
729 
730 	while (offset) {
731 		off_t consumed;
732 
733 		if (!sg_miter_get_next_page(miter))
734 			return false;
735 
736 		consumed = min_t(off_t, offset, miter->__remaining);
737 		miter->__offset += consumed;
738 		miter->__remaining -= consumed;
739 		offset -= consumed;
740 	}
741 
742 	return true;
743 }
744 EXPORT_SYMBOL(sg_miter_skip);
745 
746 /**
747  * sg_miter_next - proceed mapping iterator to the next mapping
748  * @miter: sg mapping iter to proceed
749  *
750  * Description:
751  *   Proceeds @miter to the next mapping.  @miter should have been started
752  *   using sg_miter_start().  On successful return, @miter->page,
753  *   @miter->addr and @miter->length point to the current mapping.
754  *
755  * Context:
756  *   Preemption disabled if SG_MITER_ATOMIC.  Preemption must stay disabled
757  *   till @miter is stopped.  May sleep if !SG_MITER_ATOMIC.
758  *
759  * Returns:
760  *   true if @miter contains the next mapping.  false if end of sg
761  *   list is reached.
762  */
763 bool sg_miter_next(struct sg_mapping_iter *miter)
764 {
765 	sg_miter_stop(miter);
766 
767 	/*
768 	 * Get to the next page if necessary.
769 	 * __remaining, __offset is adjusted by sg_miter_stop
770 	 */
771 	if (!sg_miter_get_next_page(miter))
772 		return false;
773 
774 	miter->page = sg_page_iter_page(&miter->piter);
775 	miter->consumed = miter->length = miter->__remaining;
776 
777 	if (miter->__flags & SG_MITER_ATOMIC)
778 		miter->addr = kmap_atomic(miter->page) + miter->__offset;
779 	else
780 		miter->addr = kmap(miter->page) + miter->__offset;
781 
782 	return true;
783 }
784 EXPORT_SYMBOL(sg_miter_next);
785 
786 /**
787  * sg_miter_stop - stop mapping iteration
788  * @miter: sg mapping iter to be stopped
789  *
790  * Description:
791  *   Stops mapping iterator @miter.  @miter should have been started
792  *   using sg_miter_start().  A stopped iteration can be resumed by
793  *   calling sg_miter_next() on it.  This is useful when resources (kmap)
794  *   need to be released during iteration.
795  *
796  * Context:
797  *   Preemption disabled if the SG_MITER_ATOMIC is set.  Don't care
798  *   otherwise.
799  */
800 void sg_miter_stop(struct sg_mapping_iter *miter)
801 {
802 	WARN_ON(miter->consumed > miter->length);
803 
804 	/* drop resources from the last iteration */
805 	if (miter->addr) {
806 		miter->__offset += miter->consumed;
807 		miter->__remaining -= miter->consumed;
808 
809 		if ((miter->__flags & SG_MITER_TO_SG) &&
810 		    !PageSlab(miter->page))
811 			flush_kernel_dcache_page(miter->page);
812 
813 		if (miter->__flags & SG_MITER_ATOMIC) {
814 			WARN_ON_ONCE(preemptible());
815 			kunmap_atomic(miter->addr);
816 		} else
817 			kunmap(miter->page);
818 
819 		miter->page = NULL;
820 		miter->addr = NULL;
821 		miter->length = 0;
822 		miter->consumed = 0;
823 	}
824 }
825 EXPORT_SYMBOL(sg_miter_stop);
826 
827 /**
828  * sg_copy_buffer - Copy data between a linear buffer and an SG list
829  * @sgl:		 The SG list
830  * @nents:		 Number of SG entries
831  * @buf:		 Where to copy from
832  * @buflen:		 The number of bytes to copy
833  * @skip:		 Number of bytes to skip before copying
834  * @to_buffer:		 transfer direction (true == from an sg list to a
835  *			 buffer, false == from a buffer to an sg list
836  *
837  * Returns the number of copied bytes.
838  *
839  **/
840 size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
841 		      size_t buflen, off_t skip, bool to_buffer)
842 {
843 	unsigned int offset = 0;
844 	struct sg_mapping_iter miter;
845 	unsigned int sg_flags = SG_MITER_ATOMIC;
846 
847 	if (to_buffer)
848 		sg_flags |= SG_MITER_FROM_SG;
849 	else
850 		sg_flags |= SG_MITER_TO_SG;
851 
852 	sg_miter_start(&miter, sgl, nents, sg_flags);
853 
854 	if (!sg_miter_skip(&miter, skip))
855 		return false;
856 
857 	while ((offset < buflen) && sg_miter_next(&miter)) {
858 		unsigned int len;
859 
860 		len = min(miter.length, buflen - offset);
861 
862 		if (to_buffer)
863 			memcpy(buf + offset, miter.addr, len);
864 		else
865 			memcpy(miter.addr, buf + offset, len);
866 
867 		offset += len;
868 	}
869 
870 	sg_miter_stop(&miter);
871 
872 	return offset;
873 }
874 EXPORT_SYMBOL(sg_copy_buffer);
875 
876 /**
877  * sg_copy_from_buffer - Copy from a linear buffer to an SG list
878  * @sgl:		 The SG list
879  * @nents:		 Number of SG entries
880  * @buf:		 Where to copy from
881  * @buflen:		 The number of bytes to copy
882  *
883  * Returns the number of copied bytes.
884  *
885  **/
886 size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
887 			   const void *buf, size_t buflen)
888 {
889 	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
890 }
891 EXPORT_SYMBOL(sg_copy_from_buffer);
892 
893 /**
894  * sg_copy_to_buffer - Copy from an SG list to a linear buffer
895  * @sgl:		 The SG list
896  * @nents:		 Number of SG entries
897  * @buf:		 Where to copy to
898  * @buflen:		 The number of bytes to copy
899  *
900  * Returns the number of copied bytes.
901  *
902  **/
903 size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
904 			 void *buf, size_t buflen)
905 {
906 	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
907 }
908 EXPORT_SYMBOL(sg_copy_to_buffer);
909 
910 /**
911  * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
912  * @sgl:		 The SG list
913  * @nents:		 Number of SG entries
914  * @buf:		 Where to copy from
915  * @buflen:		 The number of bytes to copy
916  * @skip:		 Number of bytes to skip before copying
917  *
918  * Returns the number of copied bytes.
919  *
920  **/
921 size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
922 			    const void *buf, size_t buflen, off_t skip)
923 {
924 	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
925 }
926 EXPORT_SYMBOL(sg_pcopy_from_buffer);
927 
928 /**
929  * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
930  * @sgl:		 The SG list
931  * @nents:		 Number of SG entries
932  * @buf:		 Where to copy to
933  * @buflen:		 The number of bytes to copy
934  * @skip:		 Number of bytes to skip before copying
935  *
936  * Returns the number of copied bytes.
937  *
938  **/
939 size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
940 			  void *buf, size_t buflen, off_t skip)
941 {
942 	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
943 }
944 EXPORT_SYMBOL(sg_pcopy_to_buffer);
945 
946 /**
947  * sg_zero_buffer - Zero-out a part of a SG list
948  * @sgl:		 The SG list
949  * @nents:		 Number of SG entries
950  * @buflen:		 The number of bytes to zero out
951  * @skip:		 Number of bytes to skip before zeroing
952  *
953  * Returns the number of bytes zeroed.
954  **/
955 size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
956 		       size_t buflen, off_t skip)
957 {
958 	unsigned int offset = 0;
959 	struct sg_mapping_iter miter;
960 	unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
961 
962 	sg_miter_start(&miter, sgl, nents, sg_flags);
963 
964 	if (!sg_miter_skip(&miter, skip))
965 		return false;
966 
967 	while (offset < buflen && sg_miter_next(&miter)) {
968 		unsigned int len;
969 
970 		len = min(miter.length, buflen - offset);
971 		memset(miter.addr, 0, len);
972 
973 		offset += len;
974 	}
975 
976 	sg_miter_stop(&miter);
977 	return offset;
978 }
979 EXPORT_SYMBOL(sg_zero_buffer);
980